
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

INFERENCE SCALING FOR LONG-CONTEXT RETRIEVAL
AUGMENTED GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The scaling of inference computation has unlocked the potential of long-context
large language models (LLMs) across diverse settings. For knowledge-intensive
tasks, the increased compute is often allocated to incorporate more external knowl-
edge. However, without effectively utilizing such knowledge, solely expanding
context does not always enhance performance. In this work, we investigate infer-
ence scaling for retrieval augmented generation (RAG), exploring strategies beyond
simply increasing the quantity of knowledge. We focus on two inference scaling
strategies: in-context learning and iterative prompting. These strategies provide
additional flexibility to scale test-time computation (e.g., by increasing retrieved
documents or generation steps), thereby enhancing LLMs’ ability to effectively
acquire and utilize contextual information. We address two key questions: (1) How
does RAG performance benefit from the scaling of inference computation when
optimally configured? (2) Can we predict the optimal test-time compute allocation
for a given budget by modeling the relationship between RAG performance and
inference parameters? Our observations reveal that increasing inference computa-
tion leads to nearly linear gains in RAG performance when optimally allocated, a
relationship we describe as the inference scaling laws for RAG. Building on this,
we further develop the computation allocation model to estimate RAG performance
across different inference configurations. The model predicts optimal inference
parameters under various computation constraints, which align closely with the
experimental results. By applying these optimal configurations, we demonstrate
that scaling inference compute on long-context LLMs achieves up to 58.9% gains
on benchmark datasets compared to standard RAG.

1 INTRODUCTION

Long-context large language models (LLMs) are designed to handle extended input sequences,
enabling them to process and understand longer context (e.g., Gemini 1.5 Pro with up to 2M
tokens) (Achiam et al., 2023; Team et al., 2023; Reid et al., 2024). Combined with increased inference
computation, long-context LLMs demonstrate improved performance across various downstream
tasks (Agarwal et al.; Snell et al., 2024). For example, many-shot in-context learning (ICL) can
match the performance of supervised fine-tuning by providing extensive in-context examples (Bertsch
et al., 2024). Particularly for knowledge-intensive tasks that leverage retrieval augmented generation
(RAG), increasing the quantity or size of retrieved documents up to a certain threshold consistently
enhances the performance (Ram et al., 2023; Xu et al., 2024; Jiang et al., 2024).

Previous studies on inference scaling for RAG focus on expanding the retrieved knowledge by
increasing the number or lengths of retrieved documents (Xu et al., 2024; Jiang et al., 2024; Shao
et al., 2024). However, only emphasizing on the knowledge quantity without providing further
guidance presents certain limitations. On one hand, current long-context LLMs still have limited
ability to effectively locate relevant information in ultra-long sequences upon challenging tasks (Li
et al., 2024; Kuratov et al., 2024). For instance, the optimal performance of long-context LLMs
is often achieved without fully utilizing the maximum length (Agarwal et al.). On the other hand,
numerous studies show that retrieving over soft thresholds (e.g., top-10 documents) leads to a
performance plateau and may even cause declines (Ram et al., 2023; Lee et al., 2024a; Kuratov et al.,
2024). Such performance drops may be traced back to the increased noise within context, which

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Normalized performance vs. effective context lengths on MuSiQue. Each line represents a
fixed configuration, scaled by adjusting the number of documents. Red dots and dash lines represent
the optimal configurations and their fitting results. Standard RAG plateaus early at 104 tokens, in
contrast, DRAG and IterDRAG show near-linear improvement as the effective context length grows.

causes distraction and adversely affects generation (Yoran et al., 2024; Zhang et al., 2024). As a
result, inference scaling of long-context RAG remains challenging for existing methods.

In this work, we leverage a broader range of strategies to comprehensively explore how RAG benefits
from the scaling of inference computation. A straightforward strategy is demonstration-based RAG
(DRAG), where multiple RAG examples are provided as demonstrations to utilize the long-context
capabilities of LLMs (Brown et al., 2020). DRAG allows models to learn (in-context) how to locate
relevant information and apply it to response generation1. Nevertheless, the quality of one-step
retrieval varies across tasks and often fails to provide sufficient information. Inspired by iterative
methods (Trivedi et al., 2023; Yoran et al., 2024), we develop iterative demonstration-based RAG
(IterDRAG). IterDRAG learns to decompose input queries into simpler sub-queries and answer them
using interleaved retrieval. By iteratively retrieving and generating upon sub-queries, LLMs construct
reasoning chains that bridge the compositionality gap for multi-hop queries. Together, these strategies
provide additional flexibility in scaling inference computation for RAG, allowing long-context LLMs
to more effectively address complex knowledge-intensive queries.

Building on these strategies, we investigate multiple ways to scale up inference computation. Here,
we measure computation by considering the total number of input tokens across all iterations, referred
to as the effective context length. In DRAG, scaling the effective context length can be done by
increasing two inference parameters: the number of retrieved documents and in-context examples.
In IterDRAG, test-time compute can be further extended by introducing additional generation steps.
Since different combinations of inference parameters result in varied allocations of computational
resources, our goal is to establish the relationship between RAG performance, different scales and
allocations of inference computation. Through extensive experiments on benchmark QA datasets,
we demonstrate an almost linear relationship between RAG performance and the scale of effective
context length by combining both RAG strategies, as shown in Figure 1 (right). Moreover, our RAG
strategies exhibit improved performance than merely scaling the number of documents, achieving
state-of-the-art performance with the compact Gemini 1.5 Flash (See evaluation in Figure 2).

Drawing from our observations, we examine the relationship between RAG performance and in-
ference computation, which we quantify as the inference scaling laws for RAG. These observed
inference scaling laws reveal that RAG performance consistently improves with the expansion of
the effective context length under optimal configurations. Consequently, we take a deeper dive into
modeling RAG performance with respect to various inference computation allocations. Our goal is
to predict the optimal set of inference parameters that maximize the performance across different
RAG tasks. To achieve this, we quantitatively model the relationship between RAG performance
and varying inference configurations with the computation allocation model for RAG. Using the
estimated computation allocation model, the optimal configurations can be empirically determined
and generalize well for various scenarios, thereby maximizing the utilization of the computation
budget. We summarize our contributions as follows:

1Different from in-context RAG that prepends documents / QA examples (Press et al., 2023; Ram et al.,
2023), we leverage multiple examples comprising of documents, questions and answers to demonstrate the task.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Evaluation accuracy of Gemini 1.5 Flash using different methods: zero-shot QA, many-shot
QA, RAG (with an optimal number of documents), DRAG and IterDRAG on benchmark QA datasets.
By scaling up inference compute (up to 5M tokens), DRAG consistently outperforms baselines, while
IterDRAG improves upon DRAG through interleaving retrieval and iterative generation.

• We systematically investigate inference scaling for long-context RAG, for which we intro-
duce two scaling strategies, DRAG and IterDRAG, to effectively scale inference compute.

• We comprehensively evaluate DRAG and IterDRAG, where they not only achieve state-
of-the-art performance, but also exhibit superior scaling properties compared to solely
increasing the quantity of documents.

• Through extensive experiments on benchmark QA datasets, we demonstrate that when
test-time compute is optimally allocated, long-context RAG performance can scale almost
linearly with the increasing order of magnitude of the computation budget.

• We quantitatively model the relationship between RAG performance and different inference
parameters, deriving the computation allocation model. This model aligns closely with our
experimental results and generalize well across scenarios, providing practical guidance for
optimal computation allocation in long-context RAG.

2 RELATED WORK

2.1 LONG-CONTEXT LLMS

Long-context large language models (LLMs) are designed to utilize extensive context and thereby
improve their generative capabilities. Early works in extending context lengths involve sparse / low-
rank kernels to reduce memory requirements (Kitaev et al., 2019; Beltagy et al., 2020; Zaheer et al.,
2020; Choromanski et al., 2020). In addition, recurrent and state space models (SSMs) are proposed
as efficient substitutes for transformer-based models (Gu et al., 2021; Gu & Dao, 2023; Peng et al.,
2023a; Beck et al., 2024). For causal LLMs, extrapolation and interpolation methods have proven
effective in expanding context window lengths (Press et al., 2021; Chen et al., 2023; Sun et al., 2023;
Peng et al., 2023b). Recent advancements in efficient attention methods (Dao et al., 2022; Jacobs
et al., 2023; Liu et al., 2023) further enable LLMs to train and infer upon input sequences comprising
millions of tokens (Achiam et al., 2023; Team et al., 2023; Reid et al., 2024).

2.2 IN-CONTEXT LEARNING

In-context learning (ICL) offers a computationally efficient approach to enhance model performance
at inference time by conditioning on a few demonstrations of the task (Brown et al., 2020). To further
improve ICL performance, existing works focuses on pretraining strategies that optimize the language
models to learn in-context (Min et al., 2022; Wei et al., 2023; Gu et al., 2023). In addition, selective
usage of few-shot examples are shown to be helpful for enhancing downstream task performance (Liu
et al., 2022; Rubin et al., 2022; Wang et al., 2024). Notably, reformatting or finding optimal ordering
of in-context examples also improves ICL performance effectiveness (Lu et al., 2022; Wu et al., 2023;
Liu et al., 2024a). With the emergence of long-context LLMs (Achiam et al., 2023; Team et al., 2023;
Reid et al., 2024), scaling the number of examples becomes possible in ICL Li et al. (2023); Bertsch
et al. (2024); Agarwal et al.. For instance, Agarwal et al. show that many-shot ICL can mitigate
pretraining biases within LLMs and thus improves ICL performance across various tasks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 RETRIEVAL AUGMENTED GENERATION

Retrieval augmented generation (RAG) improves language model performance by incorporating
relevant knowledge from external sources (Lewis et al., 2020; Guu et al., 2020; Karpukhin et al., 2020).
In contrast to naïve RAG, optimizing the retrieval stage can effectively enhance context relevance
and improve generation performance (Ma et al., 2023; Trivedi et al., 2023; Jiang et al., 2023; Shi
et al., 2024; Sarthi et al., 2024; Lin et al., 2024). An example is REPLUG, in which Shi et al. (2024)
leverage LLM as supervision to learn a dense retriever model. In addition, encoding documents can
increase knowledge retrieval and improve generation capabilities (Khandelwal et al., 2019; Izacard
& Grave, 2021; Borgeaud et al., 2022; Izacard et al., 2023). For instance, Izacard & Grave (2021)
leverages fusion-in-decoder architecture to encode multiple question-passage pairs while maintaining
the model efficiency. Alternatively, selectively utilizing knowledge from the documents improves
the robustness of LLMs against irrelevant context (Yu et al., 2023; Yoran et al., 2024; Yan et al.,
2024; Zhang et al., 2024). For example, RAFT proposes to train language models with negative
documents to improve generation quality and relevance (Zhang et al., 2024). Concurrent to our work,
long-document retrieval and datastore scaling are proposed to optimize RAG performance (Jiang
et al., 2024; Shao et al., 2024). Despite such progress, inference scaling remains under-explored for
long-context RAG methods. As such, we investigate how variations in inference computation impact
RAG performance, with the goal of optimizing test-time compute allocation.

3 INFERENCE SCALING STRATEGIES FOR RAG

3.1 PRELIMINARIES

We measure inference computation with effective context length, defined as the total number of input
tokens across all iterations before the LLM outputs the final answer. For most methods that only
call the LLM once, the effective context length is equivalent to the number of input tokens in the
prompt and is limited by the context window limit of the LLM. For methods that iteratively call the
LLM, the effective context length can be extended indefinitely depending on the strategy. We exclude
output tokens and retrieval costs from our analysis, as LLMs typically generate significantly fewer
tokens (fewer than 10) in knowledge-intensive tasks. Additionally, retrieval is generally much less
computationally expensive than LLM inference, especially with scalable matching methods (Sun
et al., 2024). Our objective is to understand how RAG performance changes as we scale up inference
computation. In demonstration-based RAG (DRAG), we achieve such scaling by incorporating both
extensive documents and in-context examples. For further scaling, we increase generation steps
through iterative demonstration-based RAG (IterDRAG). We introduce both strategies below.

3.2 DEMONSTRATION-BASED RAG

Demonstration-based RAG (DRAG) leverages in-context learning to exploit the capabilities of
long-context LLMs by directly generating answers from an extended input context. DRAG builds
upon naïve RAG and integrates both documents and in-context examples into the input prompt.
This expanded context allows the model to generate answers to the input query within a single
inference request (See Figure 3 left). For both in-context examples and the test-time query, we
employ a retrieval model to select the top-k retrieved documents from a large corpus (e.g., Wikipedia).
We reverse the order of the retrieved documents, placing higher-ranked documents closer to the
query (Liu et al., 2024b). As we use instruction-tuned LLMs, we design a similar prompt template
following Agarwal et al. and align the formatting with prefixes for retrieved documents, input and
output (See Appendix I). Unlike previous works (Press et al., 2023; Trivedi et al., 2023), DRAG
incorporates extensive retrieved documents within the demonstrations, enabling long-context LLMs
to learn to extract relevant information and answer questions using a rich input context.

3.3 ITERATIVE DEMONSTRATION-BASED RAG

Despite access to external knowledge, complex multi-hop queries remain challenging due to the
compositionality gap. To tackle this issue, we introduce iterative demonstration-based RAG (Iter-
DRAG), which handles complex queries by decomposing the query into simpler sub-queries. For
each sub-query, retrieval is performed to gather additional contextual information, which is then

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Confidential - Google DeepMind

Final Answer

Sub-Query 1

Intermediate
Answer 1Input Query

Sub-Query 2

Intermediate
Answer 2

Sub-Query n

Intermediate
Answer n

Retrieve &
Generate

Retrieve &
Generate

Retrieve &
Generate

DRAG IterDRAGFinal Answer

Documents Generate

Generate Generate

In-Context
Examples

Figure 3: DRAG vs. IterDRAG. IterDRAG breaks down the input query into sub-queries and answer
them to improve the accuracy of the final answer. In test-time, IterDRAG scales the computation
through multiple inference steps to decompose complex queries and retrieve documents.

used to generate intermediate answers. After all sub-queries are resolved, the retrieved context,
sub-queries, and their answers are combined to synthesize the final answer (See Figure 3 right).

While multiple existing datasets provide training data with queries and corresponding answers,
sub-queries and intermediate answers are often absent. To generate in-context examples with sub-
queries and intermediate answers, we prompt LLMs with constrained decoding to follow the Self-Ask
format (Press et al., 2023; Koo et al., 2024). In each iteration, LLMs generate either a sub-query,
an intermediate answer, or the final answer. If a sub-query is generated, additional documents are
retrieved and interleaved into the prompt before producing the intermediate answer. IterDRAG
continues until the final answer is generated or the number of maximum iterations is reached, at
which point LLM is forced to generate the final answer. We retain examples with intermediate steps
and correct final answers to construct in-context demonstrations. Each example should include the
retrieved documents, sub-query and answer pairs, as well as the final answer.

During inference, in-context examples are prepended to the initial documents retrieved for the input
query. Similarly, each inference request yields a sub-query, an intermediate answer, or the final
answer. Upon sub-queries, additional documents are retrieved and merged with the initial ones
to generate intermediate answers. In our implementation, we allow up to five iterations of query
decomposition before generating the final answer. This iterative process effectively scales test-time
computation, with the input tokens from all iterations summed to calculate the effective context length.
IterDRAG facilitates a more granular approach by learning to: (1) decompose query into simple and
manageable sub-queries; and (2) retrieve and locate relevant information to answer (sub)-queries. As
such, the iterative retrieval and generation strategy helps narrowing the compositionality gap and
improves knowledge extraction, thereby enhancing overall RAG performance.

4 RAG PERFORMANCE AND INFERENCE COMPUTATION SCALE

4.1 FIXED BUDGET OPTIMAL PERFORMANCE

For a given budget on inference computation, i.e., a maximum effective context length Lmax, there
are multiple ways to optimize the use of computation resources through inference parameters. For
example, in DRAG, we can adjust both the number of retrieved documents and in-context examples,
while in the IterDRAG strategy, we additionally introduce the number of iterations for retrieval and
generation. Henceforth, we use θ to denote all these inference parameters.

For each input query and its ground-truth answer (xi, yi) ∈ X , we can apply the RAG inference
strategy f parameterized by θ. We denote the effective input context length to the LLM as l(xi; θ)
and the obtained prediction as ŷi = f(xi; θ). A metric P (yi, ŷi) can then be calculated based on yi
and ŷi. To understand the relationship between RAG performance and inference computation, we
sample a few different inference computation budgets. For each budget Lmax, we find the optimal

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Optimal performance of different methods with varying maximum effective context lengths
Lmax (i.e., the total number of input tokens across all iterations). ZS QA and MS QA refers to
zero-shot QA and many-shot QA respectively. Partial results are omitted for methods that do not
further scale with increasing Lmax. For clarity, we mark the best results for each Lmax in bold.

Lmax Method Bamboogle HotpotQA MuSiQue 2WikiMultiHopQA
EM F1 Acc EM F1 Acc EM F1 Acc EM F1 Acc

16k

ZS QA 16.8 25.9 19.2 22.7 32.0 25.2 5.0 13.2 6.6 28.3 33.5 30.7
MS QA 24.0 30.7 24.8 24.6 34.0 26.2 7.4 16.4 8.5 33.2 37.5 34.3
RAG 44.0 54.5 45.6 44.2 57.9 49.2 12.3 21.5 15.3 42.3 49.3 46.5
DRAG 44.0 55.2 45.6 45.5 58.5 50.2 14.5 24.6 16.9 45.2 53.5 50.5
IterDRAG 46.4 56.2 51.2 36.0 47.4 44.4 8.1 17.5 12.2 33.2 38.8 43.8

32k
RAG 48.8 56.2 49.6 44.2 58.2 49.3 12.3 21.5 15.3 42.9 50.6 48.0
DRAG 48.8 59.2 50.4 46.9 60.3 52.0 15.4 26.0 17.3 45.9 53.7 51.4
IterDRAG 46.4 56.2 52.0 38.3 49.8 44.4 12.5 23.1 19.7 44.3 54.6 56.8

128k
RAG 51.2 60.3 52.8 45.7 59.6 50.9 14.0 23.7 16.8 43.1 50.7 48.4
DRAG 52.8 62.3 54.4 47.4 61.3 52.2 15.4 26.0 17.9 47.5 55.3 53.1
IterDRAG 63.2 74.8 68.8 44.8 59.4 52.8 17.3 28.0 24.5 62.3 73.8 74.6

1M DRAG 56.0 62.9 57.6 47.4 61.3 52.2 15.9 26.0 18.2 48.2 55.7 53.3
IterDRAG 65.6 75.6 68.8 48.7 63.3 55.3 22.2 34.3 30.5 65.7 75.2 76.4

5M IterDRAG 65.6 75.6 68.8 51.7 64.4 56.4 22.5 35.0 30.5 67.0 75.2 76.9

average metric P ∗(Lmax) achievable within this budget by enumerating different θ ∈ Θ:

P ∗(Lmax) := max
θ∈Θ

{ 1

|X |
∑
i

P
(
yi, f(xi; θ)

)∣∣∣∀i, l(xi; θ) ≤ Lmax

}
. (1)

Our goal is to establish the relationship between the inference computation budget Lmax and the
best possible performance within this budget P ∗(Lmax), using any possible strategies and parameter
configurations to allocate the inference computation resources. For simplicity, we also refer to
P ∗(Lmax) as the optimal performance. We investigate the following factors within the inference
parameter set θ: (1) the number of documents k, which are retrieved from a large corpus (e.g.,
Wikipedia) based on the input query; (2) the number of in-context examples m, where each of the
examples consists of k documents, an input query and its label; and (3) the number of generation
iterations n. In DRAG, an answer can be directly generated upon input context, so n = 1. In contrast,
IterDRAG involves multiple steps of interleaved retrieval and generation, expanding both the effective
context length and inference compute without needing longer context windows.

We evaluate the performance of Gemini 1.5 Flash with context length window up to 1M tokens
on knowledge-intensive question answering, including multi-hop datasets Bamboogle, HotpotQA,
MuSiQue and 2WikiMultiHopQA (Press et al., 2023; Yang et al., 2018; Trivedi et al., 2022; Ho et al.,
2020). Additional results are provided in Appendix C and Appendix D. To manage the computational
costs of extensive experiments, we follow Wu et al. (2024); Gutiérrez et al. (2024) and sample 1.2k
examples from each dataset for evaluation. The evaluation metrics include exact match (EM), F1
score (F1) and accuracy (Acc), in which the accuracy metric assesses whether the ground truth is
located within the prediction. We sample the inference computation budget Lmax as 16k, 32k, 128k,
1M and 5M tokens. For the parameter space Θ of DRAG, we consider the number of documents
k ∈ {0, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}, and the number in-context examples m ranging from
0, 20, 21, ..., to 28. For IterDRAG we further experiment with number of iterations n up to 5. We
compare to the following baselines: (1) zero-shot QA (QA), where the model does not leverage any
retrieved documents or demonstrations; (2) many-shot QA (MS QA), where the model only uses
varying number of demonstrations m without any retrieved document; and (3) retrieval augmented
generation (RAG), where the model only uses k retrieved documents without demonstrations. We
report the optimal performance of each method with different maximum effective context length
budgets by examining their performance with different inference parameter configurations.

4.2 OVERALL PERFORMANCE

We report the optimal performance P ∗(Lmax) for different inference strategies in Table 1, where
we identify the optimal inference parameters for each computation budget Lmax. Some variants are
omitted for certain Lmax because they do not scale to the corresponding context length. For example,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Normalized performance vs. effective context lengths across datasets. Each line represents
a fixed configuration, scaled by varying the number of documents. Red dots indicate the optimal
configurations, with the dashed line showing the fitting results. The observed optimal performance
can be approximated by a linear relationship with the effective context lengths.

the prompt for zero-shot QA cannot be increased, while the number of in-context examples for
many-shot QA is capped at 28, so neither scales to Lmax = 32k. Similarly, RAG does not scale to
Lmax larger than 128k, and DRAG is limited by the LLM’s context window limit of 1M.

Unlike QA and RAG baselines, the performance of DRAG and IterDRAG consistently increase
as we expand the maximum effective context length. More specifically, we observe: (1) DRAG
and IterDRAG scale better than baselines. Baselines like many-shot QA peak at 16k tokens, while
RAG improves until 128k, after which performance plateaus. In comparison, DRAG and IterDRAG
can find optimal configurations to more effectively utilize test-time compute, exhibiting superior
performance and scaling properties. Performance of DRAG consistently improves until 1M tokens,
while IterDRAG further enhances RAG performance with 5M tokens of computation budget by
iteratively calling LLMs. (2) DRAG excels with shorter maximum lengths, while IterDRAG scales
more effectively with longer effective context length. At 16k and 32k, DRAG typically delivers the
best performance, while at 128k and beyond, IterDRAG achieves superior results overall, highlighting
the effectiveness of iterative retrieval and generation. These results suggest that increasing Lmax is
beneficial for RAG, with DRAG and IterDRAG strategies each excelling at different scales.

4.3 INFERENCE SCALING LAWS FOR RAG

To analyze RAG performance with different effective context lengths, we plot the performance of all
configurations across datasets in Figure 4. Similar to Figure 1, we visualize DRAG and IterDRAG
and highlight the optimal performance P ∗(Lmax) for different selections of Lmax. The fitting results
are shown as grey dashed lines. We provide additional dataset-specific results in Appendix F.

The optimal performance exhibits consistent gains as the effective context length expands, demon-
strating a strong linear correlation, which we term the inference scaling laws for RAG. Combined with
dataset-specific results, our key observations are: (1) The optimal performance scales nearly linearly
with the order of magnitude of the inference compute. Such linear relationship suggests that RAG
performance can be improved by increasing computation, allowing for more accurate predictions
of performance given available compute resources. (2) For Lmax above 105, IterDRAG continues to
scale effectively with interleaving retrieval and iterative generation. This aligns with our results in
Table 1, where IterDRAG better utilizes computation budgets for effective context lengths exceeding
128k. (3) Gains on optimal performance gradually diminish beyond an effective context length of
1M. Despite dataset variations, the performance follows similar trends up to 1M tokens. Beyond
that, improvements from 1M to 5M are less substantial or plateau, potentially due to limitations
in long-context modeling. In summary, while gains are smaller beyond 1M tokens, optimal RAG
performance scales almost linearly with increasing inference compute through DRAG and IterDRAG.

4.4 PARAMETER-SPECIFIC SCALING

To gain further insights into the dynamics of DRAG and IterDRAG, we grid search over different
combinations of θ and evaluate the performance. The results are presented in Figure 5, where we
visualize DRAG performance using heatmaps (See IterDRAG heatmap in Appendix D). Additionally,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Averaged DRAG performance heatmap for different metrics.

(b) Performance vs. number of documents. (c) Performance vs. number of shots.

Figure 5: RAG performance changes with varying number of documents and in-context examples.
5a reports the averaged metric values across datasets, whereas in 5b and 5c, each line represents the
normalized performance of a consistent configuration with progressively increasing documents / shots.

we provide further results with varying numbers of documents (k) and shots (m). In summary, scaling
retrieval, demonstrations and more generation steps leads to performance gains in most cases, yet
such gains vary by effective context length and method. In particular, we note: (1) Documents and in-
context examples are not equally helpful. For a fixed configuration, increasing the number of retrieved
documents k usually leads to more substantial performance gains, as evidenced by the differing
slopes in Figure 5. (2) Increasing shots m is more helpful for IterDRAG. For example, increase m
from 0 to 1 (rather than k) is more helpful for IterDRAG, possibly due to demonstrations that leads to
improved in-context query decomposition and knowledge extraction. (3) Scaling saturates differently
for DRAG and IterDRAG. An example can be found in the increase of m from 0 to 1, which results in
significant improvements for IterDRAG but shows little impact on DRAG. Beyond the soft thresholds,
further increases in k or m yield marginal gains or even results in performance declines. (4) For a
given Lmax, the optimal θ depends on the method, metric and dataset. As illustrated in Figure 5a
and Figure 8, the optimal combinations are sensitive to the metrics and located differently, posing
challenges for performance modeling w.r.t. θ. In conclusion, increasing documents, demonstrations
and iterations can enhance RAG performance, but each contributes differently to the overall results.
As such, identifying the optimal combination of hyperparameters remains challenging.

5 INFERENCE COMPUTATION ALLOCATION FOR LONG-CONTEXT RAG

After examining the overall performance of different RAG strategies and the varying impacts of
different inference parameters, we now quantify the relationship between performance and the
hyperparameter set θ. We hypothesize that for long-context RAG, we can model such test-time
scaling properties and term it computation allocation model for RAG. This model, in turn, can be
used to guide the selection of θ based on the maximum effective context length Lmax.

5.1 FORMULATION AND ESTIMATION

With a slight abuse of notation, we redefine the average performance metric P (e.g., accuracy)
on dataset X as a function of θ. We consider the number of documents k, demonstrations m and
maximum iterations n within θ, namely θ := (k,m, n)T . To account for the variance across methods
and tasks, we introduce i := (idoc, ishot, 0)

T . idoc and ishot measure the informativeness of documents
and in-context examples respectively. While technically we can also define an iiter to measure the
informativeness of additional generation steps, applying iiter does not yield improved accuracy, so we

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: The estimated performance using the proposed observational scaling laws vs. actual metric
values in DRAG. The subplots represent different datasets, where each line corresponds to a fixed
number of documents, we scale the context length by increasing the number of shots.

leave it as 0 in our experiments. We formulate the computation allocation model as2:

σ−1(P (θ)) ≈ (a+ b⊙ i)T log(θ) + c, (2)

where ⊙ refers to element-wise product. a, b and c (scalar) are parameters to be estimated, and i can
be computed base on the specific task. There are different ways to define i; we choose a definition to
compute i based on the performance difference between selected base configurations. In particular,
for each strategy on each dataset, idoc is defined as the performance gain by only adding one document
compared to zero-shot QA. Similarly, ishot is defined as the performance gain by adding only one
in-context example compared to zero-shot QA. To account for the sub-linearity in extremely long
contexts (above 1M), we apply an inverse sigmoidal mapping σ−1 to scale the values of the metric P .
Further implementation details are reported in Appendix I.

In Equation (2), estimations on a, b and c are specific to a certain model, reflecting how LLMs
improve with varying number of documents and shots (i.e., in-context learning / zero-shot capabil-
ities). In contrast, i models the performance variations within the selected task (i.e., how external
knowledge / demonstrations help responding to the query). Therefore, the computation allocation
model can be estimated once and applied to various downstream tasks without requiring additional
calibration. To estimate the parameters, varying combinations of θ are evaluated to perform ordinary
least squares on a, b and c. We report the parameters for Gemini 1.5 Flash in Appendix G.

5.2 VALIDATING THE COMPUTATION ALLOCATION MODEL FOR RAG

We evaluate the computation allocation model for RAG by comparing the predicted metrics to the
actual values, with normalized results for DRAG visualized in Figure 6. Here, each subplot represents
a different dataset, and each line corresponds to a document setting (k), we scale the context length
by adjusting in-context examples (m). As illustrated, the performance improves with the increase
of k and m across datasets, displaying highly consistent trends between the predicted and actual
metric values, despite some variations. Notably, each dataset exhibits different levels of consistency:
Bamboogle exhibits the highest consistency, while HotpotQA generates more variable results. Our
findings demonstrate how external knowledge and in-context learning can effectively enhance RAG
performance with long-context capabilities, suggesting the effectiveness of the computation allocation
model for RAG and how they may be used to predict benchmark results.

Table 2: Ablation study results of the computation allocation model for RAG.

Exclude b Quadratic θ Linear σ Sigmoidal σ
R2 MSE R2 MSE R2 MSE R2 MSE

Values 0.866 0.116 0.867 0.117 0.876 0.109 0.903 0.085

Ablation Study. To verify the effectiveness of the computation allocation model, we perform
ablation studies and evaluate the fitting performance of different variants. In particular, we assess:

2In our implementation, we shift the values within θ by a small ϵ to prevent numerical issues with log(0).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(1) estimation without b and i (i.e., Exclude b); (2) a quadratic form of input log(θ) (Quadratic θ);
(3) linear scaling of P (Linear σ); and (4) sigmoid scaling of P (Sigmoidal σ). The R2 and MSE
values for these variants are reported in Table 2, in which (4) represents the complete design of
our computation allocation model. The results indicate that incorporating the additional b with i
enhances the relevance and reduces error across all tasks. Moreover, applying inverse sigmoid to P
significantly improves the estimation in comparison to quadratic θ or linear scaling.

Table 3: Domain generalization results of the computation allocation model for RAG.

Bamboogle HotpotQA MuSiQue 2WikiMultiHopQA

EM F1 Acc EM F1 Acc EM F1 Acc EM F1 Acc

Baseline 49.6 58.8 51.2 46.3 60.2 51.4 14.9 24.7 16.9 46.5 53.7 51.6
Predict 64.0 75.6 68.0 47.8 63.3 55.3 19.3 32.5 29.3 60.8 72.4 74.9

Oracle 65.6 75.6 68.8 48.7 63.3 55.3 22.2 34.3 30.5 65.7 75.2 76.4

Domain Generalization. We also examine the generalization of the computation allocation model
for RAG for unseen domains. In other words, the parameters of Equation (2) are tested on the target
domain but learnt from the remaining domains. For inference, only i is derived from the target
domain. We report the results for 1M effective context length in Table 3, where we compare to a
8-shot baseline configuration (scaled by increasing retrieved documents) and the optimum results
(Oracle). In summary, the results show that computation allocation model significantly outperforms
baseline and closely aligns with the oracle results (96.6% of the optimal performance). Notably,
Bamboogle and HotpotQA exhibit highly similar target results, with the performance metrics varying
by less than 2.5% from the oracle. These results suggest the potential of applying the computation
allocation model for RAG to a wider range of knowledge-intensive tasks.

Table 4: Length extrapolation results of the computation allocation model for RAG.

16k → 32k 32k → 128k 128k → 1M 1M → 5M
EM F1 Acc EM F1 Acc EM F1 Acc EM F1 Acc

Baseline 37.4 47.6 40.4 39.0 49.5 42.2 39.3 49.3 42.8 44.5 55.4 49.8
Predict 37.4 48.2 41.0 41.2 52.0 45.4 48.0 60.9 56.9 47.9 59.8 55.2
Oracle 39.2 49.8 42.7 46.9 59.0 55.1 50.5 62.1 57.7 51.7 62.6 58.1

Length Extrapolation. In addition to predictability on unseen domains, we explore the extrapola-
tion of context length based on the computation allocation model. Here, we estimate the parameters
of Equation (2) using experiments with shorter context lengths and assess their predictive accuracy
on longer ones. We assess different extrapolation settings and present the predicted metric values in
Table 4. Our observations are: (1) The predictions are accurate and consistently outperform the 8-shot
baseline. For instance, the average difference between the predicted and oracle results from 128k to
1M tokens is just 2.8%. (2) Extrapolating from 32k to 128k is challenging. This is because DRAG
performs best around 32k, while IterDRAG typically excels at a long context of 128k, as evidenced
in Figure 4. Consequently, it creates a discrepancy between training and predicting performance
distribution. (3) 5M context length is less predictable, with the average performance difference
between predicted and oracle metrics observed at a substantial 5.6%. Overall, length extrapolation
with computation allocation model is accurate and more effective for target lengths below 1M.

6 CONCLUSION

In this paper, we explore inference scaling in long-context RAG. By systematically studying the
performance with different inference configurations, we demonstrate that RAG performance improves
almost linearly with the increasing order of magnitude of the test-time compute under optimal
inference parameters. Based on our observations, we derive inference scaling laws for RAG and
the corresponding computation allocation model, designed to predict RAG performance on varying
hyperparameters. Through extensive experiments, we show that optimal configurations can be
accurately estimated and align closely with the experimental results. These insights provide a strong
foundation for future research in optimizing inference strategies for long-context RAG.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Luis Rosias, Stephanie CY Chan, Biao
Zhang, Aleksandra Faust, and Hugo Larochelle. Many-shot in-context learning. In ICML 2024
Workshop on In-Context Learning.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Amanda Bertsch, Maor Ivgi, Uri Alon, Jonathan Berant, Matthew R Gormley, and Graham Neu-
big. In-context learning with long-context models: An in-depth exploration. arXiv preprint
arXiv:2405.00200, 2024.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of
large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with IO-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did Aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions of
the Association for Computational Linguistics, 9:346–361, 2021.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Pre-training to learn in context. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 4849–4870, 2023.

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. HippoRAG: Neurobi-
ologically inspired long-term memory for large language models. arXiv preprint arXiv:2405.14831,
2024.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929–3938.
PMLR, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Proceedings of the 28th
International Conference on Computational Linguistics, pp. 6609–6625, 2020.

Gautier Izacard and Édouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume, pp. 874–880, 2021.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models. Journal of Machine Learning Research, 24(251):1–43,
2023.

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Leon Song, Samyam Rajbhan-
dari, and Yuxiong He. DeepSpeed Ulysses: System optimizations for enabling training of extreme
long sequence transformer models. arXiv preprint arXiv:2309.14509, 2023.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 7969–7992, 2023.

Ziyan Jiang, Xueguang Ma, and Wenhu Chen. LongRAG: Enhancing retrieval-augmented generation
with long-context LLMs. arXiv preprint arXiv:2406.15319, 2024.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–
1611, 2017.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781, 2020.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. In International Conference on
Learning Representations, 2019.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2019.

Terry Koo, Frederick Liu, and Luheng He. Automata-based constraints for language model decoding.
arXiv preprint arXiv:2407.08103, 2024.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
Mikhail Burtsev. BABILong: Testing the limits of LLMs with long context reasoning-in-a-haystack.
arXiv preprint arXiv:2406.10149, 2024.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Jinhyuk Lee, Anthony Chen, Zhuyun Dai, Dheeru Dua, Devendra Singh Sachan, Michael Boratko,
Yi Luan, Sébastien MR Arnold, Vincent Perot, Siddharth Dalmia, et al. Can long-context language
models subsume retrieval, RAG, SQL, and more? arXiv preprint arXiv:2406.13121, 2024a.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R Cole, Kai Hui, Michael
Boratko, Rajvi Kapadia, Wen Ding, et al. Gecko: Versatile text embeddings distilled from large
language models. arXiv preprint arXiv:2403.20327, 2024b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive NLP tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Mukai Li, Shansan Gong, Jiangtao Feng, Yiheng Xu, Jun Zhang, Zhiyong Wu, and Lingpeng Kong.
In-context learning with many demonstration examples. arXiv preprint arXiv:2302.04931, 2023.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context LLMs struggle with
long in-context learning. arXiv preprint arXiv:2404.02060, 2024.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi, Maria Lomeli, Richard James, Pedro
Rodriguez, Jacob Kahn, Gergely Szilvasy, Mike Lewis, et al. RA-DIT: Retrieval-augmented dual
instruction tuning. In The Twelfth International Conference on Learning Representations, 2024.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context. arXiv preprint arXiv:2310.01889, 2023.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for GPT-3? In Proceedings of Deep Learning Inside Out
(DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures, pp. 100–114, 2022.

Sheng Liu, Haotian Ye, Lei Xing, and James Y Zou. In-context vectors: Making in context learning
more effective and controllable through latent space steering. In Forty-first International Conference
on Machine Learning, 2024a.

Zihan Liu, Wei Ping, Rajarshi Roy, Peng Xu, Chankyu Lee, Mohammad Shoeybi, and Bryan
Catanzaro. ChatQA: Surpassing GPT-4 on conversational QA and RAG. arXiv preprint
arXiv:2401.10225, 2024b.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 8086–8098, 2022.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query rewriting in retrieval-
augmented large language models. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 5303–5315, 2023.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to learn in
context. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2791–2809, 2022.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernández Ábrego, Ji Ma, Vincent Y Zhao,
Yi Luan, Keith B Hall, Ming-Wei Chang, et al. Large dual encoders are generalizable retrievers.
arXiv preprint arXiv:2112.07899, 2021.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Leon Derczynski, et al. RWKV: Reinventing rnns for the
transformer era. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp.
14048–14077, 2023a.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023b.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao,
James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard, et al. KILT: a benchmark for
knowledge intensive language tasks. arXiv preprint arXiv:2009.02252, 2020.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 5687–5711, 2023.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
Yoav Shoham. In-context retrieval-augmented language models. Transactions of the Association
for Computational Linguistics, 11:1316–1331, 2023.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2655–2671, 2022.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Man-
ning. RAPTOR: Recursive abstractive processing for tree-organized retrieval. In The Twelfth
International Conference on Learning Representations, 2024.

Rulin Shao, Jacqueline He, Akari Asai, Weijia Shi, Tim Dettmers, Sewon Min, Luke Zettlemoyer,
and Pang Wei Koh. Scaling retrieval-based language models with a trillion-token datastore. arXiv
preprint arXiv:2407.12854, 2024.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Richard James, Mike Lewis, Luke
Zettlemoyer, and Wen-tau Yih. REPLUG: Retrieval-augmented black-box language models.
In Proceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 8364–
8377, 2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, and Sanjiv Kumar. SOAR: improved indexing
for approximate nearest neighbor search. Advances in Neural Information Processing Systems, 36,
2024.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim, Vishrav Chaudhary,
Xia Song, and Furu Wei. A length-extrapolatable transformer. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 14590–
14604, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
with chain-of-thought reasoning for knowledge-intensive multi-step questions. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 10014–10037, 2023.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
models are latent variable models: Explaining and finding good demonstrations for in-context
learning. Advances in Neural Information Processing Systems, 36, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen, Yifeng Lu,
Denny Zhou, Tengyu Ma, et al. Symbol tuning improves in-context learning in language models.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 968–979, 2023.

Kevin Wu, Eric Wu, and James Zou. How faithful are RAG models? quantifying the tug-of-war
between RAG and LLMs’ internal prior. arXiv preprint arXiv:2404.10198, 2024.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Lingpeng Kong. Self-adaptive in-context learning: An
information compression perspective for in-context example selection and ordering. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 1423–1436, 2023.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu, Sandeep Subramanian,
Evelina Bakhturina, Mohammad Shoeybi, and Bryan Catanzaro. Retrieval meets long context large
language models. In The Twelfth International Conference on Learning Representations, 2024.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. Corrective retrieval augmented generation.
arXiv preprint arXiv:2401.15884, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2369–2380, 2018.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Berant. Making retrieval-augmented language
models robust to irrelevant context. In The Twelfth International Conference on Learning Repre-
sentations, 2024.

Wenhao Yu, Hongming Zhang, Xiaoman Pan, Kaixin Ma, Hongwei Wang, and Dong Yu.
Chain-of-note: Enhancing robustness in retrieval-augmented language models. arXiv preprint
arXiv:2311.09210, 2023.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica, and
Joseph E Gonzalez. RAFT: Adapting language model to domain specific rag. arXiv preprint
arXiv:2403.10131, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DISCUSSION

Retrieval. One critical factor in improving performance of RAG lies in the quality of the retrieved
documents. To study how retrieval impacts final accuracy, we analyze retrieval performance and report
the results across different document sizes in Appendix B. In all datasets, recall scores demonstrate
improvements as the number of documents increases, approaching near-perfect scores with large
document sets (e.g., ∼1k). Despite consistent gains in recall, the results show diminishing returns on
discounted ranking metrics like NDCG, indicating increasing distraction within the context. This
trend is also evident in in Figure 5b, where RAG performance peaks between 100 and 500 documents.
Our observations suggest the necessity of refining retrieval (e.g., through re-ranking) to further
optimize the document relevance, particularly in cases of complex, multi-hop queries. However, how
the inference scaling behavior discovered in this paper would change in the presence of such a refining
component remains unknown. Alternatively, iterative retrieval, as seen in IterDRAG, improves recall
performance by using simpler, straightforward sub-queries to collect additional context for each
intermediate answer. In summary, retrieving more documents improves recall but does not necessarily
lead to better generation quality if the documents are not effectively ranked or filtered. This highlights
the need for retrieval methods that dynamically adjust to minimize irrelevant content.

Error Analysis. Despite overall improvements, our error analysis in Appendix H reveals that certain
errors persist, particularly in cases of compositional reasoning tasks where multiple hops of reasoning
are required. The common errors fall into four categories: (1) inaccurate or outdated retrieval;
(2) incorrect or lack of reasoning; (3) hallucination or unfaithful reasoning; and (4) evaluation issues
or refusal to answer. The first category highlights the need for enhancing retrieval methods and
maintaining a reliable & up-to-date knowledge base, specially for complex questions that rely on
multiple supporting facts. In addition, incorrect or missing reasoning steps often result in errors
or partially correct answers. In our experiments, we observe that both (1) and (2) are substantially
improved with IterDRAG, suggesting the importance of interleaving retrieval and iterative generation
for multi-hop queries. Moreover, developing faithful LLMs and strategies to mitigate hallucination
could further enhance RAG performance. Finally, we note that existing metrics fail in certain cases
(e.g., abbreviations), underscoring the need for more robust and reliable evaluation methods.

Long-Context Modeling. We also discuss the impact of long-context modeling w.r.t. RAG per-
formance. In summary, we find that retrieving more documents is generally beneficial for RAG
performance, as demonstrated in Section 4. Nevertheless, naïvely extending the context length
in each generation step does not always lead to better results. Specifically, DRAG performance
peaks at around 105 tokens, while IterDRAG achieves optimal performance at around 106 tokens
by leveraging multiple rounds of generation. For instance, as seen in the performance plateau in
Figure 1 and Figure 11, LLMs struggle to effectively utilize very long contexts (≥ 105 tokens) in each
iteration, potentially due to inherent limitations of long-context modeling. Our observations suggest
that: (1) the model’s ability to identify relevant information from extensive context remains to be
improved, especially when presented with large quantity of “similar” documents; (2) the long-context
modeling should be further refined to enhance in-context learning capabilities, where multiple lengthy
demonstrations are provided.

Trade-Off Between Inference Compute and RAG Performance. In our experiments, we observe
consistent benefits of inference scaling using DRAG and IterDRAG, potentially changing the optimal
trade-off between inference compute and RAG performance. Existing methods often exhibit dimin-
ishing returns when scaling inference compute beyond certain thresholds where RAG performance
plateaus. As a result, the optimal trade-off between inference compute and RAG performance is
unlikely to be found beyond these thresholds, as further investment in scaling inference compute
becomes inefficient. In contrast, our findings demonstrate that long-context RAG performance can
improve almost linearly with increased test-time compute when optimally allocated. Therefore,
the optimal trade-off in our setting largely depends on the inference budget, with higher budgets
consistently yielding steady gains. Combined with the computation allocation model for RAG,
this approach enables the derivation of a (nearly) optimal solution for long-context RAG given
computation constraints.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B RETRIEVAL QUALITY

We assess the retrieval quality of DRAG and IterDRAG using the Gecko-1B model (Lee et al., 2024b)
and evaluate their impact on final RAG performance. Specifically, we retrieve varying numbers of
documents per input query and measure the retrieval quality using three metrics: Recall, NDCG,
and MRR, with document counts ranging from 1 to 2k. The retrieval results of DRAG are shown
in Figure 7. In addition, we evaluate the quality of iterative retrieval, where a maximum of five
interleaving retrieval steps are performed. Here, we retrieve 50 documents at each step and use a
2-shot setting, with the results in comparison to DRAG in Table 5.

Figure 7: Retrieval performance of DRAG on different datasets.

In Figure 7, recall demonstrates consistent improvements as the number of documents increases,
approaching near-perfect scores when large document sets (e.g., 1k) are retrieved. However, both
NDCG and MRR metrics plateau early at around 100 documents, with diminishing gains as the
document count further rises. This divergence suggests that while more documents lead to better
recall, the relevance and ranking quality (captured by NDCG and MRR) do not improve proportionally,
and even introduce extensive noise. Therefore, higher recall doesn’t necessarily translate into better
final answer quality when the retrieved documents aren’t effectively ranked or filtered.

Table 5: Retrieval performance of DRAG and IterDRAG (k = 50 documents, m = 2 shots).

Bamboogle HotpotQA MuSiQue 2WikiMultiHopQA
Recall NDCG MRR Recall NDCG MRR Recall NDCG MRR Recall NDCG MRR

DRAG 0.632 0.321 0.239 0.783 0.535 0.465 0.509 0.255 0.188 0.722 0.421 0.336
IterDRAG 0.736 0.420 0.346 0.855 0.549 0.478 0.670 0.365 0.291 0.935 0.605 0.528

Unlike the one-step retrieval in DRAG, iterative retrieval based on query decomposition often yields
simpler sub-queries, facilitating more effective retrieval. In addition, merging the retrieved documents
from different steps typically results in higher overall retrieval performance, as evidenced in Table 5.
With IterDRAG, the performance gains are consistent and reach the average of 30.5%. Specifically,
we observe higher gains for complex multi-hop queries (e.g., 2WikiMultiHopQA), where metric
improvements can be as high as 57.1%. Moreover, the gains on ranking-discounted metrics (30.7%
in NDCG and 39.9% MRR) show greater improvements compared to recall (21.7%). In summary,
these findings highlight the superiority of iterative retrieval with query decomposition over one-step
methods, which effectively contribute to the overall performance of IterDRAG.

C CHAIN-OF-THOUGHT VS. ITERDRAG.

Table 6: Chain-of-thought (CoT) vs. IterDRAG results (k = 5 documents, m = 4 shots).

HotpotQA MuSiQue 2WikiMultiHopQA
EM F1 Acc EM F1 Acc EM F1 Acc

CoT 40.2 51.3 45.6 8.9 16.1 10.8 33.0 37.9 36.7
IterDRAG 44.8 59.4 52.8 17.9 30.1 25.9 57.5 69.9 72.3

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

To evaluate different iterative strategies, we compare the commonly used chain-of-thought (CoT)
with IterDRAG (Wei et al., 2022). In particular, we generate the CoT examples following Trivedi
et al. (2023) and adopt the 4-shot setting with 5 documents. The results on three larger datasets
(HotpotQA, MuSiQue and 2WikiMultiHopQA), as reported in Table 6, highlight the performance
differences between these strategies, in which IterDRAG consistently outperforms CoT with signifi-
cant improvements. Such difference can be traced back to three key factors: (1) the retrieval quality
of CoT is limited without interleaving retrieval as in IterDRAG; (2) Gemini 1.5 Flash is relatively
small and may not perform well in free-form reasoning in comparison to larger LLMs; and (3) the
generated CoT examples are less informative than handcrafted ones and underperform compared to
constrained decoding with Self-Ask (Press et al., 2023; Koo et al., 2024). Consequently, IterDRAG
demonstrates its effectiveness as a scalable method for knowledge-intensive tasks.

D ADDITIONAL RAG RESULTS

Figure 8: IterDRAG performance heatmap for different metrics averaged across datasets.

We report the IterDRAG results averaged across datasets in Figure 8, shown as heatmaps where the x-
axis represents the number of documents and the y-axis represents the number of shots. Performance is
color-coded, with blue indicating lower values and red indicating higher values. The best-performing
combinations are located toward the bottom right of each heatmap, which corresponds to longer
context lengths. In comparison to DRAG, as reported in Figure 5a, the optimal number of in-context
examples is higher at 32, which highlights the importance of in-context demonstrations in enabling
better query decomposition and interleaved retrieval. Combined with multiple generation steps,
IterDRAG further improves RAG performance over DRAG.

Figure 9: Evaluation accuracy of DRAG on TriviaQA and Natural Questions (NaturalQ.).

In addition to multi-hop question answering datasets, we also report results on one-hop datasets,
specifically TriviaQA and Natural Questions (Joshi et al., 2017; Kwiatkowski et al., 2019). The
evaluations for one-hop datasets are performed with DRAG and presented in Figure 9, similar to
Figure 8. For TriviaQA, increasing the number of documents generally leads to improved accuracy,
where the highest accuracy of 69.0% is achieved with 50 documents. In Natural Questions, perfor-
mance increases with the number of documents up to about 10 or 20 documents, but further increases
in the document count lead to diminishing returns or even slight declines in accuracy. The highest
accuracy of 54.6% is achieved with 20 documents in 1-shot, and performance drops slightly when

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

more documents are included. In summary, the optimal number of shots falls between 1 and 4. While
increasing the number of shots and documents leads to initial performance gains, these improvements
plateau beyond certain thresholds. This trend, in contrast to multi-hop datasets, may be partially
attributed to the nature of the one-hop questions and retrieval relevance.

Table 7: StrategyQA accuracy results.

StrategyQA
Zero-shot QA Many-shot QA RAG DRAG IterDRAG

Acc 61.1 74.7 74.7 79.0 83.4

We also include the multi-hop and binary StrategyQA dataset in our experiments, see Table 7 (Geva
et al., 2021). Despite being binary questions, we observe similar trends to our main experiments. For
example, DRAG consistently outperforms the baseline QA and RAG methods, with 29.3% accuracy
improvement to for the baseline QA model. Furthermore, the performance is boosted with 83.4
accuracy using the iterative IterDRAG. These results demonstrate that even for binary, multi-hop
tasks, iterative approaches provide substantial gains, confirming the effectiveness of both long-context
and iterative strategies for inference scaling in RAG.

E ADDITIONAL RESULTS ON INFERENCE SCALING LAWS WITH GTR
RETRIEVER

Figure 10: Normalized performance with increasing effective context lengths on MuSiQue, the results
are obtained with GTR XXL retriever and Gemini 1.5 Flash.

To enhance the generalizability of our scaling observations and validate the findings with an alternative
retriever model, we conduct additional experiments using the open-source GTR XXL retriever and
Gemini 1.5 Flash (Ni et al., 2021). Figure 10 shows the results on MuSiQue, evaluated using 100
sampled examples from the dataset for computational efficiency. Different from the performance
plateau in standard RAG, DRAG and IterDRAG yields consistent performance gains with increasing
context length, especially with IterDRAG at longer context lengths. Overall, the results demonstrate
consistent patterns in inference scaling even with a different retriever model, highlighting the potential
of expanding text-time compute in long-context RAG for more generalized scenarios.

F ADDITIONAL RESULTS ON INFERENCE SCALING LAWS FOR RAG

We present data-specific results on the relationship between the performance and the effective context
length. Figure 11 presents the results on the other three datasets other than MuSiQue (See Figure 1
for visualized results on MuSiQue). We observe different behavior depending on the datasets. For
instance, the gains are more linear and consistent on Bamboogle and MuSiQue, and almost linear on
2WikiMultiHopQA until 1M tokens. However, HotpotQA and 2WikiMultiHopQA with effective
context length longer than 100k tokens exhibit more sigmoidal patterns, likely due to the difficulty of
the datasets and the quality of the retrieved documents.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Normalized performance vs. effective context lengths on Bamboogle.

(b) Normalized performance vs. effective context lengths on HotpotQA.

(c) Normalized performance vs. effective context lengths on 2WikiMultiHopQA.

Figure 11: Normalized performance with increasing effective context lengths on different datasets.

G ADDITIONAL RESULTS ON COMPUTATION ALLOCATION MODEL FOR RAG

Table 8: Computation allocation mode of Gemini 1.5 Flash with p-value, R2 and MSE statistics.

a b c R2 MSE
Value 0.325 0.101 0.177 -0.067 -0.008 0 -0.730 0.903 0.085
p-value 0.000 0.000 0.000 0.000 0.092 N/A 0.000 N/A N/A

We further explore the findings on the computation allocation model. In particular, we report the
estimated parameters along with p-values, R2, and MSE statistics in Table 8. In our implementation,
we constrain the last element of b, leaving six learnable parameters in total. Our analysis shows
that all parameters are statistically significant, except for b1, which has a p-value slightly above
0.05. Nonetheless, our experiments suggest that retaining b1 improves generalization in many cases,
such as IterDRAG on multi-hop datasets. For sigmoid scaling, we fit a custom function between the
predicted P̂ and ground truth P values, defined as σ(x) = 3.30

1+e−1.81(x+0.46) − 2.18.

We also visualize the predictions on for IterDRAG across different datasets in Figure 12, where
each subplot represents a dataset and each line corresponds to a document setting (k). The inference
compute is scaled by increasing the number of in-context examples (m) and generation iterations (n).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 12: The estimated performance using the proposed computation allocation model vs. actual
metric values in IterDRAG. The subplots represent different datasets, where each line corresponds to
a fixed number of documents, we scale the context length by increasing the number of shots.

(a) Performance vs. predicted surface for DRAG. (b) Performance vs. predicted surface for IterDRAG.

Figure 13: Normalized performance vs. predicted surface for DRAG and IterDRAG.

Here, we find similar trends to those in Figure 6, although IterDRAG shows larger variations compared
to DRAG. HotpotQA and 2WikiMultiHopQA show more consistent trends with the predictions,
likely due to the predominance of multi-hop queries. In summary, our findings are consistent for
both DRAG and IterDRAG, demonstrating that RAG performance can be accurately modeled by
our computation allocation model for RAG. For Bamboogle, HotpotQA and 2WikiMultiHopQA, we
provide the normalized performance with increasing effective context lengths in Figure 11, in which
we observe similar trends to the results on MuSiQue (See Figure 1). We also illustrate the prediction
surface for both DRAG and IterDRAG in Figure 13.

H ERROR ANALYSIS

Despite the performance gains from scaling effective context length, RAG performance on challenging
datasets like MuSiQue remain moderate, even for IterDRAG. To address this, we analyze the mistakes
in both DRAG and IterDRAG to examine the limitations and errors inherent in these approaches. In
the following, we explore common failure cases (See Figure 15) to understand where each method
falls short and how they could be further improved.

We provide selected example mistakes from Figure 15a to Figure 15d, with retrieved documents
omitted for brevity. The reasons for common errors can be grouped into four categories: (1) inaccurate
or outdated retrieval; (2) incorrect or lack of reasoning; (3) hallucination or unfaithful reasoning; and
(4) evaluation issues or refusal to answer. We elaborate on these categories below:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025
Confidential - Google DeepMind

Ex
am

ple

Do
cu

m
en

ts
1

Ex
am

ple
 Q

ue
ry

 1

Ex
am

ple
 A

ns
we

r 1

Ex
am

ple

Do
cu

m
en

ts
n

Ex
am

ple
 Q

ue
ry

 n

Ex
am

ple
 A

ns
we

r n

Te
st

Do
cu

m
en

ts

Te
st

Qu
er

y

In-context
examples (m)

Documents (k) Documents (k) Documents (k)

Generate with
RAG / Iterative RAG

Fin
al

An
sw

er

Prompt

Figure 14: Input prompt that comprises of m in-context examples, the test documents and query, in
which each document chunk consists of k retrieved documents. For IterDRAG, the example answers
additionally provide sub-queries and intermediate answers as demonstrations.

• Inaccurate or outdated retrieval: A major source of RAG errors stems from the retrieval
process, where relevant knowledge is not correctly retrieved. For example, in the first
question of Figure 15c, the top-50 retrieved documents do not contain the correct answer. A
similar issue occurs in the second QA pair, where outdated retrieval results fail to provide
useful information. In the third case, although both battles are retrieved, the initial documents
overly focus on the Battle of Manila, leading to an incorrect response.

• Incorrect or lack of reasoning: Beyond retrieval issues, incorrect reasoning chains are
another common source of errors. For example, in the first case in Figure 15b, although
the correct documents are retrieved, the reasoning process is incomplete (i.e., no explicit
comparison of the mountain heights), leading to an incorrect answer in DRAG. Similarly,
in the second and third cases, the reasoning is either absent (as in DRAG) or flawed. As a
result, reasoning-related errors tend to occur more frequently in difficult questions and in
the one-step DRAG approach.

• Hallucination or unfaithful reasoning: Other than retrieval and reasoning, hallucination
and unfaithful reasoning also contribute to errors in knowledge-intensive tasks. In the first
case, the prediction is incorrect and cannot be found in the retrieved documents. As for the
rest cases, while the answers are related, certain steps in the reasoning chain are flawed and
cause errors in the final answers. These highlight the persistent challenge of hallucination in
LLMs, particularly in long-context generation tasks.

• Evaluation issues or refusal to answer: Finally, we observed several evaluation issues that
may lead to inaccurate evaluation. For instance, the use of abbreviations or variations in
date format can result in incorrect scoring across all metrics. Moreover, our experiments do
not account for abstaining from answering, which could cause unfair scores.

I IMPLEMENTATION

In our experiments, we utilize the Gecko-1B (en) embedding model to index both the documents and
input queries (Lee et al., 2024b), using Wikipedia passages from the KILT benchmark as the document
source (Petroni et al., 2020). In test-time, the input query is compared against all embeddings in
the corpus, and the top-k neighbors are selected for inference. Each document is then truncated
on the right side to a maximum of 1024 tokens using whitespace tokenization. For each example,
we arrange the elements in the following order: documents, query, and label, with the retrieved
documents listed in reverse order, placing the higher-ranked documents closer to the query (Liu et al.,
2024b). Consequently, the prompt comprises of multiple in-context examples, followed by the test
documents and test query, as illustrated in Figure 16.

For generation, we utilize Gemini 1.5 Flash for more efficient experiments. In DRAG, inference
scaling is achieved by increasing the context length through the combination of documents (k) and

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

in-context examples (m). Then, the prompt (See Figure 16a) is provided to the model for a one-time
generation using the default generation parameters. For IterDRAG, the input prompt is constructed
in a similar fashion, with the example answers consisting of assembled sub-queries, intermediate
answers, and the final answer (See Figure 16b). Here, we scale test-time compute by incorporating
iterative retrieval and generation, along with the increase of documents and demonstrations. In each
iteration, we restrict the generation to adhere to the Self-Ask format, in which the response should
start with “Follow up: ”, “Intermediate answer: ” or “So the final answer is: ” (Koo et al., 2024).
Each iteration begins with the generation of a sub-query and concludes with the production of an
intermediate answer. If a sub-query is generated, additional documents are retrieved and appended to
the initial set (i.e., Test Documents in Figure 16), after which the model generates an intermediate
answer. We allow up to five iterations, after which the model is forced to produce the final answer.

To evaluate the estimated parameters within computation allocation model for RAG, we normalized
the performance metrics by subtracting the mean and dividing by the standard deviation for each
dataset and metric. For DRAG, the effective context length is calculated by counting the tokens in the
prompt, while for IterDRAG, it is determined by summing the context tokens across all inference
requests. We constrain the last parameter in b and perform ordinary least squares to estimate rest
six parameters in Equation (2). To prevent numerical instability, we shift the values in θ by a small
constant ϵ of 0.01. When computing R2 and MSE, we manage noisy data by excluding peak and
valley outliers in our experiments. However, for domain generalization and length extrapolation,
all data points are included in the evaluation. To predict downstream task performance, i should
be computed for each task. Specifically, in each strategy and task: idoc = P (k = 1,m = 0, n =
1)−P (k = 0,m = 0, n = 1), ishot = P (k = 0,m = 1, n = 1)−P (k = 0,m = 0, n = 1). For the
predicted optimal hyperparameters, we present the actual metric values to validate the efficacy of
computation allocation model for RAG.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Inaccurate or outdated retrieval

Question: What is the lowest elevation of the longest railway tunnel?
Prediction: 500 meters
Annotation: 312 m
Question: According to QS World University Rankings, where does the college
that Ibrahim Shihata attended rank?
Prediction: 3rd
Annotation: 551-600
Question: Which battle occurred first, the Battle of Manila or the Battle of Guam?
Prediction: Battle of Manila
Annotation: Battle of Guam

(a) Example mistakes due to inaccurate or outdated retrieval.

Incorrect or lack of reasoning

Question: Which mountain, Masherbrum or Khunyang Chhish, is a taller moun-
tain?
Prediction: Masherbrum
Annotation: Khunyang Chhish
Question: What is the date of death of the director of film The Organization (Film)?
Prediction: April 15, 2018
Annotation: December 12, 2012
Question: Who introduced a system of musical notation in the 14th century that is
used in the area where most of the invasion of the eastern Roman Empire took place?
Prediction: Philippe de Vitry
Annotation: John Kukuzelis

(b) Example mistakes due to incorrect or lack of reasoning.

Hallucination or unfaithful reasoning

Question: Who was the last emperor of the dynasty that succeeded the Song
dynasty?
Prediction: Emperor Yuanzhen
Annotation: Toghon Temür
Question: What is another notable work by the illustrator of Sylvester and the
Magic Pebble?
Prediction: Shrek!
Annotation: Doctor De Soto
Question: In what movie did a Kenyan-Mexican actress, who graduated from
Hampshire College, star in in 2015?
Prediction: Queen of Katwe
Annotation: Star Wars: The Force Awakens

(c) Example mistakes due to hallucination or unfaithful reasoning.

Evaluation issues or refusal to answer

Question: The most populous city in Punjab is how large (area wise)?
Prediction: 310 sq. km
Annotation: 310 square kilometers
Question: Renáta Tomanová and Larisa Neiland are former professional athletes
for what sport?
Prediction: Tennis
Annotation: Professional tennis

(d) Example mistakes due to evaluation issues or refusal to answer.

Figure 15: Example mistakes of DRAG and IterDRAG across datasets.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Prompt for DRAG

You are an expert in question answering. I am going to give you one or more example
triples of context, question and answer, in which the context may or may not be relevant
to the question. The examples will be written.
Context (which may or may not be relevant):
<Retrieved documents>
Question: What is the place of birth of the director of film Servant’S Entrance?
Answer: Helsingfors
<Further demonstrations>

After the examples, I am going to provide another pair of context and question, in
which the context may or may not be relevant to the question. I want you to answer the
question. Give only the answer, and no extra commentary, formatting, or chattiness.
Answer the question.
Context (which may or may not be relevant):
<Retrieved documents>
Question: Who was born first out of Thomas Henry Holland and Jean-Mandé Sigogne?
Answer:

(a) Example prompt for DRAG. The prompt comprises of instructions and varying number of
demonstrations, followed by a test example.

Prompt for IterDRAG

You are an expert in question answering. I am going to give you one or more example
sets of context, question, potential follow up questions and their respective answers, in
which the context may or may not be relevant to the questions. The examples will be
written.
Context:
<Retrieved documents>
Question: What nationality is the director of film Boggy Creek Ii: And The Legend
Continues?
Follow up: Who is the director of the film Boggy Creek II: And The Legend Continues?
Intermediate answer: The director of the film Boggy Creek II: And The Legend
Continues is Charles B. Pierce.
Follow up: What is the nationality of Charles B. Pierce?
Intermediate answer: The nationality of Charles B. Pierce is American.
So the final answer is: American
<Further demonstrations>

After the examples, I am going to provide another pair of context and question, in
which the context may or may not be relevant to the question. I want you to answer
the question. When needed, generate follow up question(s) using the format ’Follow
up: X’, where X is the follow up question. Then, answer each follow up question
using ’Intermediate answer: X’ with X being the answer. Finally, answer to the main
question with the format ’So the final answer is: X’, where X is the final answer.
Context:
<Retrieved documents (with interleaving retrieval)>
Question: Where was the director of film Death Of A Friend born?
Follow up: | Intermediate answer: | So the final answer is:

(b) Example prompt for IterDRAG. The prompt comprises of instructions and varying number
of demonstrations, followed by a test example. In each iteration, we control the generation to
follow the Self-Ask format with constrained decoding.

Figure 16: Example prompts for DRAG and IterDRAG.

25

	Introduction
	Related Work
	Long-Context LLMs
	In-Context Learning
	Retrieval Augmented Generation

	Inference Scaling Strategies for RAG
	Preliminaries
	Demonstration-Based RAG
	Iterative Demonstration-Based RAG

	RAG Performance and Inference Computation Scale
	Fixed Budget Optimal Performance
	Overall Performance
	Inference Scaling Laws for RAG
	Parameter-Specific Scaling

	Inference Computation Allocation for Long-Context RAG
	Formulation and Estimation
	Validating the Computation Allocation Model for RAG

	Conclusion
	Discussion
	Retrieval Quality
	Chain-of-Thought vs. IterDRAG.
	Additional RAG Results
	Additional Results on Inference Scaling Laws with GTR Retriever
	Additional Results on Inference Scaling Laws for RAG
	Additional Results on Computation Allocation Model for RAG
	Error Analysis
	Implementation

