
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIFFPBR: POINT-BASED RENDERING VIA SPATIAL-
AWARE RESIDUAL DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural radiance fields and 3D Gaussian splatting (3DGS) have significantly ad-
vanced 3D reconstruction and novel view synthesis (NVS). Yet, achieving high-
fidelity and view-consistent renderings directly from point clouds—without costly
per-scene optimization—remains a core challenge. In this work, we present Diff-
PBR, a diffusion-based framework that synthesizes coherent, photorealistic render-
ings from diverse point cloud inputs. We demonstrate that diffusion models, when
guided by viewpoint-projected noise explicitly constrained by scene geometry
and visibility, naturally enforce geometric consistency across camera motion. To
achieve this, we first introduce adaptive CoNo-Splatting, a technique for fast and
faithful rasterization that ensures efficient and effective handling of point clouds.
Secondly, we integrate residual learning into the neural re-rendering pipeline, which
improves convergence, generalization, and visual quality across diverse rendering
tasks. Extensive experiments show that our method outperforms existing baselines
with an improvement of 3∼5 dB in rendered image quality, a reduction from 41 to
8 in GPU hours for training, and increase from 3.6 FPS to 10 FPS (our one-step
variant) in rendering speed.

1 INTRODUCTION

Rendering photorealistic images from colored point clouds is a longstanding challenge in computer
graphics, with significant applications in virtual reality, cinematography, robotics, and autonomous
driving. In traditional point-based rendering pipelines, 3D point clouds are first projected onto 2D
image planes through camera transformations, followed by z-buffer rasterization (Ravi et al., 2020).
While these techniques are efficient and well-integrated into conventional graphics workflows, they
often suffer from artifacts like holes, aliasing, and surface discontinuities, which are induced by the
sparsity of the point clouds.

To address these limitations, neural point-based graphics (neural PBG) approaches augment traditional
rendering pipelines with learning-based components, significantly improving visual quality and
robustness. These approaches, such as NPBG (Aliev et al., 2020) and RPBG (Zhu et al., 2024), follow
a similar pipeline: starting with the triangulation of 3D points from multi-view 2D observations,
where neural textures are initialized at each proxy point. These points are then rasterized onto the
target view, followed by a CNN-based refinement module that reconstructs photorealistic images
from the coarse renderings.

While these methods employ per-descriptor optimization using images captured from a single scene,
they struggle to generalize across different scenes. To overcome this limitation, NPBG++ (Rakhimov
et al., 2022) introduces an online aggregation process that updates the neural descriptors of each
point based on input views, enhancing its cross-scene capabilities. Despite these advancements,
rendering consecutive frames often results in flickering, artifacts, and discontinuous jumps. To
mitigate view inconsistencies, several approaches integrate alternative 3D representations (e.g., 3D
CNNs in NPCR (Dai et al., 2020) and 3D Gaussians in PFGS (Wang et al., 2024a)) to alleviate the
errors caused by splatting discrete point clouds onto image planes.

Given the improvements brought by combining multiple representations, a fundamental question
arises: is a point inherently a poor graphic primitive for rendering? With recent advancements in
depth sensing technologies such as Time-of-Flight (TOF) cameras, stereo depth cameras, LiDAR,
monocular depth estimation (Yang et al., 2024b), and 3D/4D reconstruction (Wang et al., 2024b;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Zhang et al., 2024; Chen et al., 2025), point clouds have become a prevalent modality alongside
RGB images. Given the increasing availability of point clouds, can we achieve a purely point-based
rendering pipeline without the need for integrating other representations? At first glance, the discrete
nature of point clouds makes rasterization prone to artifacts such as holes and aliasing. This highlights
the fundamental challenge of a purely point-based pipeline: mitigating rasterization artifacts while
maintaining multi-view consistency.

In image restoration tasks, diffusion-based approaches have recently demonstrated impressive per-
formance (Shi et al., 2024; Jiang et al., 2024; Xia et al., 2023; Zhu et al., 2023), offering strong
generalization capabilities and high-quality outputs. These attributes make them a promising founda-
tion for developing a generalizable point-cloud renderer. However, directly applying image-based
diffusion models to refine point-based renderings introduces several intrinsic challenges. First, the
standard image restoration process typically operates per image, without considering viewpoint
consistency. This leads to inconsistencies across different views of a scene, undermining the temporal
and geometric coherence essential for multi-view rendering. These inconsistencies are particularly
problematic when applied to point clouds, where the absence of explicit surface connectivity amplifies
the sensitivity of rendering to viewpoint changes. Second, diffusion models in image restoration rely
on the assumption of pure noise inputs, yet degraded renderings of point clouds often retain substantial
structural and color information. Reconstructing these inputs from scratch is both unnecessary and
computationally inefficient, as it requires recovering fine details that are already present in the scene.
This inefficiency leads to excessive computational overhead, hindering the model’s performance.
Third, point clouds lack explicit surface connectivity, making point-cloud rendering an ill-posed
problem that is highly sensitive to point-wise parameters such as scale. Poorly chosen parameters
can lead to further artifacts and unreliable supervision signals, complicating the model’s ability to
generalize effectively.

To address these challenges, we propose DiffPBR, a generalizable and view-consistent point-based
rendering framework composed of three complementary components. First, we replace the conven-
tional i.i.d. Gaussian noise with view-aligned, geometry-aware noise maps generated via CoNo-
Splatting. These structured noise maps encode geometric cues such as depth and occlusion, remaining
consistent across viewpoints and enabling the diffusion model to produce spatially coherent outputs
with minimal computational overhead. Second, we adopt a residual diffusion paradigm, where the
model predicts a weighted combination of residual (the difference between the rendered and ground-
truth images) and noise. This formulation focus on recovering missing details, improving inference
efficiency and enhancing generalization across diverse rendering conditions. Third, we introduce an
adaptive point-based renderer that globally adjusts point scales, ensuring faithful projection while
fully exploiting the diffusion model’s capacity for refinement.

To summarize, we provide the following contributions:

• We introduce a novel and compact neural rendering pipeline that utilizes points as the sole
graphics primitives for rendering. It generates photorealistic and view-consistent images
across a wide range of scenes.

• We propose a spatial-aware residual diffusion process to accelerate the training of lifting
rasterized images to high-quality images and ensure consistent multi-view synthesis.

• We propose an adaptive splatting strategy that dynamically adjusts point scales, ensuring
faithful splatting and fully harnessing the capacity of the diffusion model.

• Compared with the state-of-the-art, our method demonstrates an improvement of 3∼5 dB in
rendered image quality, a reduction from 41 to 8 in GPU hours for training, and an increase
from 3.6 FPS to 10 FPS in the rendering speed frequency.

2 RELATED WORKS

2.1 SCENE SPECIFIC NOVEL VIEW SYNTHESIS

Novel view synthesis based on multi-view images for one scene has long been a fundamental challenge
in computer vision and computer graphics (Zhang & Chen, 2004). The evolution of this field benefits
from continuous advancements in 3D scene representation. Voxel grids offer the advantage of
representing arbitrary topological structures, and when combined with interpolation techniques,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

they can generate continuous representations (Upson & Keeler, 1988). Breakthroughs in neural
volume reconstruction (Lombardi et al., 2019) have revitalized research interest in this direction.
NPBG (Aliev et al., 2020) pioneered neural point-based rendering by first reconstructing point
clouds and attaching feature descriptors to each point to encapsulate local geometric and appearance
information. These points are then rasterized into target views, enhancing point rasterization results
through learned neural textures. The RPBG (Zhu et al., 2024) method follows a similar pipeline but
employs surface-consistent neural descriptors and a CNN refinement module to address temporal
instability in point rendering. In contrast to explicit 3D representations using voxels or point clouds,
recent advances in deep learning have driven significant progress in implicit representations (Xiang
et al., 2021; Kellnhofer et al., 2021). NeRF (Mildenhall et al., 2021) achieves continuous mapping
from spatial coordinates and viewing directions to radiance values through MLP-based implicit
functions, employing volume rendering to synthesize novel views. 3D Gaussian Splatting (Kerbl
et al., 2023) leverages differentiable ellipsoidal structures and modern CUDA ecosystems to achieve
high-quality novel view synthesis in remarkably short timeframes. Despite the compelling quality of
novel view synthesis with these graphic primitives, they are limited to scene-specific optimization. To
achieve generalization to general scenes, these graphic primitives are incorporated into feedforward
networks that are conditioned on input multiview images (Wiles et al., 2020; Wang et al., 2021; Yu
et al., 2021a).

2.2 GENERAL POINT-BASED RENDERING

The use of points as fundamental rendering primitives, known as point-based graphics, dates back to
the 1970s (Csuri et al., 1979; Levoy & Whitted, 1985). Points gained popularity due to their storage
flexibility, typically carrying 3D coordinates, colors, and optionally normals or radii, etc. In the
early 2000s, Pfister et al. (2000) employed surfel splatting techniques to blend overlapping regions,
achieving high-quality and efficient point cloud rendering. However, traditional point cloud rendering
methods exhibit severe artifacts and holes when processing sparse point clouds or handling inaccurate
point predictions.

To address these limitations, researchers have integrated point cloud representation with deep learning
approaches. NPBG++ (Rakhimov et al., 2022) introduces online descriptor aggregation that updates
point features from input views. These aggregated descriptors are rasterized onto 2D image plane and
decoded into novel view images using a neural network. TriVol (Hu et al., 2023), on the other hand,
proposes to combine point graphic primitives with anisotropic voxel grids fusion and neural radiance
fields for image rendering (Mildenhall et al., 2021). PFGS (Wang et al., 2024a) draws inspiration from
3DGS (Kerbl et al., 2023) by representing points as adaptive Gaussians and employing differentiable
splatting to learn neural descriptors to improve view consistency. A shared concept of these works is
acquiring 3D descriptors for each point primitive, either by direct aggregation of color features from
pre-trained feature extractors or finetune/learning the descriptors by multiview images, where other
representations may be incorporated to help the learning.

Despite the great progress made by these works, we have found that splatting the descriptors tend to
show blurry results as features from multiview images itself are inconsistent and direct aggregation
can cause blurry effects. Although finetune/learning these descriptors from multiview images may
help reduce the issue, the rasterization of the descriptors in discrete space still faces the inherent
issues induced by the sparsity of point clouds. Unlike this paradigm, we work purely on the original
point space and its original color values. Our work introduces a diffusion-based framework with
residual refinement of rasterized images, and we address the view consistency issue by injecting
structural diffusion noise in 3D space whose attributes are adaptively adjusted with the point cloud
density. This point-based rendering pipeline offers improved view consistency, convergence, and
rendering quality without explicit temporal supervision.

3 METHOD

Given point cloud P = {(xi, ci) | i = 1, 2, . . . , n}, where xi ∈ R3 and ci ∈ R3 represent the 3D
coordinates and color values of the points, we aim to synthesize photorealistic and view-consistent
images from arbitrary camera perspectives.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

residual

𝐼0 -

c ENC DEC

Diffusion U-Net

-
step=t

(b) Spatial-aware Residual Diffusion

𝐼𝑚 = 𝛼(𝐼𝑐)

𝐼𝑇′

c ENC DEC

Diffusion U-Net

𝐼𝑐

step=𝑻′

Inference

𝐼𝑚 = 𝛼(𝐼𝑐)

c

Concate

Forward

diffusion

Loss

function

𝓕(…)

Training

(c) Spatial-aware Residual Diffusion

𝐼𝜖

𝐼𝜖

𝐼t

𝐼𝑚

𝐼𝑐

-
×(T’-1)

መ𝐼𝑡

መ𝐼0

output

-
Reverse

diffusion

color noise

Camera Trajectory

(a) Adaptive CoNo-Splatting

Target view

t

res𝝐

t

Figure 1: Framework Overview. Given a colored point cloud and calibrated cameras, DiffPBR
synthesizes photo-realistic renderings via Adaptive CoNo-Splatting (Sec. 3.1) for view-consistent
initialization, and a Spatial-aware Residual Diffusion stage (Sec. 3.2) for refinement.

While direct point-based rendering can produce plausible projections, the discrete nature of point
clouds often leads to artifacts and inconsistent details across views. Inspired by recent advances
in generative modeling (Shi et al., 2024; Jiang et al., 2024; Xia et al., 2023; Zhu et al., 2023), we
leverage a diffusion model to remove rendering artifacts from point-based rasterization. However,
standard diffusion models, such as Denoising Diffusion Probabilistic Models (DDPM) (Ho et al.,
2020), transform Gaussian noise into clean data via iterative denoising. Despite their success in
generation, they are often suboptimal for restoration tasks where the input already contains meaningful
structure. In such cases, reconstructing the entire image from pure noise is inefficient and unnecessary.
Moreover, the inherent stochasticity of the diffusion process often leads to poor temporal or multi-
view consistency: since each sampling trajectory is initialized from random noise, predictions across
adjacent viewpoints can diverge, causing noticeable inconsistency and temporal flickering.

To address these challenges, we harness 2D diffusion models for point-based rendering to improve
both fidelity and cross-view consistency. Specifically, we propose a spatial-aware residual diffusion
module (RDDM) with 3D-consistent noise guidance for coherent multi-view outputs. Based on
RDDM, we further develop DiffPBR, a renderer consisting of two main components: (i) an adaptive
point-based rasterizer that produces paired color renderings Ic, noise renderings Iϵ, and soft mask Im,
and (ii) a spatial-aware residual diffusion module Fθ(·) that enhances visual fidelity by recovering
high-frequency details while enforcing cross-view consistency. An overview of the complete pipeline
is provided in Fig. 1.

3.1 ADAPTIVE CONO-SPLATTING

In the first stage, we construct an adaptive point cloud Pin = {(xi, ci, ϵi, si) | i = 1, 2, . . . , n} for
appearance and noise rendering, respectively. Each point is initialized with a zero-mean Gaussian
noise vector ϵi ∈ R3 and an isotropic scale factor si = si · (1, 1, 1)⊤ ∈ R3 that characterizes its
contribution to the rendered pixels.

Let Ki denote the k-nearest neighbors of xi. The mean distance to Ki is first computed and used as
the heuristic scale s̄i.

s̄i =
1

k

∑
xj∈Ki

∥xi − xj∥2, si = clamp_max
(
s̄i, β ·median

(
{s̄j}Nj=1

))
, (1)

where we adaptively clamp the local distance s̄i to avoid excessively large values while preserving
target-view consistency, using a global bound defined by the product of a learnable hyperparameter β
and the median of all local distances.

Balancing efficiency and informativeness, our design is simpler than previous point-based renderers.
For example, PFGS requires a memory- and computation-intensive CNN-based module for per-point
scale prediction, with a carefully crafted two-stage training strategy. This heavy design constrains
their scalability and generalization ability. Conversely, our goal for scale initialization is not to
directly generate photo-realistic renderings. Since the point cloud is inherently a sparse and discrete

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Splatted Pixels

(b) Faithful Projection (Proper β)

Empty Pixels

Valid
Mask

Splatting

3D Point

Splatted Pixels

(d) Under-Scaled Projection (Small β)

Empty Pixels

Valid
Mask

Image Plane
(Screen Space)

(a) Ground Truth Image

Object
Surface

Camera CenterImage Pixels

Camera Ray

(c) Over-Scaled Projection (Large β)

Empty Pixels

Valid
Mask

Splatted Pixels

Figure 2: Illustration of how point scale influences the distribution of valid pixels and holes in
the splatted image. (a) Ground-truth image with dense pixel coverage over the entire screen space.
(b) With sparse points, the splatted image leaves empty regions, yet pixels within the valid mask
remain well aligned with the ground truth. (c) Excessively large point scales cause splatting artifacts,
thus penalizing Lcmp. (d) Excessively small point scales result in screen holes and bleeding problems,
thus penalizing Lcov.

representation, missing regions cannot be recovered merely by enlarging splat sizes, which would
instead introduce implausible artifacts. Rather, as depicted in Fig. 2 , our learnable global scale
multiplier β is designed to balance faithful information preservation with the avoidance of spurious
artifacts during the splatting stage, ensuring that the splatted images provide effective input for the
subsequent diffusion stage.

To achieve this goal, we first employ a differentiable point-based rasterization strategy that en-
ables faithful projection of 3D points onto the image plane. We denote this rendering process as
CoNo-Splatting, where each point, equipped with its color ci and sampled noise ϵi, is splatted onto
the image plane as a circular footprint, producing the rendered RGB image Ivc and noise map Ivϵ at
target view v:

Ivc , I
v
ϵ = CNSplat(Pin | Kv,Mv). (2)

Specifically, given the camera intrinsic matrix Kv and extrinsic matrix Mv, the forward splatting
step follows a general point-based rasterization formulation:

F (p) =

∑n
i=1 κ

(
(p− π(Kv,Mv,xi))/si

)
v(zi) fi∑n

j=1 κ
(
(p− π(Kv,Mv,xj))/sj

)
v(zj) + δ

, ∀ p ∈ Ω. (3)

Here, p denotes a pixel location on the feature plane Ω ∈ R6; π(·) is the standard pinhole projection
mapping a 3D point to its 2D location; κ(·) is a differentiable splatting kernel distributing each point’s
contribution to nearby pixels; zi is the depth of point i in the camera coordinate frame; v(·) is a
generic differentiable visibility weighting function; and δ > 0 ensures numerical stability.

From the rendered feature map F (p), the Ivc and Ivϵ are extracted as:
Ivc (p) = [F (p)]1:3, Ivϵ (p) = [F (p)]4:6, ∀ p ∈ Ω. (4)

Next, we process the rendered results and generate a soft mask Ivm by marking empty image regions
as invalid. Let Im = α(Ic), where α(·) extracts the per-pixel opacity from the rendered Ivc . A discrete
spatial distribution is then defined as:

p(i, j) =
Ivm(i, j)∑

i,j I
v
m(i, j) + δ

, (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Multi-step DiffPBR-Q Training

1 Inputs: views V = {(Iv0 ,Kv,Mv)}mv=1, point
cloud Pc = {(xi, ci)}ni=1

2 Hyperparameters: training steps K, diffusion
steps T , learning rate η

3 Pe = Initialization(Pc)
4 T ′ = argminT

i=1

∣∣√ᾱi − 1
2

∣∣
5 for k = 1, . . . ,K do
6 for v = 1, . . . ,m do
7 sample t ∼ U(1, T ′)
8 Ivc , I

v
ϵ = CNSplat(Pin | Kv,Mv)

9 Ivm = α(Ivc), Lcns = L(Ivc , Iv0 , Ivm)

10 Îvt = τ t · Iv0 + (1− τ t) · Ivr + ρt · Ivϵ
11 resϵ = Ivϵ + γt/βt · Ivr
12 Ldm = ∥resϵ−Fθ(Ît, Ic, Im, t)∥2
13 θ, β

η←− ∇θ,β(Lcns + Ldm)
14 end for
15 end for

Algorithm 2 Multi-step DiffPBR-Q Inference

1 Inputs: cameras C = {(Kv,Mv)}mv=1, point
cloud Pc = {(xi, ci)}ni=1

2 Hyperparameters: diffusion steps T
3 Pe = Initialization(Pc)
4 T ′ = argminT

i=1

∣∣√ᾱi − 1
2

∣∣
5 for v = 1, . . . ,m do
6 Ivc , I

v
ϵ = CNSplat(Pin | Kv,Mv)

7 Ivm = α(Ivc)

8 ÎvT ′ = cT ′ · Ivc + dT ′ · Ivϵ
9 for t = T ′, . . . , 1 do

10 Îvt−1 = 1
τt
·(Îvt − βt

ρt
·Fθ(Î

v
t , I

v
c , I

v
m, t))

11 end for
12 end for
13 Return: renderings {Îv0 }mv=1

Note: we simplify terms
√
ᾱt = τ t,

√
1− ᾱt = ρt,

(1−
√
ᾱt)ρt = γt, and Ivc − Iv0 = Ivr , respectively.

We then introduce two regularizers for optimizing β:

Lcov = E(i,j)∼p

[∥∥Ic(i, j)− I0(i, j)
∥∥
1

]
, (6)

Lcmp = E(i,j)∼p

[
− log

(
p(i, j) + δ

)]
. (7)

As illustrated in Fig. 2, Lcov (coverage loss) encourages larger spatial coverage by diluting recon-
struction errors over the valid region, while Lcmp (compactness loss) discourages overly spread-out
masks. Their weighted combination:

Lcns = λcov Lcov + λcmp Lcmp (8)

establishes a complementary interplay: Lcmp alone would drive β toward an overly small mask,
while Lcov counterbalances this tendency by promoting sufficient spatial extent. Together, the two
terms jointly regulate β toward a well-structured and stable solution.

3.2 SPATIAL-AWARE RESIDUAL DIFFUSION PROCESS

Once the rendering triplets {Ic, Iϵ, Im} are obtained, we integrate them into the training and inference
stage of diffusion models. As described in Algorithm 1 and Algorithm 2, the color image Ic and
the mask image Im are utilized as conditioning inputs to the diffusion model, where Ic preserves
faithful appearance cues and Im enforces precise localization of the missing regions. In addition, the
splatted noise map Iϵ, which embeds structural priors, is leveraged to construct the supervision target.
A predictor Fθ is then optimized by minimizing the discrepancy Lrdm between the ground-truth
residual-noise resϵ and the model prediction, formulated as:

Lrdm = EI0,Iϵ,t

[
∥resϵ−Fθ(Ît, Ic, Im, t)∥2

]
. (9)

This design brings several key advantages:

(i) Residual learning improves generalization and efficiency. Rather than reconstructing images
from pure Gaussian noise, the residual diffusion model predicts the discrepancy between rendered
and ground-truth images. This simplifies the learning objective, as the network only needs to
recover missing high-frequency details or correct subtle distortions. Consequently, the learned
representations generalize better across diverse scenes, while starting the reverse process from
informative renderings—rather than random noise—substantially reduces the number of denoising
steps, accelerating inference without quality loss.

(ii) Structured noise maps encode geometric priors. The noise rendered via CoNo-Splatting
replaces i.i.d. Gaussian noise, implicitly embedding geometry: pixels receive stronger contributions
from points closer to the camera, while distant or occluded points contribute less or are suppressed.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Quantitative evaluation of state-of-the-art point-based rendering methods on three benchmark
datasets. † indicates our reproduction results of the method.

Method
ScanNet DTU THuman2.0

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Pytorch3D 13.62 0.528 0.779 12.15 0.525 0.682 20.26 0.905 0.337

NPBG 15.09 0.592 0.625 13.52 0.703 0.514 19.77 0.915 0.112

NPBG++ 16.81 0.671 0.585 22.32 0.833 0.327 26.81 0.952 0.062

TriVol 18.56 0.734 0.473 19.25 0.592 0.518 25.97 0.935 0.059

PFGS 19.86 0.758 0.452 25.44 0.901 0.164 34.74/35.88† 0.983/0.985† 0.009/0.006†

DiffPBR-E 22.92 0.816 0.412 28.15 0.919 0.138 40.89 0.985 0.006

DiffPBR-Q 23.28 0.827 0.399 28.45 0.935 0.124 41.27 0.989 0.003

Since the model predicts the residual noise, it must decode these geometric cues, thereby acquiring
spatial awareness without explicit depth supervision.

(iii) Noise consistency ensures coherent generation. Because the rendered noise maps originate
from the same 3D point cloud, they naturally preserve geometric consistency across viewpoints
and time steps. During inference, this consistency serves as a stable guidance signal, maintaining
coherence along camera trajectories. This is especially beneficial in video-based or multi-view
synthesis, where standard diffusion models often suffer from frame-to-frame inconsistency due to
stochastic noise initialization.

In summary, our design tightly couples point cloud rendering with diffusion training, allowing us to
inject geometric priors directly into the generative process and improve both quality and consistency
of the outputs. Please see Sec. A of the supplementary materials for further details of 3D consistent
Iϵ

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

0 2500 5000 7500 10k
Step

0.0

0.2

0.4

0.6

0.8

1.0

 v
al

ue

0.5

rdm

rdm + cmp

rdm + cov

rdm + cmp + cov

Figure 3: Adaptive β value
under different loss combina-
tions.

Baselines, Datasets & Metrics. We employ a traditional graphics
renderer Pytorch3D (Ravi et al., 2020), two point-based novel view
synthesis methods NPBG (Aliev et al., 2020) and NPBG++ (Rakhi-
mov et al., 2022), as well as a NeRF-based renderer TriVol (Hu et al.,
2023) and a Gaussian-based renderer PFGS (Wang et al., 2024a)
for comparison. Following PFGS, we evaluate DiffPBR on three
datasets: a scene-level indoor dataset ScanNet (Dai et al., 2017), an
object-level dataset DTU (Jensen et al., 2014), and a human body
dataset THuman2.0 (Yu et al., 2021b), respectively. To assess recon-
struction quality, we employ PSNR, SSIM (Wang et al., 2004), and
LPIPS (Zhang et al., 2018).

Training & Inference. DiffPBR is trained in an end-to-end manner
without stage-wise pretraining, using 8 NVIDIA GeForce RTX 3090
GPUs, while inference is performed on a single GPU. The training
images are randomly cropped to 256 × 256, while the resolution is
preserved during inference.

Model Variants. Catering to different needs, we provide two versions of DiffPBR: DiffPBR-Q
(Quality) with five sampling steps and DiffPBR-E (Efficiency) with a single-step sampling. A more
detailed discussion is provided in Sec. B of the supplementary materials.

4.2 COMPARISON WITH BASELINES

Evaluation of Rendering Quality. To validate our method, we evaluate it against strong baselines
on three challenging datasets. Quantitative comparisons are reported in Tab. 1, where the best and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Reference DiffPBR (Ours) PFGS NPBG++ TriVol

S
c
a
n
N
e
t

D
T
U

T
H
u
m
a
n
2
.0

Figure 4: Qualitative Results. We show comparisons of ours to previous methods and the corre-
sponding ground truth images from held-out test views.

second-best results are highlighted in bold and underlined, respectively, while qualitative results are
shown in Fig. 4.

Table 2: Evaluation of Model Efficiency on Thu-
man2.0.

Method Training Inference PSNR

PFGS 41 3.6 35.88
DiffPBR-E ∼ 8 10 40.89
DiffPBR-Q ∼ 8 2 41.27

As shown in Tab. 1, our method consistently
surpasses all competitors, with only marginal
differences between the one-step and five-step
variants. In Fig. 4, TriVol suffers from severe
artifacts, while NPBG++ and PFGS better aggre-
gate point features but at the cost of excessive
smoothing that suppresses fine details. In con-
trast, our DiffPBR-Q combines point-based ren-
dering with residual diffusion, yielding sharper

and more realistic outputs. By implicitly modeling failure patterns in the rendered inputs and
adaptively correcting them, it preserves pixel-level fidelity while enhancing generalization across
datasets.

Evaluation of Model Efficiency. Tab. 2 reports rendering quality (PSNR) and efficiency—measured
as training time (GPU hours) and inference speed (FPS)—for DiffPBR and PFGS on THuman2.0 with
80K points using an NVIDIA RTX 3090 GPU. Results show that both DiffPBR variants converge
faster and yield higher rendering quality than PFGS, with the one-step version achieving about 3×
faster inference.

Table 3: Robustness with respect to point density
on Thuman2.0.

Training 60k ∼ 120k

Inference 60k 80k 100k 120k

NPBG++ 26.34 27.12 27.33 27.55
TriVol 25.93 26.21 26.71 27.08
PFGS 36.16 36.45 36.58 36.59
DiffPBR-E 39.87 40.96 41.29 41.72
DiffPBR-Q 40.02 41.29 41.62 42.01

Robustness with respect to Point Density. We
evaluate the robustness of our method under
varying point densities on Thuman2.0. Training
point clouds are randomly downsampled with
ratios from 0.5 to 1.0, while testing uses fixed ra-
tios (1/2, 3/4, 5/6, 1.0). As shown in Tab. 3, our
method consistently improves with higher input
density and substantially outperforms PFGS.

Evaluation of Cross-dataset Generalization.
To assess generalization, we directly evaluate
our method and PFGS on Thuman2.0 using mod-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

T
H

u
m

a
n

2
.0

Reference Thuman2.0 (Ours) DTU (Ours) Thuman2.0 (PFGS) DTU (PFGS)

Figure 5: Cross-dataset generalization. Evaluation results labeled “DTU (X)” indicate that method
X is trained on DTU without fine-tuning on Thuman2.0, whereas “Thuman2.0 (X)” refers to the
in-domain setting.
els trained on DTU. As shown in Fig. 5, our approach preserves finer details, whereas PFGS depends
on a time-consuming pretraining stage to learn point cloud priors for Gaussian property prediction,
which restricts its cross-dataset generalization. In contrast, by leveraging residual diffusion, our
method can be trained on images with diverse degradations and achieves stronger generalization to
unseen datasets.

4.3 ABLATION STUDIES

Table 4: Efficiency of Adaptive Splatting on Scan-
Net. We report both GPU runtimes and memory for
processing 100k points.

Method Memory Runtime

(a) KNN-based scale calc. 0.094 5.35
(a) + (b) adaptive scale reg. 0.097 5.50
(c) MLP-based scale pred. 10.32 525
(d) CNN-based scale pred. 0.911 120

Efficiency of Adaptive Splatting. As de-
scribed in Sec. 3.1, we initialize point scales
with a heuristic KNN-based strategy, fol-
lowed by an adaptive global scale regular-
ization. For comparison, we implement two
learnable alternatives based on—Multi-Layer
Perceptron (MLP) and 3D CNN—for scale
prediction. Tab. 4 presents the GPU run-
times and memory for processing 100k points,
measured in milliseconds (ms) and gigabytes

(GB), respectively. Our method directly computes scales without network inference, achieving a
nearly 100× speedup over MLP and 20× over CNN, while requiring considerably less GPU memory.

Table 5: Effect of Adaptive Splatting on ScanNet.
PSNR of rendered RGB images after CoNo-Splatting
and diffusion refinement.

Method Splatting Refinement

(a) KNN-based scale calc. 13.43 22.05
(a) + (b) adaptive scale reg. 15.14 23.28
(c) MLP-based scale pred. 18.77 21.47
(d) CNN-based scale pred. 19.42 21.08

Effect of Adaptive Splatting. Following
prior works, we pretrain both MLP- and CNN-
based scale predictors. As shown in Tab. 5,
predictors with priors yield splatted images
closer to the ground truth (e.g., splatted im-
ages with CNN-predicted scales reach an av-
erage PSNR of 19.42). However, such strong
inputs may become a double-edged sword
for diffusion learning, contributing merely a
1.66 dB PSNR gain in refinement. In contrast,

weaker initializations (e.g., KNN-based scales) encourage the model to learn richer geometry and tex-
tures under stronger gradients, while the dynamic scale constraint further promotes better parameter
selection during optimization.

Table 6: Analysis of Adaptive Scale Regularizers

w/o Lcns w/o Lcov w/o Lcmp Full

PSNR 22.31 22.69 22.97 23.28

Analysis of Adaptive Scale Regularizers.
As shown in Fig. 3 and Tab. 6, optimizing β
with diffusion loss alone is inefficient, yield-
ing only a 0.26 dB improvement over direct
KNN initialization (row 7). Incorporating

Lcmp degrades β and, within a moderate range, introduces holes as shown in Fig. 2(b). This in turn
drive the diffusion model to capture finer details. Conversely, Lcov encourages β expansion and
prevents the splatted images from collapsing to Fig. 2(d). Their adversarial balance is essential for
achieving stable convergence and high-quality rendering.

Effect of Modules in Residual Diffusion. As shown in Tab. 7, we compare diffusion strategies
(DDPM vs. RDDM) and noise types (2D random vs. 3D consistent noise). RDDM not only improves
PSNR by an average of 2 dB but also converges significantly faster, requiring only 5 sampling steps
compared to 50+ for DDPM. Incorporating 3D-consistent noise further accelerates convergence while
providing an additional 0.75 dB gain in PSNR by injecting structural priors from 3D space.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 CONCLUSION

Table 7: Effect of Modules in Residual Diffusion.

Method PSNR Conv.

DDPM + 2D random noise 19.22 104k
DDPM + 3D consistent noise 20.07 92k
RDDM + 2D random noise 21.54 44k
RDDM + 3D consistent noise 22.15 37k

In this work, we present a diffusion-based
framework for point cloud rendering that en-
sures temporal and spatial consistency via
structured noise and residual denoising. By
combining standard diffusion objectives with
geometry-aware noise, our method naturally
handles viewpoint variations without hand-
crafted temporal constraints. To our knowl-
edge, this is the first application of residual
diffusion in point cloud rendering, enhancing

photorealism by refining noisy renderings toward realistic outputs.

REFERENCES

Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lempitsky. Neural
point-based graphics. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XXII 16, pp. 696–712. Springer, 2020.

Alimama-Creative. Flux-controlnet: Inpainting codebase. https://github.com/
alimama-creative/FLUX-ControlNet-Inpainting, 2024.

Jun-Kun Chen, Samuel Rota Bulo, Norman Müller, Lorenzo Porzi, Peter Kontschieder, and Yu-Xiong
Wang. Consistdreamer: 3d-consistent 2d diffusion for high-fidelity scene editing. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21071–21080,
2024.

Xingyu Chen, Yue Chen, Yuliang Xiu, Andreas Geiger, and Anpei Chen. Easi3r: Estimating
disentangled motion from dust3r without training. arXiv preprint arXiv:2503.24391, 2025.

Charles Csuri, Ron Hackathorn, Richard Parent, Wayne Carlson, and Marc Howard. Towards an
interactive high visual complexity animation system. Acm Siggraph Computer Graphics, 13(2):
289–299, 1979.

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proc. Computer Vision
and Pattern Recognition (CVPR), IEEE, 2017.

Peng Dai, Yinda Zhang, Zhuwen Li, Shuaicheng Liu, and Bing Zeng. Neural point cloud rendering
via multi-plane projection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7830–7839, 2020.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2414–2423, 2016.

Jing He, Haodong Li, Wei Yin, Yixun Liang, Leheng Li, Kaiqiang Zhou, Hongbo Zhang, Bingbing
Liu, and Ying-Cong Chen. Lotus: Diffusion-based visual foundation model for high-quality dense
prediction. arXiv preprint arXiv:2409.18124, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Tao Hu, Xiaogang Xu, Ruihang Chu, and Jiaya Jia. Trivol: Point cloud rendering via triple volumes.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
20732–20741, 2023.

Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola, and Henrik Aanæs. Large scale multi-
view stereopsis evaluation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 406–413, 2014.

10

https://github.com/alimama-creative/FLUX-ControlNet-Inpainting
https://github.com/alimama-creative/FLUX-ControlNet-Inpainting

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yitong Jiang, Zhaoyang Zhang, Tianfan Xue, and Jinwei Gu. Autodir: Automatic all-in-one image
restoration with latent diffusion. In European Conference on Computer Vision, pp. 340–359.
Springer, 2024.

Petr Kellnhofer, Lars C Jebe, Andrew Jones, Ryan Spicer, Kari Pulli, and Gordon Wetzstein. Neural
lumigraph rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4287–4297, 2021.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

Min-Seop Kwak, Donghoon Ahn, Inès Hyeonsu Kim, Jin-Hwa Kim, and Seungryong Kim. Geometry-
aware score distillation via 3d consistent noising and gradient consistency modeling. arXiv preprint
arXiv:2406.16695, 2024.

Marc Levoy and Turner Whitted. The use of points as a display primitive. 1985.

Ruihuang Li, Liyi Chen, Zhengqiang Zhang, Varun Jampani, Vishal M Patel, and Lei Zhang.
Syncnoise: Geometrically consistent noise prediction for text-based 3d scene editing. arXiv
preprint arXiv:2406.17396, 2024.

Chao Liu and Arash Vahdat. Equivdm: Equivariant video diffusion models with temporally consistent
noise. arXiv preprint arXiv:2504.09789, 2025.

Jiawei Liu, Qiang Wang, Huijie Fan, Yinong Wang, Yandong Tang, and Liangqiong Qu. Residual
denoising diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2773–2783, 2024.

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann, and Yaser
Sheikh. Neural volumes: Learning dynamic renderable volumes from images. arXiv preprint
arXiv:1906.07751, 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

OpenAI. Gpt-4o. https://openai.com/index/hello-gpt-4o, 2024.

Gaurav Parmar, Taesung Park, Srinivasa Narasimhan, and Jun-Yan Zhu. One-step image translation
with text-to-image models. arXiv preprint arXiv:2403.12036, 2024.

Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and Markus Gross. Surfels: Surface elements
as rendering primitives. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, pp. 335–342, 2000.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Ruslan Rakhimov, Andrei-Timotei Ardelean, Victor Lempitsky, and Evgeny Burnaev. Npbg++: Ac-
celerating neural point-based graphics. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15969–15979, 2022.

Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, and
Georgia Gkioxari. Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501, 2020.

Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao Chen,
Chong Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion base
model. arXiv preprint arXiv:2310.15110, 2023.

11

https://openai.com/index/hello-gpt-4o

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhenning Shi, Chen Xu, Changsheng Dong, Bin Pan, Along He, Tao Li, Huazhu Fu, et al. Resfusion:
Denoising diffusion probabilistic models for image restoration based on prior residual noise.
Advances in Neural Information Processing Systems, 37:130664–130693, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Craig Upson and Michael Keeler. V-buffer: Visible volume rendering. ACM SIGGRAPH Computer
Graphics, 22(4):59–64, 1988.

Jiaxu Wang, Ziyi Zhang, Junhao He, and Renjing Xu. Pfgs: High fidelity point cloud rendering via
feature splatting. In European Conference on Computer Vision, pp. 193–209. Springer, 2024a.

Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T Barron,
Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning multi-view
image-based rendering. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 4690–4699, 2021.

Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r:
Geometric 3d vision made easy. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 20697–20709, 2024b.

Yifan Wang, Jianjun Zhou, Haoyi Zhu, Wenzheng Chang, Yang Zhou, Zizun Li, Junyi Chen,
Jiangmiao Pang, Chunhua Shen, and Tong He. Pi3: Permutation-equivariant visual geometry
learning. arXiv preprint arXiv:2507.13347, 2025.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin Johnson. Synsin: End-to-end view
synthesis from a single image. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 7467–7477, 2020.

Bin Xia, Yulun Zhang, Shiyin Wang, Yitong Wang, Xinglong Wu, Yapeng Tian, Wenming Yang,
and Luc Van Gool. Diffir: Efficient diffusion model for image restoration. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 13095–13105, 2023.

Fanbo Xiang, Zexiang Xu, Milos Hasan, Yannick Hold-Geoffroy, Kalyan Sunkavalli, and Hao Su.
Neutex: Neural texture mapping for volumetric neural rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7119–7128, 2021.

Jiayu Yang, Ziang Cheng, Yunfei Duan, Pan Ji, and Hongdong Li. Consistnet: Enforcing 3d
consistency for multi-view images diffusion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7079–7088, 2024a.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
Zhao. Depth anything v2. Advances in Neural Information Processing Systems, 37:21875–21911,
2024b.

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from
one or few images. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4578–4587, 2021a.

Jason J Yu, Fereshteh Forghani, Konstantinos G Derpanis, and Marcus A Brubaker. Long-term pho-
tometric consistent novel view synthesis with diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7094–7104, 2023.

Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qionghai Dai, and Yebin Liu. Function4d:
Real-time human volumetric capture from very sparse consumer rgbd sensors. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR2021), June 2021b.

Cha Zhang and Tsuhan Chen. A survey on image-based rendering—representation, sampling and
compression. Signal Processing: Image Communication, 19(1):1–28, 2004.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, Deqing
Sun, and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the presence
of motion. arXiv preprint arxiv:2410.03825, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Qingtian Zhu, Zizhuang Wei, Zhongtian Zheng, Yifan Zhan, Zhuyu Yao, Jiawang Zhang, Kejian Wu,
and Yinqiang Zheng. Rpbg: Towards robust neural point-based graphics in the wild. In European
Conference on Computer Vision, pp. 389–406. Springer, 2024.

Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, and Luc Van Gool.
Denoising diffusion models for plug-and-play image restoration. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1219–1229, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

The contents of this appendix include:

• § A: Formal Definition and Further Elaboration of Symbols

• § B: Details of DiffPBR Variants

• § C: Implementation Details

• § D: System Runtime Analysis

• § E: Additional Experiments

• § F: Additional Related Works

• § G: Limitations and Future Directions

• § H: Full Evaluation Metrics

A FORMAL DEFINITION AND FURTHER ELABORATION OF SYMBOLS

Table 8: Summary of the important symbol definitions.

Symbol Definition

xi position attribute of the i-th point
ci color attribute of the i-th point
ϵi noise attribute of the i-th point
Ki k-nearest neighbors of the i-th point

s̄i
heuristic scalar scale of the i-th point
calculated by KNN

β learnable global scale regularizer

si
adaptive scalar scale of the i-th point
truncated by β

si isotropic scale vector of the i-th point
P point cloud with only position and color

Pin

point cloud extended with adaptive scale
si and 3D noise ϵi

i.i.d.∼ N (0, 1)
v index of camera perspective v ∈ [1,m]
t index of diffusion step t ∈ [0, T ′]
T total diffusion steps
T ′ truncated diffusion steps
Kv 3× 3 intrinsic matrix of camera view v
Mv 4× 4 extrinsic matrix of camera view v
Ivϵ rendered consistent noise at view v
Ivc rendered RGB image at view v
Iv0 ground-truth RGB image at view v
Ivr residual image defined as Ivc − Iv0
Ivm soft mask of Ivc at view v

Îvt intermediate RGB image at view v and step t
Îv0 output refined RGB image at view v
βt variance schedule at step t
αt signal preservation coefficient at step t
ᾱt cumulative product of αt up to step t
τt compact notation defined as

√
1− ᾱt

ρt compact notation defined as
√
ᾱt

γt compact notation defined as (1−
√
ᾱt)ρt

Fθ diffusion U-Net backbone
Lcov loss encouraging the expansion of β
Lcmp loss encouraging the contraction of β
Lcns weighted sum of Lcov and Lcmp

Ldm loss measuring diffusion output accuracy

Tab. 8 provides formal definitions that
ground the main paper and Appendix. Be-
low, we further detail several key concepts.

Noise attribute ϵi. For each point, we
introduce a 3D noise vector ϵi, sampled
i.i.d. from a Gaussian distribution rather
than inferred from spatial neighbors. This
vector is concatenated with the point’s
color attributes and splatted once into the
target view, yielding a six-channel feature
map composed of RGB and noise. The
noise vectors are initialized a single time
before rendering and remain fixed there-
after. As shown in Fig. 6, the resulting
noise maps exhibit consistent variations
across viewpoints while implicitly encod-
ing geometric cues such as depth and oc-
clusion, thereby providing stable and infor-
mative guidance for the diffusion training
and inference.

Global scale regularizer β. After a KNN-
based heuristic initialization of per-point
scales, we introduce a learnable scale reg-
ularizer β that truncates point scales ex-
ceeding a global upper bound. Instead of
per-point scale regularization—which in-
curs substantial training and inference over-
head and scales poorly with larger point
clouds—our single global parameter pro-
vides an efficient and adaptive mechanism
for scale control. By jointly optimizing β
within the diffusion training process, the
model learns to automatically calibrates
point scales that coherently align with the
denoising objective, thereby eliminating
the reliance on pretrained CNN/MLP pri-
ors and enabling more robust and adaptive
training.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 3 One-step DiffPBR-E Training

1 Inputs: views V = {(Iv0 ,Kv,Mv)}mv=1, point
cloud Pc = {(xi, ci)}ni=1

2 Hyperparameters: training steps K, diffusion
steps T , learning rate η

3 Pe = Initialization(Pc)
4 T ′ = argminT

i=1

∣∣√ᾱi − 1
2

∣∣
5 for k = 1, . . . ,K do
6 for v = 1, . . . ,m do
7 Ivc , I

v
ϵ = CNSplat(Pin | Kv,Mv)

8 Ivm = α(Ivc), Lcns = L(Ivc , Iv0 , Ivm)

9 ÎvT ′ = τT ′ ·Iv0 +(1−τT ′) ·Ivr +ρT ′ ·Ivϵ
10 Îv0 = Fθ(Î

v
T ′ , Ivc , I

v
m, T ′)

11 Ldm = Lrec(·) +Llpips(·) +Lgram(·)
12 θ, β

η←− ∇θ,β(Lcns + Ldm)
13 end for
14 end for

Algorithm 4 One-step DiffPBR-E Inference

1 Inputs: cameras C = {(Kv,Mv)}mv=1, point
cloud Pc = {(xi, ci)}ni=1

2 Hyperparameters: diffusion steps T
3 Pe = Initialization(Pc)
4 T ′ = argminT

i=1

∣∣√ᾱi − 1
2

∣∣
5 for v = 1, . . . ,m do
6 Ivc , I

v
ϵ = CNSplat(Pin | Kv,Mv)

7 Ivm = α(Ivc)

8 ÎvT ′ = τT ′ · Ivc + ρT ′ · Ivϵ
9 Î0 = Fθ(Î

v
T ′ , Ivc , I

v
m, T ′)

10 end for
11 Return: renderings {Îv0 }mv=1

Note: we simplify terms
√
ᾱt = τ t,

√
1− ᾱt = ρt,

(1−
√
ᾱt)ρt = γt, and Ivc − Iv0 = Ivr , respectively.

Truncated Diffusion Steps T ′. Given total diffusion Steps T, the truncated time step T ′ defined as:

T ′ = arg
T

min
i=1

∣∣∣∣√ᾱi −
1

2

∣∣∣∣ . (10)

Intuitively, the truncation strategy indicates that the reverse process of the residual diffusion model
starts not from pure Gaussian noise (at step T), but from a semi-informative state that retains partial
structure and semantics of the original image (at step T ′), as illustrated in Fig. 7.

Mathematically, such truncation can be viewed as a smooth equivalence transformation of the
diffusion process that retains its generative behavior while facilitating more efficient inference.
Specifically, the redefined diffusion forward process can be formalized as:

Ivt =
√
αt · Iv0 + (1−

√
αt) · Ivr +

√
1− αt · Ivϵ , (11)

which can be then reparameterized as:

Ivt =
√
ᾱt · Iv0 + (1−

√
ᾱt) · Ivr +

√
1− ᾱt · Ivϵ (12)

= (2
√
ᾱt − 1) · Iv0 + (1−

√
ᾱt) · Ivc +

√
1− ᾱt · Ivϵ . (13)

Note that Iv0 is unavailable during inference, making the direct computation of IvT intractable.
Fortunately, at the truncated step T ′, the weighting coefficient for Iv0 in the diffusion formulation can
be approximated to zero (i.e., 2

√
ᾱt − 1 ≈ 0) given a predefined linear scheduler. This allows IvT ′ to

be estimated as:

IvT ′ ≈ (1−
√
ᾱt) · Ivc +

√
1− ᾱT ′ · Ivϵ (14)

≈
√
ᾱt · Ivc +

√
1− ᾱT ′ · Ivϵ . (15)

Since IvT ′ is explicitly computable, we restrict diffusion to steps t ≤ T ′, while truncating the
remaining steps to eliminate potential risks. The reverse process thus starts from T ′ and gradually fits
the current estimate Ivt to the ground truth Iv0 , implicitly reducing the residual term R between Ivc
and Iv0 .

3D consistent noise Ivϵ . Unlike standard 2D random noise, our 3D consistent Ivϵ is rendered from the
3D point cloud, and therefore inherits two critical properties: (i) view consistency, as noise patterns
across different views remain mutually aligned due to their shared 3D origin; and (ii) geometry
embedding, as the noise distribution is modulated by depth and point-scale variations, implicitly
encoding structural cues.

Intuitively, the noise images rendered across multiple viewpoints in Fig. 6 demonstrate that Ivϵ
preserves the coherence of cross-view and reveals the coarse geometry of the scene. To further assess
the statistical properties of Ivϵ , we compute the covariance of the produced noise, its cross-covariance

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

V
ie

w
1

V
ie

w
2

V
ie

w
3

(a) Random (b) OursReference (a) Random (b) Ours

D
is

tr
ib

u
ti

o
n

C
o

v
a

ri
a

n
c

e
C

o
v
(𝑰
𝝐𝒗
,
𝑰 𝝐𝒗

)
C

ro
s

s
-C

o
v
a

ri
a

n
c

e

C
o

v
(𝑰
𝝐𝒗
,
𝑰 𝝐𝒗

+
𝟏
)

Figure 6: Illustration of 3D consistent. Ivϵ is rendered from 3D point cloud, ensuring multi-view
consistency and geometric awareness while preserving i.i.d. Gaussian distribution properties.

with the noise of nearby viewpoint, and the distribution of the splatted noise values. The results show
that random noise (a) does not show a correlation with nearby viewpoints, while our 3d consistent
noise (b) preserves the Gaussian properties—including mean, variance, and i.i.d. nature—while
faithfully representing the noise correlation between viewpoints, yielding an ideal 3d consistent noise
map and remaining computationally efficient.

B DETAILS OF DIFFPBR VARIANTS

As mentioned in the main paper, we propose two complementary variants of DiffPBR, tailored to
different trade-offs between quality and efficiency. Specifically, DiffPBR-Q adopts a multi-step
sampling strategy to maximize rendering fidelity, while DiffPBR-E employs a single-step sampling
scheme to prioritize efficiency.

As detailed in Sec. 3.2 of the main paper, the multi-step variant DiffPBR-Q adopts a residual diffusion
pipeline, prioritizing reconstruction fidelity. To further enhance efficiency, we introduce DiffPBR-E,
a one-step formulation. This variant is motivated by recent findings that diffusion models can remain
effective with only a few iterations (Liu et al., 2024; Shi et al., 2024), and in some cases even a single
step (He et al., 2024; Parmar et al., 2024). We provide the training and inference of DiffPBR-E in
Algorithm 3 and Algorithm 4.

Rather than directly reducing the diffusion steps T ′ to 1, we retain the full multi-step noise schedule
but skip the intermediate steps during both training and inference. The resulting time step subset is
defined as T1 = {1, T ′}, a sub-sequence of the original schedule TM = {1, 2, . . . , T ′}.

Notably, the one-step version is trained to directly predict the ground-truth images (i.e., x0-prediction),
allowing the training to be supervised by more informative signals rather than merely regressing the
residual noise.

As described in Algorithm 3, we supervise the training process with losses derived from readily
available 2D supervision. The final loss includes the pixel-wise RGB L2 loss Lrec between the
predicted and ground-truth image, given by:

Lrec = ∥Iv0 − Ivθ ∥2, (16)

the perceptual loss Llpips based on the VGG-19 features (Simonyan & Zisserman, 2014), given by:

Llpips =
1

L

L∑
l=1

αl ∥VGGl(I
v
0)−VGGl(I

v
θ)∥1 , (17)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and the Gram-matrix (GM) loss Lgram (Gatys et al., 2016) to enhance the sharpness of reconstructed
images, given by:

Lgram =
1

L

L∑
l=1

αl ∥GMl(I
v
0)−GMl(I

v
θ)∥1 , (18)

where VGGl(·) ∈ RH×W×C is the features from the l-th layer of a pre-trained VGG-19 network, L
is the number of layers considered, αl is the weight of the l-th layer, and the Gram matrix at layer l is
defined as:

GMl(I) = VGGl(I)
TVGGl(I). (19)

During inference, the model operates in a non-iterative manner, yielding high-quality renderings
without iterative sampling.

C IMPLEMENTATION DETAILS

C.1 DATASETS

ScanNet is a large-scale indoor dataset comprising over 1,500 scenes and more than 2.5 million
images, captured from different viewpoints and under varying quality conditions. We select the first
1,200 scenes for training and 300+ scenes for testing. During training, we aggregate the three nearest
views to construct a view frustum point cloud from RGB-D images and their corresponding camera
poses. This strategy decouples our method from the original scene scale, enabling efficient training
on large-scale and complex scenes. At test time, we utilize the entire preprocessed sparse point cloud
as input, ensuring consistency with the baseline methods.

DTU is a large-scale dataset for multi-view stereo. It includes over 100 scans taken under seven
different lighting conditions and camera trajectories. We partition the dataset into 88 training scenes
and 16 testing scenes, using an image resolution of 512 × 640. For each scan, we input the whole
point cloud, which is constructed from the RGB-D images and subsequently down-sampled by a
factor of 0.3 for sparsity.

THuman2.0 dataset consists of 500 high-quality human scans captured using a dense DSLR rig.
We use the first 75% of the scans for training and the remaining scans for testing, with an image
resolution of 512 × 512. For each scan, we densely sample 1e6 points on gt mesh and use Pytorch3D
to render 36 views as ground truth. During training and testing, the point clouds are down-sampled to
80k for their sparsity.

C.2 MODEL ARCHITECTURE.

Our implementation of DiffPBR derives from Denoising Diffusion Probabilistic Model (Ho et al.,
2020) in Pytorch, where the denoising module predicts pixel-level results. The core architecture
is a U-Net-style encoder–decoder operating across four resolution scales. At each stage, time-
conditioned ResNet blocks are combined with lightweight linear attention modules, enabling the
model to efficiently capture both fine spatial details and temporal dynamics. A shared sinusoidal time
embedding modulates all residual blocks, ensuring consistent and effective temporal conditioning
throughout the network. The bottleneck incorporates a full-attention mechanism to aggregate global
context, while skip connections facilitate the preservation of high-frequency structures across scales.

C.3 TRAINING & INFERENCE.

To construct each training batch, we randomly sample camera views across all scenes to ensure
diversity. For each selected view, we retrieve the corresponding point cloud required in the CoNo-
Splatting process. To improve rendering efficiency, we perform view-dependent filtering by excluding
3D points that fall outside the target camera frustum, thereby reducing unnecessary computation
while preserving relevant geometry. The rendered RGB images, noise maps, and corresponding
ground truth are randomly cropped to a resolution of 256×256. To enhance the model’s robustness to
variations in lighting and viewpoint, we apply aggressive color augmentations—specifically, color
jittering and grayscale conversion—as well as independent image-space flipping on each frame, even

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

within the same scene. The U-Net model is trained from scratch without incorporating any physical
priors. The training loss is a weighted sum of the splatting and diffusion objectives:

L = λcovLcov + λcmpLcov + Ldm, (20)

where λcov = 0.01 and λcmp = 0.1. The training process is performed on 8 NVIDIA RTX 3090
GPUs, requiring near 8 GPU hours.

At inference, we load the entire point cloud and initialize per-point scale and noise attributes once,
thereby guaranteeing view-consistent color image and noise map across different camera views. To
maintain compatibility with the U-Net architecture and prevent spatial misalignment, the rendered
images are center-cropped such that both height and width are divisible by 16. For resolutions below
1K, a single NVIDIA RTX 3090 GPU supports efficient inference, making the model suitable for
rapid prototyping and real-world applications.

D SYSTEM RUNTIME ANALYSIS

As mentioned in the main paper, DiffPBR begins with an adaptive CoNo-Splatting pipeline, followed
by a diffusion refinement process. Consequently, the system’s runtime primarily depends on three key
factors: the number of points in the input point cloud, the resolution of the rendered image, and the
number of function evaluations (NFE) during diffusion inference. We provide the detailed analysis in
Fig. 7. All results are tested on a single NVIDIA RTX 3090 GPU.

256×256 640×512 800×800 1280×720 1920×1080
Image Resolution (pixels)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
No

-S
pl

at
tin

g
(m

s)

2.40

4.05 4.32 4.34 4.36

2.52

5.37 5.67
6.22 6.26

3.10

8.77
9.35 9.36 9.38

3.60

12.43 12.65
12.14

12.76

4.12

15.53 15.37 15.38 15.52

4.58

16.92 16.96
17.56

18.27Point Num. & Init. Time (ms)
1e6 24.364
2e6 49.560
4e6 112.17
6e6 190.57
8e6 238.13
1e7 294.56

Point Num. & Init. Time (ms)
1e6 24.364
2e6 49.560
4e6 112.17
6e6 190.57
8e6 238.13
1e7 294.56

0

100

200

300

400

500

600

700

Di
ffu

sio
n

1N
FE

 (m
s)

29.49

86.16

198.98

337.19

605.17

Runtime Type
Splatting
Diffusion

Figure 7: Runtime evaluation of our system in dif-
ferent stages. The blue bars indicate the runtime of
the CoNo-Splatting process, with progressively darker
shades of blue representing increasing point cloud den-
sity, while the orange bars denote the single-step for-
ward inference time of residual diffusion (NFE=1).

Splatting Stage. The runtime of this stage
consists of two components. First, we con-
struct point cloud Pin with extended point
attributes. In Fig. 7, we report the initial-
ization time under different point densities.
Subsequently, the generated feature points
are rasterized onto the camera planes, pro-
ducing a couple of images. The blue bars
indicate the rasterization time under vary-
ing point densities and image resolutions.
Except for the low-cost 256×256 resolu-
tion, the rasterization runtime remains rela-
tively stable across different point densities
at fixed resolutions. Conversely, when the
resolution is fixed, the runtime increases
slowly and approximately linearly with the
number of points.

Diffusion Stage. The orange bars denote the single-step inference time of the U-Net at different
image resolutions. The total runtime of this stage scales proportionally with the number of diffusion
steps (NFE). Note that for resolutions of 1920×1080, diffusion inference on a single RTX 3090
encounters out-of-memory (OOM) issues. In this case, the single-step inference times are extrapolated
based on trends observed in lower-resolution settings.

E ADDITIONAL EXPERIMENTS

E.1 MORE ABLATION STUDIES.

Diffusion Configurations. As detailed in Appendix B, our multi-step diffusion model adopts
ϵ-prediction, whereas the one-step variant employs x0-prediction. The diffusion configura-
tion—including the parameterization type (i.e., prediction target) and the number of diffusion
steps—is critical, as it not only defines the training objective but also impacts the inference procedure.

In this part, we conduct ablation studies on diffusion configurations by varying the prediction target
(ϵ vs. x0) and the sampling strategy (multi-step vs. single-step), as shown in Tab. 9. Across all
training sizes, ϵ-prediction with multi-step sampling consistently achieves the best PSNR, confirming
its effectiveness in modeling fine-grained structures through progressive denoising. Within each

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Color & Noise

3D Point

(a) Strategy 1

Color

(b) Strategy 2

Noise

CoNo-

Splatting

Color-

Splatting

Noise-

Splatting

(c) Point Perturbation

𝝈=2e-3

𝝈=1e-3
𝝈=3e-3

CoNo-

Splatting

Figure 8: Illustration of Point Cloud Initialization and Perturbation. (a) The color of each point
is concatenated with a randomly sampled noise vector and jointly splatted to the target view. (b) For
each point, we additionally sample a new position and assign it a noise vector, after which the noise
point cloud and the original color point cloud are splatted to the target view separately. (c) The clean
point cloud is perturbed at different levels controlled by σ.
group, we observe that ϵ-prediction benefits more from multi-step inference, while x0-prediction
performs slightly better with one-step inference. We attribute this difference to their respective
training objectives: ϵ-prediction is supervised purely with ℓ2 loss on the noise, which aligns well with
iterative denoising; in contrast, x0-prediction incorporates perceptual losses such as LPIPS and Gram
loss in addition to pixel-wise ℓ2, encouraging high appearance fidelity that can be better preserved
under direct (one-step) decoding. These observations highlight the roles of denoising strategy and
prediction target in diffusion-based reconstruction.

Table 9: Ablation studies on different combina-
tions of diffusion configurations. Each configura-
tion is evaluated under different training set sizes
on both THuman2.0 and ScanNet datasets.

Config.
THuman2.0 ScanNet

Data PSNR ↑ Data PSNR ↑
ϵ + M. 15k 41.27 150k 23.28
ϵ + S. 15k 39.56 150k 20.52
x0 + M. 15k 40.00 150k 20.88
x0 + S. 15k 40.89 150k 22.92

ϵ + M. 5k 41.76 50k 22.88
ϵ + S. 5k 40.15 50k 20.98
x0 + M. 5k 40.87 50k 21.65
x0 + S. 5k 41.03 50k 22.04

ϵ + M. 1k 42.29 10k 21.92
ϵ + S. 1k 40.22 10k 20.09
x0 + M. 1k 40.94 10k 21.01
x0 + S. 1k 41.46 10k 21.46

Note: we simplify the terms "ϵ-prediction" as "ϵ",
"x0-prediction" as "x0", "Multi-step" as "M.", and

"Single-step" as "S.", respectively.

Interestingly, we also observe that models
trained on THuman2.0 achieve higher PSNR
when trained on smaller subsets compared to
larger ones. We attribute this to the simplified
and spatially consistent degradation patterns in
THuman2.0, which make it easier for the model
to overfit and achieve better pixel-level recon-
struction. While this leads to improved quanti-
tative fidelity, it may come at the cost of gener-
alization and robustness when applied to more
diverse or complex scenarios.

To verify our hypothesis, we conduct additional
experiments on the ScanNet dataset, which
presents significantly higher complexity due to
varying lighting conditions, motion blur, and in-
complete as well as uneven point cloud sparsity.
The results show that models trained on larger
subsets consistently outperform those trained
on smaller ones, highlighting the importance of
data diversity for generalization.

Point Cloud Initialization in CoNo-Splatting.
As described in the main paper, we augment
each point’s color with a zero-mean Gaussian

noise vector, resulting in a noise point cloud Pϵ that retains the original geometry but carries a random
appearance for subsequent noise rasterization.

Table 10: Initialization Strategy in CoNo-Splatting,
with experiments conducting on Thuman2.0.

Initialization Noise Pos. Noise Col. PSNR ↑
Strategy 1 ✗ ✓ 41.27
Strategy 2 ✓ ✓ 40.02

In this part, we further explore the noise gen-
eration strategy where the position and color
of each point are independently sampled from
Gaussian distributions, aiming to assess how dif-
ferent noise patterns impact the training of the
residual diffusion model.

As depicted in Fig. 8, in (a) we sample a three-
channel Gaussian noise vector and concatenate it with the point color. The combined feature is then

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 11: CoNo-Splatting Configurations. Evaluation metrics for different choices of λcov and
λcmp.

λcmp 0 0.01 0.1 1 λcov 0 0.01 0.1 1

PSNR↑ 22.31 22.57 22.69 22.39 PSNR↑ 22.31 23.01 22.97 22.62
SSIM↑ 0.804 0.815 0.821 0.806 SSIM↑ 0.804 0.826 0.824 0.810
LPIPS↓ 0.424 0.412 0.406 0.417 LPIPS↓ 0.424 0.402 0.409 0.419

splatted to the target view as a whole. In (b), each point is instead modeled as a local Gaussian
distribution in 3D, with variance defined as the mean distance to its k nearest neighbors. To render
point noise, a new position is sampled from this distribution to replace the original point, whereas the
position for point color remains fixed for color splatting.

As shown in Fig. 9 and Tab. 10, strategy 1 consistently outperforms strategy 2. The strict alignment
of color and noise achieved by the joint splatting process in (a) leads to faithful preservation of fine
structures. In contrast, the random positional noise introduced in (b) disrupts this alignment, resulting
in degraded local detail reconstruction, as evidenced by blurred finger structures (highlighted in red
boxes).

CoNo-splatting Configurations. As described in C.3 of the main paper, the training loss is a weighted
sum of the splatting and diffusion objectives: L = λcovLcov+λcmpLcmp+Ldm, where λcov = 0.01
and λcmp = 0.1. Here, we provide a more detailed ablation study on this hyper-parameter choice.
Specifically, we set λcov and λcmp to zero individually to examine their influence. The results are
summarized in Tab. 11. Note that Ldm is the primary objective of the diffusion model, while these
two regularizers are complementary. We assign them relatively lower weights compared to Ldm.

Table 12: Ablation on the statistical metric used for
global truncation.

Metric Q1 (25%) Q2 (50% Median) Q3 (75%) Mean

PSNR↑ 22.41 23.28 22.91 23.19
SSIM↑ 0.803 0.827 0.819 0.822
LPIPS↓ 0.421 0.399 0.412 0.404

Moreover, we further ablate the choice of
the statistical metric used for global trun-
cation in Eq. 12. Specifically, we compare
four options: the 25th percentile (Q1), the
50th percentile (median, Q2), the 75th per-
centile (Q3), and the Mean. As shown in
Tab. 12, the median (Q2) achieves slightly
better performance than the other statistics.

Note that both the median and mean are widely adopted in practice; however, the median is inherently
more robust to outliers and provides stronger suppression of extreme values, making it better aligned
with our global truncation strategy.

Effect of Spatial-Aware Residual Diffusion Module. To further validate the efficacy of our Spatial-
Aware Residual Diffusion module, we conducted an ablation study by replacing it with two common
alternative image synthesis paradigms: Nearest-Neighbor (NN) interpolation and learning-based
image inpainting. As shown in Fig. 10, the inherent sparsity and uneven distribution of input points
leave holes in the initial rendered images, causing direct NN interpolation to produce blurry and
indistinct results. We evaluated two learning-based inpainting strategies. Mask-guided models (e.g.,
SD-XL Inpainting (Podell et al., 2023), FLUX-ControlNet Inpainting (Alimama-Creative, 2024))
struggled to fill these regions, as their training focuses on small, dense missing areas, unlike the large,
continuous holes in our inputs. Text-to-image models (e.g., GPT-4o (OpenAI, 2024)) can generate
photorealistic outputs from text, but may deviate from the original image, violating multi-view
consistency across viewpoints.

Table 13: Effect of Adaptive CoNo-Splatting as a
Plug-and-Play Module.

Method PSNR↑ SSIM↑ LPIPS↓ GPU hrs↓ FPS↑

PFGS 19.86 0.758 0.452 5+36 3.6
PFGS+A.C.N.S. 21.05 0.782 0.433 2+17 4.5

Note: A.C.N.S. denotes Adaptive CoNo-Splatting.

Effect of Adaptive CoNo-Splatting as a
Plug-and-Play Module. As described in
the paper, our contributions are tightly cou-
pled from both theoretical and empirical
perspectives, but they can also be applied
to other methods. Specifically, we integrate
our Adaptive CoNo-Splatting module into
the baseline PFGS. Originally, PFGS ex-

tracts point-wise features and predicts per-point parameters such as scale and opacity via a Gaussian
attribute regressor; the predicted colors and features are then rasterized for refinement. In our experi-
ments, we replace the Gaussian regressor and its rendering pipeline with our adaptive point-based
splatting module. As shown in Tab. 13 and Fig. 11, this substitution significantly improves both

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Strategy (a) Noise

PSNR 41.27 PSNR 40.02

Strategy (b) NoisePoint Cloud

Reference

Figure 9: Visualization of noise map and diffusion outputs. The point clouds are initialized with
strategies. Red boxes highlight degraded local details under strategy (b).

(d)

(g)

(a)

GT

(b)

(e)

(c)

(f)

Figure 10: Comparison of refinement module outputs. (a, b) Image and mask from Adaptive
CoNo-Splatting. (c, d) Inpainting results guided by (b) from FLUX-Controlnet-Inpainting and SD-
XL-Inpainting, respectively. (e) Nearest-Neighbor (NN) interpolation on the image. (f) Output from
GPT-4o. (g) Output from our method.

rendering quality and efficiency. Training and inference are faster thanks to the removal of convolu-
tional layers in the Gaussian regressor, and the gap between the two training stages in the original
PFGS is reduced, yielding better overall performance. These results demonstrate the versatility and
effectiveness of our adaptive splatting design beyond its original context.

E.2 MORE COMPARATIVE RESULTS.

Table 14: Robustness with respect to varying point
cloud perturbations on Thuman2.0.

Method σ = 1e-3 σ = 2e-3 σ = 3e-3 Variance ↓

PFGS 33.80 33.09 32.14 1.89
DiffPBR-E 39.62 39.09 38.60 0.73
DiffPBR-Q 40.33 39.62 39.05 0.69

Robustness with respect to Point Pertur-
bations. The results in Tab. 14 are eval-
uated under different perturbation levels,
controlled by a variance factor σ applied to
the clean point cloud P. Ours outperforms
PFGS across all settings, achieving higher
PSNR with notably lower variance.

Table 15: Evaluation of quality-efficiency trade-off
on the DTU. we report rendering quality, training time
(GPU hours), and inference speed (FPS) at an image
resolution of 640× 512.

Method PSNR ↑ SSIM ↑ LPIPS ↓ GPU hrs ↓ FPS ↑

NPBG++ 22.32 0.833 0.327 ∼10 11
TriVol 20.02 0.674 0.483 ∼48 0.07
PFGS 25.44 0.901 0.164 ∼40 0.5
DiffPBR-E 28.15 0.919 0.138 ∼8 9.75
DiffPBR-Q 28.45 0.935 0.124 ∼8 1.9

System Runtime Comparison. To evalu-
ate the quality-efficiency trade-off, we com-
pare the training time and inference speed
(FPS) across methods on the DTU dataset
at a resolution of 640 × 512. The com-
petitors in our comparison generally follow
a two-stage pipeline. In the first (fitting)
stage, they extract information from the
source imagee. For TriVol, this typically
involves fitting the neural representation of
the scene based on NeRF. For NPBG++, it

corresponds to running a feature extractor on the selected neighboring views. Methods that rely on
geometric proxies, such as PFGS, require the construction of a 3D representation as part of this stage.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Reference PFGS PFGS+Adaptive CoNo-Splatting

Figure 11: Effect of Adaptive CoNo-Splatting as a Plug-and-Play Module. Incorporating Adaptive
CoNo-Splatting leads to better preservation of local geometric structures, yielding more faithful
reconstructions.

The time required for this process is included in our measurements to ensure a fair comparison. This
fitting stage is performed only once per scene, after which the models can render arbitrary novel
views—i.e., the second stage (rendering). We show a qualitative comparison between rendering
quality and rendering speed (FPS) in Tab. 15. The results show that DiffPBR achieves the best
rendering quality while maintaining a favorable trade-off in rendering efficiency.

Rendering Quality Comparison with Generalizable Methods. In Fig. 15 and Fig. 16, we further
present qualitative results on THuman2.0, DTU and ScanNet. The results demonstrate that our
method yields renderings that are more visually harmonious compared to competitors.

Comparison with Per-scene Optimized Methods. Tab. 19 and Fig. 13 present quantitative and
qualitative comparisons between DiffPBR and state-of-the-art baselines, including two per-scene
optimized approaches, 3DGS (Kerbl et al., 2023) and RPBG (Zhu et al., 2024). Notably, 3DGS
regresses a set of Gaussian primitives, while RPBG learns neural point descriptors, both tailored
separately for each training scene to achieve high-fidelity novel-view synthesis. In contrast, DiffPBR
is trained over a diverse corpus of scenes and generalizes to previously unseen environments without
scene-specific optimization. The results show that our method consistently outperforms both com-
petitors on ScanNet, where the images contain motion blur and varying illumination. And on DTU,
RPBG exhibits degraded performance in several scenes as shown in Fig. 13. On well-conditioned
Thuman2 dataset, our performance is comparable to 3DGS and superior to RPBG. Note that due to
the time-consuming per-scene training required by 3DGS and RPBG, the results reported in Tab. 19
are not evaluated on the full test set used in Tab. 1.

Table 16: Evaluation on unbounded scenes on
Tanks and Temples.

Method Per-scene PSNR↑ SSIM↑ LPIPS ↓

3DGS ✓ 24.69 0.785 0.207
RPBG ✓ 22.39 0.735 0.225
PFGS ✗ 24.31 0.759 0.296
Ours ✗ 25.25 0.801 0.157

Evaluation on Unbounded scenes. To fur-
ther evaluate our performance on more di-
verse scenes, we conduct experiments on
large scale unbounded scenes Tanks and Tem-
ples (Knapitsch et al., 2017). Specially, we com-
pare with one of the generalizable method PFGS
and two per-scene optimized method 3DGS and
RPBG. We use the off-the-shelf feed-forward

regressor Pi3 (Wang et al., 2025) to obtain the initial point clouds and corresponding camera poses
from the input images. Tab. 16 and Fig. 14 present quantitative and qualitative comparisons. The
results demonstrate that our method gets the best result compared to all other methods.

Table 17: Bilateral comparison on dense and
sparse point clouds from the Tanks and Temples
Panther scene.

Method Point cloud PSNR↑ SSIM↑ LPIPS ↓

3DGS COLMAP 22.16 0.726 0.300
RPBG COLMAP 22.30 0.746 0.272
Ours COLMAP 22.97 0.783 0.126

3DGS Pi3 22.68 0.754 0.214
RPBG Pi3 22.93 0.780 0.181
Ours Pi3 23.49 0.854 0.109

Moreover, to further demonstrate the effective-
ness of our approach under sparse point cloud
inputs, we replace the dense point clouds pro-
duced by Pi3 with sparse COLMAP registra-
tion points. Specifically, we provide DiffPBR
and the NVS baselines (3DGS and RPBG) with
the same sparse-view COLMAP reconstructions.
The results on the Panther scene are reported in
Tab. 17.

Comparison with Pure Graphics-based Ren-
derer. In the main paper, we compare our method with PyTorch3D, which performs differentiable
rasterization-based rendering. To further broaden the comparison scope, we additionally include

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Pytorch3DDiffPBRReference Mitsuba

Figure 12: Comparison with Pure Graphics-based Renderer on ScanNet and DTU. Both graphics-
based renderers fail to achieve photorealistic results due to point sparsity and structural noise.

Table 19: Quantitative evaluation of per-scene optimized point-based rendering methods on three
benchmark datasets. Note that 3DGS and RPBG are per-scene optimized while ours is generalizable.

Method
ScanNet DTU THuman2.0

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
3DGS 31.29 0.896 0.219 24.92 0.871 0.191 41.57 0.989 0.004
RPBG 31.10 0.885 0.171 23.80 0.822 0.173 36.60 0.982 0.020

Ours 31.62 0.900 0.139 28.33 0.921 0.124 41.21 0.988 0.004

Mitsuba, a physically based ray-tracing renderer. Since Mitsuba simulates light transport through ray
tracing, its illumination and shading are inherently inconsistent with rasterization-based pipelines
such as PyTorch3D and ours. Therefore, we only provide qualitative comparisons for Mitsuba, as
shown in Fig. 12, rather than quantitative metrics.

Table 18: Multi-view consistency evaluation on Scan-
Net. A higher TSED score indicates better multi-view
consistency.

T Ours PFGS NPBG++ TriVol 3DGS RPBG

2 0.2347 0.2143 0.1837 0.1531 0.2347 0.2245
4 0.4796 0.4286 0.3776 0.3265 0.4694 0.4388
8 0.8776 0.7755 0.7143 0.6735 0.8571 0.8061

Evaluation of Multi-view Consistency.
To assess the view-consistency of our
model, we additionally report the Thresh-
olded Symmetric Epipolar Distance
(TSED) metric (Yu et al., 2023), which
measures the proportion of frame pairs that
satisfy epipolar consistency constraints.
A smaller threshold T primarily captures

temporal flickering or instability between adjacent frames, whereas a larger T reflects the global
consistency of synthesized views under significant camera pose variations.

As shown in Tab. 18, our model consistently achieves higher TSED scores than all generalizable
baselines and is comparable to or even better than per-scene optimized approaches, demonstrating
superior multi-view consistency in novel view synthesis.

F ADDITIONAL RELATED WORKS

In this section, we discuss additional related works on 3D consistent generation.

Directly applying 2D diffusion models view-by-view often yields view-dependent artifacts such as
flicker, since independent noise trajectories produce uncorrelated stochasticity across viewpoints.
To address this, recent work enforces 3D-consistent noise or consistency-aware denoising. One
family of approaches exchanges information across views during denoising: ConsistNet introduces
lightweight multi-view consistency blocks that unproject multi-view features into a global 3D volume
and reproject consistent features back to each view to align parallel diffusion outputs (Yang et al.,
2024a). Another class constructs structured or synchronized noise: ConsistDreamer generates 3D-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

S
c
a
n
N
e
t

T
H
u
m
a
n
2
.0

D
T
U

Reference DiffPBR 3DGS RPBG

Figure 13: Qualitative Results. We show comparisons of ours to per-scene optimized methods and
the corresponding ground truth images from held-out test views.

aware, structured noise and augments 2D diffusion with surrounding views and self-supervised
consistency during training so that the stochastic component is correlated across views (Chen et al.,
2024). Relatedly, Geometry-Aware Score Distillation (GSD) formulates a 3D-consistent noising
process and a gradient-consistency loss in the score-distillation sampling (SDS) pipeline to reduce
multiview gradient inconsistencies and improve geometry-aware text-to-3D optimization (Kwak et al.,
2024). Complementarily, some methods design conditioning and training schemes on pretrained
2D priors to produce coherent multi-view images from a single input (e.g., Zero123++) (Shi et al.,
2023). For temporal problems, EquiVDM demonstrates that using temporally consistent (warped)
noise encourages equivariance and yields temporally coherent video diffusion outputs, suggesting an
analogous benefit for multi-view/3D consistency when noise is correlated across frames or views
(Liu & Vahdat, 2025). Finally, SyncNoise directly predicts geometry-consistent noise fields and
leverages anchor-view propagation and depth supervision to further improve multi-view consistency
for 3D editing (Li et al., 2024). While these strategies substantially reduce view-dependent artifacts,
many trade off computational cost (per-scene finetuning or added modules). In contrast, our approach
derives 3D-consistent noise guidance directly from the point cloud via adaptive CoNo-Splatting,
enabling efficient residual 2D diffusion refinement without costly scene-level optimization.

G LIMITATIONS AND FUTURE DIRECTIONS

We present DiffPBR, a general residual diffusion framework for efficient and view-consistent
refinement of point-based renderings with 3D-consistent noise guidance. A limitation of our method
arises when a large portion of the point cloud is missing, since the model is currently trained from
scratch and lacks strong image priors to hallucinate unseen regions. Another practical limitation is
that the current implementation’s rendering FPS is lower than real-time rates, primarily limited by
the output resolution. Thanks to its flexible design, DiffPBR offers a scalable foundation that can
benefit from larger model capacities, richer training datasets, and more diverse point-cloud sources
such as LiDAR scans, depth projections, or mesh-based samples. We envision it as a step toward a
generalizable and robust point-based renderer.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Family HorseIgnatiusPanther

R
e
fe
re
n
c
e

D
if
fP
B
R

P
F
G
S

3
D
G
S

R
P
B
G

Figure 14: Qualitative Results. We show comparisons of ours to per-scene optimized methods and
the corresponding ground truth images from held-out test views.

H FULL EVALUATION METRICS

We provide the full set of evaluation metrics here for the ablation studies and other experiments that
previously reported only PSNR.

Table 20: Evaluation metrics for Tab. 3.

Method 60k 80k 100k 120k

NPBG++ 26.34/0.951/0.065 27.12/0.955/0.056 27.33/0.957/0.053 27.55/0.958/0.051
TriVol 25.93/0.933/0.059 26.21/0.935/0.054 26.71/0.938/0.052 27.08/0.939/0.049
PFGS 36.16/0.984/0.008 36.45/0.984/0.007 36.58/0.985/0.006 36.59/0.987/0.005
DiffPBR-E 39.87/0.983/0.007 40.96/0.985/0.005 41.29/0.987/0.004 41.72/0.988/0.003
DIffPBR-Q 40.02/0.985/0.006 41.29/0.989/0.004 41.62/0.990/0.003 42.01/0.990/0.003

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 21: Evaluation metrics for Tab. 5, Tab. 6, and Tab. 7.

Tab. 5 Tab. 6 Tabl. 7

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

13.43/22.05 0.519/0.805 0.782/0.422 22.31 0.809 0.418 19.22 0.742 0.468
15.14/23.28 0.602/0.827 0.633/0.399 22.69 0.815 0.414 20.07 0.783 0.447
18.77/21.47 0.735/0.796 0.470/0.428 22.97 0.820 0.404 21.54 0.796 0.425
19.42/21.08 0.740/0.782 0.466/0.433 23.28 0.827 0.399 22.15 0.808 0.420

Table 22: Evaluation metrics for Tab. 9.

Thuman2.0 ScanNet

PSNR SSIM LPIPS PSNR SSIM LPIPS

41.27 0.989 0.003 23.28 0.827 0.399
39.56 0.985 0.011 20.52 0.790 0.436
40.00 0.986 0.009 20.88 0.793 0.428
40.89 0.987 0.006 22.92 0.824 0.400
41.76 0.989 0.004 22.88 0.823 0.405
40.15 0.986 0.009 20.98 0.796 0.423
40.87 0.987 0.006 21.65 0.801 0.419
41.03 0.988 0.005 22.04 0.806 0.419
42.29 0.990 0.003 21.92 0.804 0.419
40.22 0.986 0.009 20.09 0.783 0.449
40.94 0.987 0.005 21.01 0.796 0.422
41.46 0.989 0.004 21.46 0.797 0.421

Table 23: Evaluation metrics for Tab. 10 and Tab. 14.

Table 10 Table 11

PSNR SSIM LPIPS PSNR SSIM LPIPS

41.27 0.988 0.004 33.80 0.973 0.016
40.02 0.985 0.010 39.62 0.986 0.010

40.33 0.987 0.007
33.09 0.971 0.025
39.09 0.985 0.012
39.62 0.986 0.010
32.14 0.967 0.031
38.60 0.984 0.014
39.05 0.985 0.012

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

GT Ours PFGS NPBG++ TriVol

Figure 15: Additional qualitative comparisons between ours and baselines on Thuman2.0.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Reference DiffPBR (Ours) TriVolNPBG++PFGS

Figure 16: Additional qualitative comparisons between our method and baselines on DTU (upper
block) and ScanNet (lower block).

28

	Introduction
	Related Works
	Scene Specific Novel View Synthesis
	General Point-based Rendering

	Method
	adaptive CoNo-Splatting
	Spatial-Aware Residual Diffusion Process

	Experiment
	Implementation Details
	Comparison with Baselines
	Ablation Studies

	Conclusion
	Appendix
	Formal Definition and Further Elaboration of Symbols
	Details of DiffPBR Variants
	Implementation Details
	Datasets
	Model Architecture.
	Training & Inference.

	System Runtime Analysis
	Additional Experiments
	More Ablation Studies.
	blackMore Comparative Results.

	Additional Related Works
	Limitations and Future Directions
	Full Evaluation Metrics

