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ABSTRACT

As language models (LMs) become more capable, they are being applied to in-
creasingly complex and user-specific tasks. LMs can be directed to perform target
tasks by using labeled examples or natural language prompts, which may include
general, free-form task descriptions. But selecting examples or writing prompts
for an LM can be challenging—especially in tasks that involve unusual edge cases,
demand precise articulation of nebulous preferences, or require an accurate mental
model of LMs themselves. We propose to use LMs themselves to guide the task
specification process. In this paper, we introduce generative active task elicita-
tion (GATE): a learning framework in which models elicit and infer intended be-
havior through free-form, language-based interaction with users. We study GATE
in three domains: email validation, content recommendation, and moral reason-
ing. In preregistered experiments, we show that LMs prompted to perform GATE
(e.g., by generating open-ended questions or synthesizing informative edge cases)
elicit responses that are often more informative than user-written prompts or la-
bels. Users report that interactive task elicitation requires less effort than prompt-
ing or example labeling and surfaces novel considerations not initially anticipated
by users. Our findings suggest that LM-driven elicitation can be a powerful tool
for aligning models to complex human preferences and values.

1 INTRODUCTION

The complexity of human preferences makes them challenging to encode in machine learning sys-
tems. Consider the problem of designing a recommendation system for songs or websites: first,
system builders must develop a formal model of the potential factors influencing user preferences;
second, users must describe their preferences in a format that a learning algorithm can use to make
future recommendations. Each of these steps requires mental effort and continual refinement by
users and system builders. Until recently, the dominant approach in machine learning has specified
preferences using examples: users first label a dataset with examples of the desired model behavior,
then train a machine learning model on this dataset. This strategy has seen widespread use across
diverse tasks, including image classification and question answering. (Krizhevsky et al., 2012; De-
vlin et al., 2019). In more recent years, this paradigm has changed with the advent of instruction
following methods (Brown et al., 2020a): by pre-training langauge models (LMs) on large-scale text
corpora, it is possible to infer desired behaviors conditioned only on natural language task specifi-
cations, in tasks as diverse as code generation and text summarization.

However, this progress has also accentuated the challenges described above: complex behaviors
require an increasing amount of prompt engineering or dataset design to overcome the imprecision
of natural language and prevent models from misunderstanding or misgeneralizing from spurious
features of prompts or examples. For example, a user who says they enjoy reading tennis articles
could either be interested in the competitive tennis circuit or in improving their own serve. A few
user-provided examples of tennis-related articles might fail to specify whether the user is interested
in broader tennis content, such as tennis-themed satire. These challenges of task ambiguity (Finn
et al., 2018; Tamkin et al., 2022a) loom large as models continue to be applied to more open-ended
tasks and higher-stakes domains.

To address these challenges, we propose to use models themselves to help convert human prefer-
ences into automated decision-making systems. In this paper, we introduce generative active task
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Figure 1: Generative Active Task Elicitation (GATE) elicits user preferences through inter-
active, free-form questions, which can then be used in downstream decision-making. Unlike
non-interactive elicitation approaches (e.g., prompting), which rely entirely on the human to eluci-
date their preferences, generative elicitation is better able to probe nuances of human preferences.
Unlike active learning approaches, generative elicitation can ask more generic, free-form questions.
The three parts of this figure illustrate: (A) Fuzzy user preferences: A user wishes to translate their
fuzzy preferences for how a task should be performed into a specification for a machine learning
model. This is challenging because users lack perfect introspection, preferences can be difficult to
specify in language, the specification needs to anticipate tricky real-world edge cases, and models
may misgeneralize from provided examples or instructions. (B) Task elicitation: We consider vari-
ous ways of eliciting these fuzzy preferences from users, including non-interactive prompting, active
learning, and generative elicitation (GATE). (C) Evaluation: We evaluate methods on a held-out test
set, scoring how well a language model predicted the true decisions made by the user.
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elicitation (GATE), a learning framework in which models elicit and infer user preferences through
open-ended interaction. We describe several techniques for leveraging LMs to perform GATE—for
example, by asking informative open-ended questions or generating edge cases for users to label.
We evaluate these methods in three domains: email validation, content recommendation, and moral
reasoning.1 In pre-registered experiments, we find that LM-based task elicitation often yields more
accurate models than existing prompting or active learning techniques while requiring comparable
(or less) mental effort from users and surfacing novel considerations.

In summary, this paper introduces a new learning framework (GATE), a family of methods that
perform GATE using pre-trained language models, and experimental evidence showing that these
methods outperform existing prompting and labeling methods. Our results show that interactive,
language-based task elicitation is a flexible and powerful tool for building personalized models,
capable of overcoming many challenges inherent in prompt- and example-based methods.

2 LEARNING AS TASK ELICITATION

2.1 THE TASK ELICITATION FRAMEWORK

We study the problem of efficiently training a machine learning model to perform a task of inter-
est. Throughout this paper, we use task to refer generically to any function f : x 7→ y that maps
inputs x to outputs y. When building a personalized website recommendation system, for exam-
ple, x are websites and y are user preference scores for that website. Because different users may
prefer different content, each user’s individual preferences specify a distinct task: content recom-
mendation for Pat and content recommendation for Avery are different tasks within the domain of
content recommendation (Ziegler et al., 2020). To build such a model, we must collect some task
specification from a human user (e.g., revealing what websites they are interested in). As noted
above, current learning approaches admit a wide variety of specification types, including collections
of labeled examples, natural language instructions, or combinations of the two. What makes one
type of specification preferable to another? Ideally, we would like specifications that are both (1)
easy for humans to create and (2) informative to learners, enabling them to model human prefer-
ences accurately. Abstractly, we seek a framework for gathering and learning from specifications
that optimizes an objective:

α · specification cost + β · human–predictor alignment (1)

where specification cost measures human time and mental effort, human–predictor alignment
measures the extent to which model choices agree with choices the human would have made, and α
and β tradeoff between the two. To formalize this, let Hf denote a human user whose preferences
are represented by a function f . We wish to design an elicitation policy E that interacts with Hf

to produce a task specification s. This specification may then be input to a learning algorithm to
produce a model f̂(s). Then, letting C(·) denote a scalar measure of specification cost, and A(·, ·)
denote a measure of alignment between two predictors, we wish to minimize (in expectation over
the population of human users):

EHf
Es∼E(Hf )

[
α · C(s) + β ·A(f, f̂(s))

]
. (2)

Here, C might measure the number of words the user typed to produce the specification s, while
A might measure model–predictor agreement at the level of individual predictions from some pop-
ulation: A(f, f̂) = Ex∥f(x) − f̂(x)∥. In general, appropriate definitions of C and A are domain-
dependent; in this paper, our experiments compare the alignment of different predictors at a fixed
cost. Evaluation of cost, alignment, and tradeoffs between them are discussed more in Section 5.

2.2 EXISTING LEARNING PARADIGMS IN THE TASK ELICITATION FRAMEWORK

Several existing frameworks for learning and task specification can be described within the frame-
work given above. Understood as task elicitation procedures, existing frameworks differ along two
key axes (visualized in Table 1): their level of interactivity and their level of flexibility. In interactive

1While this paper focuses on language-based elicitation procedures, we note that generative active task elic-
itation is modality-agnostic and could be applied to other settings (e.g., speech-based or multimodal models).
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Passive Interactive
Example-based Supervised learning Pool-based active learning
Free-form Prompting Generative active task elicitation (ours)

Table 1: Breakdown of different types of task elicitation methods.

elicitation methods, queries can change depending on user responses (e.g., querying for the most
useful information based on what is known thus far) while passive elicitation methods expect the
user to provide specifications in a single shot. Example-based specification methods ask users to
label a set of examples, while free-form elicitation approaches are less restrictive, allowing the user
to provide a much wider range of inputs, including natural language instructions and explanations.

Supervised learning: passive, example-based In the most common supervised learning setup,
the elicitation policy E simply instructs the human user Hf to generate a collection of labeled (input,
output) pairs, after which f̂(s) is produced by fitting or fine-tuning a learned model using standard
algorithms. This is an example-based process because the specification is provided via labeled
examples and is passive, as the model does not interactively query the user to label additional data.

Active learning: interactive, example-based In active learning, the elicitation policy is interac-
tive. Users first assemble a fixed pool of unlabeled inputs x. Next, E , selects from this pool an
example whose label would be most informative. The user Hf provides a label for this example,
then E selects the next-most-informative example, and so on (Cohn et al., 1994; Dagan & Engelson,
1995; Lewis & Gale, 1994; Settles, 2009). Finally, f̂(s) is trained as in supervised methods. Opti-
mal experiment design methods (Emery & Nenarokomov, 1998) may be viewed as generalizations
of this paradigm in which inputs x are generated rather than selected. Interactive processes enable
the model to query for examples that may resolve uncertainty or ambiguity in the task specification
(Tamkin et al., 2022b).

Prompting: passive, free-form Modern pre-trained models allow for specifying tasks in more
flexible ways than simply labeling examples. For example, models can be conditioned with a prompt
describing the user’s intended task in natural language (Brown et al., 2020b), or even a mix of
language and image inputs (Alayrac et al., 2022). As with supervised learning, the labeling policy E
here is simply an instruction to write a natural language task description (s), but the final predictor
f̂(s) is produced by passing s to a pre-trained language model.

3 GENERATIVE ACTIVE TASK ELICITATION

All of the methods above have important drawbacks: the burden typically falls upon the user to
ensure that prompts or example sets are truly comprehensive specifications of the task, as any lack
of clarity in the prompt could lead to task ambiguity (Tamkin et al., 2022a), resulting in undesired
behavior during deployment. Resolving task ambiguity by crafting better prompts is challenging and
time-consuming due to the difficulties of articulating nebulous personal preferences and anticipating
edge cases that will emerge during deployment time.

However, one quadrant of Table 1 is not occupied by any of the aforementioned approaches: there
is currently no method that leverages both the flexibility of a free-form specification, while using
interaction to resolve uncertainty. We explore whether it is possible to combine the flexibility and
richness of prompting-based specifications with the advantages of interactive methods such as active
learning, by having a model interactively query users for these rich specifications. We term this
family of methods generative active task elicitation (GATE).

3.1 METHODS FOR GATE

The effectiveness of language models (LMs) for understanding and producing free-form text sug-
gests that they may be capable of eliciting and understanding user preferences. In this paper, we thus
experiment with a family of GATE methods in which LMs serve as the backbone for both the elici-
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tation policy E and the predictor f̂(s).2 See Figure 1 for examples. In particular, we implement the
elicitation policy E by prompting an LM to ask the user questions while conditioning on the history
of previous questions and answers. To make predictions f̂(s), an LM is prompted to predict a label
conditioned on an input x and a complete elicitation transcript s provided as input. We experiment
with several different information gathering policies, realized by simply prompting an LM to ask
different kinds of questions:

Generative active learning The LM generates example inputs for the user to label. This approach
has the advantage of providing concrete scenarios to the user, including some they may not have
considered otherwise. For example, for content recommendation, the LM might generate an article
such as: Are you interested in the following article? The Art of Fusion Cuisine: Mixing Cultures
and Flavors [...] .

Generating yes-or-no questions We restrict the LM to generating binary yes-or-no questions.
This approach enables the model to elicit more abstract preferences while still being easy for the
user to answer. For example, the model might probe a user’s preferences by asking: Do you enjoy
reading articles about health and wellness?

Generating open-ended questions The LM generates arbitrary questions requiring free-form nat-
ural language responses. This enables the LM to elicit the broadest and most abstract pieces of
knowledge at the potential cost of being overly broad or challenging for the user to answer. For
example, the LM might generate the question: What hobbies or activities do you enjoy in your free
time [...], and why do these hobbies or activities captivate you?

The user is not constrained in their response in any of the above settings; they are free to provide as
much detail as they want. We present example elicitation transcripts for each policy in Figure 8.

4 EXPERIMENT SETUP

We consider tasks in three different domains to evaluate our generative active task elicitation meth-
ods. A common feature of these domains is that they do not feature a single correct behavior that
could be learned during LM pre-training; instead, models must elicit an individual human’s prefer-
ences in order to make accurate predictions. We allow each human user to interact open-endedly
with an elicitation policy E for five minutes. Next, humans and learned models f̂(s) independently
label a set of held-out examples. Finally, we measure agreement between humans and learned pre-
dictors. See Figure 8 for examples of environments and dialogues.3

4.1 DOMAINS AND DATASETS

Content Recommendation We consider the domain of online article recommendations, where
user preferences vary widely. Models are evaluated on their ability to predict whether a user would
like to read a given held-out article. These test cases are taken from popular online newspaper and
magazine articles collected by the authors. We provide a website name, article title, and a short
description for each test case.

Moral Reasoning Moral preferences can be deeply personal and vary significantly across people
and cultures. As a test-bed for eliciting moral values, we consider the question of when (if ever) it is
ethical to steal a loaf of bread. During evaluation, models are presented with textual descriptions of
scenarios and asked to predict whether users will judge it appropriate to steal a loaf of bread. These
test cases are constructed manually by the authors.

Email Verification Last, we consider the problem of eliciting requirements for a software engi-
neering task. Specification is especially challenging in software engineering due to the many edge

2However, we emphasize that our method is not specific to language models or natural language and could
potentially be applied to other settings such as images, speech, or multimodal models.

3Link to the preregistration of experiments and analyses will be made available upon publication.
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cases developers need to anticipate and account for. In particular, we focus on specifying require-
ments for email address validation, where people have varied preferences over how long emails can
be, how many subdomains they may possess, and which special characters are allowed, among other
factors. Models are evaluated on their agreement with users about the validity of a set of held-out
emails; this test set is again manually constructed by the authors.

4.2 HUMAN INTERACTION

Human participants in these experiments were recruited from English-speaking users of Prolific.
For the email validation task, we additionally recruited participants from several computer science
programs at US universities. We recruited 20–30 participants for each domain-method pair (6 elici-
tation methods across 3 domains), for a total of 388 participants. Participants were paid an average
of $12/hr. Our experiments received IRB approval. The breakdown of the number of participants
allocated to each scenario and method can be found in Appendix B.1. Details of the user interface
used in experiments may be found in Appendix B.2.

4.3 MODELING DETAILS

We use the GPT-4 model (gpt-4-0613 snapshot) (OpenAI, 2023) to both elicit user preferences
(the elicitation policy E) and make predictions based on the elicited preferences (the predictor f̂(s)).
To elicit user preferences, we prompt GPT-4 with a domain description and the current interaction
history, and ask it to generate an informative but easy-to-answer edge case (for generative active
learning) or question (for generative yes-or-no questions and generative open-ended questions). To
make predictions, we prompt GPT-4 with the task specification s and a test sample x and ask it to
generate a prediction for the test sample. The full text of the prompts can be found in Appendix A.

4.4 BASELINE METHODS

We compare GATE with several baseline approaches for specifying tasks. Here, the elicitation policy
E is not parameterized by an LM, but constructed by the user and/or a pool of examples.

Supervised learning We consider supervised learning as a baseline, as described in Section 2.2.
We randomly present participants with questions from a large pool of examples and ask them to
annotate up to the time limit. We study this approach exclusively in the content recommendation
domain because pools of examples are not readily available in the other two domains. We use the
Microsoft News Dataset (Wu et al., 2020) as our pool for this domain, a dataset of 160k news articles
with descriptions.

Pool-based active learning As a baseline active learning approach, we consider a pool-based
active learning approach, as described in Section 2.2. For the elicitation policy, we use the diversity-
based sampling approach of Margatina et al. (2023); we first cluster the examples using a Sentence-
BERT embedding model (Reimers & Gurevych, 2019) into 15 different clusters, then iteratively
ask questions from each cluster in a round-robin fashion, up until the time limit.4 This baseline
is intended to capture the difficulty of selecting informative examples from a pool of unlabeled
examples relative to generating informative examples from scratch. As with supervised learning, we
study this approach exclusively in the content recommendation domain.

User-written prompts As a baseline that does not use interactive elicitation, we ask participants
to write a short paragraph describing their preferences for the task. We then use the text of this
paragraph to prompt a model to make decisions. This baseline is intended to capture the difficulty
of specifying preferences in writing, both in terms of the effort it takes to write the paragraph and
the difficulty of writing a paragraph that fully specifies one’s preferences.

4Margatina et al. (2023) explored several different popular active learning sampling approaches for in-
context learning (including random, uncertainty, and diversity sampling) and found little difference in empirical
performance between them. We also ran exploratory model-model experiments in our domains and found no
significant difference between these three sampling strategies. See details in Appendix D.
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4.5 EVALUATION AND METRICS

We measure how well models can predict the probability that users will answer questions a certain
way. Specifically, we prompt the model to output a real-valued probability of answering yes to the
question, as opposed to a binary yes/no decision. To do so, we prompt the model with the interaction
history s as a single test case, then ask the model to predict the probability that a user would answer
“yes” to the test case. This probability is outputted in token space as a number between 0.0 and 1.0,
similar to past work (Branwen, 2020; Lin et al., 2022).5 We also discuss and report a classification-
based metric in Appendix C.1. Given these predicted probabilities, we compute:

Area under the p(correct)-time curve We define p(correct) as the probability the model assigns
to the user-preferred answer (see Section 4.5). For example, if the model outputted 0.8 for a given
question, then p(correct) would be 0.8 if the user’s answer were “yes” to the same question, and 0.2
if the user’s answer was “no”. We select this metric instead of accuracy because guessing the user’s
preferences may not always be possible, and modeling this uncertainty is useful.

However, we do not just care about the total information elicited, but about how quickly good in-
formation is elicited. To do this, we compute the average change in p(correct) after every minute
of human elicitation time (conditioning on the state of the transcript at that time). This produces a
curve where the x-axis is time, and the y-axis is the average change in p(correct). The area beneath
this curve is a second metric we consider. Note that the final data point of each p(correct) curve
may not reach 5 minutes because we subtract out the latency from the language modeling API; to
account for this, we extend the final accuracy to the 5-minute mark before computing the area.

Rating of perceived effort across elicitation policies In addition to these performance-based
metrics, we also ask users to rate how difficult they found the elicitation process to be.

Specifically, we asked users “How mentally demanding was writing your answer?” in the non-
interactive-elicitation setting, and “How mentally demanding was interacting with the chatbot?” in
all elicitation settings (which include all other settings from Section 2.2). The “mentally demanding”
wording was taken from the NASA TLX (Hart & Staveland, 1988). The question was assessed via
a Likert scale from 1 (Very Little) to 7 (Very High). We also consider several additional questions
to assess other usability tradeoffs. See Appendix E for the full list.

5 RESULTS

Evaluation results are shown in Figures 2 and 3. Additional results can be found in Appendix C.
These results show that GATE methods...

...are successfully able to elicit human preferences. Overall, GATE improves over no elicitation,
where the model is prompted to make decisions before any user interaction. This is the case across
all domains studied (a positive score in Figure 2), with significance at the 0.05 level for all but the
email domain, where only generative active learning was significant.

...are comparable to or better than other elicitation methods. In the majority of settings (6/10 for
absolute, 7/10 for AUC), GATE elicitation methods improve over user-written prompts. In particular,
generative yes/no questions improve over user-written prompts in every setting studied (although
we lack enough power to assess significance). Furthermore, in the content recommendation setting,
GATE elicitation methods (particularly generative open-ended questions) significantly improve over
supervised learning and pool-based active learning.

...are equally or less mentally demanding than user-written prompts. As shown in Figure 3
(left), users generally find interactive elicitation methods to be less mentally demanding, especially
ones that involve labeling samples or answering yes/no questions, than non-interactive prompting.

5While there may be other ways one might make predictions with these models, we found them lacking for a
variety of reasons. First, we conducted pilot experiments prompting the LM to predict binary yes/no decisions;
however, we found this resulted in skewed predictions where the LM would predict one of ‘yes’ or ‘no’ for the
entire test set, perhaps due to miscalibration of the model’s implicit decision threshold. Second, we found that
LMs are generally less reliable when generating confidence values in log space. Finally, we cannot directly
take the token probabilities from GPT-4 using the OpenAI API.
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Figure 2: Across three domains, our LM-prompting implementations of GATE are generally able
to elicit human preferences beyond baseline supervised learning, active learning, or human-written
prompts. We measure the Area Under the “∆p(correct) vs. Interaction time” Curve, which gives us a
time-normalized metric for how well (and how quickly) each elicitation method is at aligning with human pref-
erences. While GATE methods generally outperform the baseline methods as well as no interaction (represented
by a ∆p(correct) of 0), we are only able to establish statistical significance between GATE and baselines in
the content recommendation and email verification domains.

Figure 3: Left: GATE methods are equally or less mentally demanding than other methods. We plot the
perceived mental demand across methods and domains (higher = greater mental demand).
Right: Language model elicitation does not shift human preferences. We plot the proportion of partici-
pants who answered "yes" to each test question, comparing no LM interaction (user-written prompts) to LM
interaction (GATE) elicitation. The red line is the y = x curve, which serves as a guideline to see how well hu-
mans’ no-LM interaction preferences align with their preferences post-LM interaction (if they align perfectly,
the points should fall along this curve). We see that the points generally hover around this curve.

Does language model elicitation influence user preferences? Human preferences may shift
when interacting with language models for a variety of reasons. For example, past work has studied
auto-induced distributional shift, where machine learning models shift human behavior to be easier
to predict (Krueger et al., 2020). To investigate whether this occurs in our experiments (or indeed if
different elicitation methods induce different human preferences for any other reason), we compare
the distribution of human labels on test samples from the three GATE methods with those from the
user-written prompt experiments to see whether interacting with language models influences users’
subsequent judgments. As seen in Figure 3 (right), we see no such effect.

6 OTHER RELATED WORK

6.1 ELICITING DESCRIPTIONS OF PREFERENCES

A fundamental challenge across many fields is how to obtain information about people’s nebulous
thoughts, preferences, and goals. In psychology and cognitive science, protocol analysis describes
methods for how to obtaining and analyze verbal reports from subjects about cognitive processes
including via think-aloud protocols (Ericsson & Simon, 1980; Ericsson, 2017). In software usability
analysis, similar techniques are used to assess the usability and limitations of existing software
(Henderson et al., 1995), and for broader applications in the areas of survey, questionnaire, and focus
group design (Malhotra, 2006; Lietz, 2010; Krosnick, 2018; Krueger & Casey, 2002). High-quality
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verbal reports can be challenging to obtain, however, and requirements elicitation studies methods
for gathering information even when it is challenging for users to fully understand or anticipate
their own needs or describe their preferences in clear, unambiguous language (Christel & Kang,
1992; Goguen & Linde, 1993; Coughlan & Macredie, 2002; Zowghi & Coulin, 2005; Pacheco et al.,
2018). In our work, we explore whether language models could take the place of human researchers
in surfacing these insights from people or even other language models.

6.2 COMPUTATIONAL MODELING AND QUERYING OF PREFERENCES

Many works attempt to computationally describe or query human preferences. Preference modeling
techniques study people’s revealed preferences (Samuelson, 1948), as well as their stated prefer-
ences (Kroes & Sheldon, 1988), including preferences refined through deliberation (Gutmann &
Thompson, 2004). Methods for eliciting preferences span a wide variety of research areas includ-
ing conjoint analysis (Green & Srinivasan, 1978), multiple-criteria decision making (Greco et al.,
2016), multi-armed bandits (Robbins, 1952) and dueling bandits (Yue et al., 2012), Bayesian meth-
ods (Chajewska et al., 2000), recommender systems (Aggarwal et al., 2016; McAuley, 2022), robust
optimization (Vayanos et al., 2020), optimal experiment design (Emery & Nenarokomov, 1998), (co-
operative) inverse reinforcement learning (Ng et al., 2000; Hadfield-Menell et al., 2016), question
generation (Mulla & Gharpure, 2023), and generative modeling (Zhu & Bento, 2017).

Perhaps most relevant to our work is active learning, a major subfield of machine learning that
centers on how models can choose useful data points to learn from. Active learning has traditionally
focused on pool-based methods, which choose points to label from a fixed reservoir (Lewis & Catlett,
1994; Settles & Craven, 2008; Settles, 2009; Houlsby et al., 2011). Recently, Tamkin et al. (2022b)
found that the well-calibrated uncertainty scores of pretrained models can be used during active
learning to clarify the user’s task preferences—for instance, by choosing examples that distinguish
which of two correlated features are important for the task. We extend this line of investigation to the
generative setting, clarifying user intent by querying a user with generated examples and questions.

6.3 TASK AMBIGUITY AND UNDERSPECIFICATION

A growing body of work explores how tasks in machine learning can be underspecified or ambigu-
ous. In particular, task ambiguity (Finn et al., 2018; Tamkin et al., 2022b) arises when more than
one task is consistent with the inputs to the model (e.g. the natural language prompt or provided
examples). One stream of work here investigates spurious correlations (Geirhos et al., 2020), a form
of task ambiguity where the network learns unwanted associations between features in the input
data and the task label (Nagarajan et al., 2021; Sagawa et al., 2019; Srivastava et al., 2020; Sagawa
et al., 2020). Such underspecified training pipelines can lead to unpredictable and undesired behav-
ior during deployment and potentially dangerous real-world consequences (D’Amour et al., 2022).
As recent models can accept richer specifications, such as natural language prompts, task ambiguity
can arise from other sources, such as incomplete or suboptimal natural language descriptions of the
task (Tamkin et al., 2022b). In this work, we find that language models can often resolve their own
task ambiguity in these instances by asking informative questions of the user.

7 DISCUSSION AND CONCLUSION

We introduced the GATE framework to interactively elicit preferences from human users with free-
form queries and answers. We presented initial evidence that language models can successfully
implement GATE to elicit human preferences (sometimes) more accurately and with less effort than
supervised learning, active learning, or prompting-based approaches.

There are many ways to expand on our implementation of GATE: Future work may explore more
principled methods for elicitation besides simple prompting; for example, explicit notions of uncer-
tainty or disagreement sampling could be used in conjunction with the free-form generation enabled
by generative language models, taking inspiration from the active learning literature. Second, larger
models may be more capable elicitors: future work can explore scaling laws for elicitation. Finally,
many real-world tasks are more complex than those we study here; applications such as software
design and legal and medical decision-making present a richer set of constraints and edge cases.
These applications thus offer a rich space of possible extensions of GATE.
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ETHICAL CONSIDERATIONS

Our work presents several potential ethical benefits and risks.

There are many potential benefits of machines that can better elicit and understand human prefer-
ences. For example, by making it easier for software designers to incorporate nuanced user prefer-
ences, GATE may empower people with rare preferences or preferences that have historically not
been considered when building software systems. In addition, improving the effort-performance
ratio, especially by requiring less user typing, may help make language models more accessible to
users with less time, familiarity with language models, or physical ability to use such systems.

However, this direction carries risks as well. In particular, work on thin slicing (Ambady & Rosen-
thal, 1992) has demonstrated that small amounts of information about a user can sometimes be used
to predict a broader range of personal characteristics, raising potential privacy considerations. The
interactive nature of GATE also risks increasing automation bias (Goddard et al., 2012), where users
place undue weight on a model’s predictions. However, further work is necessary to establish if
or when these risks are more significant for GATE than for prompting-based approaches to steering
language models.

REPRODUCIBILITY

We will open-source all code used in creating GATE methods, constructing the user interface, and
conducting the results and analysis. We will also release the pre-registration for our experiments.
All prompts we used for querying GPT-4 in the decision-making and elicitation phases, and all
instructions we presented to the user, can be found in the Appendix. In all cases, we queried GPT-4
with temperature 0 for replicability of experiments.

We also note that the model we use is a closed-source model whose versions are periodically depre-
cated. This may hinder reproducibility, and we may explore open-source models in the future.
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A GATE PROMPTS

A.1 ELICITATION PROMPTS

Below, we list the prompts we use for generating elicitation queries (to instantiate the elicitation
policy E) for the various GATE methods.

Generative active learning The prompt for generative active learning can be found below. Brack-
eted, italicized text are placeholders, e.g. for the elicitation transcript (so far). Color-coded text is
domain-specific, e.g. the blue text represents text for the content recommendation domain, orange
text represents text for the moral reasoning domain, and the green text represents text for the email
validation domain.

Your task is to [ learn what topics a user is interested in reading online article about. People’s
interests are broad, so you should seek to understand their interests across many topics; in other
words, go for breadth rather than depth. Do not assume a user has given a complete answer
to any question, so make sure to keep probing different types of interests | learn under what
conditions the user would believe it is or is not ethical to steal a loaf of bread | learn what rules
a user believes a valid email address format must adhere to (e.g. for developing a regex format checker) ].

Come up with a potential edge case to learn as much information as you can about what their
desired behavior should be under different circumstances.
Make sure the edge case addresses different aspects of the system than the edge cases that have already
been considered.

An example edge case is: [ Are you interested in the following article? Website Name: TechTalkDaily
Title: 10 Must-Have Gadgets for 2023: A Comprehensive Guide
Description: Discover the top 10 gadgets that will revolutionize your daily life in 2023. From smart
home devices to the latest wearables, we’ve got you covered with our comprehensive guide. | Situation:
Is it ethical to steal a loaf of bread if you are starving to death and the bread would otherwise go to
waste? | Should the following email be accepted? username@example.com ]

Current cases:
[ Elicitation transcript ]

Generate the most informative edge case that, when answered, will reveal the most about the
desired behavior beyond what has already been queried for above. Generate the edge case in the
following format, and nothing else: "[ Are you interested in the following article? [edge case] | Situation:
[edge case] | Should the following be accepted? [edge case] ]"

Generating Questions The prompt for generating both yes-or-no and open-ended questions can
be found below. Once again, bracketed, italicized text are placeholders and color-coding indicates
text for specific domains.

Your task is to [ learn what topics a user is interested in reading online article about. People’s
interests are broad, so you should seek to understand their interests across many topics; in other
words, go for breadth rather than depth. Do not assume a user has given a complete answer
to any question, so make sure to keep probing different types of interests | learn under what
conditions the user would believe it is or is not ethical to steal a loaf of bread | learn what rules
a user believes a valid email address format must adhere to (e.g. for developing a regex format checker) ].

Previous questions:
[ Elicitation transcript ]

Generate the most informative [ yes/no question | open-ended question ] that, when answered,
will reveal the most about the desired behavior beyond what has already been queried for above. Make
sure your question addresses different aspects of the implementation than the questions that have
already been asked. At the same time however, the question should be bite-sized, and not ask for too
much at once. Phrase your question in a way that is understandable to non-expert humans; do not use
any jargon without explanation. Generate the [ yes/no question | open-ended question ] and nothing
else:
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A.2 DECISION-MAKING PROMPTS

Given an elicitation transcript, we prompt the LM as follows to serve as a predictor f̂(s) to make
decisions about each test case.

Content Recommendation The prompt for content recommendation can be found below. Brack-
eted, italicized text are placeholders, for the elicitation transcript and the test case sample.

A user has a particular set of preferences over what articles they would like to read. They have specified
their preferences below:
[ Eliciation transcript ]

Based on these preferences, would the user be interested in reading the following article? An-
swer with a probability between 0 and 1, where 0 means “definitely not interested” and 1 means
“definitely interested”. Only output the probability and nothing else. If uncertain, make your best guess.
[ Test case sample ]

Moral Reasoning The prompt for moral reasoning can be found below. Once again, bracketed,
italicized text are placeholders.

A user has a particular ethical code they follow. The following response(s) represent when this user
would believe it is ethical to steal a loaf of bread.
[ Eliciation transcript ]

"Based on these response(s), would the user believe it is ethical to steal a loaf of bread in the
following situation? Answer with a probability between 0 and 1, where 0 means “definitely not” and
1 means “definitely yes”. Only output the probability and nothing else. If uncertain, make your best
guess.
[ Test case sample ]

Email Validation The prompt for email validation can be found below. Once again, bracketed,
italicized text are placeholders.

A user has a particular format of emails that they believe to be valid. The following answer(s) represent
this user’s preferences of whether these emails adhere to their desired format.
[ Eliciation transcript ]

Based on the user’s preferences, does the following email adhere to the user’s desired format?
Answer with a probability between 0 and 1, where 0 means “definitely not” and 1 means “definitely yes”.
Only output the probability and nothing else. If uncertain, make your best guess.
[ Test case sample ]

B EXPERIMENTAL DETAILS

B.1 NUMBER OF PARTICIPANTS

The number of participants we recruited for our study, for each elicitation method and domain, can
be found in the table below.

Content Moral Email
Recommendation Reasoning Validation Total

Supervised learning 30 - - 30
Pool-based active learning 31 - - 31
Prompting 30 30 26 86
Generative active learning 30 30 20 80
Generative yes-or-no questions 31 30 19 80
Generative open-ended questions 31 31 19 81

Total 183 121 84 388
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Figure 4: Chatbot UI built for elicitation phases of GATE methods, supervised learning, and pool-
based active learning.

Figure 5: Text-input UI built for elicitation phase for prompting.

B.2 USER INTERFACE DETAILS

Details about the UI we built for our experiments can be found below. Recall that the human studies
proceeded in two parts: elicitation, followed by decision-making.

B.2.1 ELICITATION

For supervised learning, pool-based active learning, and the GATE methods, we had participants re-
spond to a series of queries using the chatbot interface (Figure 4). For prompting, we had participants
input a task description using the text-input interface (Figure 5).

The instructions for this phase can be found below.

Supervised Learning / Pool-based Active Learning We present users with the following
instructions for both supervised learning and pool-based active learning. Bracketed, ital-
icized text represent placeholders for domain-specific text. [ Domain instructions ] is a
placeholder for the top-level instructions for each domain (see Table 2). Otherwise, blue
text represents text for the content recommendation domain, orange text represents text for
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Content We are testing a system for understanding people’s interest in reading different kinds of
online articles.

For example, you might be interested in articles about some topics, but not about others.

Moral We are testing a system for understanding people’s fuzzy intuitions and preferences.

In this experiment, we’ll be capturing your moral intuitions about the act of stealing a loaf
of bread, and whether there are certain cases where stealing may be morally permissible.

Email We are testing a system for understanding people’s fuzzy intuitions and preferences.

In this activity, we’re going to be looking at different strings of text and you’ll be deciding
if they look like they could be an email address or not. For example, most people would
agree that “username@domain.com” looks like an email address, while “n12z5lFEN4” does
not. However, the rules for what can be an email address can be very unusual, so what
we’re really interested in is your intuition on what an email address could look like.

Important: We are not asking you to determine the rules for a *good* email address, or
a *real (non-spam)* email address. We are simply asking about your intuition as to why
certain strings look like email addresses and certain strings do not.

Tip: in an email such as username@cs.stanford.edu, “username” is called the local-part
of the email, while “cs.stanford.edu” is the domain. Furthermore, “cs” is a subdomain,
and “edu” is a top-level domain.

Table 2: Domain-specific instructions presented to users for the elicitation phases.

the moral reasoning domain, and green text represents text for the email validation domain.
[ Domain instructions ]

Try to answer in a way that accurately and comprehensively conveys your preferences, such
that someone reading your responses can understand and make judgments as close to your own as
possible. Feel free to respond naturally (you can use commas, short phrases, etc), and press [enter] to
send your response. Note that the chatbot technology is imperfect, and you are free to avoid answering
any questions that are overly broad or uncomfortable. When interacting with the chatbot, please avoid
asking follow-up questions or engaging in open-ended dialogue as the chatbot is unable to respond to you.

Note: The chatbot will stop asking questions after 5 minutes, after which you can send your
last response and you will be taken to the final part of the study.

In the final part of the study, you will give feedback on a test set of [ article headline and de-
scriptions | moral situations | email addresses ], which will enable us to see how well a chatbot reading
your responses has learned [ what you like and dislike | your moral preferences | your email preferences
].

Prompting We present users with the following instructions for prompting. Similar to above,
bracketed, italicized text represent places where we insert domain-specific text.
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[ Domain instructions ]

To the best of your ability, please explain all details about [ your preferences of what kinds of
online articles you would like to read | your belief of when it is moral to steal a loaf of bread | your
intuition of what makes email addresses look like email addresses ], such that someone reading your
responses can understand and make judgments as close to your own as possible. Try to be as detailed
as possible. For example, if you were writing a regex that accepts only email-address-like strings, what
might that regex look like? What are permissible / non-permissible symbols and characters, and in
what positions?

Note: You will have up to 5 minutes to articulate your preferences. Please try to submit your
response within that time. After you submit, you will be taken to the final part of the study.

In the final part of the study, you will give feedback on a test set of [ article headline and de-
scriptions | moral situations | email addresses ], which will enable us to see how well a chatbot reading
your responses has learned [ what you like and dislike | your moral preferences | your email preferences
].

GATE methods We present users with the following instructions for the three GATE methods (gen-
erative active learning, generative yes-or-no questions, generative open-ended questions). Once
again, bracketed italicized text represent domain-specific text.

[ Domain instructions ]

This chatbot will ask you a series of questions about [ your preferences of what kinds of online
articles you would like to read | your belief of when it is moral to steal a loaf of bread | your intuition
of what makes email addresses look like email addresses ]. Try to answer in a way that accurately and
comprehensively conveys your preferences, such that someone reading your responses can understand
and make judgments as close to your own as possible. Feel free to respond naturally (you can use
commas, short phrases, etc), and press [enter] to send your response. Note that the chatbot technology
is imperfect, and you are free to avoid answering any questions that are overly broad or uncomfortable.
When interacting with the chatbot, please avoid asking follow-up questions or engaging in open-ended
dialogue as the chatbot is unable to respond to you.

Note: The chatbot will stop asking questions after 5 minutes, after which you can send your
last response and you will be taken to the final part of the study.

In the final part of the study, you will give feedback on a test set of [ article headline and de-
scriptions | moral situations | email addresses ], which will enable us to see how well a chatbot reading
your responses has learned [ what you like and dislike | your moral preferences | your email preferences
].

B.2.2 DECISION-MAKING

For the decision-making phase, we presented users with the following instruction:

Content Recommendation

Please indicate whether you would like to read the following articles: “yes” if you would, “no” if you
would not.

Moral Reasoning

Please indicate whether you think the following situations are morally permissible or not: “yes” if they
are, “no” if they aren’t.

Email Validation

Please indicate whether you think the following strings look like reasonably well-formatted email addresses
or not: “yes” if they do, “no” if they don’t.

Users are then presented with a list of test samples, and can use radio buttons to select whether each
test-case sample is acceptable. See Figure 6.
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Figure 6: UI for the decision-making phase.

Figure 7: We plot the Area Under the “∆AUROC vs. Interaction time” Curve, which gives us a
metric for how well (and how quickly) each elicitation method is at aligning with human preferences.
This plot is analogous to Figure 2, only we are using AUROC instead of p(correct) for the alignment
metric, which means that we are not measuring uncertainty. We see the same trends hold of GATE
methods (generally) beating supervised learning, pool-based learning, and prompting approaches,
while also beating no interaction (∆AUROC = 0) using this metric. However, we see generally
smaller ∆s over non-interaction using this metric, and higher variances, which make it harder to
establish statistical significance.

C ADDITIONAL RESULTS

C.1 AUROC RESULTS

We measure AUROC over model-generated probabilities in addition to ∆p(correct). Figure 7 is the
analogous plot to Figure 2, but we measure the improvement in AUROC instead of p(correct), over
interaction time, rewarding methods that achieve higher improvements in AUROC sooner.

The general trends hold from Section 5: language models can elicit human preferences (beyond no
interaction), and language model elicitation is comparable or better than other elicitation baselines.
However, unlike the p(correct) metric, the AUROC metric is a simple classification-based metric.
Due to potential miscalibration in LMs, making it difficult for them to output well-calibrated proba-
bilities with the same threshold across questions, the overall improvements in this metric are lower
(particularly for generative open-ended questions) and the variances are much higher. Thus, we see
that it is harder to establish statistical significance using this metric.
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C.2 SAMPLE TRANSCRIPTS

Sample transcripts of users interacting with the various generative active task elicitation methods
can be found in Figure 8.

C.3 ANALYSIS

Here, we present some additional analyses to better characterize the experiments.

How much variation there is in people’s preferences? Elicitation is only helpful if there is
variation in people’s preferences; otherwise, a model could simply attain maximum performance
by relying on its prior and ignoring the elicited information. To quantify how much variation there
is in people’s preferences, we compute the entropy in p(yes) for each question across participants.
We find that many questions have high entropy while many others have little entropy, for an average
entropy of 0.77 bits. Broadly, the results validate that our settings have significant variation in human
preferences, enabling models to personalize themselves based on human preferences.

What kinds of questions did the language models ask? We show a few examples of the language
model questions in Figure 8. As the figure shows, these questions are complex and subtle, often
building on the previous questions, representing a broad-based knowledge of the domain as well as
possible nuances therein.

Why does prompting make things worse in the emails domain? In the emails domain in Fig-
ure 2, we observe that user-written preferences slightly decrease performance relative to a no-
elicitation baseline. While it is possible this is an effect of noise, we also observe that some partici-
pants articulated preferences that were actually different from those they experienced when viewing
email addresses. For example, one user wrote “an email address should finish with .com or co.uk”
yet later decided that “user@domain.edu” was an acceptable email address. This indicates that users
may not have a clear and comprehensive understanding of their own preferences, especially in more
technical domains.

Can we automate evaluation? To probe whether evaluation could be automated, we conducted
experiments where we simulated different human preferences using language models prompted with
a diverse set of (automatically-generated) personas. These personas varied by domain, but gener-
ally contained information about a hypothetical person’s preferences within that the domain. For
example, in the content recommendation domain, we generated brief biographical sketches of hy-
pothetical people, including their hobbies, interests, and careers, and conditioned GPT-4 on these
biographical sketches to generate answers to queries. We found that model could simulate humans
well in the content recommendation and email validation domains, but not in the moral reasoning
domain. This suggests that while such personas may be a useful guide in some cases, they are not
yet sophisticated enough to stand in for real human participants. See Appendix D for more details.

D MODEL-MODEL EXPERIMENTS

D.1 METHODS

We explore whether LMs can stand-in for human participants, enabling faster iteration loops and
more research in this area. We generate various personas (specified in natural language) for each
domain, and prompt LMs to respond to elicitation queries as their persona would.

For each domain, we construct a set of personas as follows:

Content Recommendation The personas are constructed by providing a brief biographical sketch
of a hypothetical person, and were also constructed by the authors. A sample persona prompt is
“Education: Medical Doctorate. Occupation: Junior Surgeon at a regional hospital. Hobbies:
Running marathons, traveling, and learning new languages.”
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Figure 8: Excerpts of real transcripts across the different domains and elicitation methods we
investigate. The Systemmessages are generated by the language model, while the Usermessages
are produced by human participants. Overall, the model is able to generate diverse and contextually-
appropriate questions in each setting. See Sections 3.1 and 4.1 for more details on the domains and
methods respectively.
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Figure 9: We plot the Area Under the “∆p(correct) vs. Number of Turns” Curve for model-
model experiments. This plot is analogous to Figure 2, only we are using LMs to simulate human
users, and we are using number of turns as a proxy for interaction time. We see the same general
trends as in Figure 2: GATE methods beat both no elicitation and pool-based active learning.

Moral Reasoning We construct a variety of personas with a diverse array of moral perspectives,
including Kantianism, Utilitarianism, and ethical egoism. A sample persona prompt is “You sub-
scribe to a Kantian code of ethics.”

Email Validation Personas are instantiated by providing a regex to the model. The test cases
are constructed by the authors. A sample persona prompt is “You are validating that an email
address adheres to a specific format (e.g. for designing a Python regex). The gold regex is . . .
user@domain.co.co.co.co”

We prompt as the LM as follows to answer questions according to their personas:

[Persona] Answer the question in the shortest way with minimal additional explanation.
[Question]

Furthermore, in the content recommendation domain, we implement three different selection strate-
gies for pool-based active learning and explore their trade-offs, including random sampling (ran-
domly selecting the next example to query), uncertainty-based sampling (selecting the example
whose answer the LM is most uncertain about, i.e. the example with the highest-entropy),6 and
diversity sampling (described in Section 4.5).7

D.2 RESULTS

Figures 9 and 10 shows results in each domain when we use a LM to simulate humans. Because
human interaction times are unavailable for these experiments, we run interactive elicitation up to
5 turns, where we use number of turns as a proxy for human effort. Note that instead of measuring
AUC of the “∆p(correct) vs. interaction time” curve, we instead measure AUC of the “∆p(correct)
vs. number of turns” curve.

Can models be used to simulate human participants? In Figure 11, we plot the correlation be-
tween human experiment results and model-model experiment results for various elicitation meth-
ods. For both the human experiments and the model-model experiments, we compute the area under
the “∆p(correct) vs. number of turns” curve, in addition to the average change in p(correct) after 5
turns.8

6Note that because GPT-4 does not return logits, we use a smaller GPT-3 text-davinci-003 model to
compute entropy over the answer distribution

7To avoid massive costs in uncertainty sampling, the pool was pre-filtered to a sensible size of a few hundred
samples using diversity metrics. For comparability across methods, the same pre-filtered pool was used for all
three sampling methods.

8Note that these metrics differ from we use to evaluate the human experiments in Section 4.5 – in particular
by being turn-based instead of time-based – meaning we had to additionally compute these metrics on the
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Figure 10: We plot the Area Under the “∆AUROC vs. Number of Turns” Curve for model-
model experiments. This plot is analogous to Figure 7, only we are using LMs to simulate human
users, and we are using number of turns as a proxy for interaction time. We see the same general
trends as in Figure 7: GATE methods beat both no elicitation and pool-based active learning.

Figure 11: Predictivity of model-model for model-human results. We match up the Area Under
“∆p(correct) vs. Number of Turns” Curve metric for each elicitation method in each domain. We
see that using the model to simulate human users is predictive of actual human results in the content
and email domains, but not the moral domain.

We find that on both metrics we evaluate, the model-model results generally correlate with human
results in the content recommendation and email validation domains (methods that perform better in
the model-model experiments generally also perform better in the human experiments), but not the
moral reasoning domain. This could be for various reasons, including that the subtleties in human
moral reasoning may be difficult to capture in a single persona prompt, and difficult to simulate even
with our biggest LMs.

Which sampling strategy is the best for pool-based active learning? As seen in Figure 9, we
experiment with three different pool-based active learning strategies (random, diversity-based, and
uncertainty-based sampling), which perform comparably, with diversity sampling perhaps perform-
ing slightly better than the rest. This is in line with the findings from Margatina et al. (2023). Thus,
we use diversity sampling in our main human experiments.

human transcripts. This is necessary here because we must ensure that the model-model results and human
results are measured along the same metric(s).
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E HUMAN RATINGS OF USABILITY ACROSS ELICITATION POLICIES

E.1 METHODS

We ask users several questions to assess usability tradeoffs across elicitation policies. The following
are the full list of questions, which we ask at different points in the experiment.

After elicitation but before seeing the test-cases:

1. How mentally demanding was interacting with the chatbot? (See discussion in Section 5)

2. To what extent did the chatbot raise issues or aspects about your preferences that you hadn’t
previously considered?

3. How comprehensively do you feel the chatbot’s questions characterized your preferences
about the task?

After seeing and labelling the test cases:

4. After seeing the examples in the second part of the task, how well do you feel the answer
you wrote (in the first part of the task) covered the important issues or aspects of these
examples?

5. When performing the second part of the task, to what extent did you refer back to your
conversation history from the first part of the task?

6. How much experience have you had (if any) with interacting with language models (e.g.
ChatGPT, GPT4, etc.)?

7. Do you have any other feedback about the task?

The last question was free response. All other questions were assessed via a Likert scale from 1
(Very Little/Poorly) to 7 (Very High/Well) with radio buttons.

E.2 RESULTS

The average ratings for the first question across each elicitation method and domain can be found in
Figure 3. The average ratings for questions 2 – 5 are plotted in Figures 12 to 14.

From Fig. 12, we see that humans were on average overconfident on their ability to cover their
preferences in prompts, particularly in the content recommendation and moral reasoning domains,
reflected in the average rating of their perceived coverage dropping from an average of 5.3 to 3.9
(in the content recommendation domain) and an average of 5.4 to 4.8 (in the moral reasoning do-
main) after seeing the test cases. This indicates that humans are usually not aware of their mental
limitations when writing prompts.

From Figure 13, we see that the generative elicitation methods were on average able to surface
more novel considerations in the moral reasoning and email validation domains than in the content
recommendation domain, as they tend to have trickier and less intuitive edge cases.

Finally, from Figure 14, we see the extent to which users explicitly referred back to the elicitation
history when making decisions on the test cases. This may influence how well-aligned the test case
decisions are with the answers from the elicitation phase. When annotating test cases, we explicitly
instruct participants not to follow the elicitation transcript if it does not align their intuition on a test
sample (e.g. if the test sample surfaced a novel consideration not accounted for in the elicitation
phase), though we were unable to validate how well participants followed this instruction.

F LIMITATIONS

In this work, our exploration of GATE methods has been limited prompt-based approaches, and no
explicit optimization of the objective in Equation (2). Future work can examine different ways
of implementing free-form interactive querying, including approaches that might combine explicit
optimization with the flexibility of language models.
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Figure 12: Average perceived coverage of each elicitation method, before (above) and after (below)
seeing the test cases. Higher indicates greater coverage.

Figure 13: Extent participants perceived that each elicitation method drew out novel aspects of a
domain that the user had not previously considered, averaged over each elicitation method. Higher
indicates greater perceived novelty.

Figure 14: Extent participants referred back to the elicitation transcript when labelling test cases,
averaged over each elicitation method. Higher indicates the user more heavily relied on the elicita-
tion transcript.
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In our human experiments (Section 5), we did not have the budget to survey a massive number of
humans for human experiments. Thus, we were unable to establish statistical significance of GATE
above baselines in certain domains. Furthermore, our sample of humans may be biased, as all of
them speak English and are from the United States. This means that we have likely not captured the
full spectrum of human preferences.

Finally, we would like note that our moral reasoning domain is very simplistic, and may be unable to
capture all the nuances of human moral preference. This paper also does not endorse aligning to ev-
ery potential human preference, understanding there are ethical risks to doing so. Overall, designers
of public-facing systems that make decisions may wish to implement safeguards against allowing
anyone to specify moral judgments. (While this paper is not an endorsement of any particular moral
preference, it provides a framework for understanding the nuances of a particular set of preferences.
Once a particular standard, or set of standards, has been decided upon, we would like the systems to
ideally fully comprehend the nuances of the standard, to be in full alignment with that standard.)
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