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ABSTRACT

Although transformers have achieved impressive accuracies in various tasks in
natural language processing, they often come with a prohibitive computational
cost, that prevents their use in scenarios with limited computational resources for
inference. This need for computational efficiency in inference has been addressed
by for instance PoWER-BERT (Goyal et al., 2020) which gradually decreases the
length of a sequence as it is passed through layers. These approaches however
often assume that the target computational complexity is known in advance at
the time of training. This implies that a separate model must be trained for each
inference scenario with its distinct computational budget. In this paper, we extend
PoWER-BERT to address this issue of inefficiency and redundancy. The proposed
extension enables us to train a large-scale transformer, called Length-Adaptive
Transformer, once and uses it for various inference scenarios without re-training
it. To do so, we train a transformer with LengthDrop, a structural variant of
dropout, which stochastically determines the length of a sequence at each layer.
We then use a multi-objective evolutionary search to find a length configuration
that maximizes the accuracy and minimizes the computational complexity under
any given computational budget. Additionally, we significantly extend the appli-
cability of PoWER-BERT beyond sequence-level classification into token-level
classification such as span-based question-answering, by introducing the idea of
Drop-and-Restore. With Drop-and-Restore, word-vectors are dropped temporarily
in intermediate layers and restored at the last layer if necessary. We empirically
verify the utility of the proposed approach by demonstrating the superior accuracy-
efficiency trade-off under various setups, including SQuAD 1.1, MNLI-m, and
SST-2. Upon publication, the code to reproduce our work will be open-sourced.

1 INTRODUCTION

Pretrained language models (Peters et al., 2018; Devlin et al., 2018; Radford et al., 2019; Yang et al.,
2019) have achieved notable improvements in various natural language processing (NLP) tasks. Most
of them rely on transformers (Vaswani et al., 2017), and the number of model parameters ranges
from hundreds of millions to billions (Shoeybi et al., 2019; Raffel et al., 2019; Kaplan et al., 2020;
Brown et al., 2020). Despite this high accuracy, excessive computational overhead during inference,
both in terms of time and memory, has hindered its use in real applications. This level of excessive
computation has further raised the concern over energy consumption as well (Schwartz et al., 2019;
Strubell et al., 2019).

Recent studies have attempted at addressing these concerns regarding large-scale transformers’
computational and energy efficiency (see §6 for a more extensive discussion.) Among these, we
focus on PoWER-BERT (Goyal et al., 2020) which progressively reduces sequence length by
eliminating word-vectors based on the attention values as passing layers. PoWER-BERT establishes
the superiority of accuracy-time trade-off over earlier approaches (Sanh et al., 2019; Sun et al., 2019;
Michel et al., 2019). It however requires us to train a separate model for each efficiency constraint.
In this paper, we thus develop a framework based on PoWER-BERT such that we can train a single
model that can be adapted in the inference time to meet any given efficiency target.

In order to train a transformer to cope with a diverse set of computational budgets in the inference
time, we propose to train one while reducing the sequence length with a random proportion at each
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layer. We refer to this procedure as LengthDrop which was motivated by the nested dropout (Rippel
et al., 2014). We can extract sub-models of shared weights with any length configuration without
requiring extra post-processing nor additional finetuning.

Once a transformer is trained with the proposed LengthDrop, we search for the length configuration
that maximizes the accuracy given a computational budget. Because this search is combinatorial and
has multiple objectives (accuracy and efficiency), we use an evolutionary search algorithm, which
further allows us to obtain a full Pareto frontier of accuracy-efficiency trade-off of each model.

It is not trivial to find an optimal length configuration given the inference-time computational budget,
although it is extremely important in order to deploy these large-scale transformers in practice. In
this work, we propose to use evolutionary search to find a length configuration that maximizes
the accuracy within a given computational budget. We can further compute the Pareto frontier of
accuracy-efficiency trade-off to obtain a sequence of length configurations with varying efficiency
profiles.

PoWER-BERT, which forms the foundation of the proposed two-stage procedure, is only applicable
to sequence-level classification, because by design it eliminates some of the word vectors at each
layer. In other words, it cannot be used for token-level tasks such as span-based question answering
(Rajpurkar et al., 2016), because these tasks require hidden representations of the entire input sequence
at the final layer. We thus propose to extend PoWER-BERT with a novel Drop-and-Restore process
(§3.3), which eliminates this inherent limitation. Word vectors are dropped and set aside, rather
than eliminated, in intermediate layers to maintain the saving of computational cost, as was with
the original PoWER-BERT. These set-aside vectors are then restored at the final hidden layer and
provided as an input to a subsequent task-specific layer, which is unlike the original PoWER-BERT.

The main contributions of this work are two-fold. First, we introduce LengthDrop, a structured
variant of dropout for training a single Length-Adaptive Transformer model that allows us to au-
tomatically derive multiple sub-models with different length configurations in the inference time
using evolutionary search, without requiring any re-training. Second, we design Drop-and-Restore
process that makes PoWER-BERT applicable beyond classification, which enables PoWER-BERT to
be applicable to a wider range of NLP tasks such as span-based question answering. We empirically
verify Length-Adaptive Transformer works quite well using the variants of BERT on a diverse set of
NLP tasks, including SQuAD 1.1 (Rajpurkar et al., 2016) and two sequence-level classification tasks
in GLUE benchmark (Wang et al., 2018). Our experiments reveal that the proposed approach grants
us a fine-grained control of computational efficiency and a superior accuracy-efficiency trade-off in
the inference time, compared to existing approaches.

2 BACKGROUND: TRANSFORMERS AND POWER-BERT

Before we describe our main approach, we review some of the building blocks in this section. In
particular, we review transformers, which are a standard backbone used in natural language processing
these days, and PoWER-BERT, which was recently proposed as an effective way to train a large-scale,
but highly efficient transformer for sequence-level classification.

2.1 TRANSFORMERS AND BERT

A transformer is a particular neural network that has been designed to work with a variable-length
sequence input and is implemented as a stack of self-attention and fully-connected layers (Vaswani
et al., 2017). Here, we give a brief overview of the transformer which is the basic building block of
the proposed approach.

Each token xt in a sequence of tokens x = (x1, . . . , xN ), representing input text, is first turned
into a continuous vector h0

t ∈ RH which is the sum of the token and position embedding vectors.
This sequence is fed into the first transformer layer which returns another sequence of the same
length h1 ∈ RN×H . We repeat this procedure L times, for a transformer with L layers, to obtain
hL = (hL

1 , . . . , h
L
N ). We refer to each vector in the hidden sequence at each layer as a word vector to

emphasize that there exists a correspondence between each such vector and one of the input words.

Although the transformer was first introduced for the problem of machine translation, Devlin et al.
(2018) demonstrated that the transformer can be trained and used as a masked language model.
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More specifically, Devlin et al. (2018) showed that the transformer-based masked language model,
called BERT, learns a universally useful parameter set that can be finetuned for any downstream task
including sequence-level and token-level classification.

In the case of sequence-level classification, a softmax classifier is attached to the word vector hL
1

associated with the special token [CLS], and the entire network, including the softmax classifier and
BERT, is finetuned. For token-level classification, we use each hL

t as the final hidden reprsentation of
the associated t-th word in the input sequence. This strategy of pretraining followed by finetuning,
often referred to as transfer learning, has recently become a dominant approach to classification in
natural language processing.

2.2 POWER-BERT

PoWER-BERT keeps only the topmost lj word vectors at each layer j by eliminating redundant ones
based on the significance score, which is the total amount of attention imposed by a word on the other
words (Goyal et al., 2020). lj is the hyper-parameter determines how many vectors to keep at layer j.
PoWER-BERT has the same model parameters with BERT, but the extraction layers are interspersed
after the self-attention layer in every transformer blocks (Vaswani et al., 2017).

PoWER-BERT reduces inference time successfully, achieving better accuracy-time trade-off than
DistilBERT (Sanh et al., 2019), BERT-PKD (Sun et al., 2019), and Head-Prune (Michel et al.,
2019). Despite the original intention of maximizing the inference efficiency with the minimal loss in
accuracy, it is possible to set up PoWER-BERT to be both more efficient and more accurate compared
to the original BERT, which was observed but largely overlooked by Goyal et al. (2020).

Training a PoWER-BERT model consists of three steps: (1) finetuning, (2) length configuration
search, and (3) re-training. The finetuning step is just like the standard finetuning step of BERT given
a target task. A length configuration is a sequence of retention parameters (l1, · · · lL), each of which
corresponds to the number of word vectors that are kept at each layer. These retention parameters
are learned along with all the other parameters to minimize the original task loss together with an
extra term that approximately measures the number of retained word vectors across layers. In the
re-training step, PoWER-BERT is finetuned with the length configuration fixed to its learned one.

For each computational budget, we must train a separate model going through all three steps described
above. Moreover, the length configuration search step above is only approximate, as it relies on
relaxation of retention parameters which are inherently discrete. This leads to the lack of guaranteed
correlation between the success of this stage and true run-time. Even worse, it is a delicate act to tune
the length configuration given a target computational budget, because trade-off is implicitly made via
a regularization coefficient. Furthermore, PoWER-BERT has an inherent limitation in that it only
applies to sequence-level classification because it eliminates word vectors in intermediate layers.

3 LENGTH-ADAPTIVE TRANSFORMER

In this section, we explain our proposed framework which results in a transformer that reduces
the length of a sequence at each layer with an arbitrary rate. We call such a resulting transformer
a Length-Adaptive Transformer. We train Length-Adaptive Transformer with LengthDrop which
randomly samples the number of hidden vectors to be dropped at each layer with the goal of making
the final model robust to such drop in the inference time. Once the model is trained, we search for the
optimal trade-off between accuracy and efficiency using multi-objective evolutionary search, which
allows us to use the model for any given computational budget without finetuning nor re-training.
At the end of this section, we describe Drop-and-Restore process as a way to greatly increase the
applicability of PoWER-BERT which forms a building block of the proposed framework.

In short, we train a Length-Adaptive Transformer once with LengthDrop and Drop-and-Restore,
and use it with an automatically determined length configuration for inference with any target
computational budget, on both sequence-level and token-level tasks.
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3.1 LENGTHDROP

Earlier approaches to efficient inference with transformers have focused on a scenario where the target
computational budget for inference is known in advance Sanh et al. (2019); Goyal et al. (2020). This
greatly increases the cost of deploying transformers, as it requires us to train a separate transformer
for each scenario. Instead, we propose to train one model that could be used for a diverse set of target
computational budgets without retraining.

LengthDrop randomly generates a length configuration by sequentially sampling a sequence length
li+1 at the (i+ 1)-th layer based on the previous layer’s sequence length li, following the uniform
distribution U(d(1 − p)lie, li), where l0 is set to the length of the input sequence, and p is the
LengthDrop probability. This sequential sampling results in a length configuration (l1, · · · , lL).
Length-Adaptive Transformer can be thought of as consisting of a full model and many sub-models
corresponding to different length configuration, similarly to a neural network trained with dropout
(Srivastava et al., 2014).

LayerDrop From the perspective of each word vector, the proposed LengthDrop could be thought
of as skipping the layers between when it was set aside and the final layer where it was restored.
The word vector however does not have any information based on which it can determine whether it
would be dropped at any particular layer. In our preliminary experiments, we found that this greatly
hinders optimization. We address this issue by using LayerDrop (Fan et al., 2019) which skips each
layer of a transformer uniformly at random. The LayerDrop encourages each word vector to be
agnostic to skipping any number of layers between when it is dropped and when it is restored, just
like dropout (Srivastava et al., 2014) prevents hidden neurons from co-adapting with each other by
randomly dropping them.

Sandwich Rule and Inplace Distillation We observed that standard supervised training with
LengthDrop does not work well in the preliminary experiments. We instead borrow a pair of training
techniques developed by Yu & Huang (2019) which are sandwich rule and inplace distillation,
for better optimization as well as final generalization. At each update, we update the full model
without LengthDrop as usual to minimize the supervised loss function. We simultaneously update
ns randomly-sampled sub-models (which are called sandwiches) and the smallest-possible sub-
model, which corresponds to keeping only d(1− p)lie word vectors at each layer i, using knowledge
distillation (Hinton et al., 2015) from the full model. Here, sub-models mean models with length
reduction. They are trained to their prediction close to the full model’s prediction (inplace distillation).

3.2 EVOLUTIONARY SEARCH OF LENGTH CONFIGURATIONS

After training a Length-Adaptive Transformer with LengthDrop, we search for appropriate length
configurations for possible target computational budgets that will be given at inference time. The
length configuration determines the model performance in terms of both accuracy and efficiency. In
order to search for the optimal length configuration, we propose to use evolutionary search, similarly
to Cai et al. (2019) and Wang et al. (2020). This procedure is efficient, as it only requires a single
pass through the relatively small validation set for each length configuration, unlike re-training for a
new computational budget which requires multiple passes through a significantly larger training set
for each budget.

We initialize the population with constant-ratio configurations. Each configuration is created by
li+1 = d(1 − r)lie for each layer i with r so that the amount of computation within the initial
population is uniformly distributed between those of the smallest and full models. At each itera-
tion, we evolve the population to consist only of configurations lie on a newly updated efficiency-
accuracy Pareto frontier by mutation and cross-over. Mutation alters an original length configuration
(l1, · · · , lL) to (l′1, · · · , l′L) by sampling l′i from the uniform distribution U(l′i−1, li+1) with the prob-
ability pm or keeping the original length l′i = li, sweeping the layers from i = 1 to i = L. Crossover
takes two length configurations and averages the lengths at each layer. Both of these operations are
performed while ensuring the monotonicity of the lengths over the layers. We repeat this iteration G
times, while maintaining nm mutated configurations and nc crossover’d configurations. Repeating
this procedure pushes the Pareto frontier further to identify the best trade-off between two objectives,
efficiency and accuracy, without requiring any continuous relaxation of length configurations nor
using a proxy objective function.
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(a) PoWER (b) Drop-and-Restore

Figure 1: Illustration of (a) word-vector elimination process in PoWER-BERT (Goyal et al., 2020)
and (b) Drop-and-Restore process in Length-Adaptive Transformer. Yellow box and blue boxes
imply the output of embedding layer and transformer layers, respectively. Green boxes mean vectors
dropped in lower layers and restored at the last layer. Red box is the task-specific layer. Though
word-vectors in the middle could be eliminated (or dropped), remaining vectors are left-aligned for
the better illustration. In this case, the number of transformer layers is four.

3.3 DROP-AND-RESTORE PROCESS

The applicability of the PoWER-BERT, based on which our main contribution above was made, is
limited to sequence-level classification, because it eliminates word vectors at each layer. In addition
to our main contribution above, we thus propose to extend the PoWER-BERT so that it is applicable
to token-level classification, such as span-based question-answering. Our proposal, to which we
refer as Drop-and-Restore, does not eliminate word vectors at each layer according to the length
configuration but instead sets them aside until the final hidden layer. At the final hidden layer, these
word vectors are brought back to form the full hidden sequence, as illustrated graphically in Fig. 1.

4 EXPERIMENT SETUP

Datasets We test the proposed approach on both sequence-level and token-level tasks, the latter
of which could not have been done with the original PoWER-BERT unless for the proposed Drop-
and-Restore. We use MNLI-m and SST-2 from GLUE benchmark (Wang et al., 2018), as was done
to test PoWER-BERT earlier, for sequence-level classification. We choose them because consistent
accuracy scores from standard training on them due to their sufficiently large training set imply that
they are reliable to verify our approach. We use SQuAD 1.1 (Rajpurkar et al., 2016) for token-level
classification.

Evaluation metrics We use the number of floating operations (FLOPs) as a main metric to measure
the inference efficiency given any length configuration, as it is agnostic to the choice of underlying
hardware, unlike other alternatives such as hardware-aware latency (Wang et al., 2020) or energy
consumption (Henderson et al., 2020). We later demonstrate that FLOPs and wall-clock time on
GPU and CPU correlate well with the proposed approach, which is not necessarily the case for other
approaches, such as unstructured weight pruning (Han et al., 2015; See et al., 2016).

Pretrained transformers Since BERT was introduced by Devlin et al. (2018), it has become
a standard practice to start from a pretrained (masked) language model and finetune it for each
downstream task. We follow the same strategy in this paper and test two pretrained transformer-
based language models; BERTBASE (Devlin et al., 2018) and DistilBERT (Sanh et al., 2019), which
allows us to demonstrate that the usefulness and applicability of our approach are not tied to any
specific architectural choice, such as the number of layers and the maximum length of input sequence.
Although we focus on BERT-based masked language models here, the proposed approach is readily
applicable to any transformer-based models.

Learning We train a Length-Adaptive Transformer with LengthDrop probability and LayerDrop
probability both set to 0.2. We use ns = 2 randomly sampled intermediate sub-models in addition to
the full model and smallest model for applying the sandwich learning rule.

We start finetuning the pretrained transformer without Drop-and-Restore first, just as Goyal et al.
(2020) did with PoWER-BERT. We then continue finetuning it for another five epochs with Drop-and-
Restore. This is unlike the recommended three epochs by Devlin et al. (2018), as learning progresses
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Figure 2: Pareto curves of F1 score and FLOPs on SQuAD 1.1 (Rajpurkar
et al., 2016). We apply the proposed method to BERTBase (solid lines) and
DistilBERT (dotted lines). For each model, we draw three curves using
(1) standard finetuned transformer with constant-rate length reduction, (2)
Length-Adaptive Transformer with constant-rate length reduction, and
(3) Length-Adaptive Transformer with length configurations obtained
from the evolutionary search.
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Figure 3: Correlation
between FLOPs and
latency with different
length configurations.

slower due to a higher level of stochasticity introduced by LengthDrop and LayerDrop. We use the
batch size of 32, the learning rate of 5e− 5 for SQuAD v1.1 and 2e− 5 for MNLI-m and SST, and
the maximum sequence length of 384 for SQuAD v1.1 and 128 for MNLI-m and SST.

Search We run up to G = 30 iterations of evolutionary search, using nm = 30 mutated configura-
tions with mutation probability pm = 0.5 and nc = 30 crossover’d configurations, to find the Pareto
frontier of accuracy and efficiency.

5 RESULTS AND ANALYSIS

Efficiency-accuracy trade-off We use SQuAD 1.1 to examine the effect of the proposed approach
on the efficiency-accuracy trade-off. When the underlying classifier was not trained with LengthDrop,
as proposed in this paper, the accuracy drops even more dramatically as more word vectors are dropped
at each layer. The difference between standard transformer and Length-Adaptive Transformer is stark
in Fig. 2. This verifies the importance of training a transformer in a way that makes it malleable for
inference-time re-configuration.

When the model was trained with the proposed LengthDrop, we notice the efficacy of the proposed
approach of using evolutionary search to find the optimal trade-off between inference efficiency
and accuracy. The trade-off curve from the proposed search strategy has a larger area-under-curve
(AUC) than when constant-rate length reduction was used to meet a target computational budget. It
demonstrates the importance of using both LengthDrop and evolutionary search.

We make a minor observation that the proposed approach ends up with a significantly higher accuracy
than DistillBERT when enough computational budget is allowed for inference (log FLOPs > 10).
This makes our approach desirable in a wide array of scenarios, as it does not require any additional
pretraining stage, as does DistilBERT. With a severe constraint on the computational budget, the
proposed approach could be used on DistilBERT to significantly improve the efficiency without
compromising the accuracy.

Maximizing inference efficiency We consider all three tasks, SQuAD 1.1, MNLI-m and SST-2,
and investigate how much efficiency can be gained by the proposed approach with minimal sacrifice of
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Model SQuAD 1.1 MNLI-m SST-2
Pretrained

Transformer Method F1 FLOPs Acc FLOPs Acc FLOPs

BERTBase

Standard 88.5 1.00x 84.4 1.00x 92.8 1.00x
Length-Adaptive? 89.6 0.89x 85.0 0.58x 93.1 0.36x
Length-Adaptive† 88.7 0.45x 84.4 0.35x 92.8 0.35x

DistilBERT
Standard 85.8 1.00x 80.9 1.00x 90.6 1.00x

Length-Adaptive? 86.3 0.81x 81.5 0.56x 92.0 0.55x
Length-Adaptive† 85.9 0.59x 81.3 0.54x 91.7 0.54x

Table 1: Comparison results of standard Transformer and Length-
Adaptive Transformer. Among length configurations on the Pareto fron-
tier of Length-Adaptive Transformer, we pick two representative points:
Length-Adaptive? and Length-Adaptive† as the most efficient one while
having the highest accuracy and the accuracy higher than (or equal to)
standard Transformer, respectively.
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A
U
C

88.7

88.8

88.9

89.0

89.1

89.2

0 10 20 30

Figure 4: Exam-
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accuracy. First, we look at how much efficiency could be gained without losing on the accuracy. That
is, we use the length configuration that maximizes the inference efficiency (i.e., minimize the FLOPs)
while ensuring that the accuracy is above or same as the accuracy of the standard approach without
any drop of word vectors. The results are presented in the rows marked with Length-Adaptive† from
Table 1. For example, in the case of BERTBase, the proposed approach reduce FLOPs by more than
half across all three tasks.

From Fig. 2, we have observed that the proposed Length-Adaptive Transformer generalize better than
the standard, base model in some cases. We thus try to maximize both the inference efficiency and
accuracy, in order to see whether it is possible for the proposed algorithm to find a length configuration
that both maximizes inference efficiency and improves accuracy. We present the results in the rows
marked with Length-Adaptive? from Table 1. For all cases, Length-Adaptive Transformer achieves
higher accuracy than a standard transformer does while reducing FLOPs significantly. Although it
is not apparent from the table, tor MNLI-m and SST-2, the accuracy of the smallest sub-model is
already greater than or equal to that of a standard transformer.

FLOPs vs. Latency As has been discussed in recent literature (see, e.g., (Li et al., 2020; Chin
et al., 2020)), FLOPs is not a perfect indicator of the real latency measured in wall-clock time, as the
latter is affected by the combination of hardware choice and network architecture. To understand
the real-world impact of the proposed approach, we study the relationship between FLOPs, obtained
by the proposed procedure, and wall-clock time measured on both CPU and GPU by measuring
them while varying length configurations. As shown in Fig. 3, FLOPs and latency exhibit near-linear
correlation on GPU, when the minibatch size is ≥ 16, and regardless of the minibatch size, on CPU.
In other words, the reduction in FLOPs with the proposed approach directly implies the reduction in
wall-clock time.

Convergence of search Although the proposed approach is efficient in that it requires only one
round of training, it needs a separate search stage for each target budget. It is important for evolution-
ary search to converge quickly in the number of forward sweeps of a validation set. As exemplified in
Fig. 4, evolutionary search converges after about fifteen iterations.

6 RELATED WORK

The main purpose of the proposed algorithm is to improve the inference efficiency of a large-scale
transformer. This goal has been pursued from various directions, and in this section, we provide a
brief overview of these earlier, and some concurrent, attempts in the context of the proposed approach.

Weight pruning Weight pruning (Han et al., 2015) focuses on reducing the number of parameters
which directly reflects the memory footprint of a model and indirectly correlates with inference speed.
However, their actual speed-up in runtime is usually not significant, especially while executing a
model with parallel computation using GPU devices (Tang et al., 2018; Li et al., 2020).
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Adaptive architecture There are three major axes along which computation can be reduced in
a neural network; (1) input size/length, (2) network depth and (3) network width. The proposed
approach, based on PoWER-BERT, adaptively reduces the input length as the input sequence is
processed by the transformer layers. In our knowledge, Goyal et al. (2020) is the first work in this
direction for transformers. More recently, Funnel-Transformer (Dai et al., 2020) and multi-scale
transformer language models (Subramanian et al., 2020) also successfully reduce sequence length in
the middle and rescale to full length for the final computation. However, their inference complexity is
fixed unlike PoWER-BERT because they are not designed for the control of efficiency.

LayerDrop (Fan et al., 2019) drops random layers during the training to be robust to pruning
inspired by Huang et al. (2016). Word-level adaptive depth in Elbayad et al. (2019) might seemingly
resemble with length reduction, but word vectors reached the maximal layer are used for self-attention
computation without updating themselves. Escaping a network early (Teerapittayanon et al., 2016;
Huang et al., 2017) based on the confidence of the prediction (Xin et al., 2020; Schwartz et al., 2020;
Liu et al., 2020) also offers a control over accuracy-efficiency trade-off, but it is difficult to tune a
threshold for a desired computational budget because of the example-wise adaptive computation.

DynaBERT (Hou et al., 2020) can run at adaptive width (the number of attention heads and interme-
diate hidden dimension) and depth. Hardware-aware Transformers (Wang et al., 2020) construct a
design space with arbitrary encoder-decoder attention and heterogeneous layers in terms of different
numbers of layers, attention heads, hidden dimension, and embedding dimension.

Structured dropout A major innovation we introduce over the existing PoWER-BERT is the use of
stochastic, structured regularization to make a transformer robust to the choice of length configuration
in the inference time. Rippel et al. (2014) proposes a nested dropout to learn ordered representations.
Similar to LengthDrop, it samples an index form a prior distribution and drops all units having a
larger index than sampled one.

Search There have been a series of attempts at finding the optimal network configuration by solving
a combinatorial optimization problem. In computer vision, Once-for-All (Cai et al., 2019) use an
evolutionary search (Real et al., 2019) to find a better configuration in dimensions of depth, width,
kernel size, and resolution given computational budget. Similarly but differently, our evolutionary
search is mutli-objective to find length configurations on the Pareto accuracy-efficiency frontier to
cope with any possible computational budgets. Moreover, we only change the sequence length of
hidden vectors instead of architectural model size like dimensions.

7 CONCLUSION AND FUTURE WORK

In this work, we propose a new framework for training a transformer once and using it for efficient
inference under any computational budget. With the help of training with LengthDrop and Drop-and-
Restore process followed by the evolutionary search, our proposed Length-Adaptive Transformer
allows any given transformer models to be used with any inference-time computational budget for
both sequence-level and token-level classification tasks. Our experiments, on SQuAD 1.1, MNLI-m
and SST-2, have revealed that the proposed algorithmic framework significantly pushes a better Pareto
frontier on the trade-off between inference efficiency and accuracy. Furthermore, we have observed
that the proposed Length-Adaptive Transformer could achieve up to 3x speed-up over the standard
transformer without sacrificing accuracy, both in terms of FLOPs and wallclock time.

Although our approach finds an optimal length configuration of a trained classifier per computational
budget, it leaves open a question whether the proposed approach could be further extended to support
per-instance length configuration by for instance training a small, auxiliary neural network for each
computational budget. Yet another aspect we have not investigated in this paper is the applicability of
the proposed approach to sequence generation, such as machine translation. We leave both of these
research directions for the future.

Our approach is effective, as we have shown in this paper, and also quite simple to implement on top
of existing language models. We will release our implementation, which is based on HuggingFace’s
Transformers library (Wolf et al., 2019), publicly and plan to adapt it for a broader set of transformer-
based models and downstream tasks.
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