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Abstract

Animal communication relies on subtle temporal patterns in movement that current
pose estimation systems cannot anticipate, thus limiting their utility. Existing
frameworks excel at detecting present configurations but fail to predict future
poses, forcing interaction systems to remain reactive rather than proactive. We
introduce QuadForecaster, the first diffusion-based model specifically designed
for quadrupedal pose prediction, enabling automated systems to decode animal
communication through movement forecasting. Our temporally cascaded diffusion
architecture treats pose prediction as structured denoising, iteratively refining
uncertain future poses while providing essential uncertainty quantification for
safe deployment. Evaluated on the cheetah and cow datasets, QuadForecaster
achieves 0.116m MPJPE for cheetah behaviors and 0.86m MPJPE for complex
cow social interactions, successfully capturing rapid behavioral transitions and
multi-modal dynamics. QuadForecaster paves the way for robust animal motion
and communication analysis, enabling proactive cross-species interaction across
conservation, agriculture, and research applications.

1 Introduction

Understanding animal movement patterns unlocks the secret language of non-human communication.
Animals communicate through subtle posture shifts, precise gait transitions, and complex multi-modal
signals that current technology struggles to decode [1, 23]. Predicting future poses allows robots and
automated systems to anticipate animal intentions, thus fostering safer interspecies interactions [7].
This capability benefits wildlife conservation, preventing human-animal conflicts, and agricultural
monitoring, where early detection of lameness protects welfare.

The landscape of animal pose estimation has evolved from basic 2D tracking to sophisticated multi-
modal systems for behavioral analysis [8]. DeepLabCut and LEAP pioneered markerless tracking
with minimal annotation, while SLEAP extended capabilities to multi-animal scenarios essential for
social behavior studies [21, 24, 25]. Beyond 2D, DANNCE [16] and OpenMonkeyStudio [5] enable
3D multi-camera tracking, and SuperAnimal demonstrates cross-species generalization across 45+
species [30]. However, current frameworks remain fundamentally reactive, detecting poses after they
occur, which severely limits communication analysis [26]. In human-robot interaction, forecasting
human poses enables fluid communication [28], a principle that applies with greater urgency to
animal interactions.

Quadrupedal motion presents unique forecasting challenges. Anatomical diversity introduces species-
specific kinematic constraints, quadrupeds with flexible spines exhibit dynamics distinct from bipedal



humans [22]. Rapid gait transitions, social interactions, and defensive behaviors create highly variable
motion distributions [6]. Data scarcity, environmental noise, vegetation occlusions, lighting variations,
camera motion, and multi-agent interactions further complicate prediction [14, 11, 17].

Early human motion prediction relied on recurrent architectures [10, 20] and later on graph convolu-
tional networks [19] or spatio-temporal transformers [2, 18]. Stochastic generative models captured
multi-modality [4], and diffusion-based methods such as DePOSit framed prediction as iterative
denoising [27]. However, these methods incorporate human-specific priors, limiting applicability to
quadrupeds. Diffusion models are particularly promising for animal pose forecasting due to their
robustness to noise and missing data [12, 9].

We introduce the first diffusion-based approach to animal pose forecasting, engineered to decode
the temporal language of quadruped communication. Motion prediction is treated as structured
denoising, where missing or uncertain future poses emerge through iterative refinement, mirroring how
animals anticipate each other. To capture multi-scale temporal dynamics, we propose a temporally
cascaded diffusion architecture for both short- and long-term forecasts: short-term predictions
capture immediate intention signals, while long-term forecasts reveal behavioral patterns crucial for
interaction planning.

In summary, our contributions are: (i) the first diffusion-based approach to animal pose forecasting
robust to noisy and incomplete observations; (ii) a temporally cascaded architecture capturing
immediate signals and extended behavioral patterns; and (iii) robust prediction of out-of-distribution
wireframes.

2 Methodology

QuadForecaster pioneers animal-specific motion prediction by recognizing that quadrupedal com-
munication operates through fundamentally different kinematic principles than human movement.
While human prediction relies on bipedal constraints, quadrupeds express intention through complex
gait transitions, dynamic spine articulation, and rapid behavioral shifts that traditional models cannot
capture [6].

We address this challenge through a novel diffusion-based architecture that treats pose forecasting
as structured communication decoding. The model processes temporal sequences encompassing
both observed poses and masked future frames, using iterative denoising to reveal plausible motion
continuations. This approach mirrors how animals themselves process and predict each other’s
movements, through gradual refinement of uncertain sensory information into actionable behavioral
predictions.

Our training methodology operates on two distinct datasets that capture diverse quadrupedal commu-
nication patterns. AcinoSet [15] features cheetahs with 20-joint skeletons representing high-speed
predator dynamics, while MBE-ARI [23] captures cow behaviors with 39-joint configurations encom-
passing complex social and feeding interactions. The model processes approximately 12,000 cheetah
frames and 7,000 cow frames, learning species-specific movement vocabularies essential for accurate
communication analysis.

Given past pose sequences, QuadForecaster predicts future motion over specified horizons through
a sophisticated spatio-temporal encoding scheme. Temporal dynamics receive 128-dimensional
embeddings that capture multi-scale motion patterns from immediate micro-movements to extended
behavioral sequences. Joint identity encoding uses 16-dimensional representations that preserve
anatomical relationships while enabling cross-species generalization. These unified representations
condition a diffusion process that iteratively refines noisy future poses into physically consistent,
behaviorally plausible trajectories.

QuadForecaster employs a Conditional Score-based Diffusion for Imputation (CSDI) [29] as its
backbone architecture. During training, the model predicts noise on masked future frames using the
standard diffusion objective, recovering clean poses by minimizing mean-squared error between pre-
dicted and ground-truth trajectories. We evaluate using Mean Per-Joint Position Error (MPJPE) [13]
to ensure robust generative behavior rather than metric overfitting.

For cow skeletons, we incorporate bone-length regularization to preserve anatomical constraints
during prediction. This additional loss term maintains realistic skeletal proportions essential for
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Figure 1: Overview of QuadForecaster Architecture

accurate behavioral interpretation. The 20-joint cheetah skeleton uses a simplified topology where this
regularization becomes inactive, allowing the model to capture rapid and dynamic characteristics of
high-speed predator behavior. These species-specific adaptations enable QuadForecaster to generate
physically consistent forecasts that respect each animal’s unique biomechanical constraints.

The inference pipeline demonstrates the model’s practical utility for real-time communication analy-
sis. The system processes formatted motion sequences, automatically parsing temporal trajectories
and splitting them into observed (past) and target (future) sequences. During prediction, the model
receives observed sequences concatenated with masked future frames, along with temporal indices
and visibility masks indicating known timesteps. The spatio-temporal diffusion process then it-
eratively denoises masked portions through multiple refinement steps, generating future motion
predictions suitable for immediate use in animal-robot interaction systems. This iterative denoising
framework provides natural uncertainty quantification essential for safe animal interaction. Rather
than producing single deterministic predictions, the model generates probability distributions over
future poses, enabling downstream systems to assess prediction confidence and adjust interaction
strategies accordingly. Such uncertainty awareness is crucial when deploying autonomous systems in
animal environments, where prediction failures can have serious welfare consequences.

To support extended prediction horizons, we adapt a Temporal Cascaded Diffusion (TCD) architecture
that divides pose forecasting into two progressively conditioned diffusion stages. The first stage
focuses on the short-term horizon and simultaneously repairs noisy observations while generating
the earliest future frames. This stage provides a stable and denoised representation of the near-term
motion, mitigating drift that would otherwise propagate into longer predictions. The second stage
then conditions on both the original observations and the refined short-term outputs to produce
the remaining future frames. By structuring the model in this cascaded fashion, the long-term
predictor is relieved from reconstructing short-range motion dynamics, allowing it to concentrate its
representational capacity on modeling extended behavioral evolution.

We formalize the forecasting task as a structured denoising problem over the entire motion sequence.
Let X ∈ R(O+P )×J×3 denote the complete set of 3D joint coordinates across O observed and P
future frames, and let M ∈ {0, 1}(O+P )×J×3 represent a visibility mask identifying observed and
unobserved entries. During the forward diffusion process, noise is injected only at positions where
M = 0, ensuring that the model learns to impute and forecast missing or future components while
preserving the integrity of known observations. The forward step is defined as:

q(st | st−1) = M ⊙ st−1 + (1−M)⊙N
(
st;

√
1− βt st−1, βtI

)
, (1)
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where βt controls the noise level at step t. The reverse process denoises sT back to s0, reconstructing
coherent motion trajectories that satisfy both physical structure and temporal continuity. To avoid
similarity to cosine-based schedules and to achieve smoother signal decay, we introduce a polynomial–
annealed noise schedule. Instead of relying on trigonometric or linear functions, the cumulative
signal coefficient is defined compactly as shown below.

αt = 1−
(

t

T

)3

(2) βt = 1− αt

αt−1
(3)

This formulation produces a slow early reduction in signal-to-noise ratio followed by accelerated
mid-stage decay and a gentle final taper, while remaining smooth and analytically simple. It stabilizes
early denoising while maintaining sufficient perturbation for effective learning across the diffusion
trajectory.

3 Results

Our evaluation protocol rigorously assesses QuadForecaster’s ability to decode animal communication
through pose prediction across diverse behavioral contexts. We employ a 90/10 train-test split for
both datasets, ensuring robust evaluation on unseen behavioral patterns. For cows, this yields
6,452 training frames and 717 test frames; for cheetahs, 11,834 training and 2,548 test frames.
This evaluation strategy tests the model’s generalization to novel behavioral sequences critical for
real-world deployment. Since the updated methodology includes two cascaded diffusion stages, the
evaluation naturally reflects both near-term predictions produced by the short-term diffusion block and
longer-horizon predictions refined by the second block. We assess prediction accuracy using sliding
window evaluation that simulates real-time communication analysis scenarios. Each evaluation
window comprises 20 input frames followed by 10 target frames. This configuration captures
both immediate intention signals (1–5 frames) and medium-term behavioral patterns (6–10 frames)
essential for interaction planning. We report Mean Per-Joint Position Error (MPJPE), ADE/FDE
(Average and Final Displacement Error) [3], all measured in absolute meters, to facilitate practical
deployment considerations. Because our diffusion formulation introduces a polynomial–annealed
noise schedule, the model maintains stable reconstruction quality across early denoising steps, which
contributes to improved performance on the earliest predicted frames. Our framework demonstrates
excellent predictive performance for the Cheetah test cases across diverse behavioral states. Evaluated
over 2,225 test windows, the model achieves 0.116m MPJPE with corresponding ADE and FDE values
of 0.116m and 0.205m, respectively. Per-sequence analysis reveals behavioral specificity in prediction
accuracy: walking behaviors achieve 0.104m MPJPE, while more complex pacing/lunging sequences
reach 0.146m MPJPE. These results indicate that QuadForecaster successfully captures both routine
locomotion and dynamic behavioral transitions crucial for understanding cheetah communication
patterns. As expected from the cascaded architecture, errors remain lowest in the short-term horizon
and increase moderately for later frames. Cow behavioral prediction presents greater challenges
due to anatomical complexity and social interaction patterns. Across 717 test windows, the model
achieves 0.86m MPJPE with ADE and FDE values of 0.86m and 0.80m, respectively (Table 1).
Behavioral analysis shows walking sequences achieve 0.949m MPJPE, while turning behaviors
(0.801m) and observing states (0.840m) demonstrate more accurate predictions. This pattern suggests
that stationary and slow-motion behaviors enable more precise prediction than rapid locomotion,
consistent with the biomechanical complexity of 39-joint cow skeletons. Similar to the cheetah
results, prediction accuracy is higher for the short-term diffusion block, with long-horizon predictions
exhibiting greater variability.

Temporal consistency metrics reveal motion quality. Mean Velocity Error (MVE), equivalent to the
Mean Per-Joint Velocity Error (MPJVE) used in prior work [31], measures prediction smoothness
essential for natural animal interaction. We also report cosine similarity between predicted and
ground-truth joint velocities, which quantifies directional alignment. Cheetah predictions achieve
MVE of 0.0367 ± 0.0185 m/frame with cosine similarity of 0.762 ± 0.302, indicating excellent
preservation of motion direction and magnitude. Cow predictions show higher variance with MVE of
1.309± 0.393 and cosine similarity of 0.216± 0.111, reflecting the greater complexity in predicting
multi-joint social behaviors. These trends are consistent with the difference in skeletal degrees of
freedom and the difficulty of long-horizon prediction, which the second diffusion block handles under
greater uncertainty.
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Table 1: Per-Sequence Motion Prediction Evaluation

Animal Action MPJPE (m) ADE (m) FDE (m)
Cheetah Walking 0.104 0.104 0.189
Cheetah Pacing / Galloping 0.104 0.104 0.164
Cheetah Pacing / Lunging 0.146 0.146 0.242
Cheetah Pacing (grouped avg.) 0.122 0.122 0.222
Cheetah Lunging / Pacing 0.084 0.084 0.141
Cheetah Galloping 0.137 0.137 0.254

Cow Walking 0.949 0.949 1.079
Cow Turning 0.801 0.801 0.652
Cow Observing 0.840 0.840 0.841

Figure 2: Qualitative visualization showing observed past poses (left), short-term predictions gen-
erated by the first diffusion block (middle), and long-term predictions refined by the second block
(right) for both cheetah (top) and cow (bottom). The separation of short- and long-horizon predictions
reflects the cascaded design described in the methodology.

Comparative analysis against human motion prediction benchmarks provides context for our achieve-
ments. While direct comparison proves impossible due to scale and dataset differences, our
framework with the configurations we used for the Cheetah datasets achieves competitive per-
formance with ADE/FDE of 0.116m/0.205m compared to DePOSit’s long-term human predictions of
0.356m/0.396m [27]. However, DePOSit’s short-term performance (9.9mm FDE at 80ms) highlights
opportunities for improving our temporal resolution, particularly for rapid events.

4 Conclusion

In this work, building on the intuition of using motion as a guide for communication and interaction
in the animal world, we introduce QuadForecaster. This is the first diffusion-based quadrupedal pose
prediction model specifically designed for animal communication analysis, achieving 0.116m MPJPE
on cheetah behaviors and 0.86m MPJPE on complex cow interactions. We demonstrate that temporally
cascaded architectures capture both immediate intention signals and extended behavioral patterns
essential for cross-species interactions. Unlike previous reactive systems, QuadForecaster enables
proactive interaction by predicting animal intentions through iterative denoising that mirrors biological
perception processes, while providing uncertainty quantification essential for safe deployment. Our
results prove that species-specific diffusion models can decode the temporal language of quadrupedal
movement, establishing the foundation for next-generation animal-robot communication systems
across conservation, agriculture, and research applications.
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