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Abstract

Animal communication relies on subtle temporal patterns in movement that current1

pose estimation systems cannot anticipate, thus limiting their utility. Existing2

frameworks excel at detecting present configurations but fail to predict future3

poses, forcing interaction systems to remain reactive rather than proactive. We4

introduce QuadForecaster, the first diffusion-based model specifically designed5

for quadrupedal pose prediction, enabling automated systems to decode animal6

communication through movement forecasting. Our temporally cascaded diffusion7

architecture treats pose prediction as structured denoising, iteratively refining8

uncertain future poses while providing essential uncertainty quantification for9

safe deployment. Evaluated on the cheetah and cow datasets, QuadForecaster10

achieves 0.116m MPJPE for cheetah behaviors and 0.86m MPJPE for complex11

cow social interactions, successfully capturing rapid behavioral transitions and12

multi-modal dynamics. QuadForecaster paves the way for robust animal motion13

and communication analysis, enabling proactive cross-species interaction across14

conservation, agriculture, and research applications.15

1 Introduction16

Understanding animal movement patterns unlocks the secret language of non-human communication.17

Animals communicate through subtle posture shifts, precise gait transitions, and complex multi-modal18

signals that current technology struggles to decode [1, 23]. Predicting future poses allows robots and19

automated systems to anticipate animal intentions, thus fostering safer interspecies interactions [7].20

This capability benefits wildlife conservation, preventing human-animal conflicts, and agricultural21

monitoring, where early detection of lameness protects welfare.22

The landscape of animal pose estimation has evolved from basic 2D tracking to sophisticated multi-23

modal systems for behavioral analysis [8]. DeepLabCut and LEAP pioneered markerless tracking24

with minimal annotation, while SLEAP extended capabilities to multi-animal scenarios essential for25

social behavior studies [21, 24, 25]. Beyond 2D, DANNCE [16] and OpenMonkeyStudio [5] enable26

3D multi-camera tracking, and SuperAnimal demonstrates cross-species generalization across 45+27

species [30]. However, current frameworks remain fundamentally reactive, detecting poses after they28

occur, which severely limits communication analysis [26]. In human-robot interaction, forecasting29

human poses enables fluid communication [28], a principle that applies with greater urgency to30

animal interactions.31

Quadrupedal motion presents unique forecasting challenges. Anatomical diversity introduces species-32

specific kinematic constraints, quadrupeds with flexible spines exhibit dynamics distinct from bipedal33

humans [22]. Rapid gait transitions, social interactions, and defensive behaviors create highly variable34

motion distributions [6]. Data scarcity, environmental noise, vegetation occlusions, lighting variations,35

camera motion, and multi-agent interactions further complicate prediction [14, 11, 17].36
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Early human motion prediction relied on recurrent architectures [10, 20] and later on graph convolu-37

tional networks [19] or spatio-temporal transformers [2, 18]. Stochastic generative models captured38

multi-modality [4], and diffusion-based methods such as DePOSit framed prediction as iterative39

denoising [27]. However, these methods incorporate human-specific priors, limiting applicability to40

quadrupeds. Diffusion models are particularly promising for animal pose forecasting due to their41

robustness to noise and missing data [12, 9].42

We introduce the first diffusion-based approach to animal pose forecasting, engineered to decode43

the temporal language of quadruped communication. Motion prediction is treated as structured44

denoising, where missing or uncertain future poses emerge through iterative refinement, mirroring how45

animals anticipate each other. To capture multi-scale temporal dynamics, we propose a temporally46

cascaded diffusion architecture for both short- and long-term forecasts: short-term predictions47

capture immediate intention signals, while long-term forecasts reveal behavioral patterns crucial for48

interaction planning.49

In summary, our contributions are: (i) the first diffusion-based approach to animal pose forecasting50

robust to noisy and incomplete observations; (ii) a temporally cascaded architecture capturing51

immediate signals and extended behavioral patterns; and (iii) robust prediction of out-of-distribution52

wireframes.53

2 Methodology54

QuadForecaster pioneers animal-specific motion prediction by recognizing that quadrupedal com-55

munication operates through fundamentally different kinematic principles than human movement.56

While human pose prediction relies on bipedal constraints and cyclical walking patterns, quadrupeds57

communicate through complex gait transitions involving 2-3 ground contact points, dynamic spine58

articulation, and rapid behavioral state changes that traditional models cannot capture [6].59

We address this challenge through a novel diffusion-based architecture that treats pose forecasting60

as structured communication decoding. The model processes temporal sequences encompassing61

both observed poses and masked future frames, using iterative denoising to reveal plausible motion62

continuations. This approach mirrors how animals themselves process and predict each other’s63

movements, through gradual refinement of uncertain sensory information into actionable behavioral64

predictions.65

Our training methodology operates on two distinct datasets that capture diverse quadrupedal commu-66

nication patterns. AcinoSet [15] features cheetahs with 20-joint skeletons representing high-speed67

predator dynamics, while MBE-ARI [23] captures cow behaviors with 39-joint configurations encom-68

passing complex social and feeding interactions. The model processes approximately 12,000 cheetah69

frames and 7,000 cow frames, learning species-specific movement vocabularies essential for accurate70

communication analysis.71

Given past pose sequences, QuadForecaster predicts future motion over specified horizons through72

a sophisticated spatio-temporal encoding scheme. Temporal dynamics receive 128-dimensional73

embeddings that capture multi-scale motion patterns from immediate micro-movements to extended74

behavioral sequences. Joint identity encoding uses 16-dimensional representations that preserve75

anatomical relationships while enabling cross-species generalization. These unified representations76

condition a diffusion process that iteratively refines noisy future poses into physically consistent,77

behaviorally plausible trajectories.78

QuadForecaster employs a Conditional Score-based Diffusion for Imputation (CSDI) [29] as its79

backbone architecture, which we adapt for quadrupedal motion prediction. During training, the model80

learns to predict noise on masked future frames using the standard diffusion objective. This teaches81

the system to recover clean future poses from noisy intermediate representations by minimizing82

mean-squared error between predicted and ground-truth trajectories. Critically, we evaluate using83

Mean Per-Joint Position Error (MPJPE) [13] rather than training on it directly, ensuring the model84

learns robust generative capabilities rather than overfitting to specific error metrics.85

For cow skeletons, we incorporate bone-length regularization to preserve anatomical constraints86

during prediction. This additional loss term maintains realistic skeletal proportions essential for87

accurate behavioral interpretation. The 20-joint cheetah skeleton uses a simplified topology where this88

regularization becomes inactive, allowing the model to capture rapid and dynamic characteristics of89
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Figure 1: Overview of QuadForecaster Architecture

high-speed predator behavior. These species-specific adaptations enable QuadForecaster to generate90

physically consistent forecasts that respect each animal’s unique biomechanical constraints.91

The inference pipeline demonstrates the model’s practical utility for real-time communication analysis.92

The system processes formatted motion sequences, automatically parsing temporal trajectories and93

splitting them into observed (past) and target (future) sequences. During prediction, the model94

receives observed sequences concatenated with masked future frames, along with temporal indices and95

visibility masks indicating known timesteps. The spatio-temporal diffusion process then iteratively96

denoises masked portions through 50 refinement steps, generating future motion predictions suitable97

for immediate use in animal-robot interaction systems. This iterative denoising framework provides98

natural uncertainty quantification essential for safe animal interaction. Rather than producing single99

deterministic predictions, the model generates probability distributions over future poses, enabling100

downstream systems to assess prediction confidence and adjust interaction strategies accordingly.101

Such uncertainty awareness is crucial when deploying autonomous systems in animal environments,102

where prediction failures can have serious welfare consequences103

3 Results104

Our evaluation protocol rigorously assesses QuadForecaster’s ability to decode animal communication105

through pose prediction across diverse behavioral contexts. We employ a 90/10 train-test split for106

both datasets, ensuring robust evaluation on unseen behavioral patterns. For cows, this yields107

6,452 training frames and 717 test frames; for cheetahs, 11,834 training and 2,548 test frames.108

This evaluation strategy tests the model’s generalization to novel behavioral sequences critical for109

real-world deployment.110

We assess prediction accuracy using sliding window evaluation that simulates real-time communica-111

tion analysis scenarios. Each evaluation window comprises 20 input frames followed by 10 target112

frames. This configuration captures both immediate intention signals (1-5 frames) and medium-term113

behavioral patterns (6-10 frames) essential for interaction planning. We report Mean Per-Joint Posi-114

tion Error (MPJPE), ADE/FDE (Average and Final Displacement Error) [3], all measured in absolute115

meters, to facilitate practical deployment considerations116

Our framework demonstrates excellent predictive performance for the Cheetah test cases across117

diverse behavioral states. Evaluated over 2,225 test windows, the model achieves 0.116m MPJPE118

with corresponding ADE and FDE values of 0.116m and 0.205m, respectively. Per-sequence analysis119
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reveals behavioral specificity in prediction accuracy: walking behaviors achieve 0.104m MPJPE,120

while more complex pacing/lunging sequences reach 0.146m MPJPE. These results indicate that121

QuadForecaster successfully captures both routine locomotion and dynamic behavioral transitions122

crucial for understanding cheetah communication patterns.123

Cow behavioral prediction presents greater challenges due to anatomical complexity and social124

interaction patterns. Across 717 test windows, the model achieves 0.86m MPJPE with ADE and FDE125

values of 0.86m and 0.80m, respectively (Table 1). Behavioral analysis shows walking sequences126

achieve 0.949m MPJPE, while turning behaviors (0.801m) and observing states (0.840m) demonstrate127

more accurate predictions. This pattern suggests that stationary and slow-motion behaviors enable128

more precise prediction than rapid locomotion, consistent with the biomechanical complexity of129

39-joint cow skeletons.130

Table 1: Per-Sequence Motion Prediction Evaluation

Animal Action MPJPE (m) ADE (m) FDE (m)
Cheetah Walking 0.104 0.104 0.189
Cheetah Pacing / Galloping 0.104 0.104 0.164
Cheetah Pacing / Lunging 0.146 0.146 0.242
Cheetah Pacing (grouped avg.) 0.122 0.122 0.222
Cheetah Lunging / Pacing 0.084 0.084 0.141
Cheetah Galloping 0.137 0.137 0.254

Cow Walking 0.949 0.949 1.079
Cow Turning 0.801 0.801 0.652
Cow Observing 0.840 0.840 0.841

Temporal consistency metrics reveal motion quality. Mean Velocity Error (MVE), equivalent to the131

Mean Per-Joint Velocity Error (MPJVE) used in prior work [31], measures prediction smoothness132

essential for natural animal interaction. We also report cosine similarity between predicted and133

ground-truth joint velocities, which quantifies directional alignment. Cheetah predictions achieve134

MVE of 0.0367 ± 0.0185 m/frame with cosine similarity of 0.762 ± 0.302, indicating excellent135

preservation of motion direction and magnitude. Cow predictions show higher variance with MVE of136

1.309± 0.393 and cosine similarity of 0.216± 0.111, reflecting the greater complexity in predicting137

multi-joint social behaviors.138

Comparative analysis against human motion prediction benchmarks provides context for our achieve-139

ments. While direct comparison proves impossible due to scale and dataset differences, our140

framework with the configurations we used for the Cheetah datasets achieves competitive per-141

formance with ADE/FDE of 0.116m/0.205m compared to DePOSit’s long-term human predictions of142

0.356m/0.396m [27]. However, DePOSit’s short-term performance (9.9mm FDE at 80ms) highlights143

opportunities for improving our temporal resolution, particularly for rapid events.144

4 Conclusion145

In this work, building on the intuition of using motion as a guide for communication and interaction146

in the animal world, we introduce QuadForecaster. This is the first diffusion-based quadrupedal pose147

prediction model specifically designed for animal communication analysis, achieving 0.116m MPJPE148

on cheetah behaviors and 0.86m MPJPE on complex cow interactions. We demonstrate that temporally149

cascaded architectures capture both immediate intention signals and extended behavioral patterns150

essential for cross-species interactions. Unlike previous reactive systems, QuadForecaster enables151

proactive interaction by predicting animal intentions through iterative denoising that mirrors biological152

perception processes, while providing uncertainty quantification essential for safe deployment. Our153

results prove that species-specific diffusion models can decode the temporal language of quadrupedal154

movement, establishing the foundation for next-generation animal-robot communication systems155

across conservation, agriculture, and research applications.156
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