
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRIVACY-PRESERVING FEDERATED LEARNING VIA
HOMOMORPHIC ADVERSARIAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Privacy-preserving federated learning (PPFL) aims to train a global model for
multiple clients while maintaining their data privacy. However, current PPFL pro-
tocols exhibit one or more of the following insufficiencies: considerable degrada-
tion in accuracy, the requirement for sharing keys, and cooperation during the key
generation or decryption processes. As a mitigation, we develop the first proto-
col that utilizes neural networks to implement PPFL, as well as incorporating an
Aggregatable Hybrid Encryption scheme tailored to the needs of PPFL. We name
these networks as Homomorphic Adversarial Networks (HANs) which demon-
strate that neural networks are capable of performing tasks similar to multi-key
homomorphic encryption (MK-HE) while solving the problems of key distribu-
tion and collaborative decryption. Our experiments show that HANs are robust
against privacy attacks. Compared with non-private federated learning, experi-
ments conducted on multiple datasets demonstrate that HANs exhibit a negligible
accuracy loss (at most 1.35%). Compared to traditional MK-HE schemes, HANs
increase encryption aggregation speed by 6,075 times while incurring a 29.2-fold
increase in communication overhead.

1 INTRODUCTION

Federated Learning (FL) has emerged as a promising paradigm for collaborative model training
without direct data sharing (McMahan et al., 2017; Konečnỳ et al., 2016). While initially believed
to preserve privacy (Li et al., 2021; Yang et al., 2019), recent studies have revealed vulnerabilities in
FL, demonstrating that client-side gradients can potentially leak sensitive training data (Hitaj et al.,
2017; Melis et al., 2019; Zhu et al., 2019; Carlini et al., 2022).

To prevent data reconstruction in FL settings, researchers have been exploring various strategies,
notably differential privacy (DP) (Wei et al., 2020; Iyengar et al., 2019; Geyer et al., 2017) and
homomorphic encryption (HE) (Shi et al., 2023; Wibawa et al., 2022; Madi et al., 2021; Zhang
et al., 2020b;a; Chen et al., 2019).DP stands out for its computational efficiency but may potentially
reduce the performance of the FL model.

Regarding HE, although it preserves the model’s performance, it may compromise the data privacy
of all honest participants if a client conspires with an external attacker to share the key (collusion
attacks) (Cai et al., 2023; Fang & Qian, 2021).

To mitigate this problem, Multi-Key Homomorphic Encryption (MK-HE) (Chen et al., 2019) has
been proposed, which is designed to prevent collusion attacks without compromising the model’s
performance. However, the implementation of MK-HE introduces its own challenges, such as co-
operation during the key generation or decryption processes (Park et al., 2022). These issues under-
score the persistent dilemma faced in FL, how to find the right trade-off between data privacy and
the practical constraints of model performance as well as resource allocation.

To address these challenges, we propose Homomorphic Adversarial Networks (HANs), a novel
privacy-preserving approach that leverages neural networks to emulate the behavior of MK-HE
(comparisons shown in Table 1). HANs are designed to optimize encryption and aggregation tasks
without the need for traditional key distribution or collaborative decryption, thereby significantly
simplifying deployment in FL scenarios. The HANs framework employs an Aggregatable Hybrid
Encryption (AHE) scheme, which synthesizes the advantages of both symmetric and asymmetric

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

cryptography while addressing their respective limitations in the context of FL. The proposed AHE
scheme introduces three cryptographic primitives: Key Generation (KeyGen), Encryption (Enc),
and Aggregation (Aggregate), each tailored to meet the specific demands of distributed training
environments.

HANs offer several key advantages over traditional privacy-preserving techniques in FL. Unlike
MK-HE, HANs do not require a cumbersome key distribution process or collaborative decryption,
making implementation more straightforward and practical. Additionally, HANs exhibit strong re-
sistance to collusion attacks, even in scenarios where a majority of participants are compromised.
The use of efficient One-Time Pad (OTP) and Privacy-Preserving Update (PPU) mechanisms fur-
ther safeguards sensitive information, providing a robust privacy-preserving solution for FL envi-
ronments.

Table 1: Comparisons of HANs with other privacy-preserving federated learning Methods

Feature DP HE MK-HE HANs

Low Accuracy Loss × ✓ ✓ ✓
No Key Distribution Required ✓ × × ✓
No Collaborative Decryption ✓ ✓ × ✓
Strong Collusion Attack Resistance ✓ × ✓ ✓
Low OTP Overhead N/A × × ✓
Irreversible Ciphertext N/A × × ✓

Contributions. Our contributions are as follows.

1. We use neural networks to emulate MK-HE algorithms, enabling efficient encryption and
aggregation in FL through the proposed AHE scheme. Additionally, we introduce the PPU
mechanism to enhance privacy guarantees. AHE approach uses private key encryption to
provide irreversible ciphertext, offering new insights into neural network-based cryptogra-
phy in FL.

2. The HANs framework effectively balances privacy, performance, and efficiency by elim-
inating the need for collaborative decryption and key sharing. Our approach allows for
the use of OTP and PPU with minimal cost while ensuring privacy, even if N − 2 clients
collude with the server.

3. We designed a multi-stage training strategy to balance security and usability. Empirical
evaluations demonstrate that HANs with AHE are practical in FL scenarios, showing only
1.35% accuracy loss compared to non-private FL, while improving encryption aggregation
speed by 6,075 times, with a 29.2-fold increase in communication overhead.

2 RELATED WORK

2.1 PRIVACY-PRESERVING FEDERATED LEARNING (PPFL)

Differential Privacy is a frequently utilized tool for privacy protection. These studies (Abadi et al.,
2016; Geyer et al., 2017; Triastcyn & Faltings, 2019; Hu et al., 2020; Kim et al., 2021; Rahman
et al., 2018) have utilized DP to secure data and user privacy. However, if there is a need to prevent
the reconstruction of data, the inclusion of DP can significantly compromise the accuracy of the
models.

Homomorphic Encryption facilitates the execution of computations directly on a ciphertext to
yield an encrypted outcome. Aono et al. (2017) proposed the application of HE for the safeguard-
ing of gradient updates during the FL training procedure. Chen et al. (2020), an FL framework
specifically designed for wearable healthcare, manages to achieve model aggregation by deploying
HE. The application approach of this HE is expedient. Apart from encryption and decryption, it
necessitates no significant alterations and imposes no extraordinary constraints on the algorithm.
Importantly, the accuracy of learning is preserved with HE, as no noise infiltrates the model updates
during either the encryption or decryption stages. Fang & Qian (2021) employs an enhanced Paillier
algorithm to expedite computation. Zhang et al. (2020a) proposed BatchCrypt, a FL framework

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

based on batch encryption, with the goal of reducing computational expenses. However, traditional
HE schemes require key sharing which relies on the assumption that there is no collusion between
the Server and Clients (Aono et al., 2017).

In order to prevent collusion attacks, MK-HE allows multiple parties to utilize distinct keys for
encryption. The decryption process necessitates the collaborative involvement of all parties. Ma
et al. (2022) introduced a PPFL framework based on xMK-CKKS, demonstrating resilience against
collusion involving fewer than N -1 participant devices and the Server.

However, this approach involves additional computational overhead during key generation and de-
cryption, and requires collaboration among multiple clients for decryption. SecFed, an innovative
federated learning framework, harnesses multi-key homomorphic encryption and trusted execution
environments to safeguard multi-user privacy while boosting computational efficiency (Cai et al.,
2023). This secure system also integrates an offline protection mechanism to address user dropout
issues effectively.

2.2 CRYPTOGRAPHY BASED ON GENERATIVE ADVERSARIAL NETWORKS

In recent years, using neural networks, especially Generative Adversarial Networks (GANs), for
encryption has become an emerging direction in cryptography research. Abadi & Andersen (2016)
proposed a method to learn symmetric encryption protocols based on GANs.

They used two neural networks for encryption and decryption respectively, and introduced an at-
tacker network to evaluate security. Subsequent works built upon this foundational research, further
refining the approach (Luo et al., 2023; An et al., 2023; Li et al., 2020; Pattanayak & Ludwig,
2018). These studies introduced various enhancements, including diverse attack models and en-
crypted training schemes, thereby advancing the field of neural network-based cryptography.

While these works have significantly contributed to the application of neural networks in cryp-
tography, they still face certain limitations. Primarily, they focus on message encryption without
addressing homomorphic computation. Moreover, they do not adequately tackle the challenges of
key distribution or negotiation, which are crucial aspects of practical cryptographic systems.

Inspired by these studies, particularly their loss function design and the application of GANs in
training encryption neural networks, we propose HANs to address the aforementioned limitations
and provide an enhanced solution for privacy protection within the FL context.

3 HANS SYSTEM DEFINITION

We proposeHANs, which leverage the AHE algorithm to meet the privacy-preserving requirements
of FL. For a detailed explanation of the PPFL problem setting and system goals, please refer to
Appendix A.

3.1 DESIGN CONCEPT OF AHE

This AHE scheme, tailored for PPFL, uses private keys for encryption and public keys for aggrega-
tion, protecting individual client data while enabling efficient aggregation without relying on trusted
third parties. The key concepts of AHE are as follows:

• Public key: A key that can be made public, used for computing the aggregated plaintext.

• Private key: Confidential key for encrypting original ciphertext.

• Original plaintext: The plaintext containing gradient information from a single client,
which should not be accessed by other clients or servers.

• Original ciphertext: The ciphertext that corresponds to the original plaintext and is en-
crypted by a private key.

• Aggregated plaintext: The combined gradient information derived from multiple original
ciphertexts and their corresponding public keys. In PPFL contexts, this aggregated plaintext
may be shared openly among all participants.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Original model: The initial HANs model distributed to clients by servers or third parties. It
is potentially vulnerable to information leakage due to the absence of fully trusted distrib-
utors.

• PPU: A process that clients can use to transform the original model into a private model.
The specific algorithm and process are detailed in Appendix E.

• Private model: The result of applying PPU to the original model. Each client securely
stores their private model, treating it with confidentiality equivalent to private keys.

• Public dataset: A small, noisy dataset maintained by each client to facilitate the PPU
process without exposing their private model. It serves as a proxy for PPU participation.

AHE primitives differ from traditional cryptography. We will clarify the capabilities and significance
of the following attack methods in the AHE context:

• Ciphertext-only attack (COA): The attacker analyzes only the ciphertext, knowing it was
encrypted using AHE but without knowledge of the specific HANs model.

• Known-model attack (KMA): Attacker knows the ciphertext is AHE-encrypted and has ac-
cess to the original model parameters, but not the private model parameters. This corre-
sponds to known-plaintext attacks and chosen-plaintext attacks in traditional cryptography.

• Chosen-ciphertext attack (CCA): Not applicable in AHE as the encryptor cannot derive
plaintext from ciphertext, making this attack infeasible in our scenario.

3.2 DEFINITION OF AHE

Here we further define the algorithms of AHE. It is worth noting that both the private and public
keys are always real numbers rather than integers. This significantly expands key space of AHE,
thereby enhancing the security of the algorithm.

1. (pk, sk)← KeyGen(κ). Generates a public key pk and private keys sk = {skA, skB}.
2. c⃗← Enc(m, skA, skB , ψ). Encrypts real number m ∈ [−ψ,ψ] using two private keys skA

and skB .

3. magg ← Agg ({c⃗i}ni=1, {pki}ni=1). Aggregates n ciphertexts and outputs the sum of the
plaintexts.

Each private key consists of two real numbers, skA and skB , generated from a security parameter
κ. The aggregated result only reveals the sum of the plaintexts, ensuring security as individual
ciphertexts cannot be reversed.

3.3 USABILITY IN MODELING

In traditional HE schemes like CKKS, the error introduced by HE must be relatively small compared
to the ciphertext modulus (Cheon et al., 2017). However, in the context of PPFL, our criteria can
be somewhat relaxed. Our primary objective is to ensure that the difference between the homomor-
phically aggregate values magg and the actual value mreal does not significantly affect the model’s
overall performance. Specifically, we require the original model to have high performance, so that
after undergoing the PPU phase, it can maintain an acceptable level of performance.

3.4 THREAT MODEL IN AHE SETTING

Attack Process. The adversary aims to exfiltrate the dataset of client Di through a three-step pro-
cess:

1. Step 1: The adversary intercepts the encrypted messages c⃗i and public keys pki transmitted
between the client and the server during the PPFL process. intercept(·) is an interception
algorithm capable of capturing all information transmitted through a communication chan-
nel: (c⃗i, pki)← intercept(·), where c⃗i = Enc(θi, skiA, skiB , ψ) where θi represent model
parameters of clienti

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2. Step 2: Currently, there is no technology that can obtain plaintext information solely by
analyzing the ciphertext c of HANs. Consequently, an attacker attempting a COA would
be unsuccessful. Instead, the attacker would likely resort to a KMA. While the attacker
may have access to the Original Model, they cannot know the target’s private model. To
break the ciphertext, they would utilize the original model to train two models crack1(·)
and crack2(·).
Detailed descriptions of these architectures and information on how to obtain them will be
provided in the following section. We use θattack to represent model parameters cracked
by the attacker: θattack1i ← crack1(c⃗i, pki) and θattack2i ← crack2(c⃗i)

3. Step 3: Using the cracked information, the adversary attempts to reconstruct the dataset
of client Di. reconstruct(·) is an algorithm capable of reconstructing datasets based on
gradients: Dattack1

i ← reconstruct(θattack1i) and Dattack2
i ← reconstruct(θattack2i)

An attack is deemed successful if, upon reconstruction, either one of the two datasets by the adver-
sary is similar to the authentic client dataset:

Attack successful.⇔ Dattack1
i ≃ Di ∪ Dattack2

i ≃ Di

We presume the adversary possesses robust reconstruction capabilities. Under these conditions, a
successful attack implies the adversary’s ability to effectively decrypt gradient information. It is
imperative to note that we protect our private model parameters with confidentiality equivalent to
that of private keys. We assume attackers cannot access these private model parameters, just as they
cannot access private keys. Thus, attacks are only considered successful if the adversary achieves
their objective without prior knowledge of the private model parameters.

3.5 PSEUDO N -1 COLLUSION ATTACKS

In addition to attacks and challenges targeting the model’s inherent encryption capabilities, the
unique characteristics of HANs may lead to two types of pseudo N -1 collusion attacks. These
attacks attempt to overcome the limitations of traditional N -2 collusion attacks by leveraging ad-
ditional information to achieve an effect approximating N -1 collusion. However, due to the PPU
mechanism, their effectiveness remains significantly limited. The basic ideas behind these two at-
tacks are:

1. Pseudo N -1 Collusion Attack based on Original Model (PCAOM): In this attack, the
adversary uses another trusted client’s original model to substitute for that client’s private
model. This is a KMA where the attacker attempts to simulate collusion amongN -1 clients
by using the publicly available original model, while in reality only N -2 clients are collud-
ing.

2. Pseudo N -1 Collusion Attack based on Public Dataset (PCAPD):
This attack utilizes the noisy public datasets information generated during the PPU process.
The attacker uses this public data to approximate the behavior of another trusted client,
thereby achieving an effect similar to N -1 collusion. This is an enhanced version of a
COA.

Detailed formal definitions of these two attacks can be found in Appendix D.

3.6 DESIGN AND TRAINING OF HANS

Under the framework of the AHE scheme, the core of HANs lies in its carefully designed opti-
mization objectives and training process, which work together to achieve a balance between privacy
protection and accurate aggregation. This section introduces the main optimization objectives of
HANs, with detailed implementation specifics available in the Appendices B and C.

The design of HANs primarily revolves around three main optimization objectives:

1. Attacker’s Optimization Objective:

OEnc = argmaxθclient
((Lclient

Eve (θclient, θ
client
Eve)) + L̂client

Eve (θclient, θ̂
client
Eve))

This objective aims to maximize the attacker’s error in reconstructing the original data. A
larger value of the loss indicates stronger privacy protection.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2. Aggregation Optimization Objective:

Oagg = argmin(Lagg(θAlice, θBob, θCarol, θAgg))

This objective ensures that the encrypted data can still be accurately aggregated. A smaller
value of the loss indicates higher aggregation accuracy.

3. Comprehensive Optimization Objective:

OEnc = argminθ(λEθ +
∑

i∈Clients

(max(0, γ − Li
Eve(θi, θ

i
Eve))

+max(0, γ − L̂i
Eve(θi, θ̂

i
Eve))))

This objective balances privacy protection and aggregation accuracy. Here, γ represents
a privacy coefficient controlling the trade-off between security and accuracy, and λ is a
balancing parameter for aggregation accuracy.

The optimization objectives in HANs are designed to balance privacy protection and model usability
throughout the training process. By employing a multi-stage optimization strategy—encompassing
computational pre-training, security enhancement, security assessment, and performance-security
balancing, HANs ensures robust security without compromising performance. Detailed descriptions
of the optimization objectives, the multi-stage optimization process can be found in Appendix B
an C.

3.7 PPU

To further enhance privacy protection, we have designed a PPU process, which includes two stages:

• CPPU: The main goal of the CPPU stage is to reduce the risk of model exposure, especially
in scenarios involving multi-party collaboration. Each client generates its own private data
and collects the latest public datasets from other clients. By combining private data with
samples from other clients, the client creates a training set to update the model. To mini-
mize the leakage of private model information, we gradually add noise to the public dataset,
with the noise intensity increasing over time. This noise not only prevents potential future
inference attacks but also protects the privacy of other clients.

• IPPU: The IPPU stage further enhances security by performing multiple rounds of in-
dependent updates using only the client’s private data, thereby weakening the correlation
between the public dataset and the client’s encryption model. This process significantly re-
duces the possibility for attackers to infer sensitive information about the encryption model,
even if they possess advanced techniques to analyze changes in the public dataset.

The PPU process balances privacy protection and model performance. Although the update process
may lead to a slight decrease in model performance, the combination of CPPU and IPPU effectively
enhances the overall security of the system.

For a detailed implementation of the PPU steps and algorithms, please refer to the Appendix E.

3.8 SECURITY DISCUSSION OF HANS

Neural network-based cryptosystems, such as HANs, preclude conventional mathematical security
proofs due to their inherent opacity. Nonetheless, we conduct an indirect security assessment by
examining the constraints on attacker-accessible information.

Appendix G elucidates the potential information exposure across HANs’ lifecycle phases: training,
PPU, and operational deployment. Our analysis indicates that HANs’ architectural design sub-
stantially mitigates the efficacy of exploitable information (e.g., model parameters, public datasets,
cryptographic keys, and ciphertexts) in practical attack scenarios.

The observed limitations on actionable information, in conjunction with HANs’ empirically demon-
strated resilience against diverse attack vectors, provide compelling indirect evidence for its security
robustness and operational reliability.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Performance and attack resistance of HANs

HANs Atk 1 Atk 1 (Dbl) Atk 2 Atk 2 (Dbl)
Average 0.000009 0.0644 0.0653 0.0041 0.0013

Maximum differences 0.001772 1.4250 1.6599 0.1937 0.1179
After CPPU

Average 0.0002 0.1037 0.1048 0.0691 0.0633
Maximum differences 0.0412 1.4341 1.2353 1.5290 1.7215

After IPPU
Average 0.0004 0.1025 0.1055 0.1060 0.1047

Maximum differences 0.0569 1.5140 1.3213 1.4687 1.9999

Table 3: Aggregation differences and their impact on FL accuracy using the HANs Model

MNIST FashionMNIST CIFAR-10
Accuracy difference +0.48% -0.27% -1.35%
Average difference 0.0047 0.0056 0.0097

Standard deviation of average difference 0.0003 0.0006 0.0016
Maximum differences 0.1219 0.1904 0.2941

Standard deviation of Maximum differences 0.0367 0.0461 0.0623

4 EXPERIMENTAL ANALYSIS

This section aims to validate the accuracy, security, and efficiency of HANs. All experiments were
conducted using an A800 GPU. We have included the detailed design of the loss function, along
with the specific training, distribution processes and PPU, in the Appendix B, C, and E.

To improve experimental efficiency, we ensured that the encryption model structure used by each
client was consistent. However, the attacker models were allowed to vary in structure to accommo-
date different attack strategies.

The encryption model consists of linear layers, convolutional layers, and residual blocks. The initial
linear layer expands the dimensionality of the plaintext and private keys, while the convolutional
layers obscure the relationship between them. Multiple residual blocks further enhance the com-
plexity of the input transformation, and the output layer compresses the data to the target ciphertext
length. The attacker models mirror the architecture of the encryption model, with input dimensions
adjusted to accommodate the ciphertext input.

We employed the AdamW optimizer with a learning rate of 1e-5 and weight decay of 1e-6, combined
with a cosine annealing scheduler to ensure training stability and generalization. Training data were
generated by simple addition, enabling the model to handle diverse inputs and avoid overfitting.

4.1 TRAINING OPTIMIZATION AND PPU ENHANCEMENTS

We evaluated four attacker types: Atk 1 (using ciphertext and public keys), Atk 2 (using only cipher-
text), and their double residual block versions, Atk 1 (Dbl) and Atk 2 (Dbl), as shown in Table 2.

For the encryption model, lower Average and Maximum Differences indicate better performance.
For attackers, higher Average signify greater difficulty in data reconstruction.

The results show that Atk 1 faces greater challenges in data reconstruction compared to Atk 2, likely
due to the added complexity from public key information. Even with increased complexity in Atk
1 (Dbl) and Atk 2 (Dbl), their performance improvements were marginal, suggesting that simply
increasing model complexity is insufficient to break HANs’ encryption mechanism.

The PPU process further enhanced security. Both CPPU and IPPU stages progressively increased
the difficulty for attacker models, as evidenced by higher average and maximum differences. The
narrowing performance gap between standard and double versions of the attacks further underscores
the limitations of relying solely on increased model complexity to breach HANs’ security.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Original Image

DLG attack on unencrypted gradient

DLG attack using ciphertext and public key

DLG attack using ciphertext
The figure illustrates: (1) original dataset images; (2) reconstructions from DLG attacks on

unencrypted gradients; (3-4) results of DLG attacks on HANs-encrypted gradients, using ciphertext
with public keys and ciphertext alone, respectively.

Figure 1: DLG Attack

Table 4: PCAOM and PCAPD comparison (2,000 samples)

PCAOM MAD PCAOM Var PCAPD MAD PCAPD Var
0.31067 0.14935 0.30340 0.14535

Attack Examples
Orig. Val. PCAOM Est. PCAOM Diff. PCAPD Est. PCAPD Diff.
0.29563 0.51904 0.22340 0.51725 0.22162
0.04339 0.19841 0.15501 0.20070 0.15730
-0.08219 0.11783 0.20002 0.12819 0.21038
0.00916 0.42505 0.41589 -0.14483 0.15399
-0.00047 0.17528 0.17575 0.18152 0.18199

Note: MAD = Mean Absolute Difference, Var = Variance, Est. = Estimated Value, Diff. = Difference

Overall, these results demonstrate the stability and attack resistance of the encryption model across
different scenarios, showing that it effectively resists attempts to enhance attack success through
increased computational complexity. While these metrics offer valuable insights into model perfor-
mance and security, they do not provide absolute thresholds for meeting System Goals A.2. There-
fore, further investigation in practical FL scenarios is required to fully evaluate the performance and
security of HANs.

4.2 PERFORMANCE AND SECURITY ANALYSIS OF HANS IN FL

Table 3 presents a comparison between traditional additive aggregation and HANs aggregation on
the MNIST (Deng, 2012), FashionMNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky et al.,
2009) datasets.

The Accuracy difference shows the impact of HANs on model performance. On MNIST, there
is a 0.48% accuracy improvement, which could be due to the additional noise introduced during
aggregation acting as a form of regularization on simpler datasets. However, there is a slight drop in
accuracy for FashionMNIST (-0.27%) and CIFAR-10 (-1.35%).

The Average difference and Maximum differences quantify the discrepancies between parameters
aggregated using HANs and traditional methods. Despite larger differences in some parameters,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

overall model performance remains nearly unaffected, demonstrating that HANs can maintain strong
model performance while ensuring privacy.

To validate the security of our proposed scheme, we employ simple models in conjunction with the
original DLG attack. While recent research has advanced to more complex models and efficient
reconstruction techniques (Zhao et al., 2020; Geiping et al., 2020), the use of DLG on simpler
models is sufficient for our security verification purposes.

We evaluated HANs’ defense against DLG attacks using the MNIST dataset, which is known to
be vulnerable (Zhu et al., 2019). Without HANs, DLG attacks were effective, but with HANs
encryption, dataset reconstruction was unsuccessful (see Figure 1).

4.3 RESISTANCE TO PSEUDO N -1 COLLUSION ATTACKS

In evaluating the security of HANs, we conducted experiments on pseudo N -1 collusion attacks.
Table 4 presents the results of the PCAOM and PCAPD.

These attack methods attempt to simulate the effect of N -1 collusion attacks, but their effectiveness
is significantly limited due to the PPU mechanism. The experimental results show that after imple-
menting PPU, PCAOM has a MAD of 0.31067, while PCAPD has a MAD of 0.30340. Notably,
before the implementation of PPU, the result of PCAOM was equivalent to the Average value of
HANs, indicating that the PPU mechanism effectively enhanced the system’s security.

The lower half of the table 4 provides attack results for five specific samples from different orders
of magnitude. Notable differences between the estimated and original values can be observed, rang-
ing from 0.15399 to 0.41589. This further confirms the effectiveness of HANs in resisting these
advanced attacks.

The similar performance of both attack methods suggests that the PPU mechanism successfully
limits the amount of potentially leaked information, thereby enhancing the overall security of the
system.

Table 5: Performance metrics of HANs for various batch sizes (results based on 1000 experiments)

Batch Size Batch Encryption Time Batch Aggregation Time Key Generation Time
100,000 0.019554s (±0.001629) 0.017444s (±0.000108) 0.000028s (±0.000008)
200,000 0.035329s (±0.000027) 0.035380s (±0.000013) 0.000029s (±0.000008)
300,000 0.053281s (±0.003922) 0.053462s (±0.004456) 0.000031s (±0.000012)

4.4 OPERATING EFFICIENCY

To evaluate the computational efficiency of HANs, we conducted a series of experiments assessing
encryption time, aggregation time, and communication overhead across various scenarios. Table 5
shows the performance metrics of HANs for different batch sizes.

The encryption time for a batch size of 100,000 (0.019554s) is less than 2 times that of 200,000
(0.035329s), indicating that for smaller batch sizes, the GPU’s computational capacity is not fully
utilized. Therefore, we use the encryption and aggregation times for the batch size of 300,000 to
extrapolate the performance for 3,000 ciphertexts.

Table 6 summarizes our findings, juxtaposing HANs against the SecFed scheme (Cai et al., 2023).

Our results demonstrate that HANs significantly outperforms SecFed in terms of computational effi-
ciency. For a batch of 3,000 ciphertexts, HANs completes encryption and aggregation in just 0.00107
seconds, compared to SecFed’s 6.5 seconds. This represents a remarkable 6,075-fold speedup, high-
lighting the exceptional computational efficiency of our approach. The significant improvement in
computational efficiency comes at a cost, specifically a 29.2-fold increase in communication over-
head compared to SecFed.

The dramatic performance improvement can be attributed to HANs’ ability to leverage GPU parallel
computing capabilities, a benefit inherent to its neural network-based architecture. This allows

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Performance comparison between HANs and SecFed

Metric HANs SecFed
Encryption and Aggregation Performance (3,000 Ciphertexts)

Total Time 0.00107s 6.5s
Speedup 6,075x 1x (baseline)

Communication Overhead (One-Round)
Model Size: 616,420 232.8 MB 2.6 MB

Model Size: 7,027,860 884.7 MB 30.2 MB
Overhead Increase 29.2x 1x (baseline)

HANs to efficiently process large volumes of parameters simultaneously, resulting in significantly
reduced computation time.

While these results are promising, it is essential to acknowledge the inherent limitations in our com-
parative analysis. As the pioneering approach using neural networks for MK-HE, our comparison
with traditional methods encounters certain constraints. The reported 6.5-second runtime for SecFed
may underestimate its operational complexity, as additional procedures, such as multiple refresh op-
erations, could potentially extend its execution time, potentially amplifying HANs’ efficiency gains.
Conversely, the lack of information about SecFed’s GPU acceleration capabilities, and the poten-
tial challenges in adapting their scheme to GPU architectures, prevents us from replicating their
results in an equivalent computing environment, introducing some uncertainty into our comparative
findings.

5 FUTURE WORK

This work introduces a novel framework for privacy-preserving federated learning by utilizing neural
networks to emulate multi-key homomorphic encryption. While the results demonstrate the feasibil-
ity and foundational performance of the proposed approach, several valuable directions remain for
further exploration. One promising area is optimizing communication overhead, including reduc-
ing unnecessary ciphertext transmissions and improving the efficiency of aggregation mechanisms,
to enhance practical applicability. Expanding evaluations to include more diverse datasets, such as
text or multi-modal data, and more complex model architectures, such as transformers or large-scale
neural networks, will help establish the method’s scalability and robustness. Additionally, devel-
oping rigorous privacy analyses, including systematic methodologies and formal security proofs,
will provide a stronger theoretical foundation and more comprehensive insights into the trade-offs
between privacy guarantees and model performance. These directions represent critical steps to-
ward advancing the applicability and impact of neural network-based privacy-preserving federated
learning.

6 CONCLUSION

This work introduces Homomorphic Adversarial Networks (HANs) with Aggregatable Hybrid En-
cryption for Privacy-Preserving Federated Learning (PPFL). HANs leverage neural networks to em-
ulate multi-key homomorphic encryption, offering a novel approach that balances privacy, perfor-
mance, and efficiency. Our method enables independent key generation and aggregation without
collaborative decryption, while resisting N -2 client collusion. The innovative Privacy-Preserving
Update mechanism enhances security through private model updates, effectively mitigating poten-
tial vulnerabilities in the initial public model. EExperimental results demonstrate HANs’ ability to
maintain model accuracy within 1.35% of non-private federated learning. HANs also significantly
outperform traditional multi-key homomorphic encryption schemes, achieving a 6,075-fold increase
in computational efficiency. The introduction of these neural network-based protocols not only im-
proves the practical implementation of PPFL but also opens new research directions in federated
learning privacy protocols and neural network-based cryptography.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martı́n Abadi and David G Andersen. Learning to protect communications with adversarial neural
cryptography. arXiv preprint arXiv:1610.06918, 2016.

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Yongli An, Zebing Hu, Haoran Cai, and Zhanlin Ji. Cnns-based end-to-end asymmetric encrypted
communication system. Intelligent and Converged Networks, 4(4):313–325, 2023.

Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. Privacy-preserving deep learn-
ing via additively homomorphic encryption. IEEE transactions on information forensics and
security, 13(5):1333–1345, 2017.

Yuxuan Cai, Wenxiu Ding, Yuxuan Xiao, Zheng Yan, Ximeng Liu, and Zhiguo Wan. Secfed: A
secure and efficient federated learning based on multi-key homomorphic encryption. IEEE Trans-
actions on Dependable and Secure Computing, 2023.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Mem-
bership inference attacks from first principles. In 2022 IEEE Symposium on Security and Privacy
(SP), pp. 1897–1914. IEEE, 2022.

Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient multi-key homomorphic encryption
with packed ciphertexts with application to oblivious neural network inference. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 395–412,
2019.

Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. Fedhealth: A federated transfer
learning framework for wearable healthcare. IEEE Intelligent Systems, 35(4):83–93, 2020.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arith-
metic of approximate numbers. In Advances in Cryptology–ASIACRYPT 2017: 23rd International
Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part I 23, pp. 409–437. Springer, 2017.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Haokun Fang and Quan Qian. Privacy preserving machine learning with homomorphic encryption
and federated learning. Future Internet, 13(4):94, 2021.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-
how easy is it to break privacy in federated learning? Advances in neural information processing
systems, 33:16937–16947, 2020.

Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
level perspective. arXiv preprint arXiv:1712.07557, 2017.

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the gan: infor-
mation leakage from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, pp. 603–618, 2017.

Rui Hu, Yuanxiong Guo, Hongning Li, Qingqi Pei, and Yanmin Gong. Personalized federated
learning with differential privacy. IEEE Internet of Things Journal, 7(10):9530–9539, 2020.

Roger Iyengar, Joseph P Near, Dawn Song, Om Thakkar, Abhradeep Thakurta, and Lun Wang. To-
wards practical differentially private convex optimization. In 2019 IEEE Symposium on Security
and Privacy (SP), pp. 299–316. IEEE, 2019.

Muah Kim, Onur Günlü, and Rafael F Schaefer. Federated learning with local differential privacy:
Trade-offs between privacy, utility, and communication. In ICASSP 2021-2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2650–2654. IEEE,
2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He.
A survey on federated learning systems: Vision, hype and reality for data privacy and protection.
IEEE Transactions on Knowledge and Data Engineering, 2021.

Zhengze Li, Xiaoyuan Yang, Kangqing Shen, Ridong Zhu, and Jin Jiang. Information encryption
communication system based on the adversarial networks foundation. Neurocomputing, 415:
347–357, 2020.

Xinlai Luo, Zhiyong Chen, Meixia Tao, and Feng Yang. Encrypted semantic communication using
adversarial training for privacy preserving. IEEE Communications Letters, 27(6):1486–1490,
2023.

Jing Ma, Si-Ahmed Naas, Stephan Sigg, and Xixiang Lyu. Privacy-preserving federated learning
based on multi-key homomorphic encryption. International Journal of Intelligent Systems, 37(9):
5880–5901, 2022.

Abbass Madi, Oana Stan, Aurélien Mayoue, Arnaud Grivet-Sébert, Cédric Gouy-Pailler, and Re-
naud Sirdey. A secure federated learning framework using homomorphic encryption and verifi-
able computing. In 2021 Reconciling Data Analytics, Automation, Privacy, and Security: A Big
Data Challenge (RDAAPS), pp. 1–8. IEEE, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploiting unintended
feature leakage in collaborative learning. In 2019 IEEE symposium on security and privacy (SP),
pp. 691–706. IEEE, 2019.

Jaehyoung Park, Nam Yul Yu, and Hyuk Lim. Privacy-preserving federated learning using homo-
morphic encryption with different encryption keys. In 2022 13th International Conference on
Information and Communication Technology Convergence (ICTC), pp. 1869–1871. IEEE, 2022.

Sayantica Pattanayak and Simone A Ludwig. Encryption based on neural cryptography. In Hybrid
Intelligent Systems: 17th International Conference on Hybrid Intelligent Systems (HIS 2017) held
in Delhi, India, December 14-16, 2017, pp. 321–330. Springer, 2018.

Md Atiqur Rahman, Tanzila Rahman, Robert Laganière, Noman Mohammed, and Yang Wang.
Membership inference attack against differentially private deep learning model. Trans. Data
Priv., 11(1):61–79, 2018.

Zhaosen Shi, Zeyu Yang, Alzubair Hassan, Fagen Li, and Xuyang Ding. A privacy preserving
federated learning scheme using homomorphic encryption and secret sharing. Telecommunication
Systems, 82(3):419–433, 2023.

Aleksei Triastcyn and Boi Faltings. Federated learning with bayesian differential privacy. In 2019
IEEE International Conference on Big Data (Big Data), pp. 2587–2596. IEEE, 2019.

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek,
and H Vincent Poor. Federated learning with differential privacy: Algorithms and performance
analysis. IEEE transactions on information forensics and security, 15:3454–3469, 2020.

Febrianti Wibawa, Ferhat Ozgur Catak, Murat Kuzlu, Salih Sarp, and Umit Cali. Homomorphic
encryption and federated learning based privacy-preserving cnn training: Covid-19 detection use-
case. In Proceedings of the 2022 European Interdisciplinary Cybersecurity Conference, pp. 85–
90, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019.

Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu. {BatchCrypt}: Ef-
ficient homomorphic encryption for {Cross-Silo} federated learning. In 2020 USENIX annual
technical conference (USENIX ATC 20), pp. 493–506, 2020a.

Xianglong Zhang, Anmin Fu, Huaqun Wang, Chunyi Zhou, and Zhenzhu Chen. A privacy-
preserving and verifiable federated learning scheme. In ICC 2020-2020 IEEE International Con-
ference on Communications (ICC), pp. 1–6. IEEE, 2020b.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610, 2020.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In Ad-
vances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://papers.nips.cc/paper/2019/hash/
60a6c4002cc7b29142def8871531281a-Abstract.html.

13

https://papers.nips.cc/paper/2019/hash/60a6c4002cc7b29142def8871531281a-Abstract.html
https://papers.nips.cc/paper/2019/hash/60a6c4002cc7b29142def8871531281a-Abstract.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROBLEM OVERVIEW

A.1 PROBLEM SETTING

In the setting of FL, there are two primary roles: (1) Clients, who possess local training datasets
and are responsible for completing local model training. Clients have the obligation to ensure the
privacy and security of the dataset. (2) The Server, responsible for coordinating with Clients to
update global model parameters, also initializes the model and global hyperparameter settings.

Suppose that we have m separate Clients. Each Client is represented by Ci, where i ∈ [1,m] and
Client Ci has a local training dataset Di. In each step, there are three sub-steps:

1. Broadcast. Server broadcasts the current global model parameters wt−1 to each Client
Ci, where t represents the index of the current iteration round.

2. Local training. Each Client Ci receives global model parameters wt−1 and using local
training datasets Di to obtain the new local model parameters wt

i in parallel and sends
the local model parameter wt

i back to the Server. During the updating step, the Client
typically employs stochastic gradient descent for local epochs. In scenarios where com-
munication cost is not a primary concern, setting local epochs to 1 can be an effective
approach (McMahan et al., 2017).

3. Aggregation. The Server receives all model parameters {wt
1,wt

2,. . . ,wt
m} from the

Client and aggregates them into global parameters wt by averaging them.

Definition of δ-accuracy loss. Suppose that M̄ is a deep learning model training on datasets D,
where D = Di ∪ D2 ∪ · · · ∪ Dm. We use f̄ to denote the accuracy of model M̄. For FL, M̂
denotes the model after all train rounds, and its corresponding accuracy is f̂ . We say that it is
δ-accuracy loss, if it satisfies f̄ − f̂ < δ.

A.2 SYSTEM GOALS

1. Input privacy. Our objective is to preserve the privacy of the client dataset Di during all
processes, even if attackers gain access to either partial true gradient information or noisy
gradient information wattack, which is insufficient to reconstruct Di.

2. Model utility. After several rounds of encryption and aggregation, the final global param-
eters of the model wfinal are accurately computed, ensuring that the model can be used as
intended.

We assume that all parties involved in the agreement will correctly complete model training and
aggregation according to the FL agreement.

A.3 THREAT MODEL

We consider the threat model where the adversary aims to steal the gradient information wt and wt
i

transmitted between the client and the server, and then use it to reconstruct the dataset Dattack to
match a specific client’s dataset Di.

B HANS TRAINING DESIGN: LOSS FUNCTION FORMULATION AND
RATIONALE

In this section, we provide a complete and rigorous derivation of the optimization objectives for
HANs, expanding upon the high-level summary presented in Section 3.6. The derivation includes
the mathematical formulation of the encryption and aggregation processes, as well as the multi-stage
optimization strategy employed to balance privacy and performance.

Firstly, we would like to clarify that all distances mentioned in this paper refer to the Manhattan
distance. During model training, we employ MSEloss Lm as our loss function, which enhances our
ability to train the model effectively. However, when evaluating the model, we utilize L1loss, as it
allows for a more intuitive analysis of errors.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We have formally defined the goals of each party in the previous section, and now we will present
the specific training methods. We will use θ representing model parameters in HANs.

The adversary Eve’s goal is simple: to accurately reconstruct w to achieve the attacker’s objective.
We will employ two attack methodologies, namely attacks with and without the use of a public key.
The utilization of dual attack methods can ensure the resilience of the attacker. Additionally, if we
can effectively thwart both attacks simultaneously, it will demonstrate the defensive efficacy of our
solution.

To ensure the security of each Client’s data, where Clients = {Alice,Bob, Carol}, we have
designed separate attacker for each Client. We train each attacker independently. We use the
Alice’s attacker as the example for discussion. We denote the attacker attacking Alice’s output on
input C without the public key as Attack(θAlice

Eve , C), and the attacker attacking Alice’s output with
the public key as Attack(θAlice

Eve , (sk1 + sk2), C). The loss function for the two attack models is
designed as follows:

LAlice
Eve (θAlice, θ

Alice
Eve ,WAlice, sk1A, sk2A) = Lm(W,Attack(θAlice

Eve , Encsk1A,sk2A
(WAlice)))

L̂Alice
Eve (θAlice, θ̂

Alice
Eve ,W, sk1A, sk2A) = Lm(W,Attack(θ̂Alice

Eve , (1)
(sk1A + sk2A), Encsk1A,sk2A

(WAlice)))

The sole distinction between LAlice
Eve and L̂Alice

Eve lies in the fact that the model θ̂Alice
Eve employed in

L̂Alice
Eve incorporates a public key pkA = (sk1A+sk2A) as an additional input parameter. Intuitively,

the loss function signifies the degree to which Eve is incorrect in terms of the model parameter w.
Given that the model parameters and public/private key pairs for encryption are randomly generated
during the training process, the aforementioned loss function can be interpreted as the expected
value distribution on parameters and private key pairs.

LAlice
Eve (θAlice, θ

Alice
Eve) = E(W,sk1A,sk2A)(Lm(W,Attack(θAlice

Eve , Encsk1A,sk2A
(WAlice))))

L̂Alice
Eve (θAlice, θ̂

Alice
Eve) = E(W,sk1A,sk2A)(Lm(W,Attack(θ̂Alice

Eve , (2)

(sk1A + sk2A), Encsk1A,sk2A
(WAlice))))

For attackers, they aim to derive the ’optimal attacker model’ by minimizing the loss for eachClient
included in the Clients list.

OEve(θ
client
Eve) = argminθclient

Eve
(Lclient

Eve (θAlice, θ
client
Eve))

OEve(θ̂
client
Eve) = argminθ̂client

Eve
(L̂client

Eve (θAlice, θ̂
client
Eve))

The preceding discussion focuses on optimization methods for attackers. As for encryption, intu-
itively, it can be viewed as a hindrance to the attackers’ goals. These goals can be achieved by
maximizing the loss for each client in the Clients list, thus realizing the optimal encryption model:

OEnc(θAlice) = argmaxθclient
((Lclient

Eve (θclient, θ
client
Eve)) + L̂client

Eve (θclient, θ̂
client
Eve))

Via the design previously detailed, we have successfully fulfilled the need for privacy protection.
Beyond reaching the defense efficacy which satisfies the objective of privacy, the encryption model
also needs to comply with the aggregation accuracy standards to accomplish the error goal. Conse-
quently, it is crucial to delineate the following loss function to adhere to the aggregation prerequi-
sites:

Lagg = Lm((WAlice +WBob +WCarol), AggpkA,pkB ,pkC
(Encsk1,sk2(W)))

The foregoing presents a succinct delineation, while a more comprehensive depiction for each sym-
bol is as follows.

Lagg = Lagg(θAlice, θBob, θCarol, θDec,WAlice,WBob,WCarol, (3)
sk1A, sk2A, sk1B , sk2B , sk1C , sk2C)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Encsk1,sk2
(W) = (Encsk1A,sk2A

(WAlice), Encsk1B ,sk2B
(WBob), Encsk1C ,sk2C

(WCarol))

pki = sk1i + sk2i

This component is also perceived as an expectation that is predicated on the distribution during our
actual training process.

Lagg(θAlice, θBob, θCarol, θAgg) = Eθ = EW,sk1,sk2(Lm((W), AggpkA,pkB ,pkC
(Encsk1,sk2(W))))

Similar to the approach of attackers, the optimal model can be realized by minimizing losses to
achieve precision.

Oagg = argmin(Lagg(θAlice, θBob, θCarol, θAgg))

Typically, the HANs could be achieved as follows:

OEnc = argminθ(Eθ − (
∑

i∈Clients

(Li
Eve(θi, θ

i
Eve) + (L̂i

Eve(θi, θ̂
i
Eve))))) (4)

Nevertheless, the practical application might encounter specific difficulties. For example, amplifying
the latter part could result in a never-ending quandary. This situation might cause an excessive focus
on defense capabilities and disregard for precision considerations during the model training phase.
As mentioned earlier, we do not necessitate such robust defensive abilities. Therefore, we utilize the
subsequent strategies to train the model.

OEnc = argminθ(λEθ +
∑

i∈Clients

(max(0, γ − Li
Eve(θi, θ

i
Eve)) +max(0, γ − L̂i

Eve(θi, θ̂
i
Eve))))

(5)

This objective balances privacy protection and aggregation accuracy. Here, γ represents a security
coefficient used during the training process to guide the model towards a desired level of privacy
protection. It’s important to note that γ is not a strict requirement for the final system performance,
but rather a training parameter to help achieve a balance between security and utility.

C HANS TRAINING IMPLEMENTATION: A MULTI-STAGE OPTIMIZATION
PROCESS

In the previous chapter, we elaborated on the design of the HANs model, including the formula-
tion of the loss function and the rationale behind its design. These design considerations laid the
theoretical foundation for our training process. However, in practical implementation, we discov-
ered that directly applying the designed optimization objective 5 for training might lead to two main
challenges:

• Imbalance between Security and Usability: The model might overemphasize Input Pri-
vacy while neglecting Usability in Modeling, resulting in the Enc in HANs generating
ciphertexts unrelated to the plaintext. In this case, while security is ensured, the model’s
practical utility is severely compromised.

• Insufficient Aggregation Functionality: Even when Enc generates ciphertexts that con-
tain plaintext meaning and are sufficiently secure, the Aggregate model might not be ad-
equately trained to complete the aggregation task. This leads to the entire system being
unable to effectively process and integrate encrypted data from multiple sources.

To address these challenges, we have decomposed the training process into five crucial stages:

1. Computational Pre-training: Utilizing optimization formula 4, aiming to satisfy Usabil-
ity in Modeling.

2. Security Enhancement Training: Employing optimization formula 5, with the objective
of achieving Input Privacy while maintaining Usability in Modeling.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

3. Security Assessment: This phase fixes all Enc models and the Aggregate in HANs,
continuing to train each Attack model until convergence. As we have not yet determined a
definitive security boundary, it is necessary to simulate it in an FL scenario for additional
security confirmation.

4. Performance-Security Balance Adjustment: HANs models trained through the first two
stages often prioritize security at the expense of performance. Therefore, we conduct
small-scale training using loss function A, followed by a final security validation on the
trained HANs model. If it fails, we repeat the performance-security balance adjustment; if
it passes, we proceed to the fifth stage.

5. Aggregation Alignment: Having ensured the security of individual Enc models through
previous training, this stage fixes all Enc models and trains the Aggregate model using
optimization formula 4 until convergence, concluding the comprehensive training process
for the HANs model.

D PSEUDO N -1 COLLUSION ATTACKS

PPFL scenarios based on multi-key homomorphic encryption typically can only resistN -2 collusion
attacks. This is because if only one client remains honest and trustworthy, colluding clients can
easily obtain that client’s real data by subtracting their uploaded data from the aggregated model
gradients. This scenario is not one that multi-key homomorphic encryption is designed to defend
against, and our method is no exception. However, due to the unique characteristics of HANs,
attackers may potentially employ two types of pseudo N -1 collusion attacks. We will now formally
define these two attacks.

D.1 PSEUDO N -1 COLLUSION ATTACK BASED ON THE ORIGINAL MODEL (PCAOM)

PCAOM is a KMA. Let clients = client1, . . . , clientN be a set of N clients in a FL system using
HANs. This attack can be described in the following steps:

1. Initial Setup:
• A trusted client Alice (clientA ∈ clients) encrypts a gradient message mA: cA =
Enc(mA, skA1, skA2)

• Alice’s public key pkA = skA1 + skA2 is transmitted and intercepted.

2. Attacker’s Preparation:
• The N -2 colluding attackers acquire the latest aggregation model Aggregation().
• The attacker (clientatt ∈ clients \ {clientA, clientB}) generates and encrypts matt:

catt = Enc(matt, skatt1, skatt2)

• The attacker’s public key: pkatt = skatt1 + skatt2

3. Exploitation of Bob’s Original Model:
• The attacker uses Bob’s (clientB ∈ clients) original model to encrypt mB :

coriginB = Encorigin(mB , skB1, skB2)

• The corresponding public key: pkoriginB = skB1 + skB2

4. Aggregation:

magg ← Aggregate(c⃗A,
⃗

coriginB , ⃗catt, pkA, pk
origin
B , pkatt)

5. Guessing Alice’s Message:

mguess
A = magg −mB −matt

The goal of PCAOM is to approximate mguess
A ≈ mA.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D.2 PSEUDO N -1 COLLUSION ATTACK BASED ON PUBLIC DATASET (PCAPD)

This represents an enhanced version of a COA, where the attacker has knowledge of the decryp-
tion model and access to noisy plaintexts corresponding to known ciphertexts. Let clients =
client1, . . . , clientN be a set of N clients in a FL system using HANs. The PCAPD proceeds
as follows:

1. Initial Setup:
• A trusted client Alice (clientA ∈ clients) encrypts a message mA: cA =
Enc(mA, skA1, skA2)

• Alice’s public key pkA = skA1 + skA2 is transmitted and intercepted.
2. Attacker’s Preparation:

• The N -2 colluding attackers acquire the latest aggregation model.
• An attacker (clientatt ∈ clients \ {clientA, clientB}) generates and encrypts matt:

catt = Enc(matt, skatt1, skatt2)

• The attacker’s public key: pkatt = skatt1 + skatt2

3. Exploitation of Bob’s Public Dataset:
• The attacker obtains Bob’s (clientB ∈ clients) public dataset from the last round of

the PPU process.
• From this dataset, the attacker extracts:

– A noisy plaintext mpub
B = mB + noise, where noise is unknown to the attacker

– The corresponding ciphertext cpubB = Enc(mB , skB1, skB2)

– The public key pkpubB = skB1 + skB2

4. Aggregation:

magg ← Aggregate(c⃗A,
⃗
cpubB , ⃗cattack, pkA, pk

pub
B , pkattack)

5. Guessing Alice’s Message:

mguess
A = magg −mpub

B −mattack

Note that this guess includes an error term due to the noise in mpub
B .

The goal of PCAPD is to approximate mguess
A ≈ mA, exploiting the public dataset information

from the PPU process, including the noisy plaintexts and their corresponding ciphertexts.

E PPU MECHANISM

After completing the training of HANs or opting to use a publicly trained HANs model, we distribute
the models to client endpoints. At this stage, the encryption models employed by each client are
public rather than private. To address this vulnerability, we implement a PPU mechanism for the
encryption models. The PPU process consists of two phases:

E.1 CPPU

The CPPU phase, as outlined in Algorithm 2, primarily aims to mitigate PCAOM. The process
involves:

• Each client generates its own private data and collects the latest public datasets from other
clients.

• The client creates a training set by combining its private dataset with samples from the
public datasets.

• To minimize the exposure of private model information, the public datasets are kept mini-
mal, using a sample-with-replacement algorithm (Algorithm 1) to create the training set.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A crucial aspect of CPPU is the addition of sufficient noise to the public dataset. This noise, which
increases in intensity over time, should be greater than Gaussian noiseG(0, 10−2) (Zhu et al., 2019),
serves a dual purpose:

• Protects against potential future techniques that might infer model parameters from public
dataset changes.

• Safeguards other client endpoints.

We require trusted clients to honestly add this noise, as it is essential for the overall security of the
system. It’s worth noting that for malicious clients, the addition or omission of noise does not affect
their attack capabilities.

E.2 IPPU

The IPPU phase, as detailed in Algorithm 3, further enhances security by:

• Preventing PCAOM attacks.
• Diminishing the correlation between the public dataset and the client’s encryption model.

This process involves multiple rounds of independent updates for each client, using only their private
data and the final public datasets from the CPPU phase. By doing so, IPPU significantly reduces
the potential for adversaries to infer sensitive information about the encryption model, even if they
possess advanced techniques for analyzing public dataset changes.

E.3 TRADE-OFF AND SYSTEM CONSISTENCY

It is important to acknowledge that the PPU mechanism is a trade-off between model performance
and security. By implementing these updates, clients sacrifice some model performance to gain
enhanced security.

F DETAILED EXPLANATION OF DLG ATTACK

In this section, we provide a detailed recapitulation of the DLG attack as originally proposed. Sub-
sequently, Algorithm 4 and 5 elucidate how an adversary can deploy this attack within our specific
scenario.

The DLG (Zhu et al., 2019) is a privacy attack method targeting distributed machine learning sys-
tems. This method can reconstruct the original training data using only the shared gradient informa-
tion.

The core idea of the DLG attack is to optimize ”dummy” inputs and labels to produce gradients that
are as close as possible to the target real gradients. When the optimization converges, this ”dummy”
data becomes very close to the original training data:

Attack successful.⇔ x′ ≃ x ∩ y′ ≃ y

Specifically, given a machine learning model F (x;W), where x is the input data andW is the model
parameters, and assuming we know the gradient ∇W from a certain training iteration, the goal of
the DLG attack is to find a pair of input x′ and label y′ such that:

argmin
x′,y′
||∇W ′ −∇W ||2

where∇W ′ = ∂L(F (x′,W),y′)
∂W is the gradient produced by x′ and y′.

G SECURITY DISCUSSION OF HANS

In this section, we will delve into an in-depth discussion of the model’s security. First, we further
clarify the attacker’s objectives against HANs. The attacker’s goal for AHE is shown in 1. To

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

achieve this goal, the attacker aims to minimize the guessing difference to ensure the effectiveness
of data reconstruction attacks. The guessing difference is defined as:

Guessing Difference = |mguess −mreal| (6)

where mguess represents the attacker’s guessed value, and mreal represents the actual value.

Currently, we have not determined a specific security threshold for this difference. According to Zhu
et al. (2019), Gaussian noise greater than 10−2 may significantly affect the success rate of recon-
struction attacks. However, this conclusion is based solely on Gaussian distributions and does not
fully consider the potential impacts of other probability distributions.

To achieve the attack objective, attackers will employ various strategies to implement attacks. Al-
though we cannot enumerate all possible attack methods, we can discuss the difficulty of attacks
and the security of HANs by analyzing the information potentially exposed to attackers. Assuming
HANs is used by at least two honest clients, clientA and clientB , we will discuss the scenario
where an attacker attempts to obtain information from clientA.

G.1 INFORMATION ACCESSIBLE TO ATTACKERS

Throughout the lifecycle of HANs, attackers may gain access to the following information:

1. Training phase: {θEnc, θAgg, θAttack1 , θAttack2}
These parameters represent the original encryption model, original aggregation model, and
attack model parameters.

2. PPU process:
• Noisy public datasets {Di

pub}Ni=1

• Aggregation model parameters after each update {θtAgg}Tt=1

• Gradients derivable from the original model for each update {∇θtAgg}Tt=1

3. HANs usage phase: {pki, ci}Ni=1,magg where pki and ci represent the public key and ci-
phertext of the i-th client, respectively, and magg represents the aggregated value of the
ciphertexts.

It is worth noting that although attackers may obtain the above information, they cannot directly
access the plaintext mA of clientA’s private dataset unless one of the following conditions is met:

1. Obtain the noise-free plaintext m corresponding to ciphertexts of clientB in the public
dataset used by clientA, thereby implementing an attack similar to PCAPD.

2. Obtain at least two same noise-free plaintexts m1
A = m2

A corresponding to ciphertexts
c1A, c

2
A in the noisy dataset published by clientA, analyze the changes in ciphertext and

keys to obtain gradient changes, and implement a data reconstruction attack.

However, according to our security protocol, honest clients must add noise to their public datasets,
making it difficult to satisfy the above conditions and significantly increasing the difficulty of attacks.

G.2 ATTACKER-ACCESSIBLE INFORMATION AND ITS EFFECTIVENESS

In this section, we will discuss in detail the potential uses of the information obtained by attackers,
and analyze the limitations of this information in implementing attacks.

1. Information obtained after training: The effectiveness of the information
{θEnc, θAgg, θAttack1 , θAttack2} obtained after training is similarly limited. Through
PCAPD and θAttack attack experiments, we indirectly demonstrate that there are significant
differences in encryption strength and security between Private Models and Original
Models. The difference in accuracy between the two models further confirms this.

2. Information from the PPU process: Information obtained during the PPU process can be
divided into two categories:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) Public datasets {Di
pub}Ni=1: Their effectiveness is severely impacted due to the addition

of noise greater than Gaussian noise. We indirectly demonstrate this through PCAPD
attack experiments.

(b) Aggregation model parameters {θtAgg}Tt=1 and their changes {∇θtEnc,∇θtAgg}Tt=1: The
effectiveness of this information is low because it cannot further obtain plaintext, and
due to the existence of IPPU, the encryption model parameters have been further mod-
ified, intuitively reducing their usefulness again.

3. Information obtained during the usage phase: When there are at least two honest clients,
the effectiveness of the information {pki, ci}Ni=1,magg obtained during the usage phase is
relatively low. Although this information can be combined with the original model to form
a PCAOM attack, our experiments have demonstrated the ineffectiveness of this attack
method. Intuitively, it is difficult for attackers to directly extract useful information from
ciphertexts, which is similar to ciphertext-only attacks (COA) in traditional cryptography.
The security of HANs is mainly based on the following two points:
(a) We adopt an encryption scheme similar to a one-time pad (OTP).
(b) The key space, plaintext space, and ciphertext space are nearly infinitely large, signif-

icantly increasing the complexity of attacks.

Based on the effectiveness analysis of all information potentially accessible to attackers, we have
indirectly demonstrated the security of HANs. Through a detailed examination of information that
might be leaked during the training phase, PPU process, and usage phase, we find that the effective-
ness of this information in practical attacks is significantly limited. This limitation primarily stems
from the design features of HANs, including the OTP encryption scheme, the vast key and cipher-
text spaces, and the noise introduced in the PPU process. These factors collectively contribute to
substantially increasing the difficulty of successfully implementing attacks, thereby providing robust
security assurances for HANs.

Algorithm 1 SampleWithReplacement

Require: Other clients’ public datasets Dothers, Own private data xown, Own secret keys sk1, sk2
Ensure: Training set T

1: T ← ∅
2: for k = 1 to |xown| do
3: sample← (sk1[k], sk2[k])
4: y ← xown[k]

5: for Dpub
j in Dothers do

6: l← RandomInteger(1, |Dpub
j |) ▷ Randomly select an index from the current client’s

dataset
7: (xpubj , pkpubj , cpubj)← Dpub

j [l]

8: sample← sample ∪ pkpubj , cpubj

9: y ← y + xpubj

10: end for
11: sample← sample ∪ y
12: T ← T ∪ sample
13: end for
14: return T

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 2 CPPU

Require: Number of clients N , maximum iterations maxIterations, pre-trained HANs model
(including encryption model θenc and aggregation model θagg), private dataset size
privateDataSize, public dataset size publicDataSize, noise scale σ

Ensure: Updated encryption and aggregation models for all clients
1: for i = 1 to N do
2: xiniti , skiniti1 , skiniti2 ← generateRandomData(publicDataSize)
3: noise← generateGaussianNoise(σ) ▷ Generate initial Gaussian noise
4: xnoisyi ← xiniti + noise ▷ Add initial noise to plaintext
5: ciniti ← Encrypt(xiniti , skiniti1 , skiniti2 , θenci)

6: Dpub
i ← xnoisyi , (skiniti1 + skiniti2), ciniti ▷ Initialize public dataset with noisy plaintext

7: end for
8: for t = 1 to maxIterations do
9: for i = 1 to N do

10: Dothers
i ←

⋃N
j=1,j ̸=iD

pub
j ▷ Collect all other clients’ public datasets

11: xown
i , ski1, ski2 ← generateRandomData(privateDataSize) ▷ Generate private data

12: Ti ← SampleWithReplacement(Dothers
i , xown

i , ski1, ski2)
13: θenc,newi , θagg,newi ← Optimize(θenci , θaggi , Ti) ▷ Update both models
14: xnewi , sknewi1 , sknewi2 ← generateRandomData(publicDataSize)
15: cnewi ← Encrypt(xnewi , sknewi1 , sknewi2 , θenc,newi) ▷ Encrypt using updated encryption
16: noise← generateGaussianNoise(σ) ▷ Generate Gaussian noise with increased scale
17: xnoisyi ← Agg(xnewi + noise) ▷ Apply aggregation function on noisy plaintext
18: Dpub

i ← xnoisyi , (sknewi1 + sknewi2), cnewi ▷ Update public dataset
19: θenci ← θenc,newi ▷ Update encryption model
20: end for
21: Broadcast θagg,new and Dpub

i to all clients ▷ Synchronize the updated aggregation model
and public dataset to all clients

22: end for

Algorithm 3 IPPU

Require: Number of clients N , rounds per client roundsPerClient, HANs model after CPPU
(including client-specific encryption models {θenci }Ni=1 and aggregation model θagg), private
dataset size privateDataSize, final public datasets from original CPPU {Dpub

i }Ni=1
Ensure: Further updated encryption models for all clients

1: for i = 1 to N do ▷ This loop can be executed in parallel for each client
2: Dothers

i ←
⋃N

j=1,j ̸=iD
pub
j ▷ Collect all other clients’ public datasets

3: for r = 1 to roundsPerClient do
4: xown

i , ski1, ski2 ← generateRandomData(privateDataSize) ▷ Generate private data
5: Ti ← SampleWithReplacement(Dothers

i , xown
i , ski1, ski2)

6: θenci ← Optimize(θenci , θagg, Ti) ▷ Update enc model
7: end for
8: end for
9: return {θenci }Ni=1 ▷ Return final updated encryption models

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 4 Deep Leakage from Gradients (Zhu et al., 2019)

Require: F (x;W): Differentiable machine learning model; W : parameter weights; ∇W : gradi-
ents calculated by training data

Ensure: private training data x, y
1: procedure DLG(F , W ,∇W)
2: x′1 ← N (0, 1), y′1 ← N (0, 1) ▷ Initialize dummy inputs and labels
3: for i← 1 to n do
4: ∇W ′

i ←
∂ℓ(F (x′

i,Wt),y
′
i)

∂Wt
▷ Compute dummy gradients

5: Di ← ||∇W ′
i −∇W ||2

6: x′i+1 ← x′i − η∇x′
i
Di, y′i+1 ← y′i − η∇y′

i
Di ▷ Update data to match gradients

7: end for
8: return x′n+1, y′n+1
9: end procedure

Algorithm 5 DLG Attack Execution in HANs

Require: F (x;W): Differentiable machine learning model; W : model parameters; Enc: encryp-
tion function; sk1, sk2: secret keys; Attack1, Attack2: adversary’s attack models

Ensure: Attack success or failure
1: procedure DLG-HANS(F , W , Enc, sk1, sk2, Attack1, Attack2)
2: ∇W ← ComputeGradients(x, y) ▷ Client computes gradients
3: c← Enc(sk1, sk2,∇W) ▷ Client encrypts gradients
4: pk ← sk1 + sk2 ▷ Public key is sum of secret keys
5: ∇W1 ← Attack1(pk, c) ▷ Attack using public key and ciphertext
6: ∇W2 ← Attack2(c) ▷ Attack using only ciphertext
7: (x′1, y

′
1)← DLG(F,W,∇W1) ▷ Apply DLG on first attack result

8: (x′2, y
′
2)← DLG(F,W,∇W2) ▷ Apply DLG on second attack result

9: if (x′1 ≃ x ∩ y′1 ≃ y) or (x′2 ≃ x ∩ y′2 ≃ y) then
10: return Attack successful
11: else
12: return Attack failed
13: end if
14: end procedure

23

	Introduction
	RELATED WORK
	Privacy-Preserving Federated Learning (PPFL)
	Cryptography Based on Generative Adversarial Networks

	HANs System Definition
	Design Concept of AHE
	Definition of AHE
	Usability in Modeling
	Threat model in AHE Setting
	Pseudo N-1 Collusion Attacks
	Design and Training of HANs
	PPU
	Security Discussion of HANs

	Experimental Analysis
	Training Optimization and PPU Enhancements
	Performance and Security Analysis of HANs in FL
	Resistance to Pseudo N-1 Collusion Attacks
	Operating Efficiency

	Future Work
	Conclusion
	Problem Overview
	Problem Setting
	System Goals
	Threat Model

	HANs Training Design: Loss Function Formulation and Rationale
	HANs Training Implementation: A Multi-stage Optimization Process
	Pseudo N-1 Collusion Attacks
	Pseudo N-1 Collusion Attack based on the Original Model (PCAOM)
	Pseudo N-1 Collusion Attack based on Public Dataset (PCAPD)

	PPU Mechanism
	CPPU
	IPPU
	Trade-off and System Consistency

	Detailed Explanation of DLG Attack
	Security Discussion of HANs
	Information Accessible to Attackers
	Attacker-Accessible Information and Its Effectiveness

