
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRUTH IN THE FEW: HIGH-VALUE DATA SELECTION
FOR EFFICIENT MULTI-MODAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

While multi-modal large language models (MLLMs) have made significant progress
in complex reasoning tasks via reinforcement learning in the post-training phase,
it is commonly believed that extensive training data is necessary for improving
multi-modal reasoning ability, inevitably leading to data redundancy and substantial
computational costs. However, can smaller high-value datasets match or outper-
form full corpora for multi-modal reasoning in MLLMs? In this work, we challenge
this assumption through a key observation: meaningful multi-modal reasoning
during post-training is triggered by only a sparse subset of training samples, termed
cognitive samples, whereas the majority contribute marginally. Building on this
insight, we propose a novel data selection paradigm termed Reasoning Activation
Potential (RAP), which identifies cognitive samples by estimating each sample’s
potential to stimulate genuine multi-modal reasoning by two complementary esti-
mators: 1) Causal Discrepancy Estimator (CDE) based on the potential outcome
model principle, eliminates samples that overly rely on language priors by com-
paring outputs between multi-modal and text-only inputs; 2) Attention Confidence
Estimator (ACE), which exploits token-level self-attention to discard samples
dominated by irrelevant but over-emphasized tokens in intermediate reasoning
stages. Moreover, we introduce a Difficulty-aware Replacement Module (DRM)
to substitute trivial instances with cognitively challenging ones, thereby ensuring
complexity for robust multi-modal reasoning. Experiments on six datasets show
that our RAP method consistently achieves superior performance using only 9.3%
of the training data, while reducing computational costs by over 43%. Our code is
available at https://anonymous.4open.science/r/RAP-39FF.

1 INTRODUCTION

20% data yields 

only 0.8% 
performance drop

(a) (b)

+2.5% accuracy  
-43% time cost

Qwen2.5-VL-7b

Figure 1: Comparison of (a) accuracy under
varying training dataset sizes and (b) perfor-
mance–efficiency trade-offs on various methods.

Improving complex reasoning in multi-modal
large language models (MLLMs) Qwen et al.
(2025); OpenAI (2023) remains a fundamen-
tal challenge. While large-scale reinforcement
learning (RL) during post-training Guo et al.
(2025); Yang et al. (2025) has shown promise in
enhancing reasoning capability, the prevailing
assumption OpenAI (2024); Team et al. (2025)
suggests that scaling training data is a necessary
condition for developing advanced reasoning
ability, thus leading to data redundancy and sub-
stantial training costs. Recent studies Muennighoff et al. (2025); Li et al. (2025) indicate that LLMs
trained on high-quality curated datasets can outperform those trained on full corpora. However, it
remains unclear whether this principle generalizes to multi-modal contexts, where effective cross-
modal integration is important. This raises a critical question: can smaller high-value data achieve
competitive or superior multi-modal reasoning compared to training on full post-training corpora
in MLLMs? To investigate this, as shown in Figure 1(a), we empirically analyze the effect of data
scale on multi-modal reasoning performance. Notably, training with only 20% of the data leads to
merely a 0.8% performance degradation compared to the full dataset, suggesting that indiscriminate
data scaling may have minimal or even negative effects. We hypothesize that such data augmentation

1

https://anonymous.4open.science/r/RAP-39FF


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Language-prior biased samples    

Question: In the image, a paper sector (arc length=6π, angle=120°) 
is folded into a cone. What is the height of the conical paper hat?

Text-only:  the height of  conical 
paper hat is 6√�.

Multimodal:  the height is 6√�.

Minimal difference in outputs 

Question: In parallelogram ABCD, point E divides CD with DE:EC = 2:3. 
Lines AE and BD intersect at F. Find area ratio ����:����.

Wrong answer:   ABF. 
Consider the diagonal 
AC and BD of the 
ABCD. Hence, F is the 
midpoint of BD.   The 
ratio is 1/2.

Overemphasis on 
non-informative 

token “.’’

(b) Attention-biased samples    

Self-attention 
matrix

ABF

ABF the

diagonals

Figure 2: Illustrative examples for two ineffective training sample types: (a) language-prior biased
samples and (b) attention-biased samples.

diminishes the influence of high-value samples, termed cognitive samples, which are essential for
guiding effective cross-modal integration during reasoning.

To validate this assumption, we analyze the characteristics of training samples and find that most
fail to encourage joint attention to both modalities during reasoning. Specifically, we identify two
main types of ineffective samples: 1) Language-prior biased samples (Figure 2(a)), where the model
produces nearly indistinguishable outputs given text-only and multi-modal inputs due to over-reliance
on language priors Han et al. (2022); Leng et al. (2024). Such samples enable models to solve tasks
with minimal utilization of visual semantics, thus impairing their ability to cross-modal integration. (2)
Attention-biased samples (Figure 2(b)), where the model over-attends to semantically irrelevant tokens
(e.g., the punctuation “.”), thereby obstructing the exploration of crucial cross-modal relationships.
The above findings highlight the need to prioritize cross-modal interactions in data selection for
multi-modal reasoning. However, existing data selection methods rely on unimodal textual quality,
such as human-annotated difficulty estimation Li et al. (2025) or reward-based sampling Ye et al.
(2025). These approaches not only incur substantial manual annotation costs Muennighoff et al.
(2025); Ye et al. (2025) and considerable filtering time Li et al. (2025) in the post-training phase, but
also fail to estimate whether samples effectively facilitate cross-modal integration.

Motivated by the above observations, we propose a novel data selection paradigm termed Reasoning
Activation Potential (RAP) for enhancing multi-modal reasoning while reducing training costs.
RAP aims to identify cognitive samples that effectively trigger multi-modal reasoning during RL
post-training. Specifically, RAP estimates the reasoning potential of each sample through two com-
plementary perspectives: output-level reasoning discrepancy and process-level reasoning confidence.
For the former, we are inspired by the intuition that if model predictions remain invariant regardless
of visual input presence, the model may merely exploit linguistic biases rather than engage in genuine
multi-modal reasoning. We formalize this notion through Causal Discrepancy Estimator (CDE),
which employs the Potential Outcome Model (POM) to estimate the causal effect of input modality
on model predictions by simulating counterfactual outcomes, i.e., what the model would output if one
modality were removed. Consequently, CDE effectively eliminates language-prior biased samples
by measuring discrepancies between multi-modal and text-only predictions.

However, relying solely on output-level measures neglects the reliability of internal reasoning
dynamics. Therefore, we propose the Attention Confidence Estimator (ACE) to model the quality
of internal reasoning behavior based on token-level attention distributions, thus removing attention-
biased samples characterized by high attention to irrelevant tokens. Despite their efficacy, combining
these two estimators alone might retain overly simplistic samples while discarding challenging yet
valuable instances, thereby constraining the model’s reasoning upper bound. To address this limitation,
we propose a Difficulty-aware Replacement Module (DRM) to replace trivial samples with suitable
challenging alternatives, which ensure sufficient data complexity for robust multi-modal reasoning.
Finally, the results in Figure 1(b) demonstrate that RAP achieves state-of-the-art performance with
only 5,159 samples, compared to the full dataset of 54,931 samples, while reducing training costs
by over 43%. These findings validate our insight that data quality is more important than blind data
scaling for multi-modal reasoning in RL, revealing the “truth in the few” phenomenon.

Our main contribution: 1) We reveal a “truth in the few” phenomenon that smaller high-quality
datasets can outperform full corpora for multi-modal reasoning in MLLMs. 2) We propose two
novel estimators: a Causal Discrepancy Estimator (CDE) to eliminate samples that overly rely on
language priors, and an Attention Confidence Estimator (ACE) to filter out attention-biased samples
with irrelevant semantic focus. 3) We introduce a Difficulty-aware Replacement Module (DRM) to
preserve sufficient data complexity, effectively improving the model’s reasoning performance ceiling.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Image ��

Prompt + Question:  As 
shown in the figure, ..., 
if ∠O = 110.0, then the 
degree of ∠C is ?
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Self-attention �

Unreliable reasoning:  <think> ... 
at the circumference is given by : 
∠C = 1/2 ∠O. Therefore, we can 
calculate ∠C = 55°. </think>
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Figure 3: The overall pipeline of our RAP method. First, the Causal Discrepancy Estimator (CDE)
filters out samples that overly rely on language priors. Then, the Attention Confidence Estimator
(ACE) excludes attention-biased samples. Finally, the Difficulty-aware Replacement Module (DRM)
replaces trivial instances with challenging ones, yielding a refined subset of cognitive samples.

2 RELATED WORK

Reinforcement Learning for (M)LLM Reasoning. Reinforcement learning (RL) has become a
key paradigm for improving the reasoning ability of both LLMs and MLLMs. Recent methods Lai
et al. (2024); Chowdhury et al. (2024); Rafailov et al. (2023) extend RL beyond human preference
alignment, explicitly achieving reasoning improvement via policy-gradient algorithms such as Proxi-
mal Policy Optimization (PPO) Schulman et al. (2017) and reward-centric optimizations including
RLOO Ahmadian et al. (2024) and GRPO Guo et al. (2025). Moreover, several methods Peng et al.
(2025); Yang et al. (2025); Liu et al. (2025); Wang et al. (2024) explore the RL to enhance the visual
reasoning in MLLMs. However, these methods typically rely on large-scale data Yao et al. (2024),
which fails to consider the quality of training samples. Hence, we introduce a novel RAP method to
select valuable samples, ensuring that the training process stimulates effective multi-modal reasoning.

Data Selection for Reasoning. Traditional methods Guo et al. (2025); Team et al. (2025); Yao et al.
(2024) generally highlight the importance of data scaling, suggesting that larger data volumes can lead
to better performance. Contrary to this, recent methods Ye et al. (2025); Li et al. (2025) demonstrate
that curated datasets outperform those trained on full corpora in textual reasoning tasks. For example,
LIMO Ye et al. (2025) and s1 Muennighoff et al. (2025) demonstrate that models trained with curated
samples perform better compared to models trained on larger datasets. Inspired by these, we focus on
whether and how a minimal but valuable dataset can enhance reasoning within multi-modal contexts.

3 METHOD

Overview of RAP Method. As shown in Figure 3, our RAP method aims to identify high-value
training samples xcd, termed cognitive samples, that effectively stimulate multi-modal reasoning in
MLLMs during RL post-training. Given a training instance x = (xt, xv), we estimate its reasoning
activation potential from two perspectives. First, we adopt the potential outcome model to quantify
the output-level discrepancy D between the model predictions under multi-modal inputs, Y1(x),
and text-only inputs, Y0(xt). Samples with low discrepancy values be considered as language-prior
biased and are discarded accordingly. Second, we compute a confidence score ψ(A) from the self-
attention matrix A ∈ Rd×d of the model’s final layer to assess the model’s focus on meaningful
tokens. Samples with attention focused on irrelevant tokens, below a threshold λa, are excluded as
attention-biased. Moreover, we replace overly easy samples with an equal number of hard examples
potentially missed by the initial model due to limited reasoning capacity, thereby enhancing the
model’s reasoning upper bound. The resulting cognitive samples form a refined training dataset
that supports more efficient and robust multi-modal reasoning in MLLMs. Finally, we utilize these
cognitive samples xcd to optimize the model by maximizing the objective of GRPO Guo et al. (2025).

3.1 CAUSAL DISCREPANCY ESTIMATOR

To identify samples where the model genuinely engages in multi-modal reasoning, rather than overly
relying on language priors, we interpret modality influence in reasoning as output discrepancy
between multi-modal and text-only inputs, formulated under the Potential Outcome Model (POM).
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Background of Potential Outcome Model. The foundation of causal inference is rooted in the
Neyman-Rubin POM Rubin (1974; 2005), which aims to estimate the effect of a treatment T on an
outcome Y for individuals described by covariates X. In this work, we consider the treatment variable
T to be binary, i.e., T ∈ {0, 1}. Under this framework, each unit u is associated with two potential
outcomes: Y1(u), the outcome if the unit receives the treatment (T = 1), and Y0(u), the outcome
under control (T = 0). The Individual Treatment Effect (ITE) Johansson et al. (2016); Shalit et al.
(2017) is defined as the difference Y1(u) − Y0(u). However, due to the fundamental problem of
causal inference Pearl (2009); Hammerton & Munafò (2021), only one of these outcomes can ever be
observed for a given individual, rendering the ITE fundamentally unidentifiable. To address this, the
prior work Abrevaya et al. (2015) proposes the Conditional Average Treatment Effect (CATE), which
represents the expected treatment effect conditioned on covariates:

E[Y1 − Y0 | X = x] = E[Y | T = 1,X = x]− E[Y | T = 0,X = x], (1)

where x are the observed covariates of the unit. More theoretical details are provided in Appendix.A.1.

Output-level Discrepancy Calculation. Inspired by the intuition that a model generating nearly
identical outputs in the presence or absence of visual input may fail to use multi-modal information
for reasoning, we employ the POM to formalize the influence of the visual modality on model
predictions, by defining outcomes under distinct treatment conditions. Specifically, we treat the
presence of the image as a binary treatment variable T ∈ {0, 1}, where T = 1 indicates the inclusion
of the image and T = 0 denotes its absence. Given an input x = (xt, xv), we define two potential
outcomes: Y1(x), the model’s output given both text and image, and Y0(xt), the counterfactual
output when only the text is provided. The text-only output Y0(xt) can be calculated as follows:

yi ∈ Y0(xt) ∼ softmax [logθ (yi | xt)] , (2)

The multi-modal output Y1(x) can be calculated as follows:

yi ∈ Y1(x) ∼ softmax [logθ (yi | xv, xt)] , (3)

To quantify the discrepancy between model outputs Y0(xt) and Y1(x) under multi-modal and text-
only inputs, we compute the consistency of these model outputs with the ground truth Yg. If the
model’s output matches the ground truth in a given condition, we assign a value of 1; otherwise, a
value of 0. The discrepancy D(x) for each sample x is then quantified as the normalized difference
in the number of correct predictions between these conditions, which can be formulated as:

D(x) = E [I(Y1 = Yg)− I(Y0 = Yg) | x] =
1

M

M∑
i=1

[
I(Y1(x(i)) = Y (i)

g )− I(Y0(x(i)t ) = Y (i)
g )
]
,

(4)
where M is the number of rollout outputs generated for each sample set in GRPO, and I(·) is the
indicator function that equals 1 if the condition is true, and 0 otherwise. Based on the mean and
standard deviation of discrepancies across all samples, we set a threshold for the discrepancy score.
Specifically, samples with discrepancy less than µc + λc · σc, where µc is the mean discrepancy, σc
is the standard deviation, and λc is a tunable hyperparameter, are excluded from the training set.

3.2 ATTENTION CONFIDENCE ESTIMATOR

While the CDE identifies samples requiring multi-modal reasoning from an output-level perspective, it
does not assess the quality of internal reasoning processes. Recent studies Huang et al. (2024); Wang
et al. (2023) reveal an insightful phenomenon: tokens with excessive attention weights can dominate
the prediction without using meaningful semantics. Motivated by this, we explicitly quantify the
internal reasoning quality via self-attention distributions, thus filtering out attention-biased samples.

Attention Confidence Formulation. Given an input x = (xt, xv) to a transformer-based MLLM, we
denote the self-attention matrix A ∈ Rd×d from its final transformer layer Rohekar et al. (2023) as:

Ai,j = softmax

(
QiK

⊤
j√
d

)
, (5)

where Qi,Kj ∈ Rd represent the query and key vectors for token positions i and j.
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To systematically characterize attention-bias patterns, ACE analyzes the entire self-attention matrix
A. An attention-biased pattern at token position j is identified if the corresponding attention column
exhibits a pronounced concentration of attention weights, identifying excessive reliance on a single
token. Formally, the degree of attention bias at position j, ψj(A) is quantified by computing a
multiplicative attention score across subsequent token interactions:

ψj(A) =
L∏

i=j

(σ ·Ai,j), (6)

where σ is a scaling factor ensuring numerical stability and emphasizing prominent attention patterns.
L denotes the total length of the input sequence. The ψj(A) metric effectively quantifies attention
confidence, with elevated values indicating unreliable multi-modal reasoning. We define a position j
as attention-biased if ψj(A) exceeds a threshold λa. Instances containing more than one attention-
biased position are filtered out as attention-biased samples.

3.3 DIFFICULTY-AWARE REPLACEMENT MODULE

Although CDE and ACE select valuable samples, they inevitably limit the reasoning upper bound
due to the exclusion of challenging yet informative samples. For example, in the CDE selection
process, if the output discrepancy threshold is set above 0.2, a scenario may arise where a text-only
model consistently produces incorrect outputs across all five trials, whereas multi-modal outputs
succeed once in five trials (more details are provided in Appendix A.2.3). Such challenging yet
valuable samples, which could significantly contribute to improving reasoning, are thus discarded.
This exclusionary process reduces the complexity of the training data, thereby constraining the
model to achieve more complex reasoning ability. To address this, we introduce a Difficulty-aware
Replacement Module (DRM) to refine the selected sample. First, we define the difficulty score Di

iff
to quantify the challenge of correctly answering a sample, which can be defined as:

Di
iff = 1−

∑M
j=1 ci,j

M
, (7)

where ci,j denotes the correctness of the j-th rollout generation for the i-th sample, and M is the total
number of outputs in the group. A higher Di

iff indicates greater difficulty. In particular, the DRM
involves two steps: First, we exclude easy samples, denoted as Di

iff = 0, which are characterized
by consistent correct answers across all trials. Second, we reintroduce hard samples that have been
previously discarded due to difficulty but are still valuable for training. Specifically, based on the
difficulty score Di

iff , the set of reintroduced samples Shard is given by:

Shard = argmaxk

(
{xi | Di

iff ∈ [
1

M
, 1), I(ψi(A) > λa) = 0}

)
, (8)

where k is the number of easy samples. This formulation identifies the top-k most challenging
samples according to the difficulty metric Di

iff , while excluding those that do not meet the specified
criteria. Note that the hardest samples, i.e., Di = 1, would be neglected, as they are demonstrated
to be meaningless for training Huang et al. (2025). This DRM can enhance the upper bound of the
model’s ability to handle complex tasks, without introducing data redundancy and training costs.

Finally, by filtering through CDE and ACE and refining with DRM, we ensure that the model is
trained with cognitive samples xcd, thereby enhancing the multi-modal reasoning ability, while
simultaneously reducing training costs and data redundancy.

4 EXPERIMENTS

Training dataset. Main results in the Table 1 are based on models trained with the MM-Eureka
dataset Meng et al. (2025), a high-quality multi-modal dataset for mathematical reasoning. To
further validate the generalization of our RAP method, we evaluate models trained on the subset of
Mulberry-260k dataset Yao et al. (2024), a multi-modal learning-to-reason-and-reflect dataset.

Evaluation. Similar to Yao et al. (2024); Meng et al. (2025), we evaluate models on both mathe-
matical and general multi-modal reasoning tasks using the pass@1 metric, where pass@1 measures

5
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Table 1: Comparison with state-of-the-art methods. Experiments are conducted using the Qwen2.5-
VL-3b Qwen et al. (2025) and Qwen2.5-VL-7b Qwen et al. (2025), employing GRPO as the RL
method. “Time” denotes the total computation cost, including data selection and training. “*”
represents the relaxing certain selection criteria for s1 and LIMO. Bold font denotes the best result.

Method Sample Time (h) ↓ MathVista ↑ MMStar ↑ MathVerse ↑ WeMath ↑ MMVet ↑ LogicVista ↑ Avg. ↑
Qwen2.5-VL-7b - - 68.70 56.07 39.31 35.90 59.13 44.52 50.61
Qwen2.5-VL-7b-Full 54,931 93.2 70.70 61.53 48.43 38.67 60.51 46.09 54.32
Qwen2.5-VL-7b-s1 (2025) 1,000 55.9 68.50 61.80 45.79 35.05 61.05 45.86 53.01
Qwen2.5-VL-7b-s1∗ (2025) 6,109 64.6 68.60 61.46 45.34 34.82 60.23 45.29 52.62
Qwen2.5-VL-7b-LIMO (2025) 4,093 111.9 69.90 61.33 45.74 34.67 59.08 44.74 52.58
Qwen2.5-VL-7b-LIMO∗ (2025) 5,847 120.6 69.20 61.27 46.03 34.51 58.22 44.53 52.29
Qwen2.5-VL-7b-LIMR (2025) 8,136 122.0 71.10 62.12 48.02 41.21 62.86 45.81 55.19
Qwen2.5-VL-7b-RAP (Ours) 5,159 52.8 73.20 62.53 48.65 42.00 63.31 46.53 56.04
Qwen2.5-VL-3b - - 61.30 54.46 9.01 21.62 51.81 39.59 39.63
Qwen2.5-VL-3b-Full 54,931 46.5 64.50 55.25 38.35 28.29 53.41 40.03 46.64
Qwen2.5-VL-3b-s1 (2025) 1,000 38.4 62.60 54.53 37.41 27.52 53.02 39.59 45.78
Qwen2.5-VL-3b-s1∗ (2025) 5,103 42.7 62.30 54.18 35.89 23.43 52.93 39.82 44.76
Qwen2.5-VL-3b-LIMO (2025) 2,679 94.4 61.80 54.73 35.33 24.48 53.12 39.14 44.77
Qwen2.5-VL-3b-LIMO∗ (2025) 4,808 98.8 62.40 54.66 35.26 24.81 52.03 39.03 44.69
Qwen2.5-VL-3b-LIMR (2025) 21,303 60.9 63.10 54.66 35.43 26.76 53.25 40.95 45.69
Qwen2.5-VL-3b-RAP (Ours) 4,374 32.0 64.90 55.67 39.34 29.33 54.63 41.61 47.58

the percentage of problems correctly solved on the first attempt, under a zero-shot setting. For
mathematical reasoning, we assess the model’s ability on four benchmarks: MathVista Lu et al.
(2024), MMStar Chen et al. (2024a), MathVerse Zhang et al. (2024), and WeMath Qiao et al. (2024).
For universal reasoning, we evaluate on MMVet Yu et al. (2024) and LogicVista Xiao et al. (2024).

Implementation details. Following prior methods Meng et al. (2025); Yao et al. (2024), we conduct
our primary experiments on mathematical reasoning tasks, employing Qwen2.5-VL-3B and Qwen2.5-
VL-7B Qwen et al. (2025) as baseline models. First, we apply RAP to select cognitive samples using
the initial model without any training. These samples are then used to train models within the EasyR1
Sheng et al. (2024), employing the AdamW with a learning rate of 1e-6. Full-data training requires
1 epoch (107 steps), all others use 40 training steps with a batch size of 512 across 8 GPUs. For
accelerated generation in GRPO Guo et al. (2025), we utilize the vLLM package Kwon et al. (2023).
Finally, we set the σ to 2.0, λc and λa to 0.5 and 0.1 for the CDE and ACE, respectively.

4.1 OVERALL COMPARISON RESULTS

Comparing methods. We compare our approach with existing data selection methods, including: 1)
s1 Muennighoff et al. (2025), which utilizes the large-scale MLLMs to identify high-quality data; 2)
LIMO Ye et al. (2025) that designs a difficulty-aware selection method to identify crucial samples;
and 3) LIMR Li et al. (2025), which employs learning impact measurement to select a subset of
training samples. Moreover, we also evaluate models trained on the full dataset (Full) as the baseline.

Comparisons with state-of-the-art methods. The results shown in Table 1 reveal several key find-
ings: 1) RAP consistently outperforms models trained with full corpora on all datasets. Remarkably,
these improvements are achieved using only 9.5% or 7.9% of training data while reducing training
time by 43% or 31%, supporting our hypothesis “truth in the few” that selected cognitive samples can
achieve more effective multi-modal reasoning. 2) Moreover, the RAP shows a significant improve-
ment of 7.33% and 6.95% over the LIMO and s1 on WeMath, which overly rely on manual selection.
For fairness, we strictly followed the data selection from original s1 and LIMO. Moreover, to avoid
misunderstanding about performance drops from smaller datasets, we also provide comparisons with
a more relaxed data selection strategy (details in Appendix A.3.1) for these, where RAP consistently
outperforms both methods, confirming the effectiveness of focusing on the potential of each sample.

Effectiveness of RAP on different base models. As shown in Table 2, our method consistently
surpasses other recent data selection methods when applied to the base model InternVL3-2b Chen
et al. (2024b). This outcome highlights the broad applicability and generalizability of the RAP
framework, as the introduced CDE and ACE components effectively select training samples that
activate the model’s multi-modal reasoning capability. Crucially, these components do not rely on
exploiting model-specific inductive biases, thereby ensuring RAP’s adaptability on a wide range of
model architectures. More results are available in Appendix A.4.3.

Effectiveness of RAP for various RL methods and training datasets. To further validate the
generalizability of RAP, Table 3 presents results using the Qwen2.5-VL-7B model, trained under
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Table 2: Comparison with state-of-the-art meth-
ods using Qwen2.5-VL-7b Qwen et al. (2025)
with the RL method RLOO, evaluating RAP on
different training datasets and RL algorithms.

Method MathVista MMVet We-Math Avg.
Qwen2.5-VL-7b 68.70 59.13 35.90 54.58
Qwen2.5-VL-7b-Full 69.10 60.32 36.95 55.46
Qwen2.5-VL-7b-s1 (2025) 68.50 59.96 35.06 54.51
Qwen2.5-VL-7b-LIMO (2025) 68.80 60.11 35.23 54.71
Qwen2.5-VL-7b-LIMR (2025) 68.90 60.71 36.74 55.45
Qwen2.5-VL-7b-RAP (Ours) 69.20 61.33 37.05 55.86

Table 3: Comparison with state-of-the-art meth-
ods using InternVL3-2b Chen et al. (2024b)
with the RL method GRPO, evaluating our RAP
method across different model architectures.

Method MathVista MMVet We-Math Avg.
InternVL3-2b 56.10 58.22 12.06 42.13
InternVL3-2b-Full 57.20 59.86 12.84 43.30
InternVL3-2b-s1 (2025) 56.80 60.47 11.63 42.97
InternVL3-2b-LIMO (2025) 56.70 59.82 11.92 42.81
InternVL3-2b-LIMR (2025) 57.10 61.33 12.44 43.62
InternVL3-2b-RAP (Ours) 57.40 62.02 13.05 44.16

two different configurations: 1) the RLOO RL paradigm Ahmadian et al. (2024), and 2) the reduced
Mulberry-10K dataset, a subset of Mulberry-260K Yao et al. (2024). Despite these variations, RAP
maintains consistent superiority compared to other methods, suggesting its generalization to different
RL strategies and training datasets. We attribute this robustness to cognitive samples that facilitate
genuine multi-modal reasoning rather than simply fitting data distributions.

4.2 FURTHER ANALYSIS

Ablation study. As presented in Table 4, we list the following conclusions: 1) The comparison
between No.0 and No.3 indicates that integrating CDE and ACE can improve multi-modal reasoning
in MLLMs. These results underscore the efficacy of RAP in eliminating language-prior biased
and attention-biased samples, thereby enabling models to focus on essential “cognitive samples”.

Table 4: Ablation study of RAP using
Qwen2.5-VL-7B.

No. CDE ACE DRM MathVista MMStar MathVerse MMVet
0 - - - 69.10 59.32 46.07 58.91
1 ✔ 70.80 60.64 47.13 60.92
2 ✔ 70.20 60.21 46.86 60.68
3 ✔ ✔ 72.00 61.28 47.82 61.74
4 ✔ ✔ 71.50 60.93 47.90 61.33
5 ✔ ✔ 72.60 61.76 48.74 62.78
6 ✔ ✔ ✔ 73.20 62.53 48.65 63.31

2) Comparing No.1 with No.3 shows that only using
the CDE can improve performance, but worse than
the full RAP, which identifies critical samples by
detecting output discrepancies, overlooking the in-
termediate reasoning. 3) Moreover, the comparison
between No.2 and No.3 demonstrates that the DRM
can further refine the reasoning performance by re-
placing easy samples with more appropriate hard
samples. Such improvements demonstrate that the
DRM addresses a limitation of the CDE and ACE,
i.e., the tendency to retain simpler instances while neglecting challenging yet informative samples.

MMStar

MathVista

MMVet

We-Math LogicVista

54.5

61.3

51.8

21.6
39.6

54.1

61.6

52.1

22
40

55.5

62.3

53.5

24.5 40.6

55.0

61.8

52.5

23.4 40.2

MMStar

MathVista

MMVet

We-Math LogicVista

60.3
56.1

58.2

12.1

30

61

57.6

57.5

11.6

31.3

61.5

59.6

59.8

12.8 31.5

61.2

58.0

58.7

12.3

Baseline s1 LIMR RAP (Ours)

Figure 4: Cross-model generalization of cog-
nitive samples selected by RAP. Performance
with InternVL3-2B trained on samples from
Qwen2.5-VL-3B (left), and vice versa (right).

Comparison on cross-modal reasoning utilization.
We evaluate the effectiveness of cognitive samples
in enhancing cross-modal reasoning utilization on
multi-modal reasoning tasks. We define cross-modal
reasoning utilization as the proportion of instances
in the MMStar dataset where the model correctly
uses multi-modal inputs to answer questions, but fails
when relying solely on textual inputs. As shown in
Figure 5(c), models trained with cognitive samples
show superior integration of cross-modal information,
compared to baseline and the latest method LIMR Li
et al. (2025). Such results highlight that the proposed
CDE can effectively reduce models’ reliance on superficial linguistic prior by filtering out training
samples exhibiting excessive language bias. Hence, models are encouraged to discover the relationship
between image and text, thus improving the cross-modal reasoning utilization.

Comparison on cross-model generalization. To examine the cross-model generalizability of
cognitive samples identified by RAP, we evaluate whether cognitive samples obtained using the
Qwen2.5-VL-3b are useful for improving the reasoning of a distinctly structured model, InternVL3-
2b, and vice versa. Results presented in Figure 4 demonstrate that cognitive samples selected by our
RAP method outperform the latest method LIMR Li et al. (2025), confirming the generalization of
RAP in enhancing multi-modal reasoning for varying model frameworks.

Analysis on hyperparameter sensitivity. We further investigate the sensitivity of the hyperparam-
eters λc and λa employed within the CDE and ACE, respectively. As shown in Figure 5(a), we
visualize the distribution of output discrepancies between multi-modal and text-only inputs, revealing
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(a) Distribution of output discrepancy    
(b) Effect of varying hyper-

parameters � �  and � � 
(c) Comparison of RAP with baseline and the latest method LIMR [8] 

on cross-modal reasoning utilization 

� �

� �

72

70

68

72

70

68

Figure 5: (a) Visualization of output discrepancies between multi-modal and text-only inputs on the
full MM-Eureka training dataset. (b) Performance variation with respect to the hyperparameters λa
and λc on MMstar. (c) Comparative analysis of multi-modal reasoning utilization on four datasets.
Question: <image> 
Find the area of 
the figure.  A. 54 B. 
72 C. 108 D. 36

Significant output-level discrepancy

(a) An illustrative example of  cognitive drivers in training samples  

Multimodal:  <think> The area of the given figure can 
be found by breaking it up into two shapes: a rectangle 
and a triangle. ... , thus the area of rectangle is: 6 * 6 = 
36. ... . The area of triangle is:1/2 * 6 * 6 = 18. Total 
area = Area of rectangle + Area of triangle = 36 + 18 = 
54.</think>\n<answer> A </answer>

Text-only:  <think> .... If the side length of the larger 
square is 6 and the side length of the smaller square is 
3, ..., and the area of the smaller square is 3^2 = 9. The 
total area = 36 + 9 = 45</think><answer> D </answer>

6
6

6

Self-attention 
matrixCognitive sample    

Reliable 
process-level 

reasoning

Question:  As shown in the figure, O is the circumscribed circle of the quadrilateral 
ABCD, if ∠O = 110.0, then the degree of ∠C is ？

A B

C

D

O

Groundtruth: 125°

LIMR:  ... The relationship between the central angle and the 
angle subtended by the same arc at the circumference is given 
by: ∠C = 1/2 ∠O. Therefore, we can calculate ∠C = 55°. 

RAP (Ours):  ... The inscribed angle ∠A is half of the central 
angle ∠O. Therefore, ∠A = 1/2 * ∠O = 55°. 3. Use the 
property of a cyclic quadrilateral: In a cyclic quadrilateral, the 
sum of the opposite angles is 180°. Therefore, ∠A+∠C=180° 
4. Calculate ∠C: Since ∠A=55°, we have ∠C=180°-55°=125°

(b) A comparison between our RAP and the latest method LIMR [9]  

Figure 6: Illustration of (a) characteristics of cognitive samples selected by our RAP and (b) Compar-
ison of the reasoning processes between our RAP and the state-of-the-art LIMR Li et al. (2025).

a significant presence of samples where multi-modal reasoning is not necessary to solve the task.
Experimental results depicted in Figure 5(b) suggest that optimal performance is achieved with
λc = 0.1 and λa = 0.5. Performance degradation is observed when both parameters fall below
these optimal thresholds, with values lower than 0.1 for λc and 0.5 for λa leading to significant
deterioration. This decline is attributed to the inherently uneven distribution of the output-level
discrepancy and attention confidence, which are concentrated at the extremes.

Qualitative analysis. We provide a qualitative analysis by visualizing cognitive samples and compar-
ing the reasoning processes of our RAP with the latest LIMR method as follows: 1) Visualization of
cognitive samples. As shown in Figure 6(a), we present a typical example of the cognitive samples
selected by RAP. This case suggests that cognitive samples selected by RAP exhibit two important
characteristics: (a) the necessity of multi-modal information, as evidenced by the significant discrep-
ancy between reasoning outcomes using multi-modal and text-only inputs; and (b) the avoidance of
overemphasis on irrelevant or meaningless tokens, ensuring that the model focuses on informative
features for accurate reasoning. 2) Comparison case analysis. As shown in Figure 6(b), we compare
the reasoning process of our RAP method with that of the state-of-the-art LIMR Li et al. (2025). For
example, the LIMR fails to integrate cross-modal information, leading to incorrect computations of
both central angle and inscribed angle. In contrast, the model trained using samples selected by RAP
correctly applies geometric principles and multi-modal integration to arrive at the correct solution.
These comparisons show the advantage of training with cognitive samples derived through our RAP,
which enables the model to effectively leverage multi-modal information.

4.3 KEY INSIGHTS AND DISCUSSION

Effect of RAP on reasoning upper bound. As illustrated in Figure 7(a), our RAP method converges
faster than the baseline, achieving optimal performance within 40 training steps compared to 100
for the baseline. These results demonstrate RAP’s efficiency in enhancing multi-modal reasoning
while reducing training overhead and data redundancy. However, further analysis reveals differences
between the full RAP model and its variant using only ACE and CDE, particularly during later
training stages. This occurs because ACE and CDE inevitably retain easy examples, while discarding
challenging yet informative samples. For example, multi-modal examples predicted correctly in only
one out of five attempts but consistently mispredicted under text-only conditions may be mistakenly
eliminated when the discrepancy threshold λc exceeds 0.2. Such filtering reduces dataset complexity,
limiting the model’s overall reasoning upper bound. To address this, we propose the Difficulty-aware
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(a) Impact of data selection on upper bound (c) Performance across difficulty levels    (d) Comparison with RAP with dynamic selection   (b) Data distribution by difficulty levels  

+2.5% 
accuracy     

-60% 
training 

steps     
Easy     Hard    Limited 

upper 
bound    

Update 5.1k to 6.6k 
cognitive drivers for training    

Figure 7: (a) Trade-off analysis between efficiency and performance and effect of data selection on
upper bound. (b-c) Impact of varying the proportion of samples with different difficulty levels on
reasoning. (c) Comparison with our RAP method and RAP augmented with dynamic selection.

Replacement Module (DRM) to explicitly replace easy samples with these informative yet challenging
examples, thus elevating reasoning performance in later training stages.

Why does less data outperform the full dataset? The above empirical analysis shows that models
trained on carefully curated data can notably outperform those trained on the entire dataset. To
further elucidate the underlying mechanisms driving this “truth in the few” phenomenon, we examine
sample difficulty distributions quantified by group-wise response accuracy in the GRPO generation
paradigm in Figure 7(b). The results reveal that cognitive samples contain significantly fewer easy
samples compared to the full dataset. Therefore, under conventional large-scale training, which
usually restricts training to 1 or 2 epochs, the models lack sufficient repeated exposure to challenging
samples, thus limiting the improvements brought from these valuable instances.

Moreover, to further validate our hypothesis, we conduct a comparison in Figure 7(c), where models
are trained on equivalent numbers of easy, hard, and cognitive samples. The results reveal that the
abundance of easy examples contributes little to advancing the model’s reasoning capability and
predominantly introduces redundant information. While challenging samples yield better performance
than easy samples, they still fall short compared to cognitive samples selected by our RAP. We argue
that the superiority of cognitive samples arises not merely from sample difficulty but from their ability
to activate the model’s multi-modal reasoning capacity. In multi-modal contexts, the training samples
must facilitate the activation of the model’s multi-modal reasoning. Additionally, we explore the
effects of RAP-based variants in text-only scenarios, as detailed in Appendix A.3.2.

Discussion on potential optimization during RL training. The static nature of our current RAP
method motivates us to explore potential optimizations through the dynamic adjustment of the
training dataset during RL training. Specifically, we examine the evolving distribution of cognitive
samples identified by RAP criteria across successive epochs. Initially, as depicted in Figure 7(d),
approximately 5,000 samples meet the cognitive sample criteria. However, the number of samples
that continues to satisfy this criterion progressively declines as training advances. This observed
trend suggests the promise of adaptive data sampling, wherein cognitive samples are re-sampled
dynamically from the entire dataset after the first and third training epochs. Preliminary experiments
indicate that such adaptive strategies yield tangible improvements in model performance. However,
despite these advantages, the re-screening of the entire dataset after each epoch incurs a significant
computational overhead. As a result, our final approach strategically refrains from adopting this
adaptive data selection in order to maintain computational efficiency. This highlights the inherent
trade-off between performance enhancements and computational cost when incorporating dynamic
data selection strategies into the RL training process. Further analysis is provided in Appendix A.2.2.

5 CONCLUSION

In this work, we introduce a Reasoning Activation Potential (RAP) data selection paradigm, which
reduces training costs and improves multi-modal reasoning in MLLMs. RAP utilizes the Causal
Discrepancy Estimator (CDE) and Attention Confidence Estimator (ACE) to effectively eliminate
attention-biased samples and language-prior biased samples, leading to more accurate and efficient
reasoning. For future work, we plan to investigate the efficacy of RAP in SFT training and introduce
dynamic mechanisms to further improve the efficiency of multi-modal reasoning.
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A APPENDIX

In this supplementary material, we further substantiate the contributions of our Reasoning Activation
Potential (RAP) method, providing theoretical justifications, expanded empirical validations, and
comprehensive implementation specifics beyond those covered in the main manuscript. Specifically,
the supplementary contents are structured as follows:

• First, we present a rigorous theoretical treatment of our proposed Causal Discrepancy
Estimator (CDE). Grounded in the classical Neyman-Rubin potential outcomes framework,
we explicitly formalize foundational assumptions, including Stable Unit Treatment Value
Assumption (SUTVA), Ignorability, and Overlap that justify causal inference within our
multi-modal context.

• Second, we expand on key issues discussed in the main paper, specifically: (1) the relaxation
of certain selection criteria and (2) the discussion on dynamic selection strategies.

• Furthermore, we enhance our experimental evaluation by benchmarking RAP against several
challenging multi-modal reasoning datasets, and assess its performance in text-only scenarios
and during the SFT phase. Additionally, we analyze the impact of different attention layer
choices. Empirical results demonstrate consistent and substantial performance gains across
diverse model architectures and reinforcement learning algorithms.

• We also compare RAP with state-of-the-art methods, augmenting our empirical analysis
with two additional challenging evaluation datasets. This analysis includes results using
different base models and RL strategies, further validating the robustness and adaptability of
our approach.

• Moreover, we delineate the methodological intricacies of RAP, elaborating on the interplay
among its constituent components: the Causal Discrepancy Estimator (CDE), the Attention
Confidence Estimator (ACE), and the Difficulty-aware Replacement Module (DRM). We
provide a detailed pseudo-code representation to transparently illustrate the computational
workflow and facilitate reproducibility.

• Additionally, an in-depth comparative analysis of computational efficiency is presented,
quantitatively evaluating the cost-performance trade-offs of RAP relative to existing ad-
vanced methods (e.g., s1 Muennighoff et al. (2025), LIMO Ye et al. (2025), LIMR Li et al.
(2025)) across varying dataset scales and model complexities.

• Finally, we include qualitative case studies and visualizations, providing concrete insights
into RAP’s capability to systematically identify cognitively demanding samples, thereby
significantly enhancing the generalization and robustness of multi-modal reasoning models.

A.1 POTENTIAL OUTCOMES FRAMEWORK: FOUNDATIONS AND IDENTIFICATION THEORY
FOR CAUSAL DISCREPANCY ESTIMATION

A.1.1 PROBLEM SETTING AND NOTATION

We adopt the classical Neyman-Rubin causal model Rubin (2005) to formalize causal inference with
observational data. Suppose we observe a finite sample {(Xi, Ti, Yi)}ni=1, where for each unit i:

• Xi ∈ X ⊆ Rd is the vector of covariates (or contexts).
• Ti ∈ {0, 1} is the binary treatment indicator, where Ti = 1 signifies treatment and Ti = 0

control.
• Yi ∈ R is the observed outcome for unit i.

Each unit possesses two potential outcomes Yi(0), Yi(1), representing the outcomes we would
observe under control and treatment, respectively. The observed outcome is connected to potential
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outcomes via the switching equation:

Yi = TiYi(1) + (1− Ti)Yi(0), (9)

The primary object of interest in causal inference is the Conditional Average Treatment Effect (CATE),
defined formally as:

Definition 1 (Conditional Average Treatment Effect). The CATE at a given covariate context x is
defined as the conditional expectation of the difference between potential outcomes:

D(x) := E[Y (1)− Y (0) | X = x]. (10)

This estimate provides personalized insights into treatment effectiveness.

A.1.2 KEY ASSUMPTIONS FOR IDENTIFICATION

To rigorously identify causal quantities from observational data, the following standard assumptions
are essential:

[Stable Unit Treatment Value Assumption, SUTVA] The observed outcome corresponds exactly to
the potential outcome for the received treatment. Formally,

Y = TY (1) + (1− T )Y (0). (11)

This assumption implies no interference between units and well-defined treatments.
[Ignorability (Conditional Independence)] Given covariates X , treatment assignment is conditionally
independent of potential outcomes:

{Y (0), Y (1)}T | X. (12)

Ignorability ensures that there are no unobserved confounders; all variables influencing both treatment
and outcomes are contained within X .
[Overlap (Positivity)] For every set of covariates x, each treatment has a strictly positive probability
of being assigned:

0 < P (T = t | X = x) < 1, ∀x ∈ supp(X), t ∈ {0, 1}. (13)

This assumption guarantees that each covariate configuration could feasibly receive either treatment.

A.1.3 MAIN IDENTIFICATION RESULT

We now state the primary theoretical result that justifies the empirical estimation of CATE from
observed data:

[Identification of CATE] Under Assumptions A.1.2, A.1.2, and A.1.2, the Conditional Average
Treatment Effect (CATE) is identifiable from observational data as follows:

D(x) = E[Y | T = 1, X = x]− E[Y | T = 0, X = x]. (14)

[Proof (Detailed)] We start by explicitly writing the definition of CATE:

D(x) = E[Y (1)− Y (0) | X = x] = E[Y (1) | X = x]− E[Y (0) | X = x]. (15)

Step 1: Using Ignorability By Assumption A.1.2, potential outcomes are conditionally independent
of treatment assignment given X = x. Thus:

E[Y (t) | X = x] = E[Y (t) | T = t,X = x], t ∈ {0, 1}. (16)

Step 2: Consistency (SUTVA) Assumption A.1.2 ensures that for those units receiving treatment t,
the potential outcome matches the observed outcome. Therefore:

E[Y (t) | T = t,X = x] = E[Y | T = t,X = x], t ∈ {0, 1}. (17)
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Step 3: Combining Steps 1 and 2 Substituting back these relations yields:

D(x) = E[Y | T = 1, X = x]− E[Y | T = 0, X = x]. (18)

This completes the identification proof rigorously.

A.1.4 EMPIRICAL ESTIMATION OF CATE

Given an empirical dataset, we estimate the CATE as follows:

τ̂(x) =

∑
i:Ti=1,Xi=x Yi∑
i:Ti=1,Xi=x 1

−
∑

i:Ti=0,Xi=x Yi∑
i:Ti=0,Xi=x 1

. (19)

This plug-in estimator is unbiased under our assumptions and converges in probability to D(x) as
sample size n→ ∞.

A.1.5 THEORETICAL FOUNDATION FOR OUR PROPOSED CAUSAL DISCREPANCY ESTIMATOR

Building on the above foundations, we further articulate how the classical potential outcomes
framework underpins our Causal Discrepancy Estimator (CDE). In our setting, the “treatment”
variable T is naturally instantiated as the presence (T = 1) or absence (T = 0) of the visual modality
for a given sample. The “outcome” Y is defined as the model’s output, e.g., correctness indicator or
prediction accuracy, given both the sample and the model in its current state. Thus, our approach
directly leverages the rigorous Neyman-Rubin model, enabling principled reasoning about the causal
effect of modality on model behavior.

Mapping CDE to Potential Outcomes. Formally, for each instance x, we define two potential
outcomes:

Y (1) = Model’s output given both image and text, Y (0) = Model’s output given text only.
(20)

Following the established causal inference tradition, the estimand of interest is the CATE, which
in this context quantifies the expected causal effect of incorporating visual information at a given
context x:

D(x) = E[Y (1)− Y (0) | X = x]. (21)

This quantity precisely captures the degree to which multi-modal signals influence model predictions—
a direct operationalization of our desideratum in data selection.

Assumptions in the Multi-Modal Setting. Consistent with the standard causal literature, our analysis
presumes three fundamental assumptions:

• Stable Unit Treatment Value Assumption (SUTVA): For each sample, the observed output
matches the potential outcome under the received “treatment” (i.e., input modality). This is
a reasonable presumption given that each model response is deterministically linked to its
input.

• Ignorability (Conditional Independence): Given the context X , the assignment of visual
modality (i.e., whether the image is present) is independent of the potential outcomes. In
practice, this is realized by simulating both T = 1 and T = 0 conditions for each sample in
our CDE protocol.

• Overlap (Positivity): For all x, both P (T = 1 | X = x) and P (T = 0 | X = x) are strictly
positive, which is satisfied by design in our evaluation scheme.

Main Identification Result and Implications. Under these assumptions, we have the following
identification result:

D(x) = E[Y | T = 1, X = x]− E[Y | T = 0, X = x]. (22)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The proof follows the standard two-step reduction: (1) Ignorability enables us to swap the conditioning
on T and X , and (2) SUTVA justifies replacing potential outcomes with observed outcomes for
realized treatments. For completeness, we provide a detailed argument below.

[Proof] Starting from the definition of the Conditional Average Treatment Effect (CATE), we have:

D(x) = E[Y (1)− Y (0) | X = x] = E[Y (1) | X = x]− E[Y (0) | X = x]. (23)

To proceed, we explicitly invoke the Ignorability assumption (Conditional Independence) (Assump-
tion A.1.2). This assumption ensures the conditional independence of the potential outcomes from
the treatment assignment given the covariates X , formally stated as:

{Y (1), Y (0)}T | X. (24)

Under this condition, for each treatment level t ∈ {0, 1}, we have the equality of conditional
expectations:

E[Y (t) | X = x] = E[Y (t) | T = t,X = x]. (25)

Next, we leverage the Stable Unit Treatment Value Assumption (SUTVA) (Assumption A.1.2), often
termed the consistency assumption. This assumption ensures that the observed outcome under the
assigned treatment precisely equals the corresponding potential outcome. Hence, the consistency
condition formally yields:

E[Y (t) | T = t,X = x] = E[Y | T = t,X = x]. (26)

Combining these two essential steps, we deduce the following identification result:

D(x) = E[Y | T = 1, X = x]− E[Y | T = 0, X = x]. (27)

This final expression explicitly relates the causal estimand to observable conditional expectations.
Consequently, this identification result rigorously supports empirical estimation procedures com-
monly used in practice, providing theoretical justification for deriving causal interpretations from
observational data.

Operationalization in CDE. For each instance x, we construct both the multi-modal input (xt, xv)
and the text-only input xt, and compute the difference in model outputs under these two conditions.
The empirical analog of D(x) becomes:

D(x) =
1

M

M∑
i=1

[
I(Y

(i)
1 = Yg)− I(Y

(i)
0 = Yg)

]
, (28)

where Y (i)
1 and Y (i)

0 denote the model’s predictions on x with and without the visual modality, Yg is
the ground truth, and M is the number of model rollouts or generations considered. This construction
directly reflects the plug-in estimator for CATE, now grounded in the multi-modal reasoning context.

A.2 FURTHER ELABORATION ON KEY ISSUES IN THE MAIN PAPER

A.2.1 DETAILS OF RELAXING CERTAIN SELECTION CRITERIA

To ensure fairness and optimal performance, we strictly followed the data selection procedures
outlined in the original s1 Muennighoff et al. (2025) and LIMO Ye et al. (2025) papers. This explains
why the reported dataset sizes for these two methods are smaller in Table 1.

Specifically, the s1 aims to select a final set of 1,000 high-quality samples. It achieves this through a
manual filtering step based on strict criteria. Hence, only 1,000 samples remain after this filtering.
The LIMO adopts a multi-stage filtering process. It employs several advanced models to progressively
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Table 5: Performance comparison of RAP and our implemented dynamic selection strategy RAP-
Dynamic using Qwen2.5-VL-7b with the GRPO RL algorithm across three benchmarks.

Method Time (h) MathVista MMVet LogicVista Avg
Qwen2.5-VL-7b-RAP-Dynamic 80.3 73.60 62.58 46.28 60.82
Qwen2.5-VL-7b-RAP (Ours) 52.80 73.20 63.31 46.53 61.01

select the most challenging samples. This stringent selection approach naturally results in fewer data
samples compared to our method.

To avoid misunderstanding about performance drops from smaller datasets, we have conducted
additional experiments by relaxing certain selection criteria for s1 and LIMO. For the s1, we replace
the final manual selection of 1,000 samples with the top 6,103 samples ranked by difficulty score. For
the LIMO, we relax the definition of a “difficult sample” from samples challenging for all models to
those challenging for at least half of the models.

Consequently, in terms of the base model Qwen2.5-VL-7b, we expand the dataset sizes to 6,103
samples for s1 and 5,847 samples for LIMO (our RAP method uses 5,159 samples). As shown in
the Table 1, increasing dataset sizes provides only marginal or negligible improvements compared
to the original smaller datasets (s1: 1,000 samples; LIMO: 4,093 samples) reported in Table 1. The
phenomenon with the motivation for data selection: indiscriminately enlarging datasets can introduce
redundant or low-quality samples, diluting the value of cognitively rich data and limiting model
improvement. Moreover, our RAP method continues to significantly outperform both s1 and LIMO,
even after this data expansion. These results further confirm the effectiveness and fairness of our
RAP method.

A.2.2 DISCUSSION ABOUT DYNAMIC SELECTION STRATEGY

Exploring efficient dynamic selection strategies is a critical and promising direction for future
research. As detailed in Section 4.3, we have investigated dynamic selection strategies to enhance
model performance. Our preliminary experiments indicate that dynamically updating cognitive
samples during training leads to only marginal improvements in performance. More importantly,
this approach substantially increases computational complexity due to the repeated evaluation of the
entire dataset across multiple training stages.

As shown in Table 5, our dynamic selection strategy yields slight improvements on just one dataset,
while incurring a 52.1% increase in computational costs compared to the static RAP approach.
Given our primary objective of balancing computational efficiency with model performance, we have
opted for the static RAP selection paradigm. The RAP method achieves competitive or superior
performance relative to training with the full dataset, while reducing computational overhead by over
43%. The rationale for not adopting the dynamic variant (RAP-Dynamic) lies in the observed gains
being minor and inconsistent across datasets, coupled with the introduced significant computational
overhead.

Future research will focus on developing lightweight adaptive data-sampling mechanisms that capture
the evolving capabilities of the model without significantly increasing computational cost.

A.2.3 ELABORATION ON THE PROPOSED DRM MODULE

To address the concern about the clarity of our DRM module, we provide further clarification below.
First, we brief the roles of our proposed CDE and DRM. The primary objective of the CDE is to
eliminate samples exhibiting a strong reliance on language priors, quantified by comparing the output
discrepancy D(x) between multi-modal and text-only predictions.

However, the CDE may unintentionally discard valuable multimodal samples, which exhibit low
discrepancy scores due to inherent difficulty rather than reliance on language priors. These samples
produce few correct multimodal predictions but consistently fail under text-only inputs, resulting in
low discrepancy. Despite the low discrepancy, these are valuable for activating multimodal reasoning.
To address this limitation, we propose the DRM to identify and reintroduce these informative
discarded samples, thus preserving data complexity in training.
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Table 6: Performance comparison of RAP and existing data selection methods using QwenVL2.5-7b
with the GRPO RL algorithm across two new benchmarks.

Method POPE VCR-wiki-EN
Qwen2.5-VL-7b-Full 61.47 47.96
Qwen2.5-VL-7b-s1 Muennighoff et al. (2025) 86.03 65.59
Qwen2.5-VL-7b-LIMO Ye et al. (2025) 85.83 65.81
Qwen2.5-VL-7b-RAP (Ours) 86.21 66.45

Table 7: Performance comparison on two text-only benchmarks MATH500 Hendrycks et al. (2021)
and AMC23 using Qwen2.5-7B and LLaMA3.1-8b, with GRPO as the RL algorithm. Random and
Full refer to training with randomly sampled data and the complete dataset, respectively.

Method MATH500 AMC23
Qwen2.5-7b-Random 72.40 50.25
Qwen2.5-7b-Full 74.40 51.25
Qwen2.5-7b-RAP (Ours) 74.60 51.75
LLaMA3.1-8b-Random 46.60 20.50
LLaMA3.1-8b-Full 48.60 22.75
LLaMA3.1-8b-RAP (Ours) 49.90 23.25

Specifically, during the CDE selection process, samples are discarded based on their output dis-
crepancy score D(x) as shown in Equation 4. However, certain discarded samples may be im-
portant for activating multimodal reasoning. For example, when setting the threshold is 0.3 (i.e.,
µc + λc · σc = 0.3) and the M is set as 5, we observe scenarios where some samples produce few
correct responses (1 correct out of 5) with multimodal inputs, while consistently failing all M rollout
outputs with text-only inputs (0 correct out of 5), i.e., D(x) = 0.2 < µc + λc · σc. As a result, these
valuable yet challenging samples are excluded due to their low discrepancy scores. This inadvertently
reduces the complexity of training data, potentially limiting model performance.

To address this issue, we propose the DRM to identify the challenging yet informative samples,
satisfying Diff ∈

[
1
5 , 1
)

and D(x) > 0, which were inadvertently discarded by CDE due to their
low discrepancy scores. The DRM subsequently reintroduces these discarded challenging samples
by replacing overly simplistic samples previously retained by CDE (those with difficulty scores
Diff = 0).

Therefore, DRM effectively resolves the inherent limitations of CDE by preserving cognitively
demanding instances. Through this complementary interaction, DRM maintains the diversity and
complexity of the training data, significantly enhancing the model’s multimodal reasoning capabilities.

To sum up, the DRM does not contradict the purpose of CDE, instead, it addresses the limitation of
CDE by retaining valuable multimodal difficult samples and preserving training set complexity.

A.3 KEY INSIGHT AND DISCUSSION

A.3.1 COMPARISON ON MORE DIVERSE MULTI-MODAL TASKS

To address concerns regarding the applicability of RAP to more complex scenarios, we conducted
additional evaluations on more detailed vision-language benchmarks, including universal multimodal
reasoning and VCR tasks. Specifically, we assess our model, QwenVL2.5-7b-RAP, on the challenging
multi-modal datasets POPE Li et al. (2023) and the VCR task Zhang et al. (2025). As shown in
Table 8, our proposed RAP method consistently outperforms existing methods across all evaluated
metrics. These findings reinforce that RAP enhances performance in fine-grained vision-language
tasks, demonstrating its robustness in complex, multi-modal scenarios.

A.3.2 GENERALIZATION ON TEXT-ONLY SCENARIOS

Our RAP method aims at enhancing multi-modal reasoning during the RL post-training phase.
Therefore, the core CDE inherently depends on cross-modal signals, limiting its direct transfer to
unimodal scenarios. To address potential concerns regarding applicability to LLMs, we adapt the
ACE and DRM modules to text-only settings. In this adaptation, due to the absence of CDE, we
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Table 8: Performance comparison between RAP and RAP-mid using QwenVL2.5-3b with the GRPO
RL algorithm across three benchmarks. RAP-mid refers to the variant that utilizes intermediate
(6th-layer) attention maps.

Method MathVista MMVet LogicVista WeMath Avg.
QwenVL2.5-3b-RAP-mid 64.60 54.29 41.74 29.17 47.45
Qwen2.5VL-3b-RAP (Ours) 64.90 54.63 41.61 29.33 47.62

achieve the DRM by directly removing easy samples defined by Diff = 0, i.e., samples consistently
answered correctly across all trials. This setup allows us to evaluate the effectiveness of our ACE
and DRM in LLMs. Under this setting, we evaluated ACE and DRM on two widely used LLMs,
Qwen2.5-7B and LLaMA3-7B, employing GRPO as the RL method. The results in the Table 7 show
that ACE and DRM can achieve consistent performance gains in text-only contexts, confirming the
broader generalizability of our RAP method. However, these improvements remain modest compared
to the multi-modal scenario. We attribute this gap primarily to two reasons: (1) the original motivation
and design of RAP cater to multi-modal contexts; (2) the absence of the crucial CDE component
significantly reduces DRM’s efficacy, as DRM aims to address the limitation of CDE.

A.3.3 ANALYSIS ON THE CHOICE OF ATTENTION LAYERS

We clarify our rationale for using last-layer attention and provide additional experiments exploring
attention maps from other layers.

As illustrated in Section 3.2 and Figure 2(b), attention-biased distributions typically manifest as
excessively persistent high attention allocation across subsequent token sequences. Existing research
Rohekar et al. (2023) has demonstrated that attention distributions in the final layer effectively capture
causal reasoning behaviors. Such findings intuitively highlight the critical role of the last-layer
attention maps in evaluating the reliability of the model’s reasoning behavior. Inspired by this, we
initially chose the last-layer attention distributions to effectively capture globally biased attention
patterns that compromise genuine multi-modal reasoning.

However, we have conducted preliminary experiments to investigate the potential of Attention
Confidence computed from intermediate layers. Recent work Yin et al. (2025) has indicated layers 5
to 8 within large language models play a critical role in multi-modal fusion. Therefore, we selected the
6th transformer layer’s attention distribution as an alternative input for our ACE module and compared
its efficacy against our original last-layer choice. Due to limited time, we utilized QwenVL2.5-3B as
the base model.

The results presented in the following table demonstrate slight performance degradation when utilizing
intermediate (6th-layer) attention maps. For most datasets, employing attention maps from the last
layer consistently yielded superior performance. These results justify our choice of using last-layer
attention maps.

A.4 COMPARISON WITH STATE-OF-THE-ART METHODS

To further evaluate the robustness and effectiveness of the RAP approach, we augment our empirical
analysis by incorporating three additional challenging evaluation datasets: MMMU Yue et al., and
ScienceQA Lu et al. (2022). These datasets comprehensively probe the model’s complex and universal
multi-modal reasoning ability.

A.4.1 MORE RESULTS USING THE BASE MODEL QWEN2.5-VL

Results using the Qwen2.5-VL-7b. As illustrated in Table 9, Qwen2.5-VL-7b trained with cognitive
samples selected by our RAP method consistently surpasses the state-of-the-art approaches across
all the benchmarks. Specifically, RAP achieves significant accuracy improvements of 1.1% on
MMMU Yue et al. compared to the current state-of-the-art method LIMR Li et al. (2025)). These
improvements demonstrate RAP’s effectiveness in identifying high-quality cognitive samples, which
can enhance the generalization and robustness of models in complex reasoning scenarios.
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Table 9: Comparison with state-of-the-art methods. Experiments are conducted using the Qwen2.5-
VL-3b Qwen et al. (2025) and Qwen2.5-VL-7b Qwen et al. (2025), employing GRPO as the RL
method. “Time” denotes the total computation cost, including data selection and training. Bold font
denotes the best result.

Method Sample Time (h) ↓ MMMU ↑ ScienceQA ↑
Qwen2.5-VL-7b - - 45.33 83.02
Qwen2.5-VL-7b-Full 54,931 93.2 46.55 85.53
Qwen2.5-VL-7b-s1 Muennighoff et al. (2025) 1,000 55.9 45.78 84.57
Qwen2.5-VL-7b-LIMO Ye et al. (2025) 4,093 111.9 45.44 84.65
Qwen2.5-VL-7b-LIMR Li et al. (2025) 8,136 122.0 46.44 85.39
Qwen2.5-VL-7b-RAP (Ours) 5,159 52.80 47.56 85.87
Qwen2.5-VL-3b - - 43.56 80.71
Qwen2.5-VL-3b-Full 54,931 46.5 45.78 81.26
Qwen2.5-VL-3b-s1 Muennighoff et al. (2025) (2025) 1,000 38.4 44.22 80.63
Qwen2.5-VL-3b-LIMO Ye et al. (2025) (2025) 2,679 120.5 44.56 81.07
Qwen2.5-VL-3b-LIMR Li et al. (2025) (2025) 21,303 60.9 46.22 81.39
Qwen2.5-VL-3b-RAP (Ours) 4,374 32.0 46.78 81.51

Table 10: Comparison with state-of-the-art methods using LLaVA1.5-7b Liu et al. (2024) with the
RL method GRPO, evaluating our RAP method on different base models.

Method MMVet MathVista LogicVista
LLaVA1.5-7b 27.21 23.70 23.49
LLaVA1.5-7b-s1 Muennighoff et al. (2025) 28.03 24.00 23.62
LLaVA1.5-7b-LIMO Ye et al. (2025) 28.16 23.90 23.57
LLaVA1.5-7b-LIMR Li et al. (2025) 28.31 24.30 23.89
LLaVA1.5-7b-RAP (Ours) 28.45 24.50 24.16

A.4.2 MORE RESULTS USING THE BASE MODEL QWEN2.5-VL

Results using the Qwen2.5-VL-7b. As illustrated in Table 9, Qwen2.5-VL-7b trained with cognitive
samples selected by our RAP method consistently surpasses the state-of-the-art approaches across all
the benchmarks. Specifically, RAP achieves significant accuracy improvements of 1.1% on MMMU
Yue et al. compared to the current state-of-the-art method LIMR Li et al. (2025). These improvements
demonstrate RAP’s effectiveness in identifying high-quality cognitive samples, which can enhance
the generalization and robustness of models in complex reasoning scenarios.

Results using the Qwen2.5-VL-3b. Table 9 presents improvements obtained by RAP using the
Qwen2.5-VL-3b model, albeit less pronounced compared to those achieved with the 7b variant.
Specifically, RAP demonstrates notable but comparatively modest accuracy gains. This performance
discrepancy can be attributed to the reliance of our RAP method on the reasoning capabilities of the
initial model for cognitive sample selection. Consequently, the inferior initial reasoning performance
of the smaller-capacity Qwen2.5-VL-3b adversely impacts the effectiveness of selected training
samples, thus limiting its performance enhancement potential relative to the larger-scale model.

A.4.3 MORE RESULTS USING DIFFERENT BASE MODELS AND RL STRATEGIES

Results using the LLaVA1.5-7b. Table 10 presents the performance improvements achieved by
our RAP method when applied to the LLaVA1.5-7b model Liu et al. (2024). Specifically, RAP
consistently outperforms existing approaches across all evaluated metrics. These results not only
underscore the efficacy of our approach in enhancing model performance but also demonstrate
RAP’s robust generalization across a variety of model architectures. Our RAP method’s superior
performance on three MMVet, MathVista, and LogicVista benchmarks further validates its potential to
scale across different domains of multi-modal reasoning, reinforcing the versatility and effectiveness
of RAP in practical applications.

Results using the InternVL3-2b. To further assess the effectiveness of RAP on various frameworks,
we conducted experiments with InternVL3-2b trained using cognitive samples selected by RAP. As
shown in Table 11, RAP consistently yields substantial performance gains, achieving gains of 1.3%
and 0.6% on MMStar and LogicVista, respectively, compared to the model training with full data.
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Table 11: Comparison with state-of-the-art methods using InternVL3-2b Chen et al. (2024b) with the
RL method GRPO Guo et al. (2025), evaluating our RAP method across different model architectures.

Method MMStar LogicVista
InternVL3-2b 51.33 32.01
InternVL3-2b-Full 57.35 33.67
InternVL3-2b-s1 Muennighoff et al. (2025) 54.38 32.71
InternVL3-2b-LIMO Ye et al. (2025) 54.79 32.79
InternVL3-2b-LIMR Li et al. (2025) 57.64 33.85
InternVL3-2b-RAP (Ours) 58.64 34.29

Table 12: Comparison with state-of-the-art methods using Qwen2.5-VL-7b Qwen et al. (2025) with
the RL method RLOO Ahmadian et al. (2024), evaluating our RAP method on different training
datasets and RL algorithms.

Method MMStar LogicVista
Qwen2.5-VL-7b 56.07 44.52
Qwen2.5-VL-7b-Full 61.47 47.96
Qwen2.5-VL-7b-s1 Muennighoff et al. (2025) 59.62 46.23
Qwen2.5-VL-7b-LIMO Ye et al. (2025) 59.89 46.55
Qwen2.5-VL-7b-LIMR Li et al. (2025) 61.13 47.61
Qwen2.5-VL-7b-RAP (Ours) 62.27 48.10

These empirical results underscore the universality and architecture-agnostic capability of RAP in
selecting informative cognitive samples, thus effectively boosting model performance across different
frameworks.

Results using the RLOO. To demonstrate RAP’s generalization capability across different RL
strategies and training datasets, we further integrate RAP with the Reinforce Leave-One-Out (RLOO)
method Ahmadian et al. (2024) using the Mulberry-10k dataset. As illustrated in Table 12, RAP
combined with RLOO consistently exceeds alternative data selection strategies. These findings
confirm RAP’s flexibility in accommodating distinct RL algorithms and diverse training datasets,
further emphasizing its broad applicability and robustness across different experimental conditions.

A.5 IMPLEMENTATION DETAILS

A.5.1 THE OVERVIEW OF RAP

Algorithm 1 provides a detailed overview of our RAP framework, depicting its three-step data
selection pipeline. Initially, the Causal Discrepancy Estimator (CDE) identifies and eliminates
language-prior biased samples by evaluating output discrepancies between text-only and multi-modal
inputs. Subsequently, the Attention Confidence Estimator (ACE) further filters attention-biased
samples based on token-level self-attention distributions. Lastly, the Difficulty-aware Replace-
ment Module (DRM) strategically replaces trivial samples with cognitively challenging alternatives,
ensuring robust data complexity to elevate multi-modal reasoning capabilities.

A.5.2 DETAILS OF TOTAL TIME

Figure 8 and 9 provide a comprehensive analysis of computational resources required by various
data selection methodologies and subsequent model training across different sample sizes. We
systematically evaluate five comparative approaches using the Qwen2.5-VL-7B and Qwen2.5-VL-3B
models as specified in Table 9: Full data (using the complete MM-Eureka dataset Meng et al. (2025)),
s1 Muennighoff et al. (2025), LIMO Ye et al. (2025), LIMR Li et al. (2025), and our proposed RAP
method. Each step’s rationale, process, and respective computational cost are detailed below, with
black indicating the 7B variant and blue for the 3B variant.

(1) Full Data:

1. Complete Dataset Training (93.2 hours; 46.5 hours): In this baseline setting, RL training
is directly performed on the entire MM-Eureka dataset, encompassing a full epoch consisting
of 107 training steps. It ensures comprehensive exposure to all available data.
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Algorithm 1 Reasoning Activation Potential (RAP)-based Data Selection and Training
Original dataset D = {(xit, xiv, yi)}Ni=1, pretrained model θ, output discrepancy threshold λc,
attention confidence threshold λa, training steps T Curated cognitive samples xcd Stage 1:
Causal Discrepancy Estimator (CDE) each sample (xt, xv, y) ∈ D Generate M outputs
separately using multimodal (xt, xv) and text-only (xt) inputs Compute output consistency
metric:

D(x) =
1

M

M∑
j=1

[
I(Y (j)

1 = y)− I(Y (j)
0 = y)

]
Form discrepancy-filtered dataset:

Xcde = {x | D(x) ≥ µD + λcσD }

Stage 2: Attention Confidence Estimator (ACE) Initialize confidence-filtered set Xace = ∅
each sample x ∈ Xcde Perform forward pass and extract self-attention matrix A ∈ RL×L from
the final layer Compute attention confidence:

ψj(A) =
L∏

i=j

(σ ·Ai,j), ψ(A) = max
j
ψj(A)

ψ(A) ≤ λa Add sample x to Xace Stage 3: Difficulty-aware Replacement Module (DRM)
Compute difficulty score for each sample x ∈ Xace:

Ddiff(x) = 1− 1

M

M∑
j=1

I(output(j) is correct)

Identify trivial samples:
Xeasy = {x |Ddiff(x) = 0 }

Select top |Xeasy| challenging samples from D \Xace based on descending difficulty, forming
the challenging set Xhard Construct final cognitive dataset:

xcd = (Xace \Xeasy) ∪Xhard

Stage 4: Cognitive Dataset Training Training model θ on cognitive samples xcd via reinforce-
ment learning algorithms (GRPO) for T steps

(2) s1 Muennighoff et al. (2025):

1. API-based Preprocessing (1.0 hour; 1.0 hours): Cleans the initial data by removing low-
quality entries (e.g., incomplete, ambiguous samples) and standardizing metadata, ensuring
dataset consistency prior to deeper analysis.

2. Two-round Dual-Model Difficulty Assessment (9.5+9.5 hours; 9.5+9.5 hours): In this
phase, we conduct a comprehensive difficulty evaluation utilizing two distinct and inde-
pendently trained models. Each model individually assesses the difficulty level of every
candidate question, consuming approximately 9.5 hours (5.2 hours) per model. Questions
that both models successfully solve are systematically excluded, as their uniformly correct
predictions indicate trivial complexity or minimal informative value. Consequently, this
dual-model filtering strategy effectively retains only challenging or ambiguous samples,
significantly enhancing dataset informativeness and reducing redundancy.

3. Final Annotation and Sampling (1.0 hour; 1.0 hours): The refined subset subsequently
undergoes annotation through an API-based labeling process. This procedure assigns explicit
complexity or domain labels to each remaining sample, ensuring balanced representation
and coverage of diverse reasoning scenarios. The resulting dataset thus maximizes represen-
tational diversity and maintains a high degree of relevance and informational richness.

4. Training Phase (34.9 hours; 17.4 hours): Training with the curated data subset for 40
steps.
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Figure 8: The total computational time required by different data selection and training with various
amounts of samples using the Qwen2.5-VL-7b.
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Figure 9: The total computational time required by different data selection and training with various
amounts of samples using the Qwen2.5-VL-3b.

(3) LIMO Ye et al. (2025):

1. Initial Filtering via Qwen2.5-Instruct (9.5 hours; 9.5 hours): This stage utilizes Qwen2.5-
Instruct to efficiently remove obviously trivial or low-complexity samples. By rapidly dis-
carding these samples at an early stage, computational resources are strategically conserved,
allowing subsequent analyses to focus solely on potentially challenging or informative
examples.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

2. Multi-Model Validation – Stage 1 (22.5 hours; 22.5 hours): In the first validation stage,
we employ InternVL3-38B to independently evaluate the filtered dataset over five iterative
passes (4.5 hours per pass), emphasizing detection of semantically ambiguous samples
and annotation noise. This phase establishes a foundational layer of quality assurance by
leveraging InternVL’s fine-grained multimodal reasoning capabilities.

3. Multi-Model Validation – Stage 2 (22.5 hours; 22.5 hours): The second stage invokes
Qwen2.5-VL-32B, which further refines the dataset by validating samples previously ac-
cepted or contested in Stage 1. Through the same 5-pass procedure (totaling 22.5 hours),
Qwen2.5 offers complementary linguistic priors and instruction-following precision to
enhance sample reliability.

4. Multi-Model Validation – Stage 3 (22.5 hours; 22.5 hours): Finally, LLaVA-OneVision
conducts an independent pass-through using visual-textual alignment cues. This stage not
only reinforces agreement across modalities but also uncovers visually grounded inconsis-
tencies that may elude text-centric evaluation. The redundant yet diverse model ensemble
ensures a high-confidence consensus on challenging data points.

5. Training Phase (34.9 hours; 17.4 hours): Training with the curated data subset for 40
steps.

(4) LIMR Li et al. (2025):

1. Learning Impact Measurement-based Selection (87.1 hours; 43.5 hours): This phase
involves conducting reinforcement learning (RL) training over one complete epoch (107
training steps) on the initial dataset of 54,931 samples. Throughout this epoch, LIMR
systematically records and evaluates each sample’s contribution to the learning trajectory,
assigning higher priority to samples demonstrating greater alignment and impact on model
performance. By quantitatively measuring these dynamics, the approach efficiently identifies
a reduced subset of 8,136 high-value examples, optimizing subsequent resource allocation
and computational efficiency.

2. Training Phase (34.9 hours; 17.4 hours): Utilizing the rigorously curated subset of 8,136
samples, LIMR conducts focused RL training over 40 training steps. This strategically
condensed training phase capitalizes on the carefully selected dataset to maximize the
model’s reasoning potential.

(5) RAP (Ours):

1. Reasoning Activation Potential-based Selection (17.9 hours; 14.6 hours): Our proposed
method initially utilizes text-only inputs to assess the entire dataset (8.4 hours; 8.0 hours),
followed by multimodal inputs to compute output-level distribution and self-attention values
(9.5 hours; 6.6 hours). Subsequently, sample selection is based on discrepancies in outputs
and attention metrics, complemented by the DRM module to replace overly simple samples
with cognitively more challenging ones.

2. Training Phase (34.9 hours; 17.4 hours): Training with the curated data subset for 40
steps.

A.6 QUALITATIVE ANALYSIS

In this section, we conduct a qualitative evaluation by visualizing cognitive samples and comparing
the reasoning processes of our proposed RAP approach with the state-of-the-art LIMR method Li
et al. (2025).

A.6.1 VISUALIZATION OF COGNITIVE SAMPLES

As demonstrated in Figure 10(a) and 11(a), we illustrate cognitive samples selected by our RAP
approach, highlighting their effectiveness in integrating geometric and logical reasoning across
modalities. Specifically, in the first example (top figure), RAP successfully leverages multi-modal
inputs to accurately compute the area of triangle △BDC by correctly identifying that sideAD acts as
the triangle’s height, a critical detail overlooked in a text-only approach. The second example (bottom
figure) further underscores RAP’s capability to identify corresponding angles and properly leverage
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geometric rules (such as the parallel line theorem) using visual modalities, leading to the accurate
calculation of angle measurements. These cases collectively illustrate two essential characteristics of

Question:<image> 
In △ABC, ∠A = 90°, 
BD bisects △ABC, 
AD = 6, BC = 15, the 
area of △BDC is()

Significant output-level discrepancy

(a) An illustrative example of  cognitive sample in training samples  

Multimodal:  <think>Since ∠A = 90°, BD bisects △ABC, 
and AD = 6, BC = 15. This implies that AD is the height 
of the right triangle…Therefore, the area of △BDC is: 
Area = 1/2 * AD * BC = 1/2 * 6 * 15 = 45 square. The 
area of △BDC is 45 square. The final answer is: 45 is 
the area of △BDC.</think>\n<answer> 45 </answer> 

Text-only:  <think> .... Since BD bisects △ABC in a right 
triangle ABC, ∠ ABD = ∠DBC = 45°, AB = AD/√2 = 
3√2… the area of △BDC is half the area of △ABC.  
Area of △BDC = 11.25 </think>\n<answer>D</answer>

Self-attention 
matrixCognitive sample    

Reliable 
process-level 

reasoning

Question:  Calculate the missing item. Groundtruth: 256

LIMR:  ... For the third square, let's assume the pattern is similar 
to the first square's product of the numbers in the corners: 
4*6*5*1 = 120. Therefore, the missing central number is 120.

RAP (Ours):  ... For the first square, Center: 12 + 22 + 32 + 42 = 
30. However, the given center value is 100, which suggests a 
different pattern. For the first square : 100 = (1 + 2 + 3 + 4)�. For 
the second square 196 = (3 + 2 + 7 + 2)�.  Following this pattern, 
for the third square, 4 + 6 + 5 + 1 = 16. The center value should 
be ���= 256. Therefore, the missing item is 256.

(b) A comparison between our RAP and the latest method LIMR [9]  

1 2

3 4
100

3 2

7 2
196

4 6

5 1
?

Figure 10: Illustration of (a) characteristics of cognitive samples selected by our RAP method and (b)
Comparison of the reasoning processes between our RAP method and the state-of-the-art LIMR Li
et al. (2025).

Question: <image> 
in △ABC, if DE//BC, 
∠B = 60°, ∠AED = 
40°, ∠A is () A. 70° 
B. 80° C. 90°D.100°

Significant output-level discrepancy

(a) An illustrative example of  cognitive sample in training samples  

Multimodal:  <think>Since DE is parallel to BC and ∠B 
= 60°, ∠ADE = ∠B = 60° because of the corresponding 
angles theorem. Also, ∠AED = 40°.  Thus, in △ADE, 
∠A can be calculated as 180° - ∠ADE - ∠AED = 180° - 
60° - 40° = 80°. So, the measure of ∠A is ∠A = 80°. 
The correct answer is B.</think>\n<answer> B 
</answer>

Text-only:  <think> .... Specifically, ∠AED and ∠EBC 
are corresponding angles, so ∠EBC = ∠AED = 40° ... 
Since ∠AED = 40° and ∠EBC = 40°, the correct ∠C 
should be 180° - 60° - 40° = 80°. Therefore ∠A = 180° - 
60° - 80° = 40°. </think>\n<answer> A </answer>

Self-attention 
matrixCognitive sample    

Reliable 
process-level 

reasoning

Question:  As shown in the figure, F is the intersection point of the angle bisectors 
CD and BE of △ABC, and CG⊥AB at point G. Given that ∠ACG＝32°, the 
measure of ∠BFC is (). Groundtruth: 119

LIMR:  ... The correct formula for ∠BFC is: ∠BFC = 90°+1/2 *  
( 180° - ∠ACB) = 90° + 1/2 *(180° - 116°) = 90° + 1/2* 64° = 
90° + 32° = 122°. Therefore, the measure of ∠BFC is 122°.

RAP (Ours):  ... The measure of ∠BFC can be found using the 
formula for the angle at the incenter of a triangle, which is: 
∠BFC = 90° + 1/2*∠A. Since ∠CGA = 90° and ∠ACG = 32°, 
we have: ∠A = 90° - 32° = 58°. Therefore, the measure of 
∠BFC 
is: ∠BFC = 90° + 1/2*58° = 90° + 29° = 119°.

(b) A comparison between our RAP and the latest method LIMR [9]  

A B

C

DG

E F

C

D E

B

A

Figure 11: Illustration of (a) characteristics of cognitive samples selected by our RAP method and (b)
Comparison of the reasoning processes between our RAP method and the state-of-the-art LIMR Li
et al. (2025).

cognitive samples selected by RAP: (a) they demonstrate the necessity and effectiveness of integrating
multi-modal information by revealing significant reasoning discrepancies between multi-modal and
purely textual methods; and (b) they prioritize meaningful geometric details, avoiding distractions by
irrelevant textual tokens, thereby optimizing the reasoning process.

A.6.2 COMPARISON CASE ANALYSIS

Further, as illustrated in Figure 10(b) and 11(b), we provide a detailed comparison between the
reasoning processes of RAP and the state-of-the-art LIMR approach. In the first scenario (top figure),
LIMR incorrectly assumes a simplistic numerical multiplication pattern, resulting in a miscalculation
of the missing central number. In contrast, RAP identifies the accurate multi-modal reasoning
pattern—namely, the summation of squared values of surrounding numbers—achieving the correct
central value. Similarly, in the second scenario (bottom figure), LIMR misapplies angle bisector
formulas and fails to correctly leverage multi-modal geometric constraints, thus deriving an incorrect
angle measurement. Conversely, RAP appropriately incorporates geometric principles (such as angle
bisector rules and interior angles relationships) and multi-modal integration to determine the accurate
angle measure.

These comparison cases robustly demonstrate that cognitive samples selected through RAP signifi-
cantly enhance model performance by encouraging precise and reliable reasoning using multi-modal
geometric information. Consequently, RAP-trained models exhibit superior interpretability and
accuracy over methods lacking effective integration across modalities.

A.7 REPRODUCIBILITY STATEMENT

We are committed to ensuring that the research presented in this paper is reproducible. All relevant
details, including the experimental setup, model architectures, hyperparameters, and datasets, are
fully documented in the main text and supplementary materials. For reproducibility, we provide
the following resources: (1) a link to the anonymized source code for our method, which includes
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all necessary scripts for reproducing the results reported in the experiments; (2) a comprehensive
description of the datasets used, including any data processing steps undertaken to prepare the data
for experimentation; (3) detailed explanations of the theoretical assumptions underlying our method,
as well as proofs of key claims provided in the appendix. We also describe the evaluation metrics
used to assess our method’s performance, ensuring that others can replicate our experiments and
verify the results. By making these materials publicly available, we hope to facilitate transparency
and promote further validation of our approach within the community.

A.8 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics, and we have taken all necessary precautions to ensure
that our research meets ethical standards. The experiments in this paper do not involve human subjects,
sensitive data, or any forms of direct interaction with individuals. Our data is derived from publicly
available sources, and all data processing steps have been conducted in compliance with applicable
privacy regulations. We explicitly acknowledge that our method, while improving multi-modal
reasoning, does not introduce any discriminatory biases or unfairness across different demographic
groups. The authors have no financial or non-financial interests that could have influenced the results
or interpretation of this work.

A.9 FUTURE WORK

While our proposed RAP method demonstrates significant improvements in both training efficiency
and model performance by pre-selecting high-value samples prior to RL training, it is fundamentally
a static data selection strategy. Specifically, the cognitive driver subset is identified using the initial
model state before RL fine-tuning, and remains fixed throughout training. As a result, the method
may not fully adapt to the evolving learning dynamics or sample difficulty distribution during RL
training. Our preliminary exploration (see Figure 7(d)) shows that dynamic data selection, i.e.,
re-evaluating and updating the cognitive driver set at intermediate stages, can further improve model
performance. However, such dynamic strategies introduce additional computational overhead due
to repeated screening of the entire dataset, which may offset the efficiency gains brought by sample
reduction. In future work, we aim to develop more efficient dynamic data selection mechanisms, such
as periodic or adaptive sampling, that balance computational cost and model performance, enabling
truly adaptive curriculum learning during RL post-training.

A.10 DECLARATION OF LLM USAGE

The LLM is utilized for writing and refinement purposes. The paper proposes a novel data selection
paradigm for efficient multi-modal reasoning in multi-modal large language models (MLLMs), which
serve as the experimental backbone.
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