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ABSTRACT

Several works have shown that the regularization mechanisms underlying
deep neural networks’ generalization performances are still poorly understood
(Neyshabur et al., 2015; Zhang et al., 2017). In this paper, we hypothesize that
deep neural networks are regularized through their ability to extract meaningful
clusters among the samples of a class. This constitutes an implicit form of regu-
larization, as no explicit training mechanisms or supervision target such behaviour.
To support our hypothesis, we design four different measures of intraclass cluster-
ing, based on the neuron- and layer-level representations of the training data. We
then show that these measures constitute accurate predictors of generalization per-
formance across variations of a large set of hyperparameters (learning rate, batch
size, optimizer, weight decay, dropout rate, data augmentation, network depth and
width).

1 INTRODUCTION

Figure 1: In standard image classification datasets, classes are typically composed of multiple clus-
ters of similarly looking images. We call intraclass clustering a model’s ability to differentiate such
clusters despite their association to identical labels.

The generalization ability of deep neural networks remains largely unexplained. In particular, the
traditional view that explicit forms of regularization (e.g. dropout, L2-regularization, data augmen-
tation) are the sole factors for generalization performance of state of the art neural networks has
been experimentally invalidated (Neyshabur et al., 2015; Zhang et al., 2017). Today’s conventional
wisdom rather conjectures the presence of implicit forms of regularization, emerging from the in-
teractions between neural network architectures, optimization, and the inherent structure of the data
itself (Arpit et al., 2017).

One structural component that seems to occur in most image classification datasets is the presence of
multiple clusters amongst the samples of a class (or intraclass clusters, cfr. Figure 1). The extraction
of such structure in the context of supervised learning is not self-evident, as today’s standard training
algorithms are designed to group samples from a class together, without any considerations for
eventual intraclass clusters.
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This paper hypothesizes that the identification of intraclass clusters emerges during supervised train-
ing of deep neural networks, despite the absence of supervision or explicit training mechanisms
targeting this behaviour. Moreover, our study suggests that this phenomenon improves the general-
ization ability of deep neural networks, hence constituting an implicit form of regularization.

To verify our hypotheses, we define four measures of intraclass clustering and inspect the correlation
between those measures and a network’s generalization performance. These measures are designed
to capture intraclass clustering from four different perspectives, defined by the representation level
(neuron vs. layer) and the amount of knowledge about the data’s inherent structure (datasets with
or without hierarchical labels). To evaluate these measures’ predictive power, we train more than
500 models, varying standard hyperparameters in a principled way in order to generate a wide range
of generalization performances. The measures are then evaluated qualitatively through visual in-
spection of their relationship with generalization and quantitatively through the granulated Kendall
rank-correlation coefficient introduced by Jiang et al. (2020). Both evaluations reveal a tight connec-
tion between intraclass clustering measures and generalization ability, providing important evidence
to support this work’s hypotheses.

2 MEASURING INTRACLASS CLUSTERING IN INTERNAL REPRESENTATIONS

A challenge of our work resides in measuring a model’s ability to differentiate intraclass clusters,
without knowing which mechanisms underlie such ability. In such context, the design of multiple
complementary measures (i) offers different perspectives that will help better characterize intraclass
clustering mechanisms and (ii) reduces the risk that their potential correlation with generalization is
induced by other phenomena independent of intraclass clustering. This section thus describes four
measures of intraclass clustering, differing in terms of representation level (neuron vs. layer) and
the amount of knowledge about the data’s inherent structure (datasets with or without hierarchical
labels).

2.1 TERMINOLOGY AND NOTATIONS

D denotes the training dataset. Let I be the number of classes in the dataset D, we denote the set of
samples from class i by Ci with i ∈ I = {1, 2, ..., I}. In the case of hierarchical labels, Ci denotes
the samples from subclass i and Ss(i) the samples from the superclass containing subclass i. We
denote by N = {1, 2, ..., N} and L = {1, 2, ..., L} the indexes of the N neurons and L layers of a
network respectively. Neurons are considered across all the layers of a network, not a specific layer.
The methodology by which indexes are assigned to neurons or layers does not matter. We further
denote by meanj∈J and medianj∈J the mean and median operations over the index j respectively.
Moreover, meankj∈J corresponds to the mean of the top-k highest values, over the index j.

We call pre-activations (and activations) the values preceding (respectively following) the applica-
tion of the ReLU activation function (Nair & Hinton, 2010). In our experiments, batch normalization
(Ioffe & Szegedy, 2015) is applied before the ReLU, and pre-activation values are collected after
batch normalization. In convolutional layers, a neuron refers to an entire feature map. The spatial
dimensions of such a neuron’s (pre-)activations are reduced through a global max pooling operation
before applying our measures.

2.2 MEASURES BASED ON LABEL HIERARCHIES

The first two measures take advantage of datasets that include a hierarchy of labels. For example,
CIFAR100 is organized into 20 superclasses (e.g. flowers) each comprising 5 subclasses (e.g. or-
chids, poppies, roses, sunflowers, tulips). We hypothesize that these hierarchical labels reflect an
inherent structure of the data. In particular, we expect the subclasses to approximately correspond
to different clusters amongst the samples of a superclass. Hence, measuring the extent by which
a network differentiates subclasses when being trained on superclasses should reflect its ability to
extract intraclass clusters during training.
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2.2.1 NEURON-LEVEL SUBCLASS SELECTIVITY

The first measure quantifies how selective individual neurons are for a given subclassCi with respect
to the other samples of the associated superclass Ss(i). Here, strong selectivity means that the
subclass Ci can be reliably discriminated from the other samples of Ss(i) based on the neuron’s pre-
activations1. Let µn,E and σn,E be the mean and standard deviation of a neuron n’s pre-activation
values taken over the samples of set E. The measure is defined as follows:

c1 = mediani∈I meankn∈N
µn,Ci

− µn,Ss(i)\Ci

σn,Ci
+ σn,Ss(i)\Ci

(1)

Since we cannot expect all neurons of a network to be selective for a given subclass, we only con-
sider the top-k most selective neurons. The measure thus relies on k neurons to capture the overall
network’s ability to differentiate each subclass. We noticed slightly better results when using the
median operation instead of the mean to aggregate over the subclasses. We suspect this arises from
the outlier behaviour of certain subclasses that we observe in Section 4.5.

2.2.2 LAYER-LEVEL SILHOUETTE SCORE

The second measure quantifies to what extent the samples of a subclass are close together relative
to the other samples from the associated superclass in the space induced by a layer’s activations. In
other words, we measure to what degree different subclasses can be associated to different clusters
in the intermediate representations of a network. We quantify this by computing the pairwise cosine
distances2 on the samples of a superclass and applying the Silhouette score (Kaufman & Rousseeuw,
2009) to assess the clustered structure of the subclasses. Let silhouette(al, Ss(i), Ci) be the mean
silhouette score of subclass Ci based on the activations al of superclass Ss(i) in layer l, the measure
is then defined as:

c2 = mediani∈I meankl∈L silhouette(al, Ss(i), Ci) (2)

2.3 MEASURES BASED ON VARIANCE

To establish the generality of our results, we also design two measures that can be applied in ab-
sence of hierarchical labels. We hypothesize that the discrimination of intraclass clusters should
be reflected by a high variance in the representations associated to a class. If all the samples of a
class are mapped to close-by points in the neuron- or layer-level representations, it is likely that the
neuron/layer did not identify intraclass clusters.

2.3.1 VARIANCE IN THE NEURON-LEVEL REPRESENTATIONS OF THE DATA

The first variance measure is based on standard deviations of a neuron’s pre-activations. If the
standard deviation computed over the samples of a class is high compared to the standard deviation
computed over the entire dataset, we infer that the neuron has learned features that differentiate
samples belonging to this class. The measure is defined as:

c3 = meani∈I meankn∈N
σn,Ci

σn,D
(3)

A visual representation of the measure is provided in Figure 2.

2.3.2 VARIANCE IN THE LAYER-LEVEL REPRESENTATIONS OF THE DATA

The fourth measure transfers the neuron-level variance approach to layers by computing the stan-
dard deviations over the pairwise cosine distances calculated in the space induced by the layer’s
activations. Let Σl,E be the standard deviation of the pairwise cosine distances between the samples
of set E in the space induced by layer l. The measure is defined as:

c4 = meani∈I meankl∈L
Σl,Ci

Σl,D
(4)

1In other words, we are interested in evaluating whether the linear projection implemented by the neuron
has been effective in isolating a given subclass.

2Using cosine distances provided slightly better results than euclidean distances.
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To compute this measure, we found it helpful to standardize the representations of different neurons.
More precisely, we normalize each neuron’s pre-activations to have zero mean and unit variance,
then apply a bias and ReLU activation function such that 25% of the samples are activated3. This
makes the measure invariant to rescaling and translation of each neuron’s preactivations.

Figure 2: Our simplest measure (denoted c3) quantifies intraclass clustering through the ratio of
standard deviations σn,Ci

and σn,D associated to the class Ci and the entire dataset D respectively.
Intuitively, a high ratio means that the neuron relies on features that differentiate samples from Ci
although they belong to the same class. Despite its simplicity, our results in Section 4 suggest
a remarkably strong connection between c3 and generalization performance. This illustration of
measure c3 is based on a neuron from our experimental study, and the associated ratio is 2.47.

3 EXPERIMENTAL SETUP

The purpose of our experimental endeavour is to assess the predictive power of the proposed intra-
class clustering measures with respect to the generalization performance. To this end, we reproduce
the methodology introduced by Jiang et al. (2020). First of all, this methodology puts emphasis on
the scale of the experiments to improve the generality of the observations. Second, it tries to go be-
yond standard measures of correlation, and puts extra care to detect causal relationships between the
measures and generalization performance. This is achieved through a systematic variation of multi-
ple hyperparameters when building the set of models to be studied, combined with the application
of principled correlation measures.

3.1 BUILDING A SET OF MODELS WITH VARYING HYPERPARAMETERS

Our experiments are conducted on three datasets and two network architectures. The datasets are
CIFAR10, CIFAR100 and the coarse version of CIFAR100 with 20 superclasses (Krizhevsky &
Hinton, 2009). The two network architectures are Wide ResNets (He et al., 2016; Zagoruyko &
Komodakis, 2016) (applied on CIFAR100 datasets) and VGG variants (Simonyan & Zisserman,
2014) (applied on CIFAR10 dataset). Both architectures use batch normalization layers (Ioffe &
Szegedy, 2015) since they greatly facilitate the training procedure.

In order to build a set of models with a wide range of generalization performances, we vary hy-
perparameters that are known to be critical. Since varying multiple hyperparameters improves the
identification of causal relationships, we vary 8 different hyperparameters: learning rate, batch size,
optimizer (SGD or Adam (Kingma & Ba, 2015)), weight decay, dropout rate (Srivastava et al., 2014),
data augmentation, network depth and width. In total, we elaborated a set of 192 hyperparameter
configurations for each dataset-architecture pair4. More information about the hyperparameter con-
figurations, training procedures and the resulting model performances are provided in Appendix
(A.1, A.2, A.3 and A.4). It is worth noting that most models achieve close to 100% training accu-
racy. Hence, models with poor test accuracy largely overfit.

3Activating 25% of the samples was an arbitrary choice that we did not seek to optimize. Studying the
influence of this hyperparameter on the results is left as future work.

4The final set of VGG variants trained on CIFAR10 results from only 144 hyperparameter configurations as
the network could not reach ∼ 100% training accuracy with high dropout rates.
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3.2 EVALUATING THE MEASURES’ PREDICTIVE POWER

Jiang et al. (2020) provides multiple criteria to evaluate generalization measures. We opted for the
granulated Kendall coefficient for its simplicity and intuitiveness. This coefficient compares two
rankings of the models, respectively provided by (i) the generalization measure of interest and (ii)
their actual generalization performance. The Kendall coefficient is computed across variations of
each hyperparameter independently. The average over all hyperparameters is then computed for the
final score. The goal of this approach is to better capture causal relationships by not overvaluing
measures that correlate with generalization only when specific hyperparameters are tuned.

We compare our intraclass clustering-based measures to sharpness-based measures. The latter con-
stituted the most promising measure family from the large-scale study presented in Jiang et al.
(2020). Among the many different sharpness measures, we leverage the magnitude-aware versions
that measure sharpness through random and worst-case perturbations of the weights (denoted by 1

σ′

and 1
α′ , respectively, in Jiang et al. (2020)). We also include the application of these measures with

perturbations applied on kernels only (i.e. not on biases and batch normalization weights) with batch
normalization layers in batch statistics mode (i.e. not in inference mode). We observed that these
alternate versions often provided better estimations of generalization performance. We denote these
measures by 1

σ′′ and 1
α′′ .

4 RESULTS

This section starts with a thorough evaluation of the relationship between the four proposed measures
and the generalization performance, using the setup described in 3. Then, it presents a series of
experiments to better characterize intraclass clustering, the phenomenon we expect to be captured
by the measures. These experiments include (i) an analysis of the measures’ evolution across layers
and training iterations, (ii) a study of the neuron-level measures’ sensitivity to k in the mean over
top-k operation, as well as (iii) visualizations of subclass extraction in individual neurons.

4.1 EVALUATING THE MEASURES’ RELATIONSHIPS WITH GENERALIZATION

We compute all four measures on the models trained on the CIFAR100 superclasses, and the two
variance-based measures on the models trained on standard CIFAR100 and CIFAR10. We set k =
30 for the neuron-level measures, meaning that 30 neurons per subclass (for c1) or class (for c3)
are used to capture intraclass clustering. For the layer-level measures, we set k = 5 for residual
networks and k = 1 for VGG networks.

We start our assessment of the measures’ predictive power by visualizing their relationship with
generalization performance in Figure 3. We observe a clear trend across datasets, network architec-
tures and measures, suggesting a tight connection between intraclass clustering and generalization.
To further support the conclusions of our visualizations, we evaluate the measures’ predictive power
through the granulated Kendall coefficient (cfr. Section 3.2). Tables 1, 2 and 3 present the granu-
lated Kendall rank-correlation coefficients associated with intraclass clustering and sharpness-based
measures, for the three dataset-architecture pairs (Tables 2 and 3 are in Appendix A.5).

The Kendall coefficients further confirm the observations in Figure 3 by revealing strong correlations
between intraclass clustering measures and generalization performance across all hyperparameters.
In terms of overall score, intraclass clustering measures surpass the sharpness-based measures vari-
ants by a large margin across all dataset-architecture pairs. On some specific hyperparameters,
sharpness-based measures outperform intraclass clustering measures. In particular, 1

α′ performs
remarkably well when the batch size parameter is varied, which is coherent with previous work
(Keskar et al., 2017).

4.2 INFLUENCE OF k ON THE KENDALL COEFFICIENTS OF NEURON-LEVEL MEASURES

In our evaluation of the measures in Section 4.1, the k parameter, which controls the number of
highest values considered in the mean over top-k operations, was fixed quite arbitrarily. Figure 4
shows how the Kendall coefficient of c1 and c3 changes with this parameter. We observe a relatively
low sensitivity of the measures’ predictive power with respect to k. In particular, in the case of
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Figure 3: Visualization of the relationship between the four proposed intraclass clustering measures
and generalization performance, across datasets and network architectures. The four columns cor-
respond to c1, c2, c3 and c4 measures respectively. All measures display a tight connection with
generalization performance, suggesting a crucial role for intraclass clustering in the implicit regu-
larization of deep neural networks.

Table 1: Kendall coefficients for resnets trained on CIFAR100 superclasses. Overall, the intraclass
clustering measures surpass the sharpness-based measures by a large margin.

learning
rate

batch
size

weight
decay optim. dropout

rate
data

augm. width depth total
score

Intraclass
clustering

c1 0.88 0.31 0.38 0.67 0.96 1.0 0.81 0.69 0.71
c2 0.86 0.5 0.67 0.58 0.99 1.0 0.38 0.62 0.7
c3 0.88 0.6 0.46 0.62 0.81 1.0 0.81 0.66 0.73
c4 0.89 0.69 0.62 0.65 0.86 1.0 0.44 0.69 0.73

Sharpness

1 / σ′ 0.81 0.51 0.31 0.69 0.28 -0.58 0.67 0.61 0.41
1 / σ′′ 0.86 0.58 0.17 0.4 -0.05 0.42 0.69 0.72 0.47
1 / α′ 0.88 0.94 0.29 0.26 0.6 0.08 -0.03 -0.09 0.37
1 / α′′ 0.85 0.8 0.48 0.71 0.16 -0.08 0.08 0.34 0.42

Resnets trained on CIFAR100 the Kendall coefficient associated with c3 seems to stay above 0.7 for
any k in the range [1, 900]. The optimal k value changes with the considered dataset and architecture.
We leave the study of this dependency as a future work.

Observing the influence of k also confers insights about the phenomenon captured by the measures.
Figure 4 reveals that very small k values work remarkably well. Using a single neuron per subclass
(k = 1 in Equation 1) confers a Kendall coefficient of 0.69 to c1. Using a single neuron per class
confers a Kendall coefficient of 0.78 to c3 in the case of VGGs trained on CIFAR10. These results
suggest that individual neurons play a crucial role in the extraction of intraclass clusters during
training. The fact that the Kendall coefficients monotonically decrease after some k value suggests
that the extraction of a given intraclass cluster takes place in a sub part of the network, indicating
some form of specialization.
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Figure 4: Plots showing how the Kendall coefficients of c1 and c3 change with parameter k (cfr.
Equations 1 and 3). The k parameter associated to c1 is multiplied by 5 in the plots, to enable
comparison with c3 (there are 5 subclasses in each of CIFAR100’s superclasses). The total number
of neurons varies from 1920 to 2880 in Resnets and from 960 to 1440 in VGGs. The plots reveal
that generalization performance can be quite accurately estimated using the representations of a
surprisingly small set of neurons (k = 1, i.e. a single neuron per class, suffices in some cases).

4.3 EVOLUTION OF THE MEASURES ACROSS LAYERS

We pursue our experimental endeavour with an analysis of the proposed measures’ evolution across
layers. For each dataset-architecture pair, we select 64 models which have the same depth hyperpa-
rameter value. We then compute the four measures on a layer-level basis (we use the top-5 neurons
of each layer for the neuron-level measures) and average the resulting values over the 64 models.
Figure 5 depicts how the average value of each measure evolves across layers for Resnets trained on
CIFAR100 superclasses. The results associated with the two other dataset-architecture pairs are in
Appendix A.5, Figures 9 and 10.

We observe two interesting trends. First, all four measures tend to increase with layer depth. This
suggests that intraclass clustering also occurs in the deepest representations of neural networks, and
not merely in the first layers, which are commonly assumed to capture generic or class-independent
features. Second, the variance based measures (c3 and c4) decrease drastically in the penultimate
layer. We suspect this reflects the grouping of samples of a class in tight clusters in preparation for
the final classification layer (such behaviour has been studied in Kamnitsas et al. (2018); Müller et al.
(2019)). The measures c1 and c2 are robust to this phenomenon as they rely on relative distances
inside a single class, irrespectively of the representations of the rest of the dataset.

Figure 5: Evolution of each measure (after averaging over 64 models) across layers. The overall in-
crease of the measures with layer depth suggests that intraclass clustering occurs even in the deepest
representations of neural networks.

4.4 EVOLUTION OF THE MEASURES OVER THE COURSE OF TRAINING

In this section, we provide a small step towards the understanding of the dynamics of the phe-
nomenon captured by the measures. We visualize in Figure 6 the evolution of the measures over the
course of training of three Resnet models. The first interesting observation comes from the com-
parison of models with high and low generalization performances. It appears that their differences
in terms of intraclass clustering measures arise essentially during the early phase of training. The
second observation is that significant increases in intraclass clustering measures systematically coin-
cide with significant increases of the training accuracy (in the few first epochs and around epoch 150,
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where the learning rate is reduced). This suggests that supervised training could act as a necessary
driver for intraclass clustering ability, despite not explicitly targeting such behaviour.

Figure 6: Evolution of the intraclass clustering measures over the course of training for three models
with different generalization performances. We observe that the differences between models with
high and low generalization performance arise essentially in the early phase of training.

4.5 VISUALIZATION OF SUBCLASS EXTRACTION IN INDIVIDUAL NEURONS

We have seen in Section 4.2 that the measure c1 reaches a Kendall coefficient of 0.69 when con-
sidering a single neuron per subclass (k = 1 in Eq. 1). Visualizing the training dynamics in this
specific neuron should enable us to directly observe the phenomenon captured by c1. We study
a Resnet model trained on CIFAR100 superclasses with high generalization performance (82.31%
test accuracy). For each of the 100 subclasses, we compute the selectivity value and the index of
the most selective neuron based on the part of Eq. 1 to which the median operation is applied. We
then rank the subclasses by their selectivity value, and display the training dynamics of the neurons
associated to the subclasses with maximum and median selectivity values in Figure 7.

The evolution of the neurons’ preactivation distributions along training reveals that the ’Rocket’ sub-
class, which has the highest selectivity value, is progressively distinguished from its corresponding
superclass during training. The neuron behaves like it was trained to identify this specific subclass
although no supervision or explicit training mechanisms were implemented to target this behaviour.
The same phenomenon occurs to a lesser extent with the ’Ray’ subclass, which has the median
selectivity value. We observed that very few subclasses reached selectivity values as high as the
’Rocket’ subclass (the distribution of selectivity values is provided in Figure 11 in Appendix A.5).
We suspect that the occurrence of such outliers explain why the median operation outperformed the
mean in the definition of c1 and c2.

Figure 7: Evolution along training of the preactivation distributions associated with the neurons that
are the most selective (cfr. Eq. 1) for ’Rocket’ and ’Ray’ subclasses. The neurons behave like
they were trained to identify these specific subclasses although no supervision or explicit training
mechanisms were implemented to target this behaviour.
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4.6 DISCUSSION

Our results show that all four measures (i) strongly correlate with generalization, (ii) tend to increase
with layer depth and (iii) change mostly in the early phase of training. These similarities suggest
that the four measures capture one unique phenomenon. Since all measures quantify to what extent
a neural network differentiates samples from the same class, the captured phenomenon presumably
consists in the identification of intraclass clusters by neural networks. This hypothesis is further sup-
ported by the neuron-level visualizations provided in Section 4.5. Overall, our results thus provide
empirical evidence for this works hypotheses, i.e. that intraclass clustering emerges during standard
neural network training and constitutes an implicit form of regularization.

The mechanisms that induce intraclass clustering in deep neural networks remain undisclosed, leav-
ing a lot of room for future work. In particular, Section 4.2 reveals that understanding the local
nature of intraclass clustering could lead to better estimation of the optimal k parameter and in-
crease the measures’ predictive power. Additionally, the neuron-level visualizations in Figures 2
and 7 suggest that quantifying the bimodal shape of a neuron’s preactivations for each class might
provide an alternative measure of intraclass clustering that doesn’t require hierarchical labels.

5 RELATED WORK

This work follows the line of inquiry initiated by Neyshabur et al. (2015); Zhang et al. (2017), and
tries to unveil the phenomena underlying the generalization ability of deep neural networks. We
follow an empirical approach based on the design of measures that correlate with generalization
performance. This approach has been extensively used in recent years, leading to measures such
as sharpness of minima (Keskar et al., 2017), sensitivity (Novak et al., 2018), reliance on single
directions (Morcos et al., 2018) and stiffness (Fort et al., 2019). To our knowledge, we are the first
work to empirically study the relationship between intraclass clustering measures and generalization.

Many observations made in our paper are coherent with previous work. In the context of transfer
learning, Huh et al. (2016) shows that representations that discriminate ImageNet classes naturally
emerge when training on their corresponding superclasses, suggesting the occurrence of intraclass
clustering. Sections 4.2 and 4.5 suggest a key role for individual neurons in the extraction of in-
traclass clusters. This is coherent with the large body of work that studied the emergence of in-
terpretable features in the hidden neurons (or feature maps) of deep nets (Zeiler & Fergus, 2014;
Simonyan et al., 2014; Yosinski et al., 2015; Zhou et al., 2015; Bau et al., 2017). In Section 4.4, we
notice that intraclass clustering occurs mostly in the early phase of training. Previous works have
also highlighted the criticality of this phase of training with respect to regularization (Golatkar et al.,
2019), optimization trajectories (Jastrzebski et al., 2020; Fort et al., 2020), Hessian eigenspectra
(Gur-Ari et al., 2018), training data perturbations (Achille et al., 2019) and weight rewinding (Fran-
kle et al., 2020a;b). Morcos et al. (2018); Leavitt & Morcos (2020) have shown that class-selective
neurons are not necessary and might be detrimental for performance. This is coherent with our
observation that neurons that differentiate samples from the same class improve performance.

6 CONCLUSION

Our work starts from the observation that classes of samples from standard image classification
datasets are usually structured into multiple clusters. Since learning structure in the data is com-
monly associated to generalization, we ask if state-of-the-art neural network extract such clusters.
While no supervision or training mechanisms are explicitly programmed into deep neural networks
for targeting this behaviour, it is possible that this learning ability implicitly emerges during train-
ing. Such a hypothesis is especially compelling as recent work on generalization conjectured the
emergence of implicit forms of regularization during deep neural network training.

Our work provides four different attempts at quantifying intraclass clustering. We then conduct a
large-scale experimental study to characterize intraclass clustering and its potential relationship with
generalization performance. Overall, the results suggest a crucial role for intraclass clustering in the
regularization of deep neural networks. We hope our work will stimulate further investigations of
intraclass clustering and ultimately lead to a better understanding of the generalization properties of
deep neural networks.
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A APPENDIX

A.1 HYPERPARAMETER CONFIGURATIONS

We define here the hyperparameter configurations used to build our set of models (cfr. Section 3.1).
A total of 8 hyperparameters are tuned: learning rate, batch size, optimizer, weight decay, dropout
rate, data augmentation, network depth and width. A straightforward way to generate configurations
is to specify values for each hyperparameter independently and then generate all possible combina-
tions. However, given the amount of hyperparameters, this quickly leads to unrealistic amounts of
models to be trained.

To deal with this, we decided to remove co-variations of hyperparameters whose influence on train-
ing and generalization is suspected to be related. More precisely, we use weight decay only in
combination with the highest learning rate value, as recent works demonstrated a relation between
weight decay and learning rate (van Laarhoven, 2017; Zhang et al., 2019). We also don’t combine
dropout and data augmentation, as the effect of dropout is drastically reduced when data augmen-
tation is used. Finally, we do not jointly increase width and depth, to avoid very large models that
would slow down our experiments.

The resulting hyperparameter values are as follows:

1. (Learning rate, Weight decay): {(0.01, 0.), (0.32, 0.), (0.1, 0.), (0.1, 4 · 10−5)}
2. Batch size: {100, 300}
3. Optimizer: {SGD,Adam}
4. (Dropout rate, Data augm.): {(0., true), (0., false), (0.2, false), (0.4, false)}
5. (Width factor, Depth factor): {(×1.,×1.), (×1.5,×1.), (×1.,×1.5))}

We generate all possible combinations of these hyperparameter values (or pairs of values), leading to
192 configurations. Since dropout rates of 0.4 lead to poor training performance on VGG variants,
only 144 configurations are used in these cases.

A.2 FURTHER INFORMATION ON THE HYPERPARAMETERS

It has been shown that different optimizers may require different learning rates for optimal perfor-
mance (Wilson et al., 2017). In our experiments, we divide the learning rate by 100 when using
Adam to improve its performance (the same approach is used in Jiang et al. (2020)). When using
SGD we apply a momentum of 0.9.

We use the following data augmentations: horizontal and vertical shifts of up to 4 pixels, and hor-
izontal flips. We fill the resulting image through reflection. This data augmentation procedure is
widely used for the CIFAR datasets.

We use two types of network architectures: VGG and Wide ResNets. We build these architectures
using four stages, separated by 3 pooling layers. This enabled a wider range of generalization
performances, as the standard three stage versions of these architectures tend to be less capable of
overfitting. Width factors of ×1. and ×1.5 correspond to widths of 32 and 48 respectively in the
layers of the first stage. The width of layers is doubled after every pooling layer. Depth factors
of ×1. and ×1.5 correspond to 9 and 13 layers for VGG variants, and 18 and 26 layers for Wide
ResNet variants.

A.3 FURTHER INFORMATION ON THE TRAINING PROCEDURE

We train models for 250 epochs, and reduce the learning rate by a factor 0.2 at epochs 150, 230, 240.
Training stops prematurely if the training loss gets smaller than 10−4.
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A.4 MODEL PERFORMANCES

Cfr. Figure 8.

Figure 8: Histogram of performances of the set of models used in our experiments.

A.5 SUPPLEMENTARY RESULTS

Table 2: Kendall coefficients for resnets trained on CIFAR100.

learning
rate

batch
size

weight
decay optim. dropout

rate
data

augm. width depth total
score

Intraclass
clustering

c3 0.94 0.65 0.62 0.58 1.0 1.0 1.0 0.78 0.82
c4 0.93 0.62 0.62 0.21 1.0 1.0 0.91 0.78 0.76

Sharpness

1 / σ′ 0.88 0.68 0.17 0.8 0.4 -0.62 0.94 0.61 0.48
1 / σ′′ 0.92 0.61 0.12 0.35 -0.06 0.31 0.94 0.53 0.47
1 / α′ 0.96 0.96 0.17 0.25 0.54 0.15 -0.16 -0.23 0.33
1 / α′′ 0.96 0.91 0.42 0.64 0.12 -0.25 0.17 0.14 0.39

Table 3: Kendall coefficients for VGG networks trained on CIFAR10.

learning
rate

batch
size

weight
decay optim. dropout

rate
data

augm. width depth total
score

Intraclass
clustering

c3 0.92 0.83 0.67 0.51 0.92 1.0 1.0 0.88 0.84
c4 0.86 0.75 0.33 0.29 0.92 1.0 0.54 0.92 0.7

Sharpness

1 / σ′ 0.86 0.62 -0.25 0.6 -0.04 -0.27 1.0 0.85 0.42
1 / σ′′ 0.9 0.67 0.11 0.69 0.92 0.19 1.0 0.94 0.68
1 / α′ 0.94 0.89 0.61 0.53 0.67 0.77 0.15 0.06 0.58
1 / α′′ 0.93 0.67 0.36 0.54 0.69 -0.02 0.15 -0.15 0.4
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Figure 9: Evolution of the measures across layers for Resnets trained on CIFAR100

Figure 10: Evolution of the measures across layers for VGGs trained on CIFAR10

Figure 11: Distribution of neural subclass selectivity values (cfr. measure c1) over the 100 subclasses
of CIFAR100. For each subclass, neural subclass selectivity is computed based on the most selective
neuron in the neural network (i.e. k = 1). We observe that 1) only a few subclasses reach high
selectivity values and 2) the selectivity values vary much across subclasses. We suspect that the
outliers with exceptionally high selectivity values cause the median operation to outperform the
mean in the measures c1 and c2.
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