
This paper is included in the Proceedings of USENIX ATC ’14:
2014 USENIX Annual Technical Conference.

June 19–20, 2014 • Philadelphia, PA

978-1-931971-10-2

Open access to the Proceedings of
USENIX ATC ’14: 2014 USENIX Annual Technical

Conference is sponsored by USENIX.

Exploiting Bounded Staleness to Speed Up
Big Data Analytics

Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhimanu Kumar,
Jinliang Wei, Wei Dai, and Gregory R. Ganger, Carnegie Mellon University;

Phillip B. Gibbons, Intel Labs; Garth A. Gibson and Eric P. Xing, Carnegie Mellon University

https://www.usenix.org/conference/atc14/technical-sessions/presentation/cui

USENIX Association 2014 USENIX Annual Technical Conference 37

Exploiting bounded staleness to speed up Big Data analytics
Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhimanu Kumar

Jinliang Wei, Wei Dai, Gregory R. Ganger, Phillip B. Gibbons*, Garth A. Gibson, Eric P. Xing
Carnegie Mellon University, *Intel Labs

Abstract
Many modern machine learning (ML) algorithms are iter-
ative, converging on a final solution via many iterations
over the input data. This paper explores approaches to
exploiting these algorithms’ convergent nature to improve
performance, by allowing parallel and distributed threads
to use loose consistency models for shared algorithm state.
Specifically, we focus on bounded staleness, in which
each thread can see a view of the current intermediate
solution that may be a limited number of iterations out-
of-date. Allowing staleness reduces communication costs
(batched updates and cached reads) and synchronization
(less waiting for locks or straggling threads). One ap-
proach is to increase the number of iterations between
barriers in the oft-used Bulk Synchronous Parallel (BSP)
model of parallelizing, which mitigates these costs when
all threads proceed at the same speed. A more flexible
approach, called Stale Synchronous Parallel (SSP), avoids
barriers and allows threads to be a bounded number of
iterations ahead of the current slowest thread. Extensive
experiments with ML algorithms for topic modeling,
collaborative filtering, and PageRank show that both
approaches significantly increase convergence speeds,
behaving similarly when there are no stragglers, but SSP
outperforms BSP in the presence of stragglers.

1 Introduction
Large-scale machine learning (ML) has become a critical
building block for many applications and services, as
the Big Data concept gains more and more momentum.
Parallel ML implementations executed on clusters of
servers are increasingly common, given the total compu-
tation work often involved. These implementations face
the same challenges as any parallel computing activity,
including performance overheads induced by inter-thread
communication and by synchronization among threads.

Among the many ML approaches being used, many fall
into a category often referred to as iterative convergent
algorithms. These algorithms start with some guess at a
solution and refine this guess over a number of iterations
over the input data, improving a goodness-of-solution ob-
jective function until sufficient convergence or goodness
has been reached. The key property is convergence, which
allows such algorithms to find a good solution given an
initial guess. Likewise, minor errors in the adjustments
made by any given iteration will not prevent success.

Distributed implementations of iterative convergent
algorithms tend to shard the input data and follow the

Bulk Synchronous Parallel (BSP) model. The current
intermediate solution is shared by all threads, and each
worker thread processes its subset of the input data (e.g.,
news documents or per-user movie ratings). Each worker
makes adjustments to the current solution, as it processes
each of its input data items, to make it match that item
better. In a BSP execution, coordination happens when-
ever all threads have completed a certain amount of work,
which we will refer to as a “clock”. All threads work on
clock N with a snapshot of the shared state that includes
all updates from clock N − 1, with exchange of updates
and a barrier synchronization at the end of each clock.

Although not often discussed as such, BSP relies on
the algorithm having a tolerance of staleness. During a
given clock, worker threads do not see the adjustments
made by others; each of them determines adjustments
independently, and those adjustments are aggregated only
at the end of the clock. Indeed, these independent ad-
justments are a source of error that may require extra
iterations. But, by coordinating only once per clock,
BSP reduces communication costs (by batching updates)
and synchronization delays (by reducing their frequency).
While most ML practitioners equate an iteration (one pass
over the input data) with a BSP clock, doing so fails to
recognize staleness as a parameter to be tuned.

This paper describes and analyzes two approaches to
more fully exploiting staleness to improve ML conver-
gence speeds. Allowing more staleness often results in
faster convergence, but only to a point. While it reduces
communication and synchronization, making iterations
faster, it can also increase the error in any given iteration.
So, there is a tradeoff between decreasing iteration times
and increasing iteration counts, determined by the stale-
ness bound. In BSP, the maximum staleness corresponds
to the work per clock. We find that the best value is often
not equal to one iteration, and we use the term Arbitrarily-
sized BSP (A-BSP) to highlight this fact.1

A different approach to exploiting staleness is the Stale
Synchronous Parallel (SSP) model, proposed in our recent
workshop paper [12], which generalizes BSP by relaxing
the requirement that all threads be working on the same
clock at the same time. Instead, threads are allowed to
progress a bounded number (the “slack”) of clocks ahead
of the slowest thread. Like the BSP model, the SSP
model bounds staleness (to the product of the slack and

1A-BSP is not a different model than BSP, but we use the additional
term to distinguish the traditional use of BSP (by ML practitioners) from
explicit tuning of staleness in BSP.

38 2014 USENIX Annual Technical Conference USENIX Association

the work per clock). But, unlike BSP, SSP’s more flexible
executions can better mitigate transient straggler effects.

We describe a system, called LazyTable, that supports
BSP, A-BSP, and SSP. Using three diverse, real ML
applications (topic modeling, collaborative filtering, and
PageRank) running on 500 cores, we study the relative
merits of these models under various conditions. Our
results expose a number of important lessons that must
be considered in designing and configuring such systems,
some of which conflict with prior work. For example,
as expected, we find that tuning the staleness bound
significantly reduces convergence times. But, we also
find that A-BSP and SSP, when using the (same) best
staleness bound, perform quite similarly in the absence of
significant straggler effects. In fact, SSP involves some
extra communication overheads that can make it slightly
slower than A-BSP in such situations. In the presence of
transient straggler effects, however, SSP provides much
better performance.

This paper makes three primary contributions over pre-
vious work, including our workshop paper that proposed
SSP. First, it provides the first detailed description of a
system that implements SSP, as well as BSP and A-BSP,
including techniques used and lessons learned in tuning its
performance. Second, to our knowledge, it is the first to
introduce the concept of tuning the BSP work-per-clock in
the context of parallel ML, allowing A-BSP to be viewed
(and evaluated) in the same bounded staleness model as
SSP. Third, it provides the first comparative evaluations
of A-BSP and SSP, exploring their relative merits when
using the same staleness bound, whereas previous papers
(e.g., [12]) only compared SSP to BSP. Importantly, these
comparisons clarify when SSP does and does not provide
value over a simpler A-BSP implementation.

2 Parallel ML and bounded staleness
This section reviews iterative convergent algorithms for
ML, the traditional BSP model for parallelizing them, why
staleness helps performance but must be bounded, and
the A-BSP and SSP approaches to exploiting staleness.

2.1 Iterative convergent algorithms & BSP
Many ML tasks (e.g., topic modeling, collaborative fil-
tering, and PageRank) are mapped onto problems that
can be solved via iterative convergent algorithms. Such
algorithms typically search a space of potential solutions
(e.g., N-dimensional vectors of real numbers) using an
objective function that evaluates the goodness of a poten-
tial solution. The goal is to find a solution with a large (or
in the case of minimization, small) objective value. For
some algorithms (e.g., eigenvector and shortest path), the
objective function is not explicitly defined or evaluated.
Rather, they iterate until the solution does not change
(significantly) from iteration to iteration.

These algorithms start with an initial state S0 that has
some objective value f(S0). They proceed through a set
of iterations, each one producing a new state Sn+1 with
a potentially improved solution (e.g., greater objective
value f(Sn+1) > f(Sn)). In most ML use-cases, this is
done by considering each input datum, one by one, and
adjusting the current state to more accurately reflect it.
Eventually, the algorithm reaches a stopping condition
and outputs the best known state as the solution. A key
property of these algorithms is that they will converge
to a good state, even if there are minor errors in their
intermediate calculations.

Iterative convergent algorithms are often parallelized
with the Bulk Synchronous Parallel (BSP) model. In BSP,
a sequence of computation work is divided among multi-
ple computation threads that execute in parallel, and each
thread’s work is divided into clock periods by barriers.
The clock period usually corresponds to an amount of
work, rather than a wall clock time, and the predominant
ML practice is to perform one full iteration over the
input data each clock [19]. For an iterative convergent
algorithm, the algorithm state is stored in a shared data
structure (often distributed among the threads) that all
threads update during each iteration. BSP guarantees that
all threads see all updates from the previous clock, but
not that they will see updates from the current clock, so
computation threads can experience staleness errors when
they access the shared data.

2.2 Bounded staleness
Parallel execution always faces performance challenges
due to inter-thread communication overheads and syn-
chronization delays. They can be mitigated by having
threads work independently, but at the expense of threads
not seeing the latest solution improvements by other
threads. This lack of awareness of updates to the shared
state by other threads is what we mean by “staleness”.

In the BSP model, threads work independently within
a clock period, with no guarantee of seeing updates from
other threads until the next barrier. Figure 1(a) illustrates
a BSP execution with 3 threads. In the original sequential
execution, each iteration has 6 work-units, which are finer-
grained divisions of the original sequential execution. We
denote (i, j) as the j-th work-unit of the i-th iteration. In
this example, when thread-3 is doing work (4, 6), which
is circled in the illustration, BSP only guarantees that it
will see the updates from work completed in the previous
clocks (clocks 3 and lower, not shaded). It may or may
not see updates from the five shaded work-units.

Because iterative convergent algorithms can tolerate
some error in the adjustments made to the algorithm
state, independent work by threads can be acceptable
even though the algorithm state is shared. That is, even if
a thread incorrectly assumes that other threads have made

2

USENIX Association 2014 USENIX Annual Technical Conference 39

... (3,4) (4,1) (4,4)

... (3,5) (4,2) (4,5)

... (3,6) (4,3) (4,6)

Th
re

ad

1

2

3

barrier

3 4 Clock

: current work

: visible update

: possibly
 missing update

barrier

(a) BSP

... (2,4)

... (2,5)

... (2,6)

Th
re

ad

1

2

3
1

barrier
(3,1) (3,4) (4,1) (4,4)

(3,2) (3,5) (4,2) (4,5)

(3,3) (3,6) (4,3) (4,6)

2 Clock

barrier

(b) Arbitrarily-sized BSP, WPC = 2 iterations

... (2,4)

... (2,5)

... (2,6)

Th
re

ad

1
2

3
2

(3,1) (3,4) (4,1) (4,4)

(3,2) (3,5) (4,2) (4,5)

(3,3) (3,6) (4,3) (4,6)

3 Clock 4

Slack of 1 clock

(c) SSP, slack = 1 clock (note: no barriers)

Figure 1: BSP, A-BSP, and SSP models. A block with (i, j)
represents the j-th work-unit of the i-th iteration. Focusing on
thread 3’s execution of the circled work-unit, the shaded blocks
indicate the updates that it may not see, under each model. SSP
is more flexible than A-BSP, allowing the work of later clocks to
start before the work of earlier clocks complete, up to the slack
bound.

no relevant modifications to the shared state, causing it to
produce a somewhat imperfect adjustment, the algorithm
will still converge. Exploiting this fact, such as with a
BSP implementation, allows parallel execution without
synchronizing on every update to the shared state.

Accepting some staleness allows batching of updates,
more reading from local (possibly out-of-date) views
of the shared state, and less frequent synchronization,
all of which helps iterations to complete faster. But,
it may take more iterations to converge, because each
iteration is less effective. In theory, a number of algo-
rithms have been shown to converge given reasonable
bounds on staleness [23]. Empirically, our experiments
show that there is a sweet spot in this staleness tradeoff
that maximizes overall convergence speed for a given
execution, considering both the time-per-iteration and the
effectiveness-per-iteration aspects.

Note that having a bound on staleness is important, at
least in theory. There have been Asynchronous Parallel
systems [1] that allow threads to work completely asyn-
chronously, with best-effort communication of updates
among them, but their robustness is unknown. While they
have worked in some empirical evaluations, the conver-
gence proofs associated with such efforts assume there
are bounds on how out-of-synch threads will get, even
though such systems (in contrast to those we consider)
provide no mechanisms to enforce such bounds.

2.3 Expanding staleness exploitation
This section describes two approaches for more fully
exploiting staleness to improve ML convergence speeds.

Arbitrarily-sized Bulk Synchronous Parallel (A-
BSP). Because the staleness bound represents a tradeoff,
tuning it can be beneficial. Focusing first on the BSP
model, we define the amount of work done in each clock
period as work-per-clock (WPC). While the traditional
ML approach equates iteration and clock, it is not nec-
essary to do so. The WPC could instead be a multiple
of or a fraction of an iteration over the input data. To
distinguish BSP executions where WPC is not equal to
one iteration from the current ML practice, we use the
term “Arbitrarily-sized BSP” (A-BSP) in this paper.

Figure 1(b) illustrates an A-BSP execution in which
the WPC is two full iterations. That is, the barriers occur
every two iterations of work, which approximately halves
the communication work and doubles the amount of data
staleness compared to base BSP. Manipulating the A-
BSP WPC in this manner is a straightforward way of
controlling the staleness bound.

Stale Synchronous Parallel (SSP). While A-BSP
amortizes per-clock communication work over more com-
putation, it continues to suffer from BSP’s primary per-
formance issue: stragglers. All threads must complete a
given clock before the next clock can begin, so a single
slow thread will cause all threads to wait. This problem
grows with the level of parallelism, as random variations
in execution times increase the probability that at least
one thread will run unusually slowly in a given clock.
Even when it is a different straggler in each clock, due
to transient effects, the entire application can be slowed
significantly (see Section 5 for examples).

Stragglers can occur for a number of reasons including
heterogeneity of hardware [21], hardware failures [3],
imbalanced data distribution among tasks, garbage collec-
tion in high-level languages, and even operating system
effects [5, 27]. Additionally, there are sometimes algorith-
mic reasons to introduce a straggler. Many algorithms use
an expensive computation to check a stopping criterion,
which they perform on a different one of the machines
every so many clocks.

Recently, a model called “Stale Synchronous Parallel”
(SSP) [12] was proposed as an approach to mitigate the
straggler effect. SSP uses work-per-clock as defined
above, but eliminates A-BSP’s barriers and instead defines
an explicit slack parameter for coordinating progress
among the threads. The slack specifies how many clocks
out-of-date a thread’s view of the shared state can be,
which implicitly also dictates how far ahead of the slowest
thread that any thread is allowed to progress. For example,
with a slack of s, a thread at clock t is guaranteed to see
all updates from clocks 1 to t− s− 1, and it may see (not
guaranteed) the updates from clocks t− s to t− 1.

3

40 2014 USENIX Annual Technical Conference USENIX Association

Figure 1(c) illustrates an SSP execution with a slack
of 1 clock. When thread-3 is doing work (4, 6), SSP
guarantees that it sees all the updates from clocks 1 and 2,
and it might also see some updates from clocks 3 and 4.

Relationship of A-BSP and SSP. In terms of data
staleness, SSP is a generalization of A-BSP (and hence of
BSP), because SSP’s guarantee with slack set to zero
matches A-BSP’s guarantee when both use the same
WPC. (Hence, SSP’s guarantee with slack set to zero
and WPC set to 1 iteration matches BSP’s guarantee.)
For convenience, we use the tuple {wpc, s} to denote
an SSP or A-BSP configuration with work per clock of
wpc and slack of s. (For A-BSP, s is always 0.) The
data staleness bound for an SSP execution of {wpc, s} is
wpc× (s+ 1)− 1. This SSP configuration provides the
same staleness bound as A-BSP with {wpc× (s+ 1), 0}.

A-BSP requires a barrier at the end of each clock, so it
is very sensitive to stragglers in the system. SSP is more
flexible, in that it allows some slack in the progress of
each thread. The fastest thread is allowed to be ahead
of the slowest by wpc× s. As a result, the execution of
SSP is like a pipelined version of A-BSP, where the work
of later clocks can start before the work of earlier clocks
complete. Intuitively, this makes SSP better at dealing
with stragglers, in particular when threads are transient
stragglers that can readily resume full speed once the
cause of the slowness mitigates (e.g., the stopping crite-
rion calculation or the OS/runtime operation completes).

But, SSP involves additional communication costs. The
SSP execution of {wpc, s} will have s + 1 times more
clocks than its A-BSP counter-part. In other words, SSP
is a finer-grained division of the execution, and updates
will be propagated at a higher frequency. As a result, SSP
requires higher network throughput and incurs extra CPU
usage for communication. When there are no stragglers,
A-BSP can perform slightly better by avoiding the extra
communication. Our evaluation explores this tradeoff.

3 LazyTable design and implementation
This section describes LazyTable, which provides for
shared global values accessed/updated by multiple threads
across multiple machines in a staleness-aware manner. It
can be configured to support BSP, A-BSP, and SSP.

LazyTable holds globally shared data in a cluster of
tablet servers, and application programs access the data
through the client library. (See Figure 2.) Each tablet
server holds a partition (shard) of the data, and the client
library services data access operations from the applica-
tion by communicating with the appropriate tablet server.
The client library also maintains a hierarchy of caches
and operation logs in order to reduce network traffic.

3.1 LazyTable data model and API
Data model. Globally shared data is organized in a

Tablet server process-0

Client process-0

App. thread

Client library

Thread
cache/oplog

Process
cache/oplog

App. thread

Thread
cache/oplog

Tablet server process-1

Client process-1

App. thread

Client library

Thread
cache/oplog

Process
cache/oplog

App. thread

Thread
cache/oplog

Figure 2: LazyTable running two application processes
with two application threads each.

collection of rows in LazyTable. A row is a user-defined
data type and is usually a container type, such as an STL
vector or map. The row type is required to be serializable
and be defined with an associative aggregation operation,
such as plus, multiply, or union, so that updates from
different threads can be applied in any order. Each row is
uniquely indexed by a (table id, row id) tuple.

Having each data unit be a row simplifies the imple-
mentation of the many ML algorithms that are naturally
expressed as operations on matrices and vectors. Each
vector can naturally be stored as a row in LazyTable.

Operations. LazyTable provides a simple API for
accessing the shared data and for application threads to
synchronize their progress. Listed below are the core
methods of the LazyTable client library, which borrow
from Piccolo [28] and add staleness awareness:
read(table id, row id, slack): Atomi-

cally retrieves a row. Ideally, the row is retrieved from a
local cache. If no available version of the row is within
the given slack bound, the calling thread waits. This is
the only function that blocks the calling thread.
update(table id, row id, delta): Atomi-

cally updates a row by delta using the defined aggrega-
tion operation. The delta should have the same type as
row data, so it is usually a vector instead of a single value.
If the target row does not exist, the row data will be set to
delta.
refresh(table id, row id, slack): Re-

freshes the process cache entry of a row, if it is too old.
This interface can be used for the purpose of prefetching.
clock(): Increases the “clock time” of the call-

ing thread by one. Although this is a synchronization-
purposed function, it does not block the calling thread, so
it is different from a barrier in a BSP or A-BSP system.

Data freshness and consistency guarantees.
LazyTable does not have explicit barriers at the end of
each clock. Instead, it bounds staleness by attaching a
data age field to each row. If a row has a data age of τ , it
is guaranteed to contain all updates from all application
threads for clocks 1, 2, ..., τ . For the case of BSP, where
each thread can only use the output from the previous

4

USENIX Association 2014 USENIX Annual Technical Conference 41

clock, a thread at clock t can only use the data of age
t− 1. For the case of SSP, when a thread at clock t issues
a read request with a slack of s, only row data with data
age τ ≥ t− 1− s can be returned.

LazyTable also enforces the read-my-updates property,
which ensures that the data read by a thread contains all
its own updates. Read-my-updates often makes it much
easier to reason about program correctness. It also enables
applications to store local intermediate data in LazyTable.

3.2 LazyTable system components
The LazyTable prototype is written in C++, using the
ZeroMQ [32] socket library for communication.

3.2.1 Tablet servers

The tablet servers collectively store the current “mas-
ter” view of the row data. Data is distributed among
the tablet servers based on row ID, by default using a
simple, static row-server mapping: tablet id = row id
mod num of tablets. The current implementation does
not replicate row data or support multi-row updates, and
also requires the tablet server data to fit in memory.

Each tablet server uses a vector clock to keep track of
the version of all its row data. Each entry of the vector
clock represents the server’s view of the progress of each
client process, which starts from zero and is increased
when a clock message is received. The minimal clock
value among the vector clock entries is referred to as the
global clock value. A global clock value of t indicates
that all application threads on all client machines have
finished the work up to clock t, and that all updates from
these threads have been merged into the master data. The
update and read requests are serviced by the tablet
servers as follows:

Proposing updates. When the tablet server receives a
row update from a client, it puts it into a pending updates
list. Updates in this list are applied to the master data only
after a clock message is received from that client. This
mechanism guarantees that the vector clock values can
uniquely determine the version of the master data.

Reading values. When the tablet server receives a read
request from a client, it looks at its global clock value. If
the clock value is at least as large as the requested data
age, the request is serviced immediately. Otherwise, the
request will be put in the pending read list, which is sorted
by the requested data age. When the global clock value
of the tablet server advances to a required data age, the
server then replies to those pending requests in the list.
Along with the requested row data, the server also sends
two clock fields: data age and requester clock. The data
age is simply the server’s global clock. The requester
clock is the server’s view of the requesting client’s clock—
this indicates which updates from that client have been
applied to the row data. The client uses this information

to clear its oplogs (discussed below).

3.2.2 Client library

The client library runs in the same process as the applica-
tion code and translates the LazyTable API calls to server
messages. It also maintains different levels of caches
and operation logs. The client library creates several
background worker threads that are responsible for jobs
such as propagating updates and receiving data.

The LazyTable client library has two levels of
caches/oplogs: the process cache/oplog and the thread
cache/oplog, as depicted in Figure 2. The process
cache/oplog is shared by all threads in the client process,
including the application threads and background worker
threads. Each thread cache/oplog, on the other hand,
is exclusively associated with one application thread.
Thread cache entries avoid locking at the process cache,
and they are used only for the few rows that would suffer
contention. The use of these caches/oplogs in servicing
update and read operations is described below.

The client library tracks the progress of its application
threads using a vector clock. Each entry of the vector
clock represents the progress of one application thread,
which starts at zero and will be increased by one each
time the application thread calls the clock() operation.

Proposing updates. Application threads propose up-
dates to the globally shared data using the update()
operation. Suppose a thread at clock t wants to update
the value of a row by delta. If the corresponding thread
cache/oplog entry exists, the update will be logged in
the thread oplog. To guarantee “read-my-updates”, it will
also be applied to the data in the thread cache immediately.
When this thread calls the clock function, all updates
in the thread oplog will be pushed to the process oplog
and also applied to the row data in the process cache. If
there is no thread cache/oplog entry, then the update will
be pushed to the process cache/oplog immediately.

When all application threads in a client process have
finished clock t, the client library will signal a background
thread to send the clock messages, together with the
batched updates of clock t in the process oplog, to the
tablet servers. For robustness, the process oplogs are
retained until the next time the client receives row data
containing that update.

Reading values. When an application thread at clock
t wants to read row r with a slack of s, the client library
will translate the request to “read row r with data age
age ≥ t − s − 1”. To service this request, the client
library will first look in the thread cache, and then the
process cache, for a cached entry that satisfies the data
age requirement. If not, it will send a request to the
tablet server for row r and block the calling thread to
wait for the new data. A per-row tag in the process cache
tracks whether a request is in progress, in order to squash

5

42 2014 USENIX Annual Technical Conference USENIX Association

redundant requests to the same row.
When the server replies, the row data is received by

a background worker thread. The server also sends a
requester clock value rc, which tells the client which of its
updates have been applied to this row data. The receiver
thread erases from its process oplog any operation for that
tablet server’s shard with clock ≤ rc. Then, to guarantee
“read-my-updates” for the application thread, it applies
to the received data row (r) any operations for row r
remaining in the process oplog (i.e., with clock > rc).
Finally, the receiver thread sets the data age field of the
row and signals the waiting application threads.

3.3 Prefetching and fault-tolerance
Prefetching. Not unexpectedly, we find that prefetching
makes a huge difference in performance, even when
bounded staleness is allowed (e.g., see Section 5.5). But,
the access patterns often do not conform to traditional
application-unaware policies, such as sequential prefetch-
ing. So, LazyTable provides an explicit refresh() in-
terface for prefetching. The parameters for refresh()
are the same as read(), but the calling thread is not
blocked and row data is not returned.

Applications usually prefetch row data at the beginning
of each clock period. The general rule-of-thumb is to
refresh every row that will be used in that clock period
so as to overlap fetch time with computation. While this
requires an application to know beforehand what it will
read in the current clock, many iterative ML applications
have this property. Generally, each application thread
processes the same input data in the same order, accessing
the same rows in the same order as well. To leverage
this property, LazyTable provides an automatic prefetcher
module. The access pattern can be captured after one
iteration, and the prefetcher can automatically refresh the
needed data at the beginning of each clock.

The prefetching described so far addresses read miss la-
tencies. But, for SSP, where multiple versions of the data
can be accepted by a read, prefetching can also be used
to provide fresher data. LazyTable supports two prefetch-
ing strategies. Conservative prefetching only
refreshes when necessary; if cache age < t − s − 1,
the prefetcher will send a request for (row = r, age
≥ t − s − 1). Aggressive prefetching will
always refresh if the row is not from the most recent
clock, seeking the freshest possible value.

The conservative prefetching strategy incurs the mini-
mal amount of traffic in order to avoid freshness misses.
The aggressive prefetching strategy refreshes the data
frequently, even with an infinite slack, at the cost of extra
client-server communication. As a result, we can use
infinite slack plus aggressive prefetching to emulate Asyn-
chronous Parallel systems (as discussed in Section 2.2)
in LazyTable. In our experiments to date, it is usually

worthwhile to pay the cost of aggressive prefetching, so
we use it as the default prefetching strategy.

Fault tolerance. LazyTable provides fault-tolerance
via checkpointing. The tablet servers are told (in advance)
about the clock at which to make a checkpoint, so that
they can do so independently. Suppose the tablet servers
are planned to make a checkpoint at the end of clock t.
One way of checkpointing is to have each tablet server
flush all its master data to the storage (take a snapshot) as
soon as it has received a clock=t message from all of the
clients. But, when slack > 0, the snapshot taken from this
approach is not a pure one that contains exactly the clock
1 through t updates from all clients: some clients may
have run ahead and already applied their clock t+ 1, . . .
updates to the master data. We call this approach an ap-
proximate snapshot. Approximate snapshots can be used
to do off-line data processing after the computation, such
as expensive objective value computation. LazyTable
currently implements only approximate snapshot.

An alternative is to have each tablet server keep a pure
copy of the master data, and have the tablet server flush
it to storage instead of the latest master data. If a tablet
server is going to checkpoint at the end of clock t, we can
keep all updates beyond clock t out of the pure copy, so
that it contains exactly the updates from clock 1 through
t. But, some effects from SSP slack can be present. For
example, client-1 might have generated its updates for
clock t based on client-2’s updates from clock t + 1.
When one restores the execution from clock t using that
snapshot, there will still be a residual influence from the
“future”. Moreover, in the view of client-1, client-2 goes
backwards. Fortunately, iterative convergent algorithms
suitable for SSP can tolerate this kind of error as well [18].

4 Example ML applications
This section describes three ML apps with different algo-
rithms, representing a range of ML approaches.

Topic modeling. Topic modeling is a class of problems
that assign topic vectors to documents. The specific
model on which we focus is known as Latent Dirichlet
Allocation [6] (LDA). LDA learns the parameters of the
document-topic and topic-word distributions that best
explain the input data (a corpus of documents). While
there are a number of ways to do this, our example
application uses the Gibbs sampling [17] algorithm.

Our implementation works as follows. We divide
the set of input documents among threads and use two
tables to store document-topic assignment and word-topic
respectively. In each iteration, each thread passes through
the words in their input documents. For the word word id
in document doc id, the thread reads the doc id-th row
of the document-topic table and the word id-th row plus
a summation row2 of the word-topic table, and updates

2The sum of all word-topic rows, used by the algorithm to calculate

6

USENIX Association 2014 USENIX Annual Technical Conference 43

them based on the calculated topic assignment.
Matrix factorization. Matrix factorization can be

used to predict missing values in a sparse matrix.3 One
example application is to predict user’s preferences based
on the known preferences of similar users, where the
sparse matrix represents users’ preference ranking to
items. Matrix factorization assumes the matrix has low
rank and can be expressed as the product of a tall skinny
matrix (the left-matrix) and a short wide matrix (the right-
matrix). Once this factorization is found, any missing
value can be predicted by computing the product of
these two matrices. This problem can be solved by the
stochastic gradient descent algorithm [14].

Our implementation on LazyTable partitions the known
elements in the sparse matrix among threads and uses two
tables to store the left-matrix and right-matrix, respec-
tively. In each iteration, each thread passes through the
elements, and for the element (i, j) in the sparse matrix,
it reads and adjusts the i-th row of the left-matrix table
and the j-th row of the right-matrix table.

PageRank. The PageRank algorithm assigns a
weighted score (PageRank) to every vertex in a graph [10],
the score of a vertex measures its importance in the graph.

We implement an edge-scheduling version of PageRank
on LazyTable. In each iteration, the algorithm passes
through all the edges in the graph and updates the rank of
the dst node according to the rank of the src node. The
set of edges are partitioned evenly among threads, and the
application stores the ranks of each node in LazyTable.

5 Evaluation
This section evaluates the A-BSP and SSP approaches via
experiments with real ML applications on our LazyTable
prototype; using the same system for all experiments
enables us to focus on these models with all else being
equal. The results support a number of important find-
ings, some of which depart from previous understandings,
including: (1) the staleness bound controls a tradeoff
between iteration speed and iteration goodness, in both
A-BSP and SSP, with the best setting generally being
greater than a single iteration; (2) SSP is a better approach
when transient straggler issues occur; (3) SSP requires
higher communication throughput, including CPU usage
on communication; and (4) iteration-aware prefetching
significantly lowers delays for reads and also has the effect
of reducing the best-choice staleness bound.

5.1 Evaluation setup
Cluster and LazyTable configuration. Except where
otherwise stated, the experiments use 8 nodes of the NSF
PRObE cluster [15]. Each node has four 2.1 GHz 16-
core Opteron 6272s and 128GB of RAM (512 cores in

the probability that a word belongs to a certain topic.
3Here “sparse” means most elements are unknown.

total). The nodes run Ubuntu 12.04 and are connected via
an Infiniband network interface (40Gbps spec; ≈13Gbps
observed).

A small subset of experiments, identified explicitly
when described, use a second cluster (the “VM cluster”).
It consists of 32 8-core blade servers running VMware
ESX and connected by 10 Gbps Ethernet. We create
one VM on each physical machine, configured with 8
cores (either 2.3GHz or 2.5GHz each) and 23GB of RAM,
running Debian Linux 7.0.

Each node executes a client process, with one appli-
cation thread per core, and a tablet server process. The
default aggressive prefetching policy is used, unless oth-
erwise noted. The staleness bound configuration for any
execution is described by the “wpc” and “slack” values.
The units for the WPC value is iterations, so wpc=2
means that two iterations are performed in each clock
period. The units for slack is clocks, which is the same as
iterations if wpc=1. Recall that, generally speaking, BSP
is wpc=1 and slack=0, A-BSP is wpc=N and slack=0, and
SSP is wpc=1 and slack=N.

Application benchmarks. We use the three example
applications described in Section 4: Topic Modeling
(TM), Matrix Factorization (MF), and PageRank (PR).
Table 1 summarizes the problem sizes.

App. # of rows Row size
(bytes)

of row accesses
per iteration

TM 400k 800 600m
MF 500k 800 400m
PR 685k 24 15m

Table 1: Problem sizes of the ML application benchmarks.

For TM, we use the Nytimes dataset, which contains
300k documents, 100m words, and a vocabulary size of
100k. We configure the application to generate 100 topics
on this dataset. The quality of the result is defined as the
loglikelihood of the model, which is a value that quantifies
how likely the model can generate the observed data. A
higher value indicates a better model.

For MF, we use the Netflix dataset, which is a 480k-
by-18k sparse matrix with 100m known elements. We
configure the application to factor it into the product of
two matrices with rank 100, using an initial step size of 5e-
10. Result quality is defined as the summation of squared
errors, and a lower value indicates a better solution.

For PageRank, we use the web-BerkStan dataset [24],
which is a web graph with 685k nodes and 7.6m edges.
We configure the application to use a damping factor
of 0.85. Because there is no result quality criteria for
PageRank, we define it to be the summation of squared
errors from a “ground truth result”, which we obtain by
running a sequential PageRank algorithm on a single
machine for a relatively large number of iterations (100).

7

44 2014 USENIX Annual Technical Conference USENIX Association

A low value indicates a better solution.
We extract result quality data 16 times, evenly spaced,

during each execution. To do so, the application creates
a background thread in each client process and rotates
the extraction among them. For TM and PR, the result
quality is computed during the execution by a background
thread in each client. For MF, the computation is very
time-consuming (several minutes), so we instead have
LazyTable take snapshots (see Section 3.3) and compute
the quality off-line.

5.2 Exploiting staleness w/ A-BSP and SSP
A-BSP. Figure 3(a) shows performance effects on TM of
using A-BSP with different WPC settings. The leftmost
graph shows overall convergence speed, which is result
quality as a function of execution time, as the application
converges. WPC settings of 2 or 4 iterations significantly
outperform settings of 1 (BSP) or 8, illustrating the fact
that both too little and too much staleness is undesirable.
One way to look at the data is to draw a horizontal
line and compare the time (X axis) required for each
setting to reach a given loglikelihood value (Y axis). For
example, to reach -9.5e8, WPC=1 takes 236.2 seconds,
while WPC=2 takes only 206.6 seconds.

The middle and rightmost graphs help explain this
behavior, showing the iteration speed and iteration ef-
fectiveness, respectively. The middle graph shows that, as
WPC increases, iterations complete faster. The rightmost
graph shows that, as WPC increases, each iteration is less
effective, contributing less to overall convergence such
that more iterations are needed. The overall convergence
speed can be thought of as the combination of these
two metrics. Because the iteration speed benefit exhibits
diminishing returns, and the iteration effectiveness does
not seem to, there ends up being a sweet spot.

SSP. Figure 3(b) shows the same performance effects
when using SSP with different slack settings. Similar
trends are visible: more staleness increases iteration
speed, with diminishing returns, and decreases iteration
effectiveness. Empirically, the sweet spot is at slack=3.

We show the behavior for infinite slack, for comparison,
which is one form of non-blocking asynchronous execu-
tion. Although it provides no guarantees, it behaves rea-
sonably well in the early portion of the execution, because
there are no major straggler issues and the aggressive
prefetching mechanism refreshes the data even though it
is not required. But, it struggles in the final (fine-tuning)
stages of convergence. Even the BSP baseline (slack=0)
finishes converging faster.

A-BSP vs. SSP. Figure 3(c) uses the same three-graph
approach to compare four configurations: BSP, the best-
performing A-BSP (wpc=4), the best-performing SSP
from above (slack=3), and the best-performing overall
configuration (a hybrid with wpc=2 and slack=1). Other

than BSP, they all use the same staleness bound: wpc ×
(slack + 1). The results show that SSP outperforms both
BSP and A-BSP, and that the best configuration is the
hybrid. For example, to reach -9.5e8, A-BSP takes 237.0
seconds, while the two SSP options take 222.7 seconds
and 193.7 seconds, respectively. Indeed, across many
experiments with all of the applications, we generally find
that the best setting is slack=1 with wpc set to one-half
of the best staleness bound value. The one clock of slack
is enough to mitigate intermittent stragglers, and using
larger WPC amortizes communication costs more.

Looking a bit deeper, Figure 4 shows a breakdown
of iteration speed into two parts: computation time and
“wait time”, which is the time that the client application
is blocked by a LazyTable read due to data freshness
misses. As expected, the iteration speed improvements
from larger staleness bounds (from the first bar to the
second group to the third group) come primarily from
reducing wait times. Generally, the wait time is a combi-
nation of waiting for stragglers and waiting for fetching
fresh-enough data. Because there is minimal straggler
behavior in these experiments, almost all of the benefit
comes from reducing the frequency of client cache fresh-
ness misses. The diminishing returns are also visible,
caused by the smaller remaining opportunity (i.e., the
wait time) for improvement as the staleness bound grows.

{1, 0} {2, 0}{1, 1} {4, 0}{2, 1}{1, 3}
0

100

200

300

400

500

Configuration ({wpc, slack})

Ti
m

e
to

 fi
ni

sh
 6

4
ite

rs
 (s

ec
)

Computation time
Wait time

Figure 4: Time consumption distribution of TM.

Matrix factorization and PageRank. Space limits
preclude us from including all results, but Figure 5 shows
the convergence speed comparison. For MF, we ob-
serve less tolerance for staleness, and SSP with slack=1
performs the best, while A-BSP with wpc=2 actually
struggles to converge.4

PageRank behaves more similarly to Topic Modeling,
but we found that A-BSP {4,0} slightly outperforms
SSP {2,1} and significantly outperforms SSP {1,3} in
this case. This counter-intuitive result occurs because of
the increased communication overheads associated with
SSP, which aggressively sends and fetches data every
clock, combined with PageRank’s lower computation
work. When the communication throughput, not syn-

4We found, empirically, that MF does not diverge as shown with
smaller step sizes, which bound the error from staleness to lower values,
but we show this data because it is for the best step size for BSP.

8

USENIX Association 2014 USENIX Annual Technical Conference 45

0 100 200 300

-1.04x109

-1.02x109

-1.00x109

-9.80x108

-9.60x108

-9.40x108

0 100 200 300
0

20

40

60

0 20 40 60

-1.04x109

-1.02x109

-1.00x109

-9.80x108

-9.60x108

-9.40x108Convergence Speed
Lo

gl
ik

el
ih

oo
d

(h
ig

he
r i

s
be

tte
r)

Time (sec)

 wpc=1, slack=0
 wpc=2, slack=0
 wpc=4, slack=0
 wpc=8, slack=0

Iteration Speed

W
or

k
do

ne
 (i

te
ra

tio
ns

)

Time (sec)

 wpc=1, slack=0
 wpc=2, slack=0
 wpc=4, slack=0
 wpc=8, slack=0

Lo
gl

ik
el

ih
oo

d
(h

ig
he

r i
s

be
tte

r)

Work done (iterations)

 wpc=1, slack=0
 wpc=2, slack=0
 wpc=4, slack=0
 wpc=8, slack=0

Iteration Effectiveness

(a) Tuning WPC on A-BSP

0 100 200 300

-1.04x109

-1.02x109

-1.00x109

-9.80x108

-9.60x108

-9.40x108

0 100 200 300
0

20

40

60

0 20 40 60

-1.04x109

-1.02x109

-1.00x109

-9.80x108

-9.60x108

-9.40x108

Convergence Speed

Lo
gl

ik
el

ih
oo

d
(h

ig
he

r i
s

be
tte

r)

Time (sec)

 wpc=1, slack=0
 wpc=1, slack=1
 wpc=1, slack=3
 wpc=1, slack=inf

Iteration Speed

W
or

k
do

ne
 (i

te
ra

tio
ns

)

Time (sec)

 wpc=1, slack=0
 wpc=1, slack=1
 wpc=1, slack=3
 wpc=1, slack=inf

Lo
gl

ik
el

ih
oo

d
(h

ig
he

r i
s

be
tte

r)

Work done (iterations)

 wpc=1, slack=0
 wpc=1, slack=1
 wpc=1, slack=3
 wpc=1, slack=inf

Iteration Effectiveness

(b) Tuning slack on SSP

0 100 200

-1.0x109

-1.0x109

-1.0x109

-9.8x108

-9.6x108

-9.4x108

0 100 200
0

20

40

60

80

0 20 40 60

-1.0x109

-1.0x109

-1.0x109

-9.8x108

-9.6x108

-9.4x108

Convergence Speed

Lo
gl

ik
el

ih
oo

d
(h

ig
he

r i
s

be
tte

r)

Time (sec)

 wpc=1, slack=0 (BSP)
 wpc=4, slack=0 (A-BSP)
 wpc=2, slack=1 (SSP)
 wpc=1, slack=3 (SSP)

Iteration Speed

W
or

k
do

ne
 (i

te
ra

tio
ns

)

Time (sec)

 wpc=1, slack=0 (BSP)
 wpc=4, slack=0 (A-BSP)
 wpc=2, slack=1 (SSP)
 wpc=1, slack=3 (SSP)

Lo
gl

ik
el

ih
oo

d
(h

ig
he

r i
s

be
tte

r)
Work done (iterations)

 wpc=1, slack=0 (BSP)
 wpc=4, slack=0 (A-BSP)
 wpc=2, slack=1 (SSP)
 wpc=1, slack=3 (SSP)

Iteration Effectiveness

(c) Direct comparison of SSP with A-BSP

Figure 3: Different ways of exploiting data staleness in Topic Modeling.

chronization overheads or straggler delays, limit iteration
speeds, SSP’s tendency to use more communication can
hurt performance if it does so too aggressively. Note,
however, that maximizing WPC with slack=1 remains
close to the best case, and is more robust to larger straggler
issues. We will examine this communication overhead of
SSP in more detail in Section 5.4.

5.3 Influence of stragglers
The original motivation for SSP was to tolerate intermit-
tent stragglers [12], but our carefully controlled experi-
mental setup exhibits minimal execution speed variation.
This section examines Topic Modeling performance under
two types of straggler behavior.

Delayed threads. First, we induced stragglers by hav-
ing application threads sleep in a particular schedule, con-
firming that a complete system addresses such stragglers
as predicted in the HotOS paper [12]. Specifically, the
threads on machine-1 sleep d seconds at iteration-1, and
then the threads on machine-2 sleep d seconds at iteration-
2, and so on. Figure 6 shows the average time per iteration,
as a function of d, for Topic Modeling via BSP, A-BSP,
and SSP. Ideally, the average time per iteration would
increase by only d

N seconds, where N is the number

of machines, because each thread is delayed d seconds
every N iterations. For A-BSP, the average iteration time
increases linearly with a slope of 0.5, because the threads
synchronize every two iterations (wpc=2), at which time
one delay of d is experienced. For SSP, the effect depends
on the magnitude of d relative to the un-delayed time
per iteration (≈4.2 seconds). When d is 6 or less, the
performance of SSP is close to ideal, because the delays
are within the slack. Once d exceeds the amount that
can be mitigated by the slack, the slope matches that of
A-BSP, but SSP stays 1.5 seconds-per-iteration faster than
A-BSP.

Background work. Second, we induced stragglers
with competing computation, as might occur with back-
ground activities like garbage collection or short high-
priority jobs. We did these experiments on 32 machines
of the VM cluster, using a background “disrupter” process.
The disrupter process creates one thread per core (8 in
the VM cluster) that each perform CPU-intensive work
when activated; so when the disrupter is active, the CPU
scheduler will give it half of the CPU resources (or more,
if the TM thread is blocked). Using discretized time slots
of size t, each machine’s disrupter is active in a time
slot with a probability of 10%, independently determined.

9

46 2014 USENIX Annual Technical Conference USENIX Association

0 300 600 900 1200

1x108

2x108

3x108

4x108

5x108 Convergence Speed

O
bj

ec
tiv

e
va

lu
e

(lo
w

er
 is

 b
et

te
r)

Time (sec)

 wpc=1, slack=0 (BSP)
 wpc=2, slack=0 (A-BSP)
 wpc=1, slack=1 (SSP)

(a) Matrix Factorization

0 20 40 60 80 100
0.0

2.0x106

4.0x106

6.0x106

8.0x106

1.0x107 Convergence Speed

S
qu

ar
ed

 E
rr

or
 (l

ow
er

 is
 b

et
te

r)

Time (sec)

 wpc=1, slack=0 (BSP)
 wpc=4, slack=0 (A-BSP)
 wpc=2, slack=1 (SSP)
 wpc=1, slack=3 (SSP)

(b) PageRank

Figure 5: Synchronization-staleness tradeoff examples.

0 2 4 6 8 10
0

2

4

6

8

Delay (sec)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

wpc=2, slack=0 (A−BSP)
wpc=1, slack=1 (SSP)
ideal

Figure 6: Influence of delayed threads.

Figure 7 shows the increase in iteration time as a function
of t. Ideally, the increase would be just 5%, because the
disrupters would take away half of the CPU 10% of the
time. The results are similar to those from the previous
experiment. SSP is close to ideal, for disruptions near or
below the iteration time, and consistently able to mitigate
the stragglers’ impact better than A-BSP.

1 2 4 8 16 32 64
0

20

40

60

80

100

Disruption duration (sec)

Ite
ra

tio
n

tim
e

in
cr

ea
se

 (%
) wpc=2, slack=0 (A−BSP)

wpc=1, slack=1 (SSP)
ideal

Figure 7: Influence of background disrupting work. With
no disruption, each iteration takes about 4.2 seconds.

5.4 Examining communication overhead
Table 2 lists the network traffic of A-BSP {4, 0}, SSP {2,
1}, and SSP {1, 3} for Topic Modeling. We denote the

traffic from client to server as “sent” and that from server
to client as “received”. The “sent” traffic is mainly caused
by update, and the “received” traffic is mainly caused
by read. For a configuration that halves the WPC, the
sent traffic will be doubled, because the number of clocks
for the same number of iterations is doubled. However,
the received traffic is less than doubled, because for SSP,
if the data received from the server is fresh enough, it can
be used in more than one clock of computation.

As discussed in Section 5.2, this extra communication
can cause SSP to perform worse than A-BSP in some
circumstances. Much of the issue is the CPU overhead
for processing the communication, rather than network
limitations. To illustrate this, we emulate a situation
where there is zero computation overhead for commu-
nication. Specifically, we configure the application to
use just 4 application threads, and then configure the
VMs to use either 4 cores (our normal 1 thread/core)
or 8 cores (leaving 4 cores for doing the communica-
tion processing without competing with the application
threads). Because we have fewer application threads,
using WPC=1 would be a lot of computation work per
clock. As a result, we make WPC smaller so that it
is similar to our previous results: {wpc=0.25, slack=0}
for A-BSP and {wpc=0.125, slack=1} for SSP. Figure 8
shows the time for them to complete the same amount of
work. The primary takeaway is that having the extra cores
makes minimal difference for A-BSP, but significantly
speeds up SSP. This result suggests that SSP’s potential
is much higher if the CPU overhead of communication
were reduced in our current implementation.

Config. Bytes sent Bytes received
wpc=4, slack=0 33.0 M 29.7 M
wpc=2, slack=1 61.9 M 51.0 M
wpc=1, slack=3 119.4 M 81.5 M

Table 2: Bytes sent/rec’d per client per iteration of TM.

A−BSP SSP
0

100

200

300

400

Parallel model

Ti
m

e
(s

ec
)

TM, Communication Overhead on CPU

4 threads on 8 cores
4 threads on 4 cores

Figure 8: CPU overhead of communication.

5.5 Prefetching and throughput
Figure 9 shows the importance of prefetching, highlight-
ing the value of LazyTable’s iteration-aware prefetching
scheme. The time per iteration, partitioned into com-

10

USENIX Association 2014 USENIX Annual Technical Conference 47

putation time and wait time, is shown for each of the
three applications using SSP. In each case, the prefetching
significantly reduces the wait time. There are two reasons
that the speed up for MF is higher than for TM and PR.
First, the set of rows accessed by different application
threads overlap less in MF than in TM; so, when there is
no prefetching, the rows used by one thread on a machine
are less likely to be already fetched by another thread and
put into the shared process cache. Second, each iteration
is longer in MF, which means the same slack value covers
more work; so, with prefetching, the threads are less likely
to have data misses.

Note that, as expected, prefetching reduces wait time
but not computation time. An interesting lesson we
learned when prefetching was added to LazyTable is that
it tends to reduce the best-choice staleness bound. Be-
cause increased staleness reduces wait time, prefetching’s
tendency to reduce wait time reduces the opportunity to
increase iteration speed. So, the iteration effectiveness
component of convergence speed plays a larger role in
determining the best staleness bound. Before adding
prefetching, we observed that higher staleness bounds
were better than those reported here.

no−pf pf no−pf pf no−pf pf
0

5

10

15

20

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
) Computation time

Wait time

MF
TM

PR

Figure 9: Time per iteration with/without prefetching for
all three applications with {wpc=1, slack=1}.

6 Related work
In a HotOS workshop paper [12], we proposed SSP,
briefed an early LazyTable prototype that implemented
it, and did a couple of experiments to show that it helps
mitigate delayed thread stragglers. We recently published
follow-on work in an ML conference [18] that provides
evidence of convergence for several ML algorithms under
SSP, including proofs that provide theoretical justification
for SSP’s bounded staleness model. Some experiments
comparing SSP to BSP show performance improvement,
but the focus is on the ML algorithm behavior. This paper
makes several important contributions beyond our previ-
ous papers: we describe a more general view of bounded
staleness covering A-BSP as well as SSP, we describe
in detail a system that supports both, we explain design
details that are important to realizing their performance
potential, and we thoroughly evaluate both and show the
strengths and weaknesses for each. Importantly, whereas
SSP almost always outperforms BSP (as commonly used

in ML work) significantly, this paper makes clear that A-
BSP can be as effective when straggler issues are minor.

The High Performance Computing community – which
frequently runs applications using the BSP model – has
made much progress in eliminating stragglers caused by
hardware or operating system effects [13, 27]. While
these solutions are very effective at reducing “operating
system jitter”, they are not intended to solve the more
general straggler problem. For instance, they are not
applicable to programs written in garbage collected lan-
guages, nor do they handle algorithms that inherently
cause stragglers during some iterations.

In large-scale networked systems, where variable node
performance, unpredictable communication latencies and
failures are the norm, researchers have explored relaxing
traditional barrier synchronization. For example, Albrecht
et al. [2] describe partial barriers, which allow a fraction
of nodes to pass through a barrier by adapting the rate of
entry and release from the barrier. This approach does
not bound how far behind some nodes may get, which is
important for ML algorithm convergence.

Another class of solutions attempts to reduce the need
for synchronization by restricting the structure of the
communication patterns. For example, GraphLab [25, 26]
programs structure computation as a graph, where data
can exist on nodes and edges. All communication occurs
along the edges of this graph. If two nodes on the graph
are sufficiently far apart they may be updated without
synchronization. This model can significantly reduce
synchronization in some cases. However, it requires the
application programmer to specify the communication
pattern explicitly.

Considerable work has been done in describing and
enforcing relaxed consistency in distributed replicated
services. For example, the TACT model [31] describes
consistency along three dimensions: numerical error,
order error and staleness. Other work [30] classifies
existing systems according to a number of consistency
properties, specifically naming the concept of bounded
staleness. Although the context differs, the consistency
models have some similarities.

In the database literature, bounded staleness has been
applied to improve update and query performance. Lazy-
Base [11] allows staleness bounds to be configured on a
per-query basis, and uses this relaxed staleness to improve
both query and update performance. FAS [29] keeps
data replicated in a number of databases, each provid-
ing a different freshness/performance tradeoff. Data
stream warehouses [16] collect data about timestamped
events, and provide different consistency depending on
the freshness of the data. The concept of staleness (or
freshness/timeliness) has also been applied in other fields
such as sensor networks [20], dynamic web content gener-
ation [22], web caching [9], and information systems [7].

11

48 2014 USENIX Annual Technical Conference USENIX Association

Of course, one can ignore consistency and synchro-
nization altogether, relying on a best-effort model for
updating shared data. Yahoo! LDA [1] as well as most
solutions based around NoSQL databases rely on this
model. While this approach can work well in some
cases, having no staleness bounds makes confidence in
ML algorithm convergence difficult.

7 Conclusion
Bounded staleness reduces communication and synchro-
nization overheads, allowing parallel ML algorithms to
converge more quickly. LazyTable supports parallel ML
execution using any of BSP, A-BSP, or SSP. Experiments
with three ML applications executed on 500 cores show
that both A-BSP and SSP are effective in the absence
of stragglers. SSP mitigates stragglers more effectively,
making it the best option in environments with more vari-
ability, such as clusters with multiple uses and/or many
software layers, or for algorithms with more variability in
the work done per thread within an iteration.

Acknowledgements. We thank the members and com-
panies of the PDL Consortium (including Actifio, APC,
EMC, Emulex, Facebook, Fusion-IO, Google, Hewlett-
Packard, Hitachi, Huawei, Intel, Microsoft, NEC Labs,
NetApp, Oracle, Panasas, Riverbed, Samsung, Seagate,
STEC, Symantec, VMWare, Western Digital). This
research is supported in part by the Intel Science and
Technology Center for Cloud Computing (ISTC-CC),
National Science Foundation under awards CNS-1042537
and CNS-1042543 (PRObE [15]), and DARPA Grant
FA87501220324.

References
[1] AHMED, A., ALY, M., GONZALEZ, J., NARAYANAMURTHY, S.,

AND SMOLA, A. J. Scalable inference in latent variable models.
In WSDM (2012).

[2] ALBRECHT, J., TUTTLE, C., SNOEREN, A. C., AND VAHDAT,
A. Loose synchronization for large-scale networked systems. In
USENIX Annual Tech (2006).

[3] ANANTHANARAYANAN, G., KANDULA, S., GREENBERG, A.,
STOICA, I., LU, Y., SAHA, B., AND HARRIS, E. Reining in the
outliers in map-reduce clusters using Mantri. In OSDI (2010).

[4] Apache Mahout, http://mahout.apache.org.

[5] BECKMAN, P., ISKRA, K., YOSHII, K., AND COGHLAN, S. The
influence of operating systems on the performance of collective
operations at extreme scale. CLUSTER (2006).

[6] BLEI, D. M., NG, A. Y., AND JORDAN, M. I. Latent dirichlet
allocation. JMLR (2003).

[7] BOUZEGHOUB, M. A framework for analysis of data freshness.
In IQIS (2004).

[8] BRADLEY, J. K., KYROLA, A., BICKSON, D., AND GUESTRIN,
C. Parallel coordinate descent for L1-regularized loss minimiza-
tion. In ICML (2011).

[9] BRIGHT, L., AND RASCHID, L. Using latency-recency profiles
for data delivery on the web. In VLDB (2002).

[10] BRIN, S., AND PAGE, L. The anatomy of a large-scale hypertex-
tual web search engine. Computer Networks (1998).

[11] CIPAR, J., GANGER, G., KEETON, K., MORREY III, C. B.,
SOULES, C. A., AND VEITCH, A. LazyBase: Trading freshness
for performance in a scalable database. In Eurosys (2012).

[12] CIPAR, J., HO, Q., KIM, J. K., LEE, S., GANGER, G. R.,
GIBSON, G., KEETON, K., AND XING, E. Solving the straggler
problem with bounded staleness. In HotOS (2013).

[13] FERREIRA, K. B., BRIDGES, P. G., BRIGHTWELL, R., AND
PEDRETTI, K. T. The impact of system design parameters on
application noise sensitivity. In CLUSTER (2010).

[14] GEMULLA, R., NIJKAMP, E., HAAS, P. J., AND SISMANIS,
Y. Large-scale matrix factorization with distributed stochastic
gradient descent. In KDD (2011).

[15] GIBSON, G., GRIDER, G., JACOBSON, A., AND LLOYD, W.
PRObE: A thousand-node experimental cluster for computer sys-
tems research. USENIX ;login: (2013).

[16] GOLAB, L., AND JOHNSON, T. Consistency in a stream ware-
house. In CIDR (2011).

[17] GRIFFITHS, T. L., AND STEYVERS, M. Finding scientific topics.
Proc. National Academy of Sciences USA (2004).

[18] HO, Q., CIPAR, J., CUI, H., KIM, J. K., LEE, S., GIBBONS,
P. B., GIBSON, G. A., GANGER, G. R., AND XING, E. P. More
effective distributed ML via a stale synchronous parallel parameter
server. In NIPS (2013).

[19] HOFFMAN, M., BACH, F. R., AND BLEI, D. M. Online learning
for latent dirichlet allocation. In NIPS (2010).

[20] HUANG, C.-T. Loft: Low-overhead freshness transmission in
sensor networks. In SUTC (2008).

[21] KREVAT, E., TUCEK, J., AND GANGER, G. R. Disks are like
snowflakes: No two are alike. In HotOS (2011).

[22] LABRINIDIS, A., AND ROUSSOPOULOS, N. Balancing perfor-
mance and data freshness in web database servers. In VLDB
(2003).

[23] LANGFORD, J., SMOLA, A. J., AND ZINKEVICH, M. Slow
learners are fast. In NIPS (2009).

[24] LESKOVEC, J., LANG, K. J., DASGUPTA, A., AND MAHONEY,
M. W. Community structure in large networks: Natural cluster
sizes and the absence of large well-defined clusters. Internet
Mathematics (2009).

[25] LOW, Y., GONZALEZ, J., KYROLA, A., BICKSON, D.,
GUESTRIN, C., AND HELLERSTEIN, J. M. GraphLab: A new
parallel framework for machine learning. In UAI (2010).

[26] LOW, Y., GONZALEZ, J., KYROLA, A., BICKSON, D.,
GUESTRIN, C., AND HELLERSTEIN, J. M. Distributed GraphLab:
A framework for machine learning and data mining in the cloud.
PVLDB (2012).

[27] PETRINI, F., KERBYSON, D. J., AND PAKIN, S. The case of the
missing supercomputer performance: Achieving optimal perfor-
mance on the 8,192 processors of ASCI Q. In Supercomputing
(2003).

[28] POWER, R., AND LI, J. Piccolo: Building fast, distributed
programs with partitioned tables. In OSDI (2010).

[29] RÖHM, U., BÖHM, K., SCHEK, H.-J., AND SCHULDT, H. FAS:
A freshness-sensitive coordination middleware for a cluster of
OLAP components. In VLDB (2002).

[30] TERRY, D. Replicated data consistency explained through base-
ball. Tech. rep., Microsoft Research, 2011.

[31] YU, H., AND VAHDAT, A. Design and evaluation of a conit-based
continuous consistency model for replicated services. ACM TOCS
(2002).

[32] ZeroMQ: The intelligent transport layer. http://www.zeromq.org/.

12

