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Abstract

Medical Vision-Language Pre-training (Med-001
VLP) has made significant progress in enabling002
zero-shot tasks for medical image understand-003
ing. However, training MedVLP models typi-004
cally requires large-scale datasets with paired,005
high-quality image-text data, which are scarce006
in the medical domain. Recent advancements007
in Large Language Models (LLMs) and dif-008
fusion models have made it possible to gener-009
ate large-scale synthetic image-text pairs. This010
raises the question: Can MedVLP succeed us-011
ing purely synthetic data? To address this, we012
use off-the-shelf generative models to create013
synthetic radiology reports and paired Chest X-014
ray (CXR) images, and propose an automated015
pipeline to build a diverse, high-quality syn-016
thetic dataset, enabling a rigorous study that017
isolates model and training settings, focusing018
entirely from the data perspective. Our results019
show that MedVLP models trained exclusively020
on synthetic data outperform those trained on021
real data by 3.8% in averaged AUC on zero-022
shot classification. Moreover, using a com-023
bination of synthetic and real data leads to a024
further improvement of 9.07%. Additionally,025
MedVLP models trained on synthetic or mixed026
data consistently outperform those trained on027
real data in zero-shot grounding, as well as028
in fine-tuned classification and segmentation029
tasks. Our analysis suggests MedVLP trained030
on well-designed synthetic data can outperform031
models trained on real datasets, which may be032
limited by low-quality samples and long-tailed033
distributions1.034

1 Introduction035

In medical image analysis, learning representa-036

tive features typically requires labor-intensive and037

costly image annotations (Ronneberger et al., 2015;038

Liu et al., 2023b). Medical Vision-Language Pre-039

training (MedVLP) addresses this challenge by040

1All data and code will be released upon acceptance.

aligning vision and language content using paired 041

datasets of images and clinical reports, reducing 042

the need for manual annotations (Radford et al., 043

2021; Zhang et al., 2020; Wu et al., 2023; Liu 044

et al., 2023a). However, existing MedVLP mod- 045

els rely heavily on large-scale, high-quality paired 046

data (Liu et al., 2023e), which is scarce in prac- 047

tice. Real-world datasets often contain noisy data, 048

such as low-quality images and unpaired image- 049

text samples, degrading model performance (Xie 050

et al., 2024; Bannur et al., 2023). Recent advance- 051

ments in Large Language Models (LLMs) and dif- 052

fusion models enable the generation of large-scale 053

synthetic image-text datasets, offering an alterna- 054

tive to traditional data collection. Although these 055

techniques have shown promise in medical tasks, 056

they are primarily used as auxiliary support for 057

real data via augmentation (Chen et al., 2024a; Yao 058

et al., 2021; Chen et al., 2022; Qin et al., 2023), 059

and are often limited to single-modality settings. 060

To the best of our knowledge, no studies have 061

fully explored the potential of using synthetic mul- 062

timodal data for MedVLP or considered training 063

exclusively on synthetic data (Liu et al., 2023e). 064

To bridge this gap and showcase synthetic data’s 065

potential for MedVLP, our contributions are: 066

• We propose an automated pipeline to create 067

the SynCXR dataset, which contains 200,000 068

synthetic images and text generated with qual- 069

ity and distribution control using off-the-shelf 070

models, without relying on real data or manual 071

curation. 072

• We successfully demonstrate that MedVLP 073

models trained on our SynCXR dataset, con- 074

taining only synthetic data, outperform those 075

trained on real data. Moreover, combining 076

synthetic and real data further improves per- 077

formance, showcasing the effectiveness of our 078

synthetic data generation pipeline. 079
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• We identify several issues in the most com-080

monly used real dataset for MedVLP, MIMIC-081

CXR (Johnson et al., 2019b), that degrade082

MedVLP performance, including low-quality083

images and unpaired image-text samples. Fur-084

thermore, we identify the long-tailed distribu-085

tion problem in multimodal datasets, as shown086

in Fig 1, 2.087

• We conduct an extensive analysis of the key088

factors contributing to MedVLP’s success us-089

ing purely synthetic data. Our method is eval-090

uated on seven downstream tasks using zero-091

shot learning and linear probing, demonstrat-092

ing that MedVLP can effectively perform with093

synthetic data alone.094

2 Methods095

2.1 Exploring Imperfections in Real Data096

For MedVLP, the most commonly used dataset is097

MIMIC-CXR (Johnson et al., 2019a,b), a collection098

of chest x-ray (CXR) images paired with their cor-099

responding textual reports. after following the pre-100

processing steps outlined in previous works (Zhang101

et al., 2023; Wang et al., 2022; Huang et al., 2021),102

this dataset provides a total of 213,384 image-text103

pairs for pre-training. And all images must be104

frontal views according to the preprocessing steps105

outlined in (Huang et al., 2021).106

Previous work on VLP with natural images (Xu107

et al., 2023a) has shown that data quality, including108

image fidelity and long-tailed distribution, signifi-109

cantly impacts model performance. However, the110

quality of MedVLP datasets remains underexplored111

due to ambiguity in defining medical image quality,112

stemming from diverse imaging protocols. Addi-113

tionally, quantifying data distribution is complex,114

as radiology reports often describe patterns across115

multiple anatomical regions rather than distinct cat-116

egories.To address these challenges, we develop a117

systematic pipeline to thoroughly analyze the data118

issues in the MIMIC-CXR (Johnson et al., 2019b)119

dataset, as detailed in the following sections.120

Low-Quality and Mismatched Image-Text Pairs.121

Our aim is to explore and identify issues related to122

image quality in the MIMIC-CXR dataset (John-123

son et al., 2019a), rather than to completely clean124

the dataset, as creating a perfect dataset and fil-125

tering out all low-quality samples is infeasible for126

large-scale multimodal datasets (Xu et al., 2023b).127

Inspired by (Bannur et al., 2023), which high-128

lights various issues with poor-quality images, we129

design six queries for a Multimodal Large Lan- 130

guage Model (MLLM), utilizing the InternVL2- 131

26B model2 (Chen et al., 2023, 2024b). Each CXR 132

image from the MIMIC-CXR dataset is paired with 133

these six queries, and the MLLM process each 134

query independently. The process is depicted in 135

Fig 2 (b). We described the queries for each func- 136

tion in detail in Sec. B. 137

After this process, we filter out the CXR im- 138

ages where the answers are all ‘NO’ across the 139

six queries. Fig 2 (a) shows examples of images 140

where the answer was ‘NO’. We identified and 141

removed 1,448 such images and their correspond- 142

ing reports from the preprocessed MIMIC-CXR 143

dataset, leaving us with 211,936 image-text pairs. 144

To further refine the dataset, we use the CXR- 145

specific vision encoder, RAD-DINO (Pérez-García 146

et al., 2024), to extract image features from the re- 147

maining 211,936 CXR images and from the 1,448 148

samples identified as bad by MLLM filtering. We 149

then compute the similarity between each image 150

in the cleaned dataset and each of the bad samples. 151

Since each image comes from a different clinical 152

case, we only compare image quality rather than 153

the clinical content (e.g., diagnoses or abnormali- 154

ties). To do this, we set a similarity threshold of 155

0.5 and remove all images with a similarity score 156

greater than 0.5. This step resulted in the removal 157

of an additional 5,512 images and their paired re- 158

ports, reducing the dataset to 206,424 image-text 159

pairs. Fig 2 (a) also shows the samples removed 160

based on their similarity to bad images using visual 161

features from RAD-DINO3 (Pérez-García et al., 162

2024). 163

In our exploration of the MIMIC-CXR dataset, 164

we utilized a rough approach to identify prob- 165

lematic images, such as non-chest images, wrong 166

views, overprocessing, and low-fidelity scans. Our 167

results confirm that many images in the dataset 168

exhibit these issues. While our approach identi- 169

fies numerous problematic images, fully curating 170

and removing all low-quality cases is unfeasible 171

due to the substantial human effort required and 172

the absence of well-defined criteria for an auto- 173

mated cleaning pipeline. Furthermore, addressing 174

all instances of low-quality images remains highly 175

challenging through automated processes alone. 176

Uncovering Long-tailed Distribution in MIMIC- 177

CXR. As demonstrated in previous work on natural 178

2https://huggingface.co/OpenGVLab/InternVL2-26B
3https://huggingface.co/microsoft/rad-dino
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Figure 1: Comparison of real image-text datasets and synthetic datasets. (a): The real image-text dataset, MIMIC-
CXR (Johnson et al., 2019b), while authentic, often contains imperfections such as long-tailed data distribution,
unpaired images and text, and low-quality CXR images, which limit the performance of MedVLP models pretrained
on this dataset. (b): The synthetic dataset generation process uses clinical entities as prompts to an LLM (e.g.,
Llama3.1 (AI@Meta, 2024)) to generate synthetic reports. These reports are then used to create synthetic images
through RoentGen (Bluethgen et al., 2024). We propose an automated pipeline to control the dataset distribution,
ensuring it is balanced and includes paired image-text samples.

Figure 2: (a): Examples of invalid or low-quality images filtered out by the proposed image curation method
described in Sec 2.1. (b): The image curation pipeline uses InternVL2 (Chen et al., 2023), a Multimodal Large
Language Model (MLLM), to assess CXR image quality. Images that meet the criteria are retained; others are
discarded. (c): Entity frequency distribution in the MIMIC-CXR dataset. Due to space constraints, only the top 50
frequent entities for four categories (Abnormality, Non-Abnormality, Disease, Non-Disease) are shown. A more
detailed distribution is presented in Fig 6,7,10,8,9.

image-text data (Xu et al., 2023b; Hammoud et al.,179

2024), a long-tailed distribution in VLP datasets180

negatively impacts model performance. There-181

fore, we aim to explore the data distribution of the182

MIMIC-CXR dataset. However, directly evaluat-183

ing the text distribution at the sample level, as done184

in (Xu et al., 2023b), is challenging because each185

radiology report often describes multiple patterns186

or anatomical regions, unlike natural image cap-187

tions that typically focus on a single object (Zhang188

et al., 2024).189

Instead, we adopt an alternative approach by190

using an off-the-shelf Named Entity Recognition 191

(NER) tool to extract all medical entities, treat- 192

ing them as representatives of the report’s con- 193

cepts and exploring the dataset distribution at 194

the entity level. For this, we use RaTE4 (Zhao 195

et al., 2024), a model specifically designed for 196

NER tasks on radiology reports. RaTE automati- 197

cally classifies the extracted entities into five cat- 198

egories: [ABNORMALITY, NON-ABNORMALITY, 199

DISEASE, NON-DISEASE, ANATOMY]. We dis- 200

4https://huggingface.co/Angelakeke/RaTE-NER-Deberta
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play the top 50 frequent entiites distribution of each201

entity type in Fig 2 (c). We display the top 50 fre-202

quent entiites distribution of each entity type in203

Fig 6,7,10,8,9. As shown, all entity types exhibit a204

severe long-tailed distribution. As shown, all entity205

types exhibit a severe long-tailed distribution in the206

MIMIC-CXR (Johnson et al., 2019b), which con-207

tains 154,049 unique entities, with 55,047 Abnor-208

mality, 36,365 Non-Abnormality, 23,017 Disease,209

22,103 Non-Disease, and 40,517 Anatomy entities.210

2.2 Generating Synthetic CXR reports and211

Paired Images.212

Since the MIMIC-CXR dataset (Johnson et al.,213

2019a) contains various data issues, we generate214

synthetic radiology reports and CXR images, con-215

trolling data quality and distribution during gen-216

eration to alleviate these problems. In this work,217

we aim to explore the effectiveness of pretraining218

MedVLP on a purely synthetic dataset, rather than219

attempting to create a perfect dataset, as noisy data220

is unavoidable in real-world scenarios and an ideal221

dataset is unrealistic.222

CXR Report Generation. To generate the syn-223

thetic reports, the pipeline is depicted in Fig 5.224

We select a general LLM, Llama3.1-70B-Instruct225

as the report generator, and we extensively ablate226

the performance of the report generator with other227

LLMs in Fig 3. We query the LLM using prompts228

that include the entity list, as shown in Fig 5.229

Since we aim to build a synthetic dataset with-230

out a long-tailed distribution, we design a bal-231

anced sampling strategy to ensure that the ap-232

pearance frequency of each entity type is approx-233

imately equal across the synthetic dataset. Let234

E be the set of entities, categorized into five235

types: ABNORMALITY, NON-ABNORMALITY,236

DISEASE, NON-DISEASE, and ANATOMY.237

For each generation, we sample:238

S1 = {e(i)1 , e
(i)
2 , . . . , e

(i)
k },239

240

∀e(i)j ∈ {ABNORMALITY,NON-ABNORMALITY,241
242

DISEASE,NON-DISEASE}.243

where k is the number of entities sampled from244

the first four categories. Additionally, we sample:245

S2 = {a(i)1 , a
(i)
2 , . . . , a(i)m }, ∀a(i)j ∈ ANATOMY246

where m is the number of entities sampled from247

the ANATOMY category. Thus, the total sampled248

entity set for each generation is: 249

S = S1 ∪ S2 250

We impose a maximum frequency threshold, 251

τmax, for each entity e ∈ E . If an entity e
(i)
j in 252

S reaches this threshold, we resample e
(i)
j while 253

keeping the remaining entities in S unchanged: 254

if f(e(i)j ) ≥ τmax, then resample e
(i)
j . 255

Here, f(e) denotes the current frequency of entity e 256

in the dataset. This ensures a balanced distribution 257

of entities across the synthetic dataset. We set k = 258

9, m = 3, and τmax = 15 in our work during the 259

generation stage. 260

After sampling, we input the selected entities 261

S = S1 ∪ S2 into the LLM and indicate their type. 262

Let the output of the LLM be denoted as Rgen, 263

which represents the synthetic report generated by 264

the model based on the sampled entities. To en- 265

sure that the LLM-generated report Rgen covers 266

and only includes the entities in S (since the in- 267

clusion of non-specified entities would disrupt the 268

frequency balance), we use the RaTE model (Zhao 269

et al., 2024) to extract entities from Rgen, denoted 270

as Egen. 271

We then verify the entity set Egen by comparing 272

it with the originally sampled set S. If Egen ̸= 273

S, we regenerate the report Rgen by repeating the 274

generation process until Egen = S: 275

if Egen ̸= S, regenerate Rgen until Egen = S. 276

Once the synthetic report is successfully gener- 277

ated, it is used as the ‘FINDINGS’ section of the 278

CXR report. We then query the LLM to summarize 279

Rgen into the ‘IMPRESSION’ section, denoted as 280

Rimp. To ensure consistency between the entities 281

in the ‘FINDINGS’ and ‘IMPRESSION’ sections, 282

we extract entities from the summary Rimp using 283

RaTE, denoted as Eimp. We verify that: 284

Eimp = S. 285

If the entities in Rimp do not match S , we regener- 286

ate the "IMPRESSION" section until Eimp = S: 287

if Eimp ̸= S, regenerate Rimp until Eimp = S. 288

Given that the number of samples in the original 289

MIMIC-CXR dataset cannot be perfectly divided 290

by k and m, we generate a total of 200,000 syn- 291

thetic samples to ensure a balanced distribution 292
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using only off-the-shelf tools, without any specific293

design for CXR data.294

While RadGraph (Delbrouck et al., 2024) could295

be used for entity extraction, it relies on human-296

annotated data from MIMIC-CXR and is limited297

to 16,117 entities. In contrast, RaTE (Zhao et al.,298

2024) extracts 154,049 entities, making it more299

suitable for our goal of creating a general and easily300

transferable pipeline for synthetic data generation.301

Thus, we chose RaTE for its broader applicability302

to various radiology reports.303

CXR Image Generation. After generating the syn-304

thetic radiology reports, we aim to generate paired305

CXR images conditioned on the synthetic reports.306

Since general text-to-image (T2I) models (e.g., Sta-307

ble Diffusion) are not designed for CXR image308

generation and demonstrate poor performance, as309

shown in (Liu et al., 2023e; Bluethgen et al., 2024),310

we select RoentGen5 (Bluethgen et al., 2024), the311

most recent and validated CXR-specific T2I model,312

verified by clinicians, as our image generator. We313

use RoentGen’s (Bluethgen et al., 2024) official314

pretrained weights to generate images. Following315

their implementation, we use only the ‘IMPRES-316

SION’ section from the synthetic reports as the text317

prompt for the T2I model. The generation process318

is controlled using the official hyperparameters pro-319

vided by RoentGen, where the classifier-free guid-320

ance (CFG) is set to 4 and the number of denoising321

steps is set to 50.322

To prevent the synthetic images from exhibiting323

the same issues found in the real dataset (as dis-324

cussed in Sec. 2.1), we apply a similar curation325

procedure. First, we use the MLLM to filter syn-326

thetic images, and then we compute the similarity327

of visual features between synthetic images and328

the problematic samples identified from the real329

dataset. If the visual similarity exceeds a threshold330

δ = 0.5, we regenerate the images by re-querying331

the T2I model with the same text prompt until they332

pass the curation procedure.333

We generate 200,000 synthetic CXR images,334

each paired with a corresponding synthetic re-335

port, using only general-purpose, open-source mod-336

els (e.g., Llama3.1 (AI@Meta, 2024), InternVL2337

(Chen et al., 2023)) and vision models pre-trained338

with self-supervised learning (e.g., RAD-DINO339

(Pérez-García et al., 2024)). No annotated CXR340

images or MedVLP models pre-trained on spe-341

cific CXR image-text datasets are used in this342

5https://stanfordmimi.github.io/RoentGen/

process. This ensures our approach is adaptable 343

and can easily incorporate future advancements in 344

general-purpose models. We refer to this dataset as 345

SynCXR. 346

2.3 Synthetic Data Training for MedVLP 347

In this work, we use the synthetic dataset, SynCXR, 348

to train a MedVLP model and investigate how ef- 349

fectively a model can learn from purely synthetic 350

data. Given the abundance of existing MedVLP 351

methods, we focus on simple baseline models for 352

the following reasons: 353

ConVIRT (Zhang et al., 2020) jointly trains vision 354

and text encoders on paired medical images and 355

reports using global contrastive learning. 356

GLoRIA (Huang et al., 2021) extends ConVIRT by 357

adding both global and regional contrastive learn- 358

ing, enabling more effective training of encoders 359

on paired medical images and reports. 360

These models are open-source, straightforward, 361

and minimize the influence of external factors, 362

which is crucial for evaluating synthetic data in 363

the context of MedVLP. For retraining these mod- 364

els on our synthetic dataset, SynCXR, we adhere 365

strictly to their official codebases67. More complex 366

models may introduce unnecessary complications. 367

We are aware that recent methods (Boecking et al., 368

2022; Bannur et al., 2023; Wu et al., 2023; Zhang 369

et al., 2023; Phan et al., 2024b) either lack publicly 370

available code or rely on additional human anno- 371

tations, which make direct implementation with 372

synthetic data challenging and introduce unwanted 373

variables. 374

3 Experiments Configurations 375

For pre-training, we apply the official configura- 376

tions provided by ConVIRT (Zhang et al., 2020) 377

and GLoRIA (Huang et al., 2021) on the MIMIC- 378

CXR dataset to our synthetic CXR image-text 379

dataset, SynCXR. 380

3.1 Downstream Task Datasets and 381

Configurations 382

For downstream tasks, we evaluate the effective- 383

ness of synthetic data for MedVLP across four 384

tasks. We strictly follow the downstream setting 385

described in (Phan et al., 2024b) to evaluate our 386

method. Due to the page limit, detailed information 387

on the datasets and implementation is provided in 388

Appendix, Sec. C. 389

6https://github.com/marshuang80/gloria
7https://github.com/edreisMD/ConVIRT-pytorch
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3.2 Experimental Results390

Since the MIMIC-CXR dataset already includes391

several diseases present in downstream tasks, as392

mentioned in (Phan et al., 2024b; Zhang et al.,393

2023), we split the zero-shot classification task394

into seen and unseen categories, strictly follow-395

ing (Phan et al., 2024b). Note that all experimental396

results for ConVIRT and GLoRIA pre-trained with397

real data (MIMIC-CXR) are directly referenced398

from (Phan et al., 2024b) to ensure a fair compari-399

son.400

Zero-shot Classification on Seen Diseases. Tab 1401

shows the zero-shot classification performance on402

seen diseases. Across all datasets, both MedVLP403

methods pretrained on SynCXR (our purely syn-404

thetic dataset) consistently outperform or achieve405

comparable performance to their counterparts pre-406

trained on real datasets, with an average improve-407

ment of 4.7% in AUC and 4.53% in F1 scores.408

Furthermore, the methods pretrained on the mixed409

dataset, which directly combines real and syn-410

thetic data, achieve even greater improvements,411

with 10.08% AUC and 7.62% F1 scores on average412

across all datasets and methods. This demonstrates413

that the SynCXR dataset effectively enables Med-414

VLP models to learn representative cross-modal415

features, enhancing their zero-shot classification416

capability.417

Zero-shot Classification on Unseen Diseases. Tab418

2a reports the zero-shot classification performance419

on unseen diseases. Similar to the results for seen420

diseases, MedVLP models pretrained on the syn-421

thetic dataset consistently outperform those pre-422

trained on real data, with an average improvement423

of 2.96% AUC and 0.51% F1 scores. Additionally,424

models pretrained on the mixed dataset show sub-425

stantial gains over those trained on real data, with426

7.39% AUC and 1.52% F1 scores on average. This427

indicates that the SynCXR dataset, generated with428

meticulous quality control and balanced distribu-429

tion, can increase the generalizability of MedVLP430

models for unseen diseases prediction.431

Zero-shot Visual Grounding. We further evalu-432

ate the effectiveness of synthetic data in improving433

MedVLP models’ local visual understanding capa-434

bilities through zero-shot grounding tasks. Tab 2b435

presents the performance of zero-shot grounding436

on RSNA (Shih et al., 2019), Covid-19 Rural (De-437

sai et al., 2020), and SIIM (Steven G. Langer and438

George Shih, 2019). Across all datasets, MedVLP439

models pretrained on the SynCXR dataset achieve440

superior performance compared to those trained on 441

the real dataset, with an average increase of 1.42% 442

IoU and 0.97% Dice scores. The mixed dataset 443

further enhances performance, with 4.06% IoU and 444

2.92% Dice scores on average. This demonstrates 445

that the SynCXR dataset not only benefits global 446

cross-modal feature learning but also improves lo- 447

cal visual understanding for MedVLP models. 448

Fine-tuning Tasks. To evaluate the representation 449

quality learned by MedVLP, we report the fine- 450

tuned classification and segmentation performance 451

in Tab 3. Similar to the zero-shot task, MedVLP 452

models pre-trained on SynCXR consistently out- 453

perform those trained on the real dataset across 454

all data ratios for both classification and segmen- 455

tation tasks. Furthermore, the combination of real 456

and synthetic datasets (Mix) further boosts perfor- 457

mance, demonstrating that SynCXR data not only 458

enhances cross-modal representation learning but 459

also improves performance in single-modal tasks. 460

4 Analysis 461

Effect of Balanced Entity Sampling in Gener- 462

ating Synthetic Reports. We evaluate the im- 463

pact of balanced sampling entities when generat- 464

ing synthetic reports using LLMs. For the syn- 465

thetic dataset without balanced sampling, we ad- 466

just entity frequencies to match their distribution 467

in MIMIC-CXR, leading to a long-tailed distribu- 468

tion. As shown in Tab 4a, for both MedVLP meth- 469

ods, the performance improves significantly when 470

using synthetic datasets generated from balanced 471

sampled entities. This demonstrates that balanced 472

sampling of entities leads to a more representative 473

dataset, benefiting MedVLP performance. 474

Evaluating the Contribution of Synthetic Im- 475

ages and Reports. We aim to assess the individual 476

impact of synthetic images and synthetic reports 477

on MedVLP performance. As shown in Tab 4b, 478

we generate two partially synthetic datasets by re- 479

placing either the image or the text with synthetic 480

data, while keeping the other components real, to 481

evaluate their respective contributions. 482

• Real Image, Synthetic Report: In this set- 483

ting, we use MedVersa8 (Zhou et al., 2024), 484

a state-of-the-art radiology report generation 485

model, to generate synthetic reports for each 486

real CXR image. We then train MedVLP mod- 487

8https://huggingface.co/hyzhou/
MedVersa
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Method Pre-training CheXpert ChestXray-14 PadChest-seen RSNA SIIM
Data AUC ↑ F1 ↑ AUC ↑ F1 ↑ AUC ↑ F1 ↑ AUC ↑ F1 ↑ AUC ↑ F1 ↑

ConVIRT
MIMIC-CXR 52.10 35.61 53.15 12.38 63.72 14.56 79.21 55.67 64.25 42.87

SynCXR 59.49 40.51 56.07 15.43 63.43 15.10 82.08 58.38 75.55 57.43
Mix 71.54 47.11 61.28 18.52 68.48 16.67 83.86 61.28 78.51 59.10

GLoRIA
MIMIC-CXR 54.84 37.86 55.92 14.20 64.09 14.83 70.37 48.19 54.71 40.39

SynCXR 61.38 41.05 57.47 15.60 64.26 15.02 72.34 49.50 67.32 53.86
Mix 72.32 48.54 61.06 17.33 68.35 17.00 74.32 51.10 73.49 56.09

Table 1: Performance of zero-shot classification on five datasets for diseases present in the MIMIC-CXR dataset,
evaluated on two MedVLP models pretrained on MIMIC-CXR (real) and SynCXR (pure synthetic). ‘Mix’ denotes
the direct combination of real and synthetic data for MedVLP pretraining. Best results are highlighted in bold.

Method Pre-training Covid-19 CXR-2 PadChest-unseen PadChest-rare
Data AUC ↑ F1 ↑ AUC ↑ F1 ↑ AUC ↑ F1 ↑

ConVIRT
MIMIC-CXR 62.78 71.23 51.17 4.12 50.37 3.31

SynCXR 64.41 72.03 54.47 4.51 53.70 3.69
Mix 69.23 72.85 58.53 5.35 57.68 4.40

GLoRIA
MIMIC-CXR 64.52 70.78 49.96 4.07 48.25 3.41

SynCXR 66.70 71.90 54.24 4.10 51.26 3.75
Mix 68.76 73.22 58.60 5.60 58.58 4.62

(a) Performance of zero-shot classification on three datasets for
unseen diseases.

Method Pre-training RSNA Covid-19 Rural SIIM
Data IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑

ConVIRT
MIMIC-CXR 18.93 28.45 7.42 10.55 3.01 8.74

SynCXR 22.98 31.45 8.62 10.83 3.43 9.67
Mix 25.97 34.25 12.78 14.12 4.58 11.43

GLoRIA
MIMIC-CXR 21.82 34.68 8.18 12.49 3.11 10.23

SynCXR 23.00 35.25 9.47 13.00 3.50 10.75
Mix 26.34 36.52 12.67 14.63 4.51 11.73

(b) Performance of zero-shot grounding on RSNA, SIIM, and
Covid-19 Rural.

Table 2: Zero-shot tasks performance of MedVLP models on disease classification (a) and grounding (b) across
multiple datasets, using MIMIC-CXR, SynCXR, and Mix datasets for pretraining.

Task Classification Segmentation

Dataset RSNA SIIM Covid19 CXR-2 ChestXray-14 RSNA Covid-19 Rural SIIM

Data Ratio 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

ConVIRT-Real 78.86 85.42 87.64 72.39 80.41 91.67 90.30 97.74 99.70 57.23 72.53 79.13 56.48 63.94 71.87 16.97 30.79 42.71 28.75 47.21 65.75
ConVIRT-Syn 79.01 85.58 87.90 73.51 81.10 91.84 91.50 98.80 99.73 57.45 73.60 80.20 58.00 65.10 72.90 17.10 32.00 43.90 29.90 48.50 66.81
ConVIRT-Mix 79.75 86.21 88.45 73.00 82.80 92.31 91.81 99.00 99.81 57.61 74.20 80.51 58.50 65.81 73.30 18.40 32.50 44.21 30.10 48.81 67.11

GLoRIA-Real 79.13 85.59 87.83 75.85 86.20 91.89 92.74 97.18 99.54 58.94 72.87 79.92 58.13 67.71 72.06 16.12 31.20 43.85 31.87 40.61 64.82
GLoRIA-Syn 80.30 86.75 88.00 76.01 87.40 92.11 94.01 98.41 99.75 60.11 74.01 81.11 60.41 70.01 73.51 17.31 32.51 45.01 32.91 41.91 66.01
GLoRIA-Mix 81.01 87.50 88.61 77.51 88.01 92.51 94.51 99.61 99.86 60.31 74.51 81.51 61.01 70.51 74.01 17.51 33.01 45.31 33.51 42.21 67.51

Table 3: Results from two MedVLP methods pre-trained on real, synthetic, and mixed datasets are reported for
classification (AUC) and segmentation (Dice) tasks. ‘ConVIRT-Real’ and ‘GLoRIA-Real’ refer to models pre-
trained on MIMIC-CXR using real data, while ‘ConVIRT-Syn’ and ‘GLoRIA-Syn’ indicate models pre-trained on
SynCXR using synthetic data. ‘ConVIRT-Mix’ and ‘GLoRIA-Mix’ represent models trained on a combination of
MIMIC-CXR and SynCXR. Best results are in bold.

Method
Entity Sampling Avg. Zero-shot

Strategy Classification

ConVIRT (Zhang et al., 2020)
w/ balance Sampling 63.65
w/o balance Sampling 60.21

GLoRIA (Huang et al., 2021)
w/ balance Sampling 61.87
w/o balance Sampling 58.42

(a) Impact of Entity Sampling Strategies

Method
Real Syn. Real Syn. Avg. Zero-shot

Image Image Report Report Classification

ConVIRT (Zhang et al., 2020)

✓ ✓ 59.59
✓ ✓ 61.04

✓ ✓ 59.36
✓ ✓ 63.65

GLoRIA (Huang et al., 2021)

✓ ✓ 57.83
✓ ✓ 58.62

✓ ✓ 57.69
✓ ✓ 61.87

(b) Impact of Different Synthetic Data

Table 4: Evaluation of entity sampling strategies for synthetic report generation and the impact of synthetic data
types on MedVLP.

els using these real image and synthetic report488

pairs.489

• Real Report, Synthetic Image: In this set-490

ting, we use RoentGen (Bluethgen et al.,491

2024), a text-to-image model, to generate syn-492

thetic CXR images for each real report. The493

‘IMPRESSION’ section of each report serves494

as the prompt for generating synthetic CXR495

images. These synthetic image and real report496

pairs are used to train MedVLP models.497

According to Tab 4b, for both MedVLP methods,498

using real images with synthetic reports results in 499

decreased performance, likely due to the persistent 500

long-tailed distribution, as the synthetic reports are 501

generated based on real images. However, using 502

real reports with synthetic images slightly improves 503

performance, as synthetic images can be curated 504

using our image filtering procedure to ensure high 505

quality, avoiding issues commonly found in real 506

datasets. Using both synthetic images and syn- 507

thetic reports achieves the highest performance, 508

indicating that a well-curated synthetic dataset can 509
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Figure 3: Effectiveness of various factors
on SynCXR dataset. Top: Impact of entity
usage ratio on MedVLP performance for
ConVIRT and GLoRIA methods. Bottom
Left: Effectiveness of different LLMs for
report generation on both MedVLP meth-
ods. Bottom Right: Effectiveness of dif-
ferent CXR image generation models for
both MedVLP methods.

significantly enhance MedVLP performance. Fur-510

thermore, We evaluate the MedVLP method on511

the cleaned MIMIC-CXR dataset, as detailed in512

Section D and Table 5513

Impact of Entity Diversity. We evaluate the im-514

pact of entity diversity by varying the number of515

entities used for generating the SynCXR dataset.516

We generate synthetic datasets using 25%, 50%,517

and 75% of these entities, following the same pro-518

cedure each time. The results, shown in Fig 3519

(Top), indicate that zero-shot classification perfor-520

mance improves as more entities are used for report521

generation. This suggests that increasing dataset522

diversity positively influences downstream perfor-523

mance.524

Impact of Different Report Generators. We also525

examine the impact of using different LLMs for526

synthetic report generation. As shown in Fig 3527

(Bottom Left), we compare two general LLMs,528

Llama 3.1 (8B and 70B), and two medical-specific529

LLMs, Meditron3 (8B and 70B) (OpenMeditron,530

2025). Despite Meditron3 being trained specifi-531

cally on medical corpora and inheriting weights532

from Llama, the dataset generated by Llama 3.1-533

70B-Instruct achieves the best performance. This534

indicates that a powerful general LLM is effec-535

tive for generating synthetic datasets, and using536

domain-specific fine-tuned versions may degrade537

the quality of the synthetic data.538

Impact of Different Image Generators. We evalu-539

ate various text-to-image models for synthetic CXR540

image generation, including CXR-IRGen (Shentu541

and Al Moubayed, 2024), LLM-CXR (Lee et al.,542

2023), and RoentGen (Bluethgen et al., 2024). As543

shown in Fig 3 (Bottom Right), datasets generated544

by RoentGen lead to the best performance for both 545

MedVLP methods. This is likely because Roent- 546

Gen is the only image generation model verified 547

by clinicians, suggesting that the quality of image 548

generation models is crucial for building synthetic 549

datasets, and models should be validated by clinical 550

experts. 551

5 Conclusion 552

In this work, we tackle the question: Can MedVLP 553

succeed using purely synthetic data? Our findings 554

demonstrate that the answer is: Yes. To the best 555

of our knowledge, this is the first study to compre- 556

hensively explore the potential of synthetic data 557

for MedVLP models. We also identify key limita- 558

tions in existing real-world datasets and introduce 559

SynCXR—a synthetic dataset of 200,000 image- 560

text pairs generated without any manual quality 561

checks. Our findings show that MedVLP models 562

trained on purely synthetic data outperform those 563

trained on real data. Moreover, combining syn- 564

thetic and real data further boosts model perfor- 565

mance, demonstrating the potential of synthetic 566

data to overcome limitations in real-world datasets. 567

We systematically analyze key factors in SynCXR 568

and validate its effectiveness through extensive ab- 569

lation studies. In summary, we show that Med- 570

VLP achieves strong performance using a purely 571

synthetic image-text dataset and benefits signifi- 572

cantly from a combination of real and synthetic 573

data. We believe this work will inspire the commu- 574

nity to fully leverage synthetic data and mitigate the 575

challenges posed by noisy and limited real-world 576

datasets. 577
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Limitation578

While our work demonstrates that MedVLP can579

successfully operate using purely synthetic data,580

there are several limitations to consider. Firstly,581

the success of the synthetic data approach heavily582

relies on the capabilities of the language and im-583

age generation models. Moreover, the synthetic584

data generation process requires a filtering stage,585

which introduces additional computational over-586

head. Although MedVLP is capable of handling587

noisy data—an issue also present in real-world588

datasets—the imperfect pairing of synthetic data589

may still present challenges. Evaluating the real-590

ism of synthetic data through human judgment is591

valuable but costly. In future, we aim to design592

more efficient data filtering methods and develop593

metrics that can better simulate human evaluation594

to enhance data quality.595
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A Related Work980

Representation Learning with Synthetic Data.981

Synthetic data has been widely employed across982

various deep learning fields (Rossenbach et al.,983

2020; Varol et al., 2017; Jahanian et al., 2022; Zhou984

et al., 2023; Yang et al., 2020; Li et al., 2023).985

In visual representation learning, synthetic data986

has improved model performance in a range of987

tasks (Richter et al., 2016; Ros et al., 2016; Chen988

et al., 2019; Johnson-Roberson et al., 2017; Yuan989

et al., 2024; Shmelkov et al., 2018). Recent ef-990

forts have also focused on using synthetic data991

from text-to-image models to augment real-world992

data during training (Azizi et al., 2023; Sariyildiz993

et al., 2023; He et al., 2023). For example, (Yu994

et al., 2023) introduced a framework to generate995

synthetic images to diversify existing datasets. No-996

tably, methods utilizing text-to-image generative997

models (Rombach et al., 2022) have demonstrated998

that synthetic images guided by real captions can999

effectively train self-supervised models, achiev-1000

ing performance comparable to that of real images1001

(Tian et al., 2023b).1002

Further advancements like SynCLR (Tian et al.,1003

2023a) have focused on visual representation learn-1004

ing using only synthetic images, generated with1005

conditioning on various categories. Meanwhile,1006

other recent works (Fan et al., 2023; Sharifzadeh1007

et al., 2024; Xie et al., 2024) have explored joint1008

image and text generation for enhanced vision-1009

language pretraining (VLP). However, only one1010

study, SynthCLIP (Hammoud et al., 2024), inves-1011

tigates VLP exclusively with synthetic data, and1012

even that work is limited to natural images. To date,1013

no research has explored the potential of MedVLP1014

trained solely on synthetic data.1015

Medical Vision Language Pre-training. Recent1016

work on MedVLP has focused on integrating visual1017

and textual modalities, particularly for chest X-ray1018

(CXR) images. Studies such as (Zhang et al., 2020;1019

Huang et al., 2021; Wang et al., 2022; Liu et al.,1020

2023b,d,c; Wan et al., 2024) have concentrated on1021

aligning CXR images with paired radiology reports.1022

Some methods also leverage external datasets to1023

boost performance, raising concerns about gener-1024

alizability (Wu et al., 2023; Zhang et al., 2023;1025

Li et al., 2024; Phan et al., 2024a). However, all1026

current MedVLP approaches rely heavily on large-1027

scale, real image-text paired datasets like MIMIC-1028

CXR (Johnson et al., 2019b). Some even require1029

additional human-annotated datasets or manual in-1030

terventions to improve model performance (Wu 1031

et al., 2023; Zhang et al., 2023; Phan et al., 2024a), 1032

which limits their scalability and accessibility. 1033

Synthetic Data for Medical Image Tasks. Given 1034

the scarcity of annotated data, high costs, and pri- 1035

vacy concerns in medical data collection, synthetic 1036

data has been explored to support various medical 1037

image tasks (Koetzier et al., 2024). However, most 1038

prior work focuses on image modality and super- 1039

vised learning (Chen et al., 2024a; Yao et al., 2021; 1040

Chen et al., 2022; Qin et al., 2023), using synthetic 1041

data solely as augmentation for real datasets (Khos- 1042

ravi et al., 2024; Ktena et al., 2024). Few studies 1043

have evaluated models trained entirely on synthetic 1044

medical data (Wu et al., 2024). Recent efforts have 1045

generated synthetic text and images for MedVLP 1046

(Xie et al., 2024), but still restrict synthetic data 1047

usage to augmentation. Consequently, the full po- 1048

tential of synthetic data in MedVLP remains largely 1049

unexplored. 1050

In this work, we generate both synthetic CXR 1051

images and reports, then training a MedVLP model 1052

solely on synthetic data. We conduct an exten- 1053

sive evaluation of the impact of large-scale syn- 1054

thetic medical data on MedVLP, exploring its per- 1055

formance across various downstream tasks. 1056

B Queries for Using MLLM to Assess 1057

Issued CXR Images 1058

This section provides detailed queries used to guide 1059

the MLLM in assessing issued CXR images. Each 1060

query is designed to evaluate specific aspects of the 1061

images, ensuring their quality and suitability for 1062

diagnostic purposes. 1063

• Detecting Non-CXR Images: <CXR 1064

Image>, Please check if the 1065

given image is a chest X-ray 1066

scan. If it is a chest X-ray, 1067

return ‘YES’. Otherwise, 1068

return ‘NO’. 1069

• Detecting Non-Human CXR Images: 1070

<CXR Image>, Please verify if 1071

the given image is a human 1072

chest X-ray scan. If it is 1073

a chest X-ray, return ‘YES’. 1074

Otherwise, return ‘NO’. 1075

• Detecting Wrong Views: <CXR Image>, 1076

Please check if the given 1077

image is a frontal chest X-ray 1078
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view. If it is a frontal1079

view, return ‘YES’. If it is1080

a lateral view or any other1081

view, return ‘NO’.1082

• Assessing Image Quality: <CXR Image>,1083

Please analyze the provided1084

chest X-ray (CXR) image and1085

respond with ‘NO’ if the image1086

quality is poor, such as being1087

blurry, containing artifacts,1088

or having poor contrast.1089

Respond with ‘YES’ if the1090

image quality is acceptable.1091

• Detecting Artifacts and Overpro-1092

cessing: <CXR Image>, Please1093

analyze the following chest1094

X-ray image. Respond with1095

‘YES’ if the image is clear,1096

correctly oriented, and free1097

of artifacts or imperfections1098

that could affect its1099

diagnostic quality. Respond1100

with ‘NO’ if the image is1101

blurry, incorrectly oriented,1102

contains artifacts, or has1103

imperfections that make1104

it unsuitable for further1105

analysis.1106

• Checking High-Fidelity: <CXR Image>,1107

Please check if the given1108

image is a high-fidelity human1109

chest X-ray scan. If it is1110

a high-fidelity chest X-ray,1111

return ‘YES’. Otherwise,1112

return ‘NO’.1113

C Downstream Tasks Configuration1114

C.1 Dataset Details1115

In this section, we provide details on all datasets1116

used. The dataset splits are publicly accessible at9.1117

ChestX-ray14 (Wang et al., 2017) includes1118

112,120 frontal X-rays from 30,805 patients, la-1119

beled for 14 diseases. We use the official1120

split and partition it into 80%/10%/10% for1121

train/validation/test.1122

PadChest (Bustos et al., 2020) includes 160,868 X-1123

rays from 67,000 patients, annotated with over 1501124

findings. As in (Phan et al., 2024b), three subsets1125

9https://github.com/HieuPhan33/CVPR2024_MAVL/tree/main/data

are built based on PadChest: 14 common diseases 1126

as PadChest-seen, rare diseases from the NORD 1127

database10 as PadChest-rare, and the remaining 1128

diseases as PadChest-unseen. We use the official 1129

split provided by (Phan et al., 2024b). 1130

RSNA (Shih et al., 2019) contains over 260,000 1131

frontal X-rays annotated with pneumonia masks. 1132

We divide it into training (60%), validation (20%), 1133

and test (20%) sets for segmentation and classifica- 1134

tion tasks (Huang et al., 2021; Wu et al., 2023). 1135

CheXpert (Irvin et al., 2019) contains 224,316 1136

chest X-rays from 65,240 patients at Stanford Hos- 1137

pital, with an official validation set of 200 studies 1138

and a test set of 500 studies, both annotated by 1139

board-certified radiologists. Our evaluation on the 1140

five observations in the official test set follows pro- 1141

tocols from earlier studies (Tiu et al., 2022a; Irvin 1142

et al., 2019). 1143

SIIM (Steven G. Langer and George Shih, 2019) 1144

consists of over 12,000 frontal X-rays annotated 1145

with pneumothorax masks, split into training 1146

(60%), validation (20%), and test (20%) sets. 1147

COVIDx CXR-2 (Wang et al., 2020) includes 1148

29,986 X-rays from 16,648 COVID-19 patients, 1149

divided into training (70%), validation (20%), and 1150

test (10%) (Pavlova et al., 2022). 1151

COVID Rural (Desai et al., 2020) contains over 1152

200 X-rays with segmentation masks, divided into 1153

training (60%), validation (20%), and test (20%). 1154

C.2 Implementation Details 1155

Zero-shot Image Classification. The CXR im- 1156

ages undergo a two-step preprocessing: resizing 1157

to 256 × 256, followed by center cropping to 1158

224×224. As per (Huang et al., 2021), pixel values 1159

are normalized to [0, 1]. The processed image is 1160

passed through a visual encoder and projector to 1161

generate the image embedding v̂i. Simultaneously, 1162

the text prompts are processed through a text en- 1163

coder to obtain text embeddings l̂i. Classification is 1164

based on cosine similarity between image and text 1165

embeddings. If the similarity between the image 1166

embedding and the positive prompt (e.g., disease) 1167

is higher than that with the negative prompt (e.g., 1168

No disease), the classification is positive, and vice 1169

versa. The prompt design follows (Tiu et al., 2022b) 1170

for both ConVIRT and GLoRIA. 1171

Zero-shot Visual Grounding. For this task, we 1172

follow the BioViL pipeline as described in (Phan 1173

et al., 2024b), since ConVIRT (Zhang et al., 2020) 1174

10https://rarediseases.org/rare-diseases/
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and GLoRIA (Huang et al., 2021) do not provide1175

code for visual grounding. This pixel-level classi-1176

fication task relies on the similarity between text1177

embeddings and the dense visual feature map from1178

the final convolutional layer. The cosine similarity1179

generates a similarity map, resized to match the im-1180

age, and used as segmentation results for grounding1181

evaluation.1182

Medical Image Fine-tuned Classification.1183

For fine-tuning, we follow the experimental1184

setup from (Phan et al., 2024b), updating both the1185

visual encoder and linear layer. Images are resized1186

to 256× 256, and data augmentation is applied as1187

recommended in (Zhang et al., 2023). We use the1188

AdamW optimizer with a learning rate of 1×10−4,1189

batch size of 64, for 50 epochs on a single A1001190

GPU. Early stopping is applied, with a learning rate1191

of 5e-4 and batch size of 8. AdamW is configured1192

with β1 = 0.9, β2 = 0.999, and weight decay of1193

1e-6.1194

Medical Image Fine-tuned Segmentation. For1195

segmentation tasks on the RSNA (Shih et al., 2019),1196

SIIM (Steven G. Langer and George Shih, 2019),1197

and Covid-19 Rural (Wang et al., 2020) datasets,1198

we fine-tune both the pre-trained vision encoder1199

and decoder. Training is performed with early stop-1200

ping at 50 epochs, using a learning rate of 2e-4 and1201

weight decay of 0.05. AdamW is the optimizer,1202

with β1 = 0.9 and β2 = 0.999. Batch sizes are1203

8 for SIIM and 16 for RSNA. All configurations1204

follow the protocol from (Huang et al., 2021).1205

D Results on Cleaned MIMIC-CXR1206

We re-pretrained ConVIRT on the cleaned version1207

of the MIMIC-CXR dataset, and the results are1208

presented in Table 5. As shown, the VLP model1209

pre-trained on the cleaned MIMIC-CXR dataset1210

achieves slightly better performance than the model1211

trained on the original, uncleaned dataset. How-1212

ever, it still falls short when compared to the model1213

pre-trained on our synthetic SynCXR dataset. This1214

performance gap can be attributed to two key fac-1215

tors:1216

• Despite filtering out a large number of low-1217

quality samples from the real dataset, it re-1218

mains challenging to completely remove all1219

poor or unpaired samples. Consequently,1220

some problematic samples persist in the1221

dataset, negatively affecting the VLP process.1222

• The cleaning process for MIMIC-CXR pri-1223

marily targeted image quality, but did not ad-1224

Figure 4: Distribution of Synthetic and Real Data. (a):
Comparison of the first principal component distribution
of features extracted from RAD-DINO for synthetic
and real images. (b): Comparison of the first principal
component distribution of features extracted from Med-
CPT for synthetic and real reports.

dress the long-tailed distribution of entities in 1225

the dataset. Simply downsampling or over- 1226

sampling image-text pairs is not a viable so- 1227

lution. This issue limits the representational 1228

balance of the cleaned dataset and impacts 1229

overall model performance. 1230

E Extra Visualization 1231

Distribution of Synthetic and Real Data. We il- 1232

lustrate the distribution of synthetic and real data 1233

in Fig 4. For visualization, we use RAD-DINO 1234

(Pérez-García et al., 2024) to extract image features 1235

and Med-CPT (Jin et al., 2023) to extract report 1236

features. We then apply Principal component anal- 1237

ysis (PCA) to reduce the feature dimensions and 1238

visualize the first principal component. As shown 1239

in Fig 4, the synthetic data covers a broader range 1240

than the real data, indicating greater diversity. In 1241

contrast, the real data shows a more concentrated 1242

distribution, which may limit the generalizability 1243

of MedVLP models. 1244

Pipeline of Synthetic Report Generation. The 1245

pipeline for generating synthetic reports using 1246

LLMs and balanced sampled clinical entities is 1247

illustrated in Fig 5. 1248

Entities Distribution. We visualize the distribu- 1249

tion of each type of entity in the MIMIC-CXR 1250

dataset. Due to space constraints, only the top 200 1251

most frequent entities are shown, revealing a clear 1252

long-tailed distribution in Fig 6, 10, 8, 7, and 9. 1253
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Method Pre-training Data CheXpert ChestXray-14 PadChest-seen RSNA SIIM
AUC ↑ F1 ↑ AUC ↑ F1 ↑ AUC ↑ F1 ↑ AUC ↑ F1 ↑ AUC ↑ F1 ↑

ConVIRT MIMIC-CXR 52.10 35.61 53.15 12.38 63.72 14.56 79.21 55.67 64.25 42.87
ConVIRT MIMIC-CXR (cleaned) 53.85 36.45 53.80 13.25 63.51 14.73 80.15 56.10 65.70 44.10
ConVIRT SynCXR 59.49 40.51 56.07 15.43 63.43 15.10 82.08 58.38 75.55 57.43

Table 5: Performance comparison of ConVIRT pre-trained on different datasets.

Figure 5: Pipeline for generating synthetic reports. The
process begins by generating the ‘FINDINGS’ section,
followed by summarizing it into the ‘IMPRESSION’
section. Both sections are checked to ensure they con-
tain the specified entities; if not, the generation process
is repeated. The final dataset includes 200,000 synthetic
reports, each containing both ‘FINDINGS’ and ‘IM-
PRESSION’ sections.
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Figure 6: Top 200 most frequent abnormality entities.

Figure 7: Top 200 most frequent non-abnormality entities.
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Figure 8: Top 200 most frequent disease entities.

Figure 9: Top 200 most frequent non-disease entities.
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Figure 10: Top 200 most frequent anatomy entities.
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