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Abstract

Data augmentation is an approach to increasing the training dataset size for deep learning
using synthetic data. Recent advancements in image generative models have unleashed
the potential of synthesizing high-quality images in data augmentation. However, real-life
datasets commonly follow an imbalanced class distribution, where some classes have fewer
samples than others. Image generation models may, therefore, struggle to synthesize diverse
images for less common classes that lack richness and diversity. To address this, we introduce
an automated generative data augmentation method, AutoGenDA, to extract and transfer
label-invariant changes across data classes through image captions and text-guided generative
models. We also propose an automated search strategy to optimize the data augmentation
process for each data class, leading to better generalization. Our experiments demonstrate
the effectiveness of AutoGenDA in various object classification datasets. We improve the
standard data augmentation baselines by up to 4.9% on Pascal VOC, Caltech101, MS-COCO,
and LVIS under multiple imbalanced classification settings.

1 Introduction

Conventional data augmentation methods involve applying pre-defined label-preserving image operations, such
as horizontal flipping, random cropping, and rotation, to create multiple versions of the same image (Shorten
& Khoshgoftaar, [2019)). By providing ample examples of various variations, deep neural networks can learn
to be resilient to nuisance transformations, such as color and geometric transformations that do not alter the
class identity. This allows them to identify the objects despite these variations.

Modern deep image generative models can synthesize high-quality images given appropriate prompts. This
capability allows the generation of a large number of realistic images, which could serve as artificial data to
supplement image classification datasets without the need for costly data collection and labeling (Antoniou
et all 2017; [Ramesh et al., [2021; |Biswas et al., |2023; [He et al., [2023; |Trabucco et al., [2023). In data
augmentation, generative models learn the underlying data distribution of each object class and generate
multiple versions of the same object with slight differences (Antoniou et al., 2017} Trabucco et al., |2023).
Compared to conventional data augmentation, generative approaches can capture more abstract and complex
nuisance transformations, like pose, texture, and background changes, thus enabling greater diversity in the
training data.

In practice, many real-life datasets follow an imbalanced class distribution, where some classes have a large
number of samples while the remaining classes have very few. In cases of such imbalance, generative models
may struggle to learn diverse variations for the underrepresented classes. For instance, in a “cat vs dog’
classification task, if the “dog” category has only a few samples of a dog running on a grass field, a generative
model may learn this specific data distribution and synthesize new images of dogs running with slight
variations on a grass field. However, the classifier trained on this synthesized data may fail to generalize to
other images of dogs in different scenes, like inside a house (Beery et al., 2018]). To this end, we propose a
novel generative approach that takes into consideration the nuisance variations in the dataset.

9

Our major assumption is that certain variances found in a target class are class-specific, while others are
class-agnostic. For example, the species of cats in a cat image is a class-specific variance unique to the class



Under review as submission to TMLR

Input image x

Augmentation
sampling

“A photo of a

» | <dog> which is
Minority ~ | lying on a grass ) “ AygmentAed
“dog” class field” Text-guided e 5 “ rmasegr
image-to- Local-caption image |
image Classifier
“A photo of a generator f

<eat><dog> o ‘
¥ /7| which is sitting o Exploitation Exploration
inside a house” o
b Lamable  Losse, (F(8),)
5 Transfer-caption augmentation
Majority Image captions image probabilities
“cat” class

Figure 1: An overview of AutoGenDA. AutoGenDA extracts image captions from different classes and uses
them as text prompts for editing images. These prompts are provided to a text-guided image-to-image
generator to synthesize candidates of augmented images. Learnable augmentation probability parameters 21,
22, and z3 are introduced to select the more effective augmented images to be included for classifier training.
The exploitation pass updates the classifier f, and the exploration pass updates the augmentation parameters.

category, while the background of the image is a class-agnostic variance. We believe learning and transferring
class-agnostic variances across similar classes in data augmentation can create a wider variety of images that
are more effective for training classifiers under imbalanced class distributions. For example, a majority “cat”
class contains images of cats in a house or on a grass field; a minority “dog” class contains only images of
dogs on a grass field. By learning and transferring the scenery variances from the “cat” class to the “dog”
class, a classifier can better handle unseen variations in less common categories. Our motivation is also
supported by the finding from [Zhou et al(2022) that neural networks are not good at learning label-invariant
transformations on the tail classes in long-tailed datasets.

Adopting generative data augmentation in imbalanced datasets poses at least two challenges. First, typical
image generation models rely on large amounts of training data to learn good image representation. Extracting
the variance properties from limited data and effectively transferring them across classes is not trivial. Second,
in imbalanced datasets, each class may demand different numbers of augmented data and levels of diversity. In
previous work, the decision on the amount or proportion of synthetic data to be included in the training dataset
was mostly made manually, and the generated data were not guaranteed to be useful for the classification
task. Ensuring the generated images are effective in our setting and automatically adapting the synthesized
images to each class and dataset is a novel problem to solve.

Figure [I] shows an overview of AutoGenDA. At a high level, our method captures the class-specific and
class-agnostic variances through image captions and integrates these differences into text-guided generation
processes by using the captions as text prompts. We further propose a novel automated search framework to
determine the optimal mixture of real and synthesized images to include for each class when fine-tuning a
classifier on a dataset. To summarize, we make three major contributions:

e We propose a novel generative data augmentation method that learns and transfers class-specific and
class-agnostic variances using image captions.

o We propose a novel automated search framework to optimize and adapt the generation process for
each class and dataset.
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o We demonstrate that our method outperforms other baselines on four object classification datasets
under multiple imbalanced and low-shot settings.

2 Related Works

Generative Data Augmentation. The utilization of artificial data in data augmentation has gained traction
due to advancements in image generation models. Early attempts leverage class-conditioned Generative
Adversarial Networks (GANs) (Goodfellow et all [2014) to generate augmented data that complements the
training dataset (Antoniou et al., |2017; Tran et al., [2017; [Bowles et al., [2018; Milz et al.l |2018]). Recently,
diffusion models have been shown to generate images with higher quality compared to GANs (Rombach
et al [2022). He et al|(2023) applies SDEdit (Meng et al., [2022) on stable diffusion models to generate
augmented data for training classifiers; DAFusion applies textual inversion (Gal et al.l |2023)) to fine-tune
stable diffusion models for generating unseen visual concepts (Trabucco et al.,|2023)). These methods generally
do not consider the variance information from different classes and may suffer from generating diverse images
for minority classes in imbalanced datasets.

To learn nuisance transformations from multiple classes, GIT uses an image-to-image translation model to
translate images from one class to another (Zhou et al., 2022). While this method is capable of learning lighting
and color changes, it is unable to capture more complex alterations, such as object semantics and positions. In
common object datasets, like CIFAR-10 and CIFAR-100, the method is reported to underperform compared
to RandAugment (Cubuk et al., 2020, which uses a combination of conventional image transformations. The
above-mentioned methods typically fix a pre-determined number or portion of augmented images for the
training process without adapting the configurations for each class and dataset. For example, DAFusion
and GIT augment half of the data, and GIT further restricts applying augmentations to low-data classes.
To overcome these limitations, we introduce AutoGenDA. Unlike existing generative methods, AutoGenDA
introduces a search framework that learns from classifier feedback and automatically adapts the augmentation
process for each class.

Automated Data Augmentation. Conventional data augmentation applies label-preserving transfor-
mations to create new augmented data (Shorten & Khoshgoftaar] |2019). However, this approach relies
heavily on expert knowledge or trial and error to determine the specific configurations and transformations
to use. To address this shortcoming, Automated Data Augmentation (AutoDA) has been developed to
learn the optimal policy for augmenting a target dataset (Cheung & Yeung) 2023). AutoAugment employs
reinforcement learning to learn the probability and magnitude of applying multiple transformations to a
dataset (Cubuk et al.l 2019). Subsequent research has introduced more efficient search spaces and search
methods to lessen the high computational demand of AutoAugment (Ho et al., |2019; [Lim et al.| 2019; |Cubuk
et al.l 2020; Hataya et al., [2020; |Li et all |2020). Our work is also related to adaptive data augmentation,
such as AdaAug (Cheung & Yeung, 2022), which learns adaptive augmentation strategies for each class and
data instance. Previous AutoDA methods predominantly focus on searching for augmentation parameters for
a set of image transformations but not for the generation process. To the best of our understanding, we are
the first to study automated data augmentation in generative data augmentation.

3 Methodology

3.1 Capturing variance using image captions

Modeling data variances and transferring them across classes with limited data is challenging. We attempted
to reference DAGAN (Antoniou et al.l |2017)) to train an image-conditioned GAN and use it to generate
augmented data that is similar to the data from a class different from the conditioned images. However,
the approach only works well for simple datasets like Omniglot and EMNIST, but fails to synthesize more
complex data from object classification datasets, e.g., Caltech101 (Li et al. [2022). We also experimented
with image-to-image translation (Huang et al., |2018) and style transfer (Karras et al., |2019)) approaches
to apply learned styles from one class to another. While these models are able to generate some valid
images, the variations between the generated images are mostly limited to slight changes in color and lighting
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conditions. These findings are in line with previous research, indicating that these methods tend to struggle
in an imbalanced setting, where some image classes lack richness and diversity (Patashnik et al., |2021)).

To generate high-quality augmented images using limited data, we turn to large pre-trained text-guided
generative models, which are capable of generating diverse, high-quality images by providing suitable text
prompts (Meng et al.| 2022} Rombach et al., |2022; He et al., [2023). While current diffusion models show
stunning generation results, they are sensitive to the provided prompts, which are usually crafted carefully
through prompt engineering. Based on our assumption that some variance information within the dataset
is class-agnostic, we propose to use image captions to capture the differences between data samples and
integrate the captured variances into the text-guided generation process through text prompts.

Using image captions as text prompts in generation processes provides several advantages. First, these
captions are automatically extracted from the target dataset, eliminating the need for expensive prompt
engineering. The extracted captions describe the differences between data samples, providing important
variance information for a classifier to learn. Additionally, textual captions are widely understood by
any pre-trained text-guided generators, offering greater flexibility than using model-specific image or style
representations to capture the variance between data samples.

We formally let H(x;y) : X — Q be an image-captioning model that generates an image caption ¢ € Q given
x € X as an input image and y € ) as the class label of . Specifically, we use the prefix “a photo of a
(y) which” to query the complete image caption from the model. The caption ¢ is later used to assist the
generation of augmented images.

3.2 Generating New Augmented Images

Data augmentation aims to generate augmented data that is diverse and similar to the original data (Lopes
et al.l [2020). To preserve the image content, we use an image-to-image generative model that edits the
original image instead of a text-to-image model that generates an image solely based on the input prompt. We
use G(x;q) : X — X to denote the generative model that takes the original image « as input and generates
an augmented image conditioned on a text prompt ¢g. To utilize the image variance found in one class, we
randomly select an image &’ where 3y’ = y and use the caption of ' as input prompt to guide the generation
of the augmented data & from x in Eq. . We refer to such type of augmented data that utilizes the image
variance within the same class as local-caption images.

*=G(z;q); q=H(z';y), wherey =1 (1)

To create new data using variance information from a different class, we use a simple replace function
r(k;y) : @ — Q to replace the class name in k as y, where k is the caption of an image from a different
class. Let ” be an input image where y” # y, the augmented data & utilizing the caption of " can be
computed using Eq. . We call such type of augmented data that uses the image variance from another
class as transfer-caption images.

& =G(x;r(k,y); k=H(x";y"), wherey #y" (2)

The proposed method extracts data variances within and across different classes through image captions
and uses them as editing instructions to create new images. While local captions are generally effective for
describing images within the same class, this may not hold for cases involving using captions from another
class as described in Eq. . For example, captions that describe a car may not be suitable for describing a
dog. To tackle this issue, we employ a class-filtering mechanism. More precisely, we assume that captions
from similar classes can be more easily applied to each other. For instance, using a caption for a cat to
describe a dog is better than using a caption for a car. Therefore, the transfer-caption images are constrained
to using captions from m closest neighboring classes, measured by the cosine distance between the class
embeddings. We use the notation neigh(y) € Y™ to represent the set of m closest classes to y, and set m = 3
by default. In our implementation, we utilize the pre-trained sentence transformer model from Reimers &
Gurevych| (2019)) to obtain the class embeddings from the class names.

FIX
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3.3 Automated Search

Previous generative data augmentation typically generates a fixed number or portion of synthesized samples
for all classes (Antoniou et al.l [2017; [Zhou et al.l |2022; [He et al., 2023} [Trabucco et al., [2023). This heuristic
approach does not guarantee the effectiveness of the synthetic data in improving classification generalization,
particularly for imbalanced datasets where the optimal number of generated samples and the level of diversity
may vary across different classes. In this section, we propose a new automated search framework that
takes feedback from the classifier and optimizes the configuration for generative data augmentation for each
individual data class. To the best of our knowledge, our framework represents the first proposal for an
automated search framework for generative data augmentation.

Search Space. Previous automated data augmentation work, like AutoAugment (Cubuk et al., 2019), learns
the probability of applying pre-defined image operations to augment input images. We formulate the data
augmentation process as a distribution learning problem to select the optimal mixture of different types of
augmented data for each class. Specifically, the augmented image in AutoGenDA can be given as (1) an
identity image, i.e., no augmentation is applied, (2) a local-caption image, or (3) a transfer-caption image.
More formally, the augmentation process samples from a distribution p(z; ), where o, € R3 is the learnable
probability parameter specific to class y and z € {0,1}3, 2; + 22 + 23 = 1 is the one-hot vector that indicates
the selection of the augmentation from the three augmentation methods. Given a dataset with C' classes;
the search space of a is RE*3. Let ¢ be an image caption sampled from class y and k be an image caption
sampled from neigh(y). The augmented image & is computed as:

& =212 + 2G(x;q) + 23G(x;7(k,y)), z~p(z;ay). (3)

Differentiable Relaxation. Inspired by Neural Architecture Search and Automated Data Augmenta-
tion (Dong & Yang, 2019} |Li et al., |2020)), we apply the Gumble Softmax trick (Jang et al.,|2017) to make the
discrete augmentation process continuous, thereby allowing a to be updated efficiently by stochastic gradient
descent. More precisely, given z; as the i-th element in 2, we relax z; with the learnable parameter oy, as:

- exp((logay,i +9i)/7)
zi 3 ; (4)
> =1 exp((log oy j + g;)/7)

where g; = — log(—log(u;)) is the i-th Gumbel random variable, u; is a uniform random variable, and 7 is the
temperature parameter set to 1 by default in our implementation. For the inference time, the augmentation
process uses the discretized form:

& = 212 + 2G(@:q) + 20 @ r(k.y)), == one-hot(argmax(ay, + g,)). (5)

Training. AutoGenDA utilizes a two-stage training process. During the search stage, the probability
parameter is updated through an iterative exploitation-exploration approach. In the exploitation step, a
classifier Fy parameterized by 0 is trained to minimize the standard cross entropy loss on the augmented
training dataset Di;ain using the discretized augmentation in Eq. . In the exploration step, Fg is fixed and
applied to the augmented validation dataset Dy,1q using the relaxed augmentation in Eq. . The probability
parameter « is updated to minimize the cross entropy loss on the validation data. This adjustment of the
probability parameter ensures a balanced mixture of real data, local-caption data, and transfer-caption data
for each class to enhance generalization. It implicitly manages the diversity of data and the inclusion of
local variance and transfer variance in the augmented data. Furthermore, this process can be regarded as
a selection mechanism for indirectly choosing the more advantageous prompts when creating augmented
images.

After the search, we fine-tune a classifier on the augmented images created using the exploitation workflow
(i.e., using the hard Gumbel softmax operation). The details of the search method are outlined in Algorithm
In Algorithm [I} mini-batch is a batch sampling process, update is a stochastic gradient descent procedure
with a provided step size 1 or ¢, Q, represents the set of captions of images from class y.

FIX
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Algorithm 1 Training
IHPUt: Dtraina Dvalid7 FO; Ga Ha «, 1, C

1: Q<+ {q:q= H(z,y), where (x,y) € Diyain} > Extract captions from Diyain
2: Q'+ {q:q=H(x,y),where (x,y) € Dyatia} > Extract captions from Dyaliq
3: while not done do

4: A—0

5: for each (z,y) € mini-batch(Dirain) do > Exploitation
6: Q « Uy,eleigh(y) Qy > Find the neighbouring classes
7 q & Qy, k & Q > Sample a caption from local class and transfer classes
8: % + augment(x,y,q, k, ) > augment computes Eq.
9: A—Au{(z,v)}
10: update(0; Fg, A, n) > Update 6
11: A0
12: for each (z,y) € mini-batch(Dyaiiq) do > Exploration
13: Q < Uy eneign(y) @y > Find the neighbouring classes
14: q & Q;, s Q > Sample a caption from local class and transfer classes
15: % + augment’(x,y, ¢, k, @) > augment’ computes Eq. &
16: A+~ Au{(z,y)}
17: update(a; Fg, A, () > Update a

4 Experiments and Results

4.1 Experiment Setup

Datasets. We evaluate AutoGenDA on four image recognition datasets: PASCAL VOC (Everingham
et al., 2015, Caltech101 (Li et al., 2022)), MS-COCO (Lin et al. [2014), and LVIS (Gupta et al., [2019)
under 16 imbalanced and low-shot settings. Caltech101, PASCAL VOC, and MS-COCO contain common
real-life objects. Following the setup in DAFusion (Trabucco et al., [2023]), we modify the PASCAL VOC
and MS-COCO datasets for classification. Specifically, we select the images containing at least one object
segmentation mask and assign the images the label corresponding to the object class with the largest area in
the image. LVIS is a long-tail dataset derived from MS-COCQO. The tail classes in LVIS typically contain
rarer objects compared to the above-mentioned datasets (Gupta et al. 2019). We select a subset of the
tail classes in LVIS to assess our method in classifying less common objects. To benchmark our method
in an imbalanced setting, we set the minimum number of training samples for each class to be 2 and the
maximum to be ¢, where ¢ is the number of samples in the class with the fewest samples from the original
dataset. We then set the class frequency in the training set following an exponential distribution with the
imbalance factors of 0.01, 0.1, 0.2, and 0.5 (ratio of the number of training examples between the most and
least frequent classes). A lower imbalance factor indicates a more imbalanced class distribution. We also
evaluate our method in balanced low-shot settings with 2, 4, 8, and 16 samples per class.

Baselines. We compare our method with four baselines. The simple baseline uses standard horizontal
flipping, random cropping, and normalization. The RA baseline applies multiple random augmentations
to an image using the default configuration in RandAugment (Cubuk et al., [2020). DAFusion (Trabucco
et al., [2023) is a diffusion-based generative augmentation method that uses an image-to-image stable diffusion
model with the fixed prompt template “A photo of (y)” to generate an augmented image from class y. The
GIT baseline uses a heuristic method to augment classes from minority classes with samples less than a
pre-defined threshold (Zhou et al.,[2022)). We set the threshold to be 25% of the number of samples in the most
frequent class. For a fair comparison, we replace the domain-adaptation generative model in the original GIT
work with our image-to-image stable diffusion model. We use the same set of hyperparameters to fine-tune
the stable diffusion model and generate the augmented images in all methods. To test the effectiveness of
combining our method AutoGenDA with other data augmentation strategies, we provide the AutoGenDA w/
RA baseline, which applies RandAugment on top of the augmented data generated by AutoGenDA.
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Table 1: Comparsion of the test-set accuracy of AutoGenDA with other generative data augmentation
baselines on imbalanced PASCAL VOC, Caltech101, MS-COCO, and LVIS datasets (imb. stands for the
imbalance factor. A lower imbalance factor indicates a more imbalanced class distribution).

AutoGenDA

Dataset Simple RA DAFusion GIT AutoGenDA w/ RA

PASCAL vOC

imb. = 0.01 38-0213.11 39.13j:3,11 39.75:|:4_10 41.80:|:3_64 43-22:|:3.82 43'79:t3.79
imb. = 0.1 61.0042 45 62.4342 13 62.4549 14 64.2549 23 65.02 5 33 66.66+1 .47
imb. = 0.2 69.40 42 56 70.7742.53 70.7042 65 71.641 .55 72.29 505 73.6141 01
imb. = 0.5 77.68i1,29 78.81i1.52 77.48i1.23 77.76i1,32 78.38i1.44 79-29i1.10

Caltech101

imb. = 0.01  40.7610 96 41.8040.53 42.3240.90 43231079 43724081 | 45.164101
imb. = 0.1 69.7811 .36 72.0441.41 72.0241 37 72.861119  T4134000 | 76.2311.00
imb. = 0.2 79.7041 47 81.65.41.26 81.0441 35 80401161  82.09:1075 | 83.7610.4s
imb. = 0.5  85.164085  87.731070  87.0441 .06 86.5010.50 86.64.41.09 88.62.40.73

MS-COCO

imb. = 0.0l 22.0041.42 23.3941 30 23.22.1 82 25.19.0 59 25.1610 92 26.6541 35
imb. = 0.1 36.0149.04 37.5941 03 37.57 42.96 38.884057  40.871936 42.19.41 50
imb. = 0.2 43.38.49 54 448549 35 45.1941 97 44734007  AT.6311 50 49.05.41 48
imb. = 0.5 50.62.411.0s 51.6911.31 51.5411 21 50.6911.11 53.59.40 97 55.2511 25

LVIS

imb. = 0.01 29-50i3.16 30.621400 30.22i3.12 32-14i3.71 33.1013400 33-49i4.24
imb. = 0.1 49.8919 85 50.56+2 61 49.6243.60 52.9813 52 53.3612.64 53.47 12 69
imb. = 0.2 97.48 12 56 59.0712 46 59.2041 .70 99.9343.74 60.152. 71 61.06+2.20
imb. = 0.5 62.78 15,45 63.31 11 .45 64.6311.04 62.8811.75 64.8541 g3 65.5411 65

Training. We use Stable Diffusion v1.4 trained by Rombach et al.| (2022) as the image generative model and
apply SDEdit (Meng et all 2022) for image-to-image translations. We follow DAFusion (Trabucco et al.,
2023)) to finetune the stable diffusion model on the target dataset using textual inversion (Gal et al.l |2023)
to capture novel visual concepts. For the image captioning model, we use the pre-trained BLIP2 from |Li

et al.| (2023) and use the prefix “a photo of a (y) which” to query the complete image caption from the model.

For the classification tasks, we employ a ResNet50 (He et al., 2016)) model pre-trained on ImageNet. The
classifier is fine-tuned on the target dataset for 50 epochs using a batch size of 32 and a learning rate of
0.0001. During the search phase, we split half of the dataset as the training data and the remaining half as
the validation data. We use the same training protocol to update the classifier and stochastic gradient descent
with a learning rate of 0.001 to update the probability parameters. For inference, we train the task model
on the mixture of the full training data and the augmented data sampled using the probability parameter
learned in the search phase. All the experiments are conducted on an NVIDIA RTX3090 GPU card. We
repeat the experiments for eight random seeds and report the average test classification accuracy.

Testing. After training the classifier with the learned augmentation strategy, i.e., the sampling probabilities
for different types of augmented images for each class, the trained classifier is tested on a held-out test set of
images. Notice that the test-set images do not receive any data augmentation, and the test-set labels are
only used for the purpose of calculating the top-1 classification accuracy.

4.2 Results

Imbalanced Classification. Table[l|shows the test accuracy on the four evaluation datasets with imbalance
factors (imb.) of 0.01, 0.1, 0.2, and 0.5. As shown in the table, AutoGenDA outperforms other baselines

NEW
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Figure 2: Comparison of the test accuracy of AutoGenDA and other baselines on the low-shot PASCAL VOC,
Caltech101, MS-COCO, and LVIS datasets with 2, 4, 8, and 16 samples per class.

in 13 out of 16 settings. In 2 of the remaining settings, where the datasets are less imbalanced (imb.=0.5),
AutoGenDA performs comparably with the RandAugment baseline. In MS-COCO with ¢mb. = 0.01, GIT
slightly outperforms AutoGenDA by 0.03%. It appears that the heuristic setting of GIT works well in such a
setting. However, in all other settings, the automated search framework in AutoGenDA finds a better way
to augment the images. We observe that AutoGenDA provides a larger gain in more imbalanced situations.
Specifically, it improves the simple baseline for 3% to 4.6%, 3.3% to 4.9%, 2.4% to 4.1%, and 0.7% to 3% for
the imbalance factor equals 0.01, 0.1, 0.2, and 0.5, respectively. In Appendix [C] we provide a statistical test to
verify that AutoGenDA outperforms other baselines significantly. In addition, AutoGenDA can complement
existing augmentation methods, like RandAugment. The AutoGenDA w/ RA baseline further improves the
performance of AutoGenDA in all situations. This shows that AutoGenDA helps to learn a different set of
variance information compared to those induced through traditional augmentation operations.

Low-shot classification. We also evaluate AutoGenDA on balanced low-shot settings. The low-shot setting
uses the same class in the imbalanced classification task but a fixed number of samples per class. In Fig.
we compare the test accuracy of AutoGenDA with the Simple, DAFusion, and RandAugment baselines on
the four evaluation datasets with 2, 4, 8, and 16 samples per class. The results show that AutoGenDA
outperforms the other baselines in all settings. We also notice a larger improvement in lower-shot cases,
like 2 samples per class, when compared with the cases with more samples per class. Although the gains
are less obvious than those in the imbalanced setting, AutoGenDA can improve existing baselines in object
classification tasks under low-shot settings.

Improvement in tail classes. In this section, we investigate how AutoGenDA improves imbalanced
classification tasks. Specifically, we examine the test accuracy of each class (shown in Fig. |3|right) and their
corresponding class frequency (shown in Fig. [3|1eft). The visualization indicates that the improvements of
AutoGenDA are more significant in the less frequent classes compared to the more frequent ones. Furthermore,
the performance improvement of AutoGenDA in the minority classes surpasses that of the DAFusion baseline,
which does not consider variance information from other classes. We have observed a similar pattern in other
datasets as well. This evidence confirms that AutoGenDA is able to learn variance information from the more
common classes and effectively apply it to the less common ones.

Learned probability parameters. We analyze the probability parameters learned from the PASCAL VOC
dataset with 2 and 16 samples per class. Figure [] presents the learned probability of sampling from the

identity images (identity-p), the local-caption images (samecls-p), and the transfer-caption images (othercls-p).

FIX
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Figure 3: Illustration of the class frequency (left) and the corresponding test accuracy (right) for each class
in the PASCAL VOC dataset with an imbalance factor of 0.1.
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Figure 4: Comparision of the learned probability parameters on 15 sampled classes from the PASCAL VOC
dataset with 2 and 16 samples per class.

With 2 samples per class, the search method tends to explore the augmented images (green and orange
bars) more than the original images (blue bar). When there are 16 samples per class, the search method
focuses more on the original images than the augmented images. This can be explained by the fact that with
less data, the classifier easily learns variance within the dataset and demands more varied data to improve
generalization performance. Conversely, with more data, the classifier can learn diverse variance information
from the real data. Additionally, we observe that the search method learns a different sampling distribution
for each data class, indicating that AutoGenDA is capable of learning class-specific augmentation strategies.

4.3 Ablation Study

In this section, we investigate the effectiveness of different components in AutoGenDA by removing each of
them from the method. The search-free baseline assigns a fixed probability parameter to uniformly sample
from identity, local-caption, and transfer-caption images. For the second baseline, we only use local-caption
images as the augmented data. For the third baseline, we only use transfer-caption images as the augmented
data. In Table 2] we present the test accuracy of the ablation baselines on the four evaluation datasets with
imbalanced factors of 0.01, 0.1, 0.2, and 0.5. The study shows that the results are compromised if we remove
the images generated by captions from the same class or captions from other classes. In Appendix [D] we
provide a statistical test to verify the significance of the results. This validates our motivation in learning
class-specific variance through local-caption images and class-agnostic variance through transfer-caption
images. We also verify that the search algorithm helps optimize the augmentation process to provide a better
mix of augmented data.

In Table [3] we further compare our method with unconditional image generative data augmentation. Specifi-
cally, the Txt2Img baseline leverages the same stable diffusion model as our method to generate unconditional
augmented image data using only transfer-image captions. We compared the results in three class-imbalanced
and low-shot settings. The TxtImg baselines slightly outperform the Simple baseline but do not surpass our
method. We also want to highlight that AutoGenDA can incorporate unconditional image generative data
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Table 2: Ablation study on the use of automated search, images generated without the captions from the
same class and those generated without the captions from other class. The reported results are the average
test accuracy on the four datasets with different imbalanced settings.

Dataset Simple Search-free w/o tr:%nsfer- w/o . AutoGenDA
caption local-caption
PASCAL vVOC
imb. = 0.01 38-02:‘:3_11 42.0914.50 42.41:|:3_74 41-89:t4.25 43-22:t3.82
imb. = 0.1 61.0042 45 64.1519.13 63.9519 32 63.4711 85 65.0219 38
imb. = 0.2 69.4012.86 71.66:&:1‘36 71'54:|:1‘38 71.11:‘:1.71 72.29:‘:2.03
imb. = 0.5 77.6841.29 77.98+10.95 78.0910.87 78.1211 02 78.3841.44
Caltech101
imb. = 0.01 40.7610.96 43.5110.88 43.3641 .00 43.1710.94 43.7210.81
imb. = 0.1 69.7841.36 73.7141 47 73.78410.87 73.8610.96 74.1310.92
imb. = 0.2 79.7041 47 82.07+0.75 81.771+0.78 81.7310.83 82.0910.75
imb. = 0.5 85.1610.85 87.44 1079 87.3241.96 87.4510.80 86.6411.09
MS-COCO
imb. = 0.01 22.0041.42 24.8541 .87 24.6810.83 24.8811.03 25.1610.92
imb. = 0.1 36.0112.04 39.2519 44 40.5241 08 40.3149.43 40.8749.36
imb. = 0.2 43.3849.54 474711 44 46.7049.17 46.0249 15 47.6341.59
imb. = 0.5 50.6211.08 52.6411.13 53.2541 43 53.00+1.58 53.5910.97
LVIS
imb. = 0.01 29.50+3.16 32.271 454 31.5744.12 32.1049.81 33.10+3.00
imb. = 0.1 49.8915 85 51.3413.07 52.3413.06 51.1215 56 53.36 12,64
imb. = 0.2 57.48 19 56 59.8411 62 59.2012.34 60.0141 61 60.1549.71
imb. = 0.5 62.78 12 48 64.43+1 50 64.1549.15 64.7541 75 64.8541 83

Table 3: Ablation study on comparing AutoGenDA with unconditional image generative data augmentaiton.
The reported results are the average test accuracy on the four datasets with different imbalanced settings.

Dataset Simple Txt2Img AutoGenDA
PASCAL VOC

imb. factor = 0.01 38.0213.11 42-90i2.49 432213.82
imb. factor =0.1 61.00i2.45 64.29i3,15 65~02i2.38
imb. factor =0.2 69~40i2.86 71.69i2_33 72~29i2.03
num. samples = 2 61.5949 99 61.7140.41 64.5943.40
num. samples = 4 69.9241 36 70.2141 40 71.2141.03
num. samples = 8 76.36+1.38 76.4311.03 77.3241.36

augmentation as an additional augmentation pathway and explore the optimal augmentation probabilities and
proportions among local-caption images, transfer-caption images, non-image-conditioned images (new), and
real images. This avoids explicitly testing the effectiveness of such unconditional generative data augmentation
but allows the framework to learn its use directly. This further demonstrates AutoGenDA’s strength as a
flexible and automated data augmentation framework applicable across various generative methodologies.
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4.4 Discussion

Qualitative analysis. In Fig. [5] we show two examples of generated images using a simple prompt, a
caption from the same class, and a caption from a neighbor class. The images synthesized using captions
demonstrate more variations and align well with the texts. For example, we observe fog and buildings in
the bus images and water and books in the elephant images. This supports the idea of using captions as
prompts. Unlike image generation tasks, which focus on creating realistic image content, using generative
models in data augmentation aims to enhance the test performance of classifiers trained on the augmented
data. Although the captions may sometimes be less suitable for the target class, for instance, the image of an
elephant sitting on books in Fig. b the search algorithm will auto-adjust the augmentation probability to
sample less from these images if they do not contribute to the generalization of the classifier.

Original image “A photo of a <bus>” “A photo of a <bus> that is driving “A photo of a <bus> that is parked next
through the fog” to the building” (original caption from
class <bicycle>)

Original image “A photo of a <elephant>" “A photo of a <elephant> that is “A photo of a <elephant> that is
standing in the water” sitting on top of the books” (original

caption from class <teddy_bear>)

Figure 5: Ilustration of the augmented data synthesized using different prompts.

Limitations. Our approach relies on a pre-trained image captioning model to generate descriptions that
highlight the dissimilarities between input images. However, the approach may be less effective if the
target domain drastically differs from the domain on which the model is trained. Additionally, our method
involves an extra search phase to determine the augmentation parameter before training the task network. If
computational power is a concern, an alternative method is the search-free AutoGenDA baseline introduced in
the ablation section. The search-free method uniformly samples the augmented images to train the classifier
network. Our study demonstrates that the search-free baseline yields promising results when compared to
existing baselines.

5 Conclusion

In this paper, we introduce an automated generative data augmentation method called AutoGenDA. Auto-
GenDA learns variance information within and across classes using image captions and adapts the generative
process to each data class and new dataset by learning the best combination of real data and augmented
samples for each class. Through qualitative and quantitative analysis, we demonstrate the effectiveness
of AutoGenDA on four classification datasets with different imbalanced and low-shot settings. Our search
method is not dependent on any specific model or architecture. This provides great flexibility in adapting
contemporary generative and image captioning models, which could further enhance its performance in
imbalanced and low-shot classification.

11



Under review as submission to TMLR

References

Antreas Antoniou, Amos J. Storkey, and Harrison Edwards. Data augmentation generative adversarial
networks. arXiv preprint arXiv:1711.04340, 2017.

Reyhane Askari-Hemmat, Mohammad Pezeshki, Florian Bordes, Michal Drozdzal, and Adriana Romero-
Soriano. Feedback-guided data synthesis for imbalanced classification. arXiv preprint arXiv:2310.00158,
2023.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Computer Vision - ECCV
2018 - 15th European Conference, volume 11220, pp. 472-489. Springer, 2018.

Angona Biswas, Md Abdullah Al Nasim, Al Imran, Anika Tabassum Sejuty, Fabliha Fairooz, Sai Puppala, and
Sajedul Talukder. Generative adversarial networks for data augmentation. arXiv preprint arXiv:2306.02019,
2023.

Christopher Bowles, Liang Chen, Ricardo Guerrero, Paul Bentley, Roger N. Gunn, Alexander Hammers,
David Alexander Dickie, Maria del C. Valdés Hernandez, Joanna M. Wardlaw, and Daniel Rueckert.
GAN augmentation: Augmenting training data using generative adversarial networks. arXiv preprint
arXiw:1810.10863, 2018.

Tsz-Him Cheung and Dit Yan Yeung. AdaAug: Learning class- and instance-adaptive data augmentation
policies. In The 10th International Conference on Learning Representations, ICLR 2022, 2022.

Tsz-Him Cheung and Dit-Yan Yeung. A survey of automated data augmentation for image classification:
Learning to compose, mix, and generate. IEEFE transactions on neural networks and learning systems, PP,
06 2023. doi: 10.1109/TNNLS.2023.3282258.

Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. AutoAugment: Learning
augmentation strategies from data. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2019, pp. 113-123. IEEE, 2019.

Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. RandAugment: Practical automated
data augmentation with a reduced search space. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR Workshops 2020, pp. 3008-3017. IEEE, 2020.

Janez Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7(1):1-30, 2006.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four GPU hours. In Conference on
Computer Vision and Pattern Recognition, CVPR 2019, pp. 1761-1770. IEEE, 2019.

Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John M. Winn, and Andrew
Zisserman. The pascal visual object classes challenge: A retrospective. Int. J. Comput. Vis., 111(1):98-136,
2015.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and Daniel
Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual inversion. In
The 11th International Conference on Learning Representations, ICLR 2023, 2023.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014., pp. 2672—2680, 2014.

Agrim Gupta, Piotr Dollar, and Ross B. Girshick. LVIS: A dataset for large vocabulary instance segmentation.
In Conference on Computer Vision and Pattern Recognition, CVPR 2019, pp. 5356-5364. IEEE, 2019.

Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Faster AutoAugment: learning
augmentation strategies using backpropagation. In Computer Vision - ECCV 2020 - 17th FEuropean
Conference, volume 12370, pp. 1-16. Springer, 2020.

12



Under review as submission to TMLR

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, pp. 770-778. IEEE, 2016.

Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip H. S. Torr, Song Bai, and Xiaojuan
Qi. Is synthetic data from generative models ready for image recognition? In The 11th International
Conference on Learning Representations, ICLR 2023, 2023.

Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter Abbeel. Population Based Augmentation: efficient
learning of augmentation policy schedules. In Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, volume 97, pp. 2731-2741. PMLR, 2019.

Xun Huang, Ming-Yu Liu, Serge J. Belongie, and Jan Kautz. Multimodal unsupervised image-to-image
translation. In Computer Vision - ECCV 2018 - 15th European Conference, volume 11207, pp. 179-196.
Springer, 2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In The 5th
International Conference on Learning Representations, ICLR 2017, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Conference on Computer Vision and Pattern Recognition, CVPR 2019, pp. 4401-4410. IEEE,
2019.

Fei-Fei Li, Marco Andreeto, Marc’Aurelio Ranzato, and Pietro Perona. Caltech 101, Apr 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. BLIP-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International Conference on
Machine Learning, ICML 2023, volume 202, pp. 19730-19742. PMLR, 2023.

Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy M. Hospedales, Neil Martin Robertson, and Yongxing
Yang. DADA: Differentiable automatic data augmentation. Computer Vision - ECCV 2020 - 17th European
Conference, 2020.

Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast AutoAugment. In Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing

Systems 2019, NeurIPS 2019, pp. 6662-6672, 2019.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar,
and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In Computer Vision - ECCV 201/
- 18th Furopean Conference, volume 8693, pp. 740-755. Springer, 2014.

Raphael Gontijo Lopes, Sylvia J. Smullin, Ekin D. Cubuk, and Ethan Dyer. Affinity and diversity: Quantifying
mechanisms of data augmentation. arXiv preprint arXiw:2002.08973, 2020.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit:
Guided image synthesis and editing with stochastic differential equations. In The 10th International
Conference on Learning Representations, ICLR 2022, 2022.

Stefan Milz, Tobias Riidiger, and Sebastian Siiss. Aerial GANeration: Towards realistic data augmentation
using conditional GANs. In Computer Vision - ECCV 2018 Workshops - 15th European Conference, volume
11130 of Lecture Notes in Computer Science, pp. 59-72. Springer, 2018.

Or Patashnik, Dov Danon, Hao Zhang, and Daniel Cohen-Or. BalaGAN: Cross-modal image translation
between imbalanced domains. In Conference on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops 2021, pp. 2659-2667. IEEE, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. In Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, volume 139, pp. 8821-8831. PMLR, 2021.

13



Under review as submission to TMLR

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using siamese BERT-networks. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. ACL, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2022, pp. 10674-10685. IEEE, 2022.

Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep learning. Journal
of Big Data, 6:60, 2019.

Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. Effective data augmentation
with diffusion models. arXiv preprint arXiv:2302.07944, 2023.

Toan Tran, Trung Pham, Gustavo Carneiro, Lyle J. Palmer, and Ian D. Reid. A Bayesian data augmentation
approach for learning deep models. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, NeurIPS 2017, pp. 2797-2806, 2017.

Allan Zhou, Fahim Tajwar, Alexander Robey, Tom Knowles, George J. Pappas, Hamed Hassani, and Chelsea
Finn. Do deep networks transfer invariances across classes? In The 10th International Conference on
Learning Representations, ICLR 2022, 2022.

A Appendix

B Convergence analysis

In Fig. [6] we track the evolution of the learnable probability parameter z during training on PASCAL VOC.
From left to right, the plots in Fig. [f] represent the learnable parameter z; for sampling an identity image, the
parameter zy for sampling local-caption images, and the parameter z3 for sampling transfer-caption images.
Each line in the figure corresponds to a learnable parameter for a specific class. All the learnable parameters
are initialized with the same value and updated to maximize the validation performance. As the training
progresses, the probability parameters converge to some fixed points and exhibit a trend of convergence.

2

-4

epoch epoch epoch

Figure 6: Illustration of the convergence of the learned augmentation probabilities on PASCAL VOC. The
left figure shows the parameter z; for sampling an identity image; the middle figure shows the parameter z,
for sampling a local-caption image; the right figure shows the parameter z3 for sampling a transfer-caption
image.

C Statistical analysis

In this section, we use hypothesis testing methods to provide statistical support for our experimental results.
Specifically, we follow the statistical comparisons of classifiers over multiple datasets suggested by
(2006). We use the Friedman test to detect the statistical differences in the ranks among the baselines

14
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evaluated on the sixteen imbalanced datasets. We then use the Holm-Bonferroni post-hoc test to validate
the significance of our improvements over each baseline. The p-value of the Friedman test is computed as
9.992e-16. Thus, at a significance level of 0.05, we reject the null hypothesis, which states that all methods
perform equally.

Following the rejection, we conduct the Holm-Bonferroni post-hoc test to compare a control method, in our
case AutoGenDA, with other baselines. In Table [4 we report the p-values for each comparison. From the
results, we can reject the null hypothesis for all baselines, as the p-values are smaller than the adjusted a’s.
Therefore, we conclude that AutoGenDA has a significantly better ranking over all the four baselines on the
tested datasets.

Table 4: Statistical test results with o« = 0.05.

i Method p-value afi is significant?
1 simple 1.685043e-10 0.0125 Yes
2 DAFusion 1.709823e-04 0.0167 Yes
3 RandAugment 5.077373e-03 0.0250 Yes
4 GIT 1.012654e-02 0.0500 Yes

D Statistical analysis for ablation study

We also conduct the Friedman test to detect the statistical differences in the ranks among the ablation
baselines evaluated on the sixteen imbalanced datasets. We then use the Holm-Bonferroni post-hoc test
to validate the significance of our method over each ablation baseline. The p-value of the Friedman test is
computed as 1.11e-16. Thus, at a significance level of 0.05, we reject the null hypothesis, which states that all
ablation baselines perform equally.

Following the rejection, we conduct the Holm-Bonferroni post-hoc test to compare a control method, in our
case AutoGenDA, with other ablation baselines. In Table [5| we report the p-values for each comparison.
From the results, we can reject the null hypothesis for all ablation baselines, as the p-values are smaller than
the adjusted a’s. Therefore, we conclude that AutoGenDA has a significantly better ranking over all the four
ablation baselines on the tested datasets.

Table 5: Statistical test results for the ablation study with confidence level a = 0.05.

i Method p-value afi is significant?
1 simple 7.492673e-12 0.0125 Yes
2 w/o transfer-caption 1.039858e-03 0.0167 Yes
3 w/o local-caption 1.056898e-03 0.0250 Yes
4 Search-free 1.185697e-03 0.0500 Yes

E Preliminary attempts in using GANs and image style to augment imbalanced
datasets

E.1 DAGAN

In our initial experiments, we attempted to utilize Generative Adversarial Networks (GANSs) for generating
augmented images. Inspired by DAGAN, we utilize an input-conditioned GAN to create images that are
similar to but different from the input image. Specifically, we use an image encoder to map the input image
to a latent representation. The latent representation is then combined with a transformed noise and decoded
by an image decoder to produce the augmented image. A discriminator is employed to distinguish the real
sample pairs and fake sample pairs. The real sample pairs comprise the input image and another image from
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the class as the input image, whereas the fake sample pairs are composed of the input image and the image
generated by the decoder.

In the Omniglot dataset, the DAGAN approach can generate visually appealing augmented characters that are
similar yet subtly different from the original image, as demonstrated in Fig.[7] However, when applied to more
complex object datasets like CIFAR-10, we observed that the approach is unable to produce photorealistic
images, as depicted in Fig. Despite experimenting with a larger image encoder, image decoder, latent
representation, and longer training iterations, the results remained similar.

Original Images

BlE[s[R|T[F]Y ]k

Augmented Images (DAGAN)

el®[Sle|TMVIW

Figure 7: Illustration of the augmented results on Omniglot dataset using a modified DAGAN.

Original Images

Figure 8: Ilustration of the augmented results on CIFAR-10 dataset using a modified DAGAN.

E.2 MUNIT

MUNIT is a multimodal unsupervised image-to-image translation network, which is capable of transforming
a given input image into various outputs in different styles using the style codes learned from the data. In
GIT (Zhou et al. [2022)), MUNIT is modified to learn the translation between different classes instead of
between two different domains. More specifically, MUNIT decomposes the latent space of images into a content
space and style space and introduces reconstruction and cycle-consistency losses to generate augmented
images that preserve the image content but in a different style. With the use of MUNIT, we are able to
generate realistic images in CIFAR-10, as illustrated in Fig. [0] However, we have noted that the variations in
the generated images primarily involve minor changes in color and lighting conditions. This discovery aligns
with previous research, which suggests that the method faces challenges in an imbalanced setting, where
certain image classes lack richness and diversity.
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Original Images

Figure 9: Tllustration of the augmented results on CIFAR-10 dataset using a modified MUNIT model.

F Experiments on CIFAR-10 and CIFAR-100

We add additional experiments on long-tail CIFAR-10-LT and CIFAR-100-LT datasets. We set the imbalance
factor to 0.01 and compared the test accuracy among the baselines. FGDS is a feedback-guided text-to-image
generation method proposed by |[Askari-Hemmat et al. (2023)). It utilizes the feedback from a classifier
pre-trained on the long-tail dataset and encourages the generated images to be more similar to the images
from the given dataset. As shown in Table[f] AutoGenDA slightly leads the other baselines on the two tested
datasets. The training protocol is same as the main experiment described in the main content.

Table 6: Comparsion of the test-set accuracy of AutoGenDA with other data augmentation baselines on
imbalanced CIFAR-10-LT and CIFAR-~100-LT.

Dataset Simple RA DAFusion GIT FGDS AutoGenDA

CIFAR-10-LT 56.80+1.21 59.4943 13 95.4941.97 59.8141.77 99.2941 .40 60.0841.43
CIFAR-100-LT  28.4642.45 31.0642.53 29.3041.75 32.5442.52 32.5142.41 33.114255

G Computation Overhead

To compare the computation overhead, we report the GPU hours needed to complete the augmentation
processes for the CIFAR-10-LT dataset among the tested baselines. All the experiments are conducted on a
single NVIDIA RTX3090 GPU card. The computation effort is mainly dominated by the image-generating
process. The search effort for AutoGenDA only occupies a small portion of the total computation time.

H Analysis on the Learned Sampling Parameters

In Fig. we show the averaged augmentation probabilities over all classes for the PASCAL VOC, Caltech,
COCO, and LVIS datasets with 2, 4, 8, and 16 shots of data.

The learned probabilities for identity images show an increasing trend, while the learned probabilities for
local-caption and transfer-caption images show a decreasing trend. This can be explained by the fact that
with less data, the classifier easily learns variance within the dataset and demands more varied data to
improve generalization performance. Conversely, with more data, the classifier can learn diverse variance
information from the real data, thereby assigning a larger probability to sample an identity image.
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Table 7: Comparision of the computation overhead.

Feedback-

Textual Image Img2lmg guided Automated Classifier Total
Process . Caption- Genera- Text2Img .. GPU

Inversion . . Search Training

ing tion Genera- hour
tion

GPU-hours |13 2.5 4.9 13.7 1.9 0.9 -
DAFusion v v v 7.1
GIT v v v v 9.6
FGDS v v 14.6
Ours v v v v v 11.5
Ours (search-free) v v v v 9.6

Learned sampling probability for identity images versus N shots

Learned sampling probability for local-caption images versus N shots
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Figure 10: Illustration of the learned augmentation probabilites versus the number of shots on PASCAL VOC.
The left figure shows the parameter z; for sampling an identity image; the middle figure shows the parameter
zo for sampling a local-caption image; the right figure shows the parameter z3 for sampling a transfer-caption

image.

I  More visual examples

We provide more examples of the generated images using AutoGenDA for the PASCAL VOC and MS-COCO
datasets in Fig. [[1] and Fig. respectively.
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Figure 11: Hlustration of the augmented images from the PASCAL VOC dataset.
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Figure 12: Illustration of the augmented images from the MS-COCO dataset.
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