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ABSTRACT

Large pre-trained models achieve remarkable success across diverse domains, yet
fully fine-tuning incurs prohibitive computational and memory costs. Parameter-
efficient fine-tuning (PEFT) has thus become a mainstream paradigm. Among
them, Low-Rank Adaptation (LoRA) introduces trainable low-rank matrices and
shows strong performance, nevertheless, its fixed-rank design limits flexibility.
Dynamic rank allocation methods mitigate this issue by pruning redundant direc-
tions; however, they often rely on heuristic, element-level metrics that globally
sort rank directions without matrix-wise distinction, and they lack mechanisms
to expand capacity in layers requiring additional adaptation. To overcome these
limitations, we propose FlexLoRA, an entropy-guided flexible low-rank adapta-
tion framework that (i) evaluates matrix importance via spectral energy entropy,
(ii) supports rank pruning and expansion under a global budget, and (iii) employs
zero-impact initialization for newly added singular directions to ensure stability.
By addressing granularity, flexibility, and stability limitations, FlexLoRA provides
a more principled solution for PEFT. Extensive experiments show that FlexLoRA
consistently outperforms state-of-the-art baselines across benchmarks.

1 INTRODUCTION

Since large pre-trained models have advanced the state of the art in numerous tasks (Kirillov et al.,
2023; Devlin et al., 2018; Liu et al., 2019; Peng et al., 2025), adapting them to downstream tasks has
become a prevailing way recently. However, their adaptation requires fully fine-tuning, i.e., updating
all parameters, which incurs substantial computational and memory costs (Ma et al., 2024; Raffel
et al., 2020; Qiu et al., 2020). To address this challenge, parameter-efficient fine-tuning (PEFT)
methods have been proposed (Zhang et al., 2022a; Si et al., 2024; Pfeiffer et al., 2020; Houlsby
et al., 2019; Hu et al., 2021; He et al., 2021a), which adapt pre-trained models by updating only a
small subset of parameters while preserving competitive performance.

Among PEFT approaches, Low-Rank Adaptation (LoRA) (Hu et al., 2021) and its variants (Zhang
et al., 2022a; Wu et al., 2024) have emerged as representatives, which introduces trainable low-
rank matrices to approximate task-specific updates of pre-trained weights. Despite its effectiveness,
LoRA employs fixed-rank across all layers, thereby limiting flexibility in allocating model capacity.
To address this issue, a series of dynamic rank allocation methods have been proposed, such as
AdaLoRA (Zhang et al., 2023), SaLoRA (Hu et al., 2023a), and AutoLoRA (Zhang et al., 2024).
These methods usually compute a heuristic importance score such as parameter gradient for each
individual rank direction. The scores from all ranks across all matrices are then aggregated and
globally sorted, after which the least important directions are pruned. These strategies partially
alleviate the limitations of LoRA.

∗Corresponding author.
†Equal contribution.
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However, these dynamic rank allocation methods still suffers from three key limitations. First, the
importance metrics are typically heuristic, relying on approximations such as parameter sensitiv-
ity rather than principled criteria. Second, all rank directions from different matrices are globally
sorted and pruned together, ignoring matrix-level distinctions and thereby risking the removal of
structurally important directions. Third, the allocation is unidirectional, as it only prunes redundant
ranks without mechanisms to expand capacity in layers that demand additional expressive power.
Together, these limitations hinder the ability of existing methods to allocate model capacity in a
principled and adaptive manner, motivating the need for a more flexible framework.
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Figure 1: Framework of FlexLoRA. For each weight matrix Wk, FlexLoRA represents the update
in an SVD-like form ∆W = PkΛkQk, where Λk is a diagonal matrix. It then computes a spectral
entropy–based importance score for each ∆W. All scores are globally ranked under a given rank
budget: matrices with lower scores prune the least significant direction in Λk, while those with
higher scores receive additional ranks. The newly allocated ranks are initialized with a zero-impact
scheme to preserve the original input while enabling subsequent learning.

To this end, we propose FlexLoRA, a novel dynamic low-rank adaptation framework. FlexLoRA
reallocates computational resources to the most critical layers, ensuring sufficient capacity for im-
portant layers while removing redundancy from less important ones. Specifically, it evaluates the
importance of each low-rank matrix at the matrix level using spectral entropy and dynamically ad-
justs the rank allocation accordingly: pruning the least significant directions in low-importance lay-
ers while expanding the rank in layers that demand additional capacity. For expansion, FlexLoRA
adopts a zero-impact initialization strategy, where newly added singular directions are initialized
with zero singular values and Gaussian-sampled singular vectors, thereby preserving the original
input while enabling stable training. Extensive experiments across diverse benchmarks demonstrate
that FlexLoRA consistently outperforms strong PEFT baselines under the same parameter budget.

Our contributions are as follows:

• We propose FlexLoRA, a novel framework that supports both pruning and expansion of
ranks under a global budget, enabling dynamic reallocation of model capacity across layers.

• We introduces a spectral entropy–based criterion to assess the importance of low-rank ma-
trices at the matrix level, overcoming the limitations of heuristic, element-wise metrics.

• Extensive experiments demonstrate that FlexLoRA achieves superior performance com-
pared with state-of-the-art PEFT baselines under identical parameter budgets.
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2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNING

Large pre-trained models exhibit strong generalization across diverse downstream tasks (Xu et al.,
2023; Han et al., 2024; Lin et al., 2024; Wu et al., 2025), yet full fine-tuning remains computa-
tionally costly and storage-inefficient. Parameter-efficient fine-tuning (PEFT) methods address this
issue by reducing trainable parameters while retaining most of the performance of full fine-tuning.
Early PEFT approaches fall into three main categories: (1) adapter-based methods (Houlsby et al.,
2019; Chen et al., 2022; Luo et al., 2023; Pfeiffer et al., 2020; He et al., 2021a; Mahabadi et al.,
2021), which insert lightweight trainable modules; (2) prompt-based methods (Lester et al., 2021;
Razdaibiedina et al., 2023; Wang et al., 2023; Fischer et al., 2024; Yang et al., 2023), which learn
task-specific prompt vectors; and (3) low-rank methods (Hu et al., 2021; Liu et al., 2024; Zhang
et al., 2022a; Kopiczko et al., 2023; Qiu et al., 2023; Renduchintala et al., 2023; Wang et al., 2024),
which approximate parameter updates via low-rank factorization.

Among these, LoRA (Hu et al., 2021) is the most widely adopted due to its simplicity and ef-
fectiveness. By injecting trainable low-rank matrices into linear transformations, LoRA achieves
competitive performance with far fewer trainable parameters. However, its fixed-rank design across
all layers limits flexibility and prevents adaptive capacity allocation to task-specific requirements.

2.2 LORA VARIANTS WITH DYNAMIC RANK ALLOCATION

To overcome the limitation of fixed-rank LoRA, recent studies have explored dynamic rank allo-
cation, where the rank of each LoRA module is adaptively adjusted during training. Existing ap-
proaches can be grouped into three families. (1) SVD-driven allocation: AdaLoRA (Zhang et al.,
2023) and SaLoRA (Hu et al., 2023a) periodically decompose low-rank matrices and prune less
important singular directions while reallocating capacity to critical layers. (2) Singular rank decom-
position (SRD): DoRA (Mao et al., 2024), AutoLoRA (Zhang et al., 2024), and SoRA (Ding et al.,
2023) dynamically split or merge singular components based on gradient statistics or structural pri-
ors. (3) Sampling-based allocation: DyLoRA (Valipour et al., 2022) and QDyLoRA (Rajabzadeh
et al., 2024) stochastically vary ranks across iterations to improve robustness through randomiza-
tion. Besides rank-adjusting approaches, methods like MLAE (Wang et al., 2024) decompose low-
rank matrices into rank-1 experts and apply expert-level stochastic masking, implicitly modulating
effective capacity without altering the nominal rank, thus offering a complementary perspective
to dynamic-rank LoRA variants. The effectiveness of these methods largely depends on heuris-
tic sensitivity-based metrics, which aggregate gradient–weight products across singular directions
(Liang et al., 2021; Sanh et al., 2020; Zhang et al., 2022b) and smoothed with moving averages or
uncertainty terms.

Despite their progress, these strategies remain component-level heuristics: they estimate the impor-
tance of each singular direction or parameter independently, while neglecting the structural inter-
actions at the matrix level. As a result, they are prone to gradient noise, lack stability, and may
overlook the coordinated role of singular directions within the entire matrix, leading to suboptimal
rank adjustments.

2.3 ENTROPY-GUIDED METRICS

Entropy, a fundamental concept in information theory for quantifying uncertainty (Shannon, 1948;
Jaynes, 1957), has recently been adopted to measure redundancy and information content in neural
networks (Achille & Soatto, 2017). Entropy-based criteria have also been applied to pruning and
compression, guiding the removal of uninformative components while preserving capacity (Liao
et al., 2024). These works highlight that entropy is not only a statistical measure of uncertainty
but also a principled indicator of representational richness, providing insight into the information
distribution of entire matrices rather than individual parameters.
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3 METHOD

We propose FlexLoRA, a flexible low-rank adaptation framework that dynamically allocates ranks
across layers of large pre-trained models. FlexLoRA consists of three key components: (i) a matrix-
level entropy-guided importance metric, (ii) rank pruning and expansion under a global budget,
and (iii) zero-impact initialization. We first introduce the basic formulation of FlexLoRA, and then
present our method in detail in the subsequent subsections.

3.1 SVD-BASED LOW-RANK ADAPTATION

Low-Rank Adaptation (LoRA) (Hu et al., 2021) represents task-specific updates to a pre-trained
weight matrix W ∈ Rdout×din using two trainable low-rank matrices:

∆W = BA, A ∈ Rr×din , B ∈ Rdout×r, (1)

where r ≪ min(dout, din) is a small fixed rank to ensure parameter efficiency. Here, ∆W serves as
a low-rank update that is added to the frozen pre-trained weights, yielding the effective parameter
matrix W′ = W + ∆W. Similar to LoRA’s formulation and those in prior works (Zhang et al.,
2023; Meng et al., 2024), FlexLoRA adopts an SVD-based formulation, where ∆W = PΛQ. Here,
P ∈ Rdout×r and Q ∈ Rr×din represent singular vectors, and Λ = diag(λ1, λ2, . . . , λr) ∈ Rr×r is
a diagonal matrix of singular values. To maintain stability and preserve the SVD property (P⊤P =
I, QQ⊤ = I), we introduce an orthogonality regularization term:

R(P,Q) = ∥P⊤P− I∥2F + ∥QQ⊤ − I∥2F , (2)

where ∥ · ∥F is the Frobenius norm. However, the rank r of LoRA and its variants is fixed across
layers, which may hinder adaptation flexibility and prevent efficient utilization of model capacity. To
overcome this limitation, FlexLoRA introduces three synergistic mechanisms that enable dynamic
adjustment of the effective rank and maximize its utilization.

3.2 MATRIX-LEVEL ENTROPY-GUIDED IMPORTANCE METRIC

A key challenge in dynamic rank allocation lies in determining the importance of singular directions.
As discussed in Related Work (Sec. 2.2), prior methods largely rely on sensitivity-based heuristics
that design importance metrics at the level of individual parameters or singular directions. Such
approaches overlook the structure of the entire matrix, leading to noisy optimization.

To overcome these limitations, we propose a matrix-level entropy-guided importance metric. Unlike
sensitivity-based measures, entropy-based evaluation captures the intrinsic geometry of the matrix
throughout training. Given singular values Λ, the spectral entropy importance score is defined as

I(Λ) = − 1

log r

r∑
i=1

si log(si + ϵ), si =
λ2
i∑r

j=1 λ
2
j

, (3)

where ϵ is a small constant to avoid numerical issues. The entropy is normalized by log r to ensure
that the spectral entropy is bounded within [0, 1] and comparable across different ranks; the rationale
for this normalization is provided in Appendix B. Intuitively, a low entropy indicates that energy is
concentrated in a few singular values, suggesting redundancy and suitability for pruning, while high
entropy reflects a more balanced distribution, implying richer structural capacity.

3.3 RANK PRUNE AND EXPANSION WITH ZERO-IMPACT INITIALIZATION

With the spectral-entropy–based confidence score in place, we can dynamically adjust the rank of
each matrix during training. Unlike prior approaches that primarily focus on rank reduction, our
strategy supports both expansion and pruning, enabling more flexible capacity reallocation. Specif-
ically, at each training step t, we define a rank budget b(t), which specifies the maximum number
of singular directions that can be either added or removed in that step (the detailed design of b(t) is
described in Sec. 4.2). This budget acts as a global constraint, ensuring that rank adjustments remain
stable and computationally tractable while still allowing sufficient adaptivity.
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To remove redundancy, we first rank matrices by their importance score and identify the b(t) least
important ones with rank greater than one. Within each selected matrix, we reduce the rank by dis-
carding the singular component associated with the smallest singular value. This choice is grounded
in the SVD principle that directions with minimal singular values contribute least to the matrix’s
representational power. Moreover, the corresponding importance score I(λmin) is also the smallest,
indicating minimal spectral contribution; a formal proof of this monotonicity is provided in Ap-
pendix C. For expansion, we select the b(t) most important matrices. Within each selected matrix,
we add a new singular direction with its singular value initialized to zero, while the corresponding
vectors are sampled from Gaussian distribution. This zero-impact initialization ensures that the in-
sertion does not perturb the current output and allows the new direction to be gradually optimized
during training, which guarantees stability while enabling effective capacity growth when needed.

By leveraging the matrix-level spectral entropy as a confidence score, FlexLoRA adaptively adjusts
ranks through both pruning and expansion, while zero-impact initialization ensures stable incorpo-
ration of new capacity. This joint design enables FlexLoRA to allocate model capacity more flexibly
across layers, preserving redundancy-free directions while amplifying structurally informative ones.
The full procedure is summarized in Algorithm 1.

Algorithm 1 FlexLoRA
Require: S: total steps, T : bidirectional rank allocation period, r: initial rank,
Require: b: total ranks pruned/expanded per step

1: Initialize: (P0:N−1,Λ0:N−1,Q0:N−1) for all weight matrices with rank r
2: for i = 1 to S do
3: UPDATEWEIGHTS(P,Λ,Q)
4: I0:N−1 ← CALCULATEIMPORTANCE(Λ)
5: if i ∈ T then
6: L← LEASTIMPORTANTMATRICES(I, b) Identify top-b least important matrices
7: M ← MOSTIMPORTANTMATRICES(I, b) Identify top-b most important matrices
8: PRUNERANKS(L,P,Λ,Q)
9: EXPANDRANKS(M,P,Λ,Q)

10: end if
11: end for
12: return Fine-tuned parameters (P,Λ,Q)

4 EXPERIMENT

4.1 MODELS, DATASETS AND BASELINES

We evaluate FlexLoRA on both language and vision models on three tasks to demonstrate its gener-
ality. For natural language processing, we adopt DeBERTaV3-base (He et al., 2021b), a widely used
encoder model for understanding tasks, and the LLaMA family of large language models (AI@Meta,
2024), which represent the current state-of-the-art in generative modeling. For computer vision, we
extend FlexLoRA to transformer-based backbones and assess its adaptability to recognition tasks.

We consider three representative categories of benchmarks:

• Natural Language Understanding (NLU): We use the GLUE benchmark (Wang et al.,
2018), which includes diverse sentence- and pair-level classification tasks.

• Commonsense Reasoning (CR): We evaluate on eight widely used benchmarks covering
diverse reasoning forms, including yes/no question answering (BoolQ), physical and social
reasoning (PIQA, SIQA), narrative completion (HellaSwag), pronoun resolution (Wino-
Grande), and multiple-choice knowledge-intensive reasoning (ARC-e, ARC-c, OBQA), as
well as additional tasks such as CommonsenseQA and SocialIQA (Sap et al., 2020).

• Visual Recognition (Vision):To test generality beyond NLP, we employ the Visual Task
Adaptation Benchmark (VTAB) (Zhai et al., 2019), which spans 19 image classification
datasets across natural, specialized, and structured domains. We use ViT-B/16 pretrained
on ImageNet-22K as the backbone to ensure a consistent evaluation setup.
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We compare FlexLoRA against strong baselines under a unified parameter budget. Specifically, we
consider: (i) standard LoRA with a fixed-rank (Hu et al., 2021), and (ii) AdaLoRA (Zhang et al.,
2023), both initialized with the same rank budget for fairness.

4.2 IMPLEMENTATION DETAILS

All methods are implemented in PyTorch (Paszke et al., 2019), based on Huggingface Transformers
(Wolf et al., 2020). For FlexLoRA, we introduce a dynamic rank scheduler to stabilize rank adjust-
ment. At training step t, the number of ranks adjusted, denoted b(t), is defined by a cubic decay
schedule:

b(t) = round

(
b0 ·

(
1−

t− twarmup

T − tfinal

)3
)
, (4)

where b0 is the initial adjustment size, twarmup marks the start of rank adaptation, tfinal denotes the
beginning of the final freeze phase, and T is the total number of training steps. We clamp b(t) to the
range [0, b0] and further restrict it so that adjustments never exceed the number of available modules
or per-module rank limits. This schedule allows for aggressive rank reallocation in early training,
when model capacity is being explored, and gradual stabilization towards convergence, ensuring
consistent optimization in later stages. All methods are implemented in PyTorch (Paszke et al.,
2019) with the HuggingFace Transformers library (Wolf et al., 2020). Experiments are conducted
on NVIDIA A100 GPUs, and unless otherwise specified, hyper-parameters follow recommended
settings in prior work to ensure fair comparison.

4.3 NATURAL LANGUAGE UNDERSTANDING

Table 1 reports the GLUE benchmark results, comparing FlexLoRA with LoRA (r = 8) and
AdaLoRA under the same parameter budget. Details of the dataset and hyper-parameters settings
can be found in Appendix D.1. FlexLoRA consistently delivers the best or competitive performance
across all tasks. The gains are particularly pronounced on CoLA and RTE, where FlexLoRA sig-
nificantly surpasses both baselines, highlighting its advantage in handling linguistically challenging
tasks. Overall, FlexLoRA achieves the highest average score of 89.1, outperforming AdaLoRA
(88.1) and LoRA (81.8), thereby demonstrating the effectiveness of entropy-guided, bidirectional
rank allocation.

Table 1: Results on GLUE development set with DeBERTaV3-base. We report mean of 5 runs using
different random seeds.

Method Params. CoLA
Mcc.

MNLI
Acc.

MRPC
Acc.

RTE
Acc.

QNLI
Acc.

SST-2
Acc.

STS-B
Corr.

QQP
Acc. Avg.

Full FT 184.3M 69.2 89.9 90.2 83.8 94.0 95.6 91.6 92.4 88.3

BitFit 0.1M 67.0±0.5 89.4±0.2 87.8±05 78.7±0.9 92.2±0.2 94.8±0.3 91.4±0.2 88.4±0.2 86.2
H-Adapter 1.2M 62.6±3.2 86.5±0.4 89.9±2.3 80.4±2.0 92.8±0.2 93.7±0.4 90.2±1.1 90.8±0.1 85.9
P-Adapter 1.2M 63.9±1.7 86.8±0.3 89.5±0.9 80.5±2.9 92.6±0.2 93.8±0.2 90.7±0.6 90.5±0.1 86.0
AdapterFusion 1.2M 68.8±0.2 90.3±0.3 89.5±0.1 85.2±0.5 94.3±0.3 95.6±0.6 91.5±0.1 92.0±0.4 88.4
LoRAr=8 1.3M 68.5±0.6 89.8±0.2 90.7±0.7 84.8±0.6 94.1±0.8 94.0±0.2 91.2±0.3 87.9±0.3 81.7
AdaLoRA 1.9M 70.0±1.8 89.0±1.6 90.9±1.5 88.1±0.9 94.1±1.1 94.6±0.9 91.2±0.3 87.2±2.0 88.1
DoRA 1.3M 65.4±0.4 87.8±0.2 90.1±0.3 81.7±1.8 93.0±0.0 91.3±2.6 91.3±0.0 91.3±0.5 86.5
DyLoRAr=8 0.9M 59.5±1.0 86.8±0.1 91.4±0.8 77.6±0.6 93.0±0.3 94.4±0.4 91.1±0.2 89.9±0.1 85.5

FlexLoRA 1.9M 71.8±0.9 90.0±0.7 90.9±0.6 88.8±0.7 94.2±0.2 95.2±0.4 91.5±0.1 90.3±0.7 89.1

4.4 COMMONSENSE REASONING

We next evaluate FlexLoRA on commonsense reasoning benchmarks. Details of the dataset and
hyper-parameters settings can be found in Appendix D.2. Results in Table 2 show that FlexLoRA
consistently delivers strong performance across all settings. On the LLaMA-3 models, FlexLoRA
achieves clear improvements over standard LoRA, underscoring the necessity of adaptive rank al-
location when operating under constrained parameter budgets. At rank 8, FlexLoRA achieves an
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average score of 85.2 on LLaMA-3, slightly surpassing AdaLoRA (85.1). When the rank is in-
creased to 32, FlexLoRA further improves to 85.5, establishing the best overall results among all
parameter-efficient baselines, including LoRA-Dash, NoRA+, and PrecLoRA. These findings sug-
gest that FlexLoRA not only adapts effectively to earlier model generations but also remains com-
petitive on the latest LLaMA-3, demonstrating robustness across model iterations while exploiting
higher ranks without redundancy.

Table 2: Results on commonsense reasoning tasks.

Model Method Param. BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.
ChatGPT - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

Full FT 8B 75.3 89.9 81.5 95.8 87.6 91.6 79.3 87.4 86.1
LoRAr=8 14.2M 62.2 86.5 80.3 94.5 84.4 77.7 88.0 85.8 82.4

AdaLoRAr=8 21.2M 74.1 88.4 80.3 95.7 84.4 80.1 91.0 87.0 85.1
FlexLoRAr=8 21.2M 74.3 88.6 81.0 95.6 84.9 80.2 90.7 86.4 85.2

LLaMA3-8B LoRAr=32 56.6M 75.6 89.5 81.2 95.1 85.1 80.1 90.3 86.2 85.4
AdaLoRAr=32 56.6M 71.3 88.7 80.1 94.5 86.2 78.8 90.2 85.8 84.5

LoRA-Dash 56.6M 75.3 88.5 80.2 95.7 86.8 90.7 80.2 85.6 85.4
NoRA+ 56.6M 71.2 85.1 79.5 92.2 83.4 85.9 72.3 83.2 81.6

PrecLoRA 56.6M 70.7 85.8 78.9 91.9 83.7 85.1 71.1 82.4 81.2
FlexLoRAr=32 56.6M 72.8 89.1 80.7 96.0 86.4 81.3 90.8 87.2 85.5

4.5 VISUAL TASK

To further assess the generality of FlexLoRA beyond NLP, we evaluate it on the Visual Task Adap-
tation Benchmark (VTAB) and compare against LoRA (r = 14) and AdaLoRA under identical
experimental conditions. Details of the dataset and hyper-parameters settings can be found in Ap-
pendix D.3. As shown in Table 3, FlexLoRA achieves the highest average accuracy of 67.8%,
outperforming both LoRA (66.7%) and AdaLoRA (64.7%) under comparable parameter budgets.
Notably, FlexLoRA yields substantial improvements on natural image datasets (e.g., +8.9 on CI-
FAR100 over LoRA), highlighting its ability to capture domain diversity. It also performs strongly
on specialized datasets such as Camelyon and Retinopathy, demonstrating robustness in medical and
fine-grained visual recognition. Overall, these results confirm that FlexLoRA’s entropy-guided rank
allocation is not confined to language but generalizes effectively to vision.

Table 3: Results on VTAB benchmark. Accuracy (%) across Natural, Specialized, and Structured
domains.
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Full FT 327M 68.9 87.7 64.3 97.2 86.9 84.7 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.9

LoRAr=14 1.29M 49.3 87.7 63.1 98.1 87.5 73.2 47.0 79.4 94.4 80.1 71.5 74.3 60.4 40.4 72.2 67.9 40.8 13.7 29.3 66.7
FLoRA 1.11M 50.5 86.5 63.9 98.1 87.4 72.0 49.4 78.6 94.2 78.3 74.0 67.4 57.2 40.4 74.4 65.9 38.0 12.0 30.1 66.4
LieRA 1.11M 52.3 86.1 65.8 98.4 89.3 57.7 50.4 78.6 91.6 76.1 72.3 57.7 49.5 38.0 72.7 60.0 36.1 12.3 26.7 64.4
MiLoRA 1.11M 39.3 83.6 61.6 97.0 86.2 33.4 48.1 77.0 85.9 66.8 73.9 31.5 29.7 34.0 54.0 12.0 16.7 10.9 21.2 55.2
PiSSA 1.11M 48.8 87.3 62.9 98.0 88.2 67.8 47.2 80.5 94.6 79.2 70.4 73.2 54.2 41.7 74.3 70.7 40.9 12.7 29.8 66.3
MoSLoRA 1.11M 48.0 85.5 60.5 97.7 86.0 74.0 47.7 77.6 94.2 76.6 74.2 74.2 59.9 41.1 74.4 66.6 37.5 13.1 30.2 66.0
AdaLoRA 1.26M 56.9 87.2 63.3 98.4 88.3 69.5 51.2 76.4 92.6 76.5 72.3 56.5 51.8 39.5 75.3 45.1 35.9 12.7 27.1 64.7
MLAE 1.11M 49.0 87.1 62.4 97.9 88.1 69.8 47.6 79.9 94.4 80 70.1 73.5 57.4 42.3 74 69.2 43.2 13.2 30.2 66.6

FlexLoRA 1.18M 58.2 88.9 64.3 98.5 89.3 73.7 51.3 80.0 93.4 80.3 73.4 66.9 60.0 41.0 77.8 64.7 39.0 13.6 29.9 67.8

5 FURTHER STUDY

To better understand the design choices of FlexLoRA, we conduct a series of ablation studies and
exploratory analyses. We compare alternative importance metrics, examine the necessity of bidirec-
tional rank allocation, evaluate different initialization strategies, and analyze the final distribution of
ranks after training. Together, these studies shed light on why FlexLoRA works and provide insights
into future research directions.
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5.1 IMPORTANCE METRICS

We first investigate the role of importance metrics in guiding rank allocation. In addition to our
proposed entropy-based criterion, we compare two widely adopted alternatives: sensitivity-based
and norm-based metrics.

Sensitivity-based metrics. As in AdaLoRA (Sec. 2.2), importance can be estimated by element-
level gradient–weight products:

I(wij) = |wij · ∇wijL|, (5)
which approximates the sensitivity of each parameter to the training loss. To reduce the noise and
instability of such estimates, AdaLoRA further applies exponential moving average smoothing and
an uncertainty term to obtain a refined importance score:

s(t)(wij) = Ī(t)(wij) · Ū (t)(wij), (6)

where Ī(t) is the smoothed sensitivity and Ū (t) quantifies local variation. Although intuitive, such
heuristics are highly sensitive to gradient noise, unstable across iterations, and fail to incorporate
matrix-level structural information.

Norm-based metrics. The nuclear norm and Frobenius norm summarize the overall strength of
singular values by aggregating spectral magnitudes. While these metrics capture cumulative energy,
they cannot reflect the distributional structure of singular components. For consistency, both norms
are normalized by the number of singular values n:

Inuclear =
1

n

n∑
i=1

|λi|, IF =
1

n

√√√√ n∑
i=1

λ2
i . (7)

Results. Table 4 shows that entropy consistently outperforms both sensitivity- and norm-based al-
ternatives on representative GLUE tasks. These results highlight entropy’s superior discriminability
and robustness, confirming it as a more principled criterion for dynamic rank allocation.

Table 4: Comparison of different importance metrics on GLUE with DeBERTaV3-base. Entropy
consistently outperforms the other norm-based alternatives.

Method Params. CoLA
Mcc.

MNLI
Acc.

MRPC
Acc.

RTE
Acc.

QNLI
Acc.

SST-2
Acc.

STS-B
Corr.

QQP
Acc. Avg.

Full FT 184.3M 69.2 89.9 90.2 83.8 94.0 95.6 91.6 92.4 88.3

AdaLoRA 1.9M 70.0 89.0 90.9 88.1 94.1 94.6 91.2 87.2 88.1
Nuclear 1.9M 69.8 89.1 90.2 84.8 94.4 94.8 91.1 87.5 87.7
Frobenius 1.9M 69.4 88.8 86.5 86.3 94.1 94.7 90.8 86.4 87.1
FlexLoRA 1.9M 71.8 90.0 90.9 88.8 94.2 95.2 91.5 90.3 89.1

5.2 RANK PRUNING AND EXPANSION

We next assess the necessity of combining pruning and expansion. Specifically, we compare
FlexLoRA with two variants: (i) Prune-only, which removes low-importance singular directions
but never expands capacity; and (ii) Expand-only, which continually adds directions without prun-
ing.

As shown in Table 5, prune-only leads to over-pruning and lacks the flexibility to recover capacity,
while expand-only wastes parameters by retaining redundant directions. In contrast, FlexLoRA
jointly prunes and expands ranks under a global budget, achieving consistently superior results.
This confirms that bidirectional rank adjustment is critical for balancing efficiency and adaptability,
and motivates further exploration of adaptive scheduling strategies.

5.3 ZERO-IMPACT INITIALIZATION

We further analyze initialization strategies for newly added singular directions.
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Table 5: Results of further study on pruning and expansion. We report results on four representative
GLUE benchmarks (CoLA, MRPC, RTE, and STS-B) using DeBERTaV3-base. Results show that
FlexLoRA’s pruning and expansion strategy outperforms prune-only and expand-only strategies.

Method Params. CoLA
Mcc.

MNLI
Acc.

MRPC
Acc.

RTE
Acc.

QNLI
Acc.

SST-2
Acc.

STS-B
Corr.

QQP
Acc. Avg.

Full FT 184.3M 69.2 89.9 90.2 83.8 94.0 95.6 91.6 92.4 88.3

Prune-only 1.9M 66.8 89.4 90.4 85.9 94.2 94.5 91.4 87.6 87.5
Expand-only 1.9M 68.3 89.5 89.5 87.7 94.3 93.8 91.3 86.5 87.6
FlexLoRA 1.9M 71.8 90.0 90.9 88.8 94.2 95.2 91.5 90.3 89.1

Zero-impact initialization, adopted in FlexLoRA, sets the singular value to zero while sampling
vectors from a Gaussian distribution. As alternatives, we examine: (i) Small-init, which assigns
small non-zero values to new singular values and samples orthogonal vectors via Gram–Schmidt;
(ii) Zero-init, which sets both values and vectors to zero, freezing new directions until gradients
accumulate; (iii) Orthogonal-init, which sets values to zero but samples orthogonal vectors to pre-
serve independence.

Table 6 shows that FlexLoRA with zero-impact initialization achieves the highest average score
(85.8), consistently outperforming all alternative initialization strategies across the four GLUE
benchmarks. This demonstrates that zero-impact initialization provides the most favorable balance
between stability and learnability, ensuring that the expanded capacity is fully utilized to enhance
task-specific adaptation.

Table 6: Results of further study on zero-impact initialization. We report results on four repre-
sentative GLUE benchmarks (CoLA, MRPC, RTE, and STS-B) using DeBERTaV3-base. Results
show that FlexLoRA’s zero-impact initialization achieves the best balance, outperforming the other
strategies.

Method Params. CoLA
Mcc.

MNLI
Acc.

MRPC
Acc.

RTE
Acc.

QNLI
Acc.

SST-2
Acc.

STS-B
Corr.

QQP
Acc. Avg.

Full FT 184.3M 69.2 89.9 90.2 83.8 94.0 95.6 91.6 92.4 88.3

Small-init 1.9M 69.2 89.4 89.7 85.9 94.4 95.2 91.2 87.5 87.8
Zero-init 1.9M 66.4 89.5 88.2 84.8 94.4 94.6 91.1 87.4 87.1
Orthogonal-init 1.9M 70.4 89.8 90.0 87.0 94.2 94.7 90.7 87.5 88.0
FlexLoRA 1.9M 71.8 90.0 90.9 88.8 94.2 95.2 91.5 90.3 89.1

5.4 RANK DISTRIBUTION AFTER ALLOCATION

Finally, we analyze how FlexLoRA allocates ranks across layers and modules during training. Fig-
ure 2 visualizes the evolution of effective ranks on the CoLA task, where darker colors denote higher
capacity allocation and lighter colors indicate stronger pruning.

The results reveal several interesting patterns. Contrary to the common assumption that deeper layers
should dominate task-specific adaptation, we observe that shallower layers (L0–L3) undergo sub-
stantial rank expansion. This indicates that early layers capture task-relevant syntactic and semantic
cues that require increased modeling capacity, highlighting their underestimated role in linguistic
adaptation. In contrast, deeper layers (L9–L11) are consistently pruned across training, suggesting
that these layers encode more task-agnostic or redundant representations that can be preserved in
compressed form without harming performance. Middle layers (L4–L8) exhibit mixed behavior.
Within these layers, some modules maintain moderate rank allocations, while others are gradually
pruned depending on their relative contribution to the task. Notably, attention output and intermedi-
ate dense modules in these layers tend to preserve higher ranks, suggesting that they play a central
role in shaping task-specific decision boundaries and information propagation.

Overall, these findings suggest that CoLA-relevant signals are primarily concentrated in shallow
and middle layers, while deeper layers encode more generic features requiring less adaptation. This
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Figure 2: Visualization of rank allocation during FlexLoRA training on the CoLA task. We selected
the modules with the most significant changes in rank and sorted them by layer depth. Modules are
sorted by layer depth from top (shallow) to bottom (deep). K, V, Q denote key, value, and query
projections; A is attention output; I is intermediate dense; O is output dense. Darker colors indicate
more capacity, lighter colors indicate stronger pruning.

demonstrates that FlexLoRA adaptively reallocates capacity in a manner that aligns with linguistic
task requirements, improving efficiency while also yields interpretable rank allocation patterns.

6 CONCLUSION

We presented FlexLoRA, a flexible low-rank adaptation framework that addresses the limitations of
existing PEFT methods. FlexLoRA introduces three synergistic components: a matrix-level entropy-
guided importance metric, a bidirectional rank allocation mechanism under a global budget, and a
zero-impact initialization strategy. These components together ensure both stable optimization and
efficient utilization of model capacity during fine-tuning. Extensive experiments on natural lan-
guage understanding, commonsense reasoning, and visual recognition benchmarks demonstrate that
FlexLoRA consistently outperforms strong state-of-the-art baselines in both accuracy and parameter
efficiency. Further analyses confirm the effectiveness of its core components and reveal interpretable
rank distribution patterns that aligned with task-specific requirements, offering insights into the func-
tional roles of different layers and modules. In summary, FlexLoRA provides a robust and general
strategy for parameter-efficient fine-tuning, laying a principled foundation for future research on
flexible low-rank adaptation of large pre-trained models across diverse modalities and tasks.
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A THE USE OF LLM

We used a large language model (ChatGPT) as a general-purpose writing assistant. Its role was
limited to the following:

• Language polishing: Refining grammar, improving clarity, and ensuring consistent aca-
demic style in certain parts of the paper.

• Formatting suggestions: Providing alternative sentence structures or paragraph organiza-
tion for better readability.

No part of the research design, methodology, experiments, or analysis was generated by the language
model. All technical content, scientific claims, and conclusions are the sole work and responsibility
of the authors.

The use of LLMs did not rise to the level of substantive contribution that would merit authorship.

B NORMALIZATION OF SPECTRAL ENTROPY

Recall the spectral entropy for normalized squared singular values

si =
λ2
i∑r

j=1 λ
2
j

, si > 0,
r∑

i=1

si = 1,

is given by

H(s) = −
r∑

i=1

si log si,

defined on the probability simplex ∆r−1 = {s ∈ Rr : si > 0,
∑

i si = 1}.
Maximize H(s) subject to

∑
i si = 1. Form the Lagrangian

L(s, µ) = −
r∑

i=1

si log si + µ
( r∑

i=1

si − 1
)
.

Taking partial derivatives and setting them to zero gives, for each i,

∂L
∂si

= −(log si + 1) + µ = 0 =⇒ log si = µ− 1.

Hence si = eµ−1 is constant for all i. Using the constraint
∑

i si = 1 yields

reµ−1 = 1 =⇒ eµ−1 =
1

r
,
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and therefore
si =

1

r
for all i.

Substituting the uniform distribution into H gives

Hmax = H
(

1
r , . . . ,

1
r

)
= −

r∑
i=1

1

r
log

1

r
= log r.

To show this stationary point is the global maximum, note that H(s) is strictly concave on ∆r−1.
Indeed, the Hessian matrix of H (with respect to the coordinates si) is diagonal:

∂2H

∂s2i
= − 1

si
,

∂2H

∂si∂sj
= 0 (i ̸= j).

For any nonzero vector x ∈ Rr,

x⊤∇2H x = −
r∑

i=1

x2
i

si
< 0

because si > 0. Thus ∇2H is negative definite on the domain, implying H is strictly concave.
A strictly concave function on a convex set has at most one stationary point and that stationary
point is the global maximum. Therefore the uniform distribution si = 1/r yields the unique global
maximum and Hmax = log r.

Dividing H(s) by log r yields a normalized score

I(Λ) =
H(Λ)

log r
∈ [0, 1],

with I = 1 at the uniform distribution and I → 0 when the distribution concentrates its mass on a
single component.

C MONOTONICITY OF IMPORTANCE FOR A SINGLE SINGULAR VALUE

Given a matrix with singular values λ1, . . . , λr, recall that the spectral importance of the i-th singular
value is

si =
λ2
i∑r

j=1 λ
2
j

, I(Λ) = −
r∑

i=1

si log(si + ϵ), (8)

where ϵ > 0 is a small constant to avoid numerical issues.

To see that I(λi) is monotonic in λi, consider si as a function of λi:

∂si
∂λi

=
2λi(

∑
j ̸=i λ

2
j )

(
∑r

j=1 λ
2
j )

2
> 0 for λi > 0. (9)

Since−si log si is an increasing function for small si ∈ (0, 1), we have that decreasing λi decreases
si, which in turn decreases its contribution to the total entropy I(Λ).

Hence, the smallest singular value λmin always corresponds to the smallest importance I(λmin),
justifying the pruning strategy in Sec 3.3.

D DETAILS ON EXPERIMENTS

D.1 DETAILS ON NATURAL LANGUAGE UNDERSTANDING TASK

For the natural language understanding (NLU) experiments, we adopt the General Language Un-
derstanding Evaluation (GLUE) Wang et al. (2018) benchmark, a suite of tasks designed to assess
a model’s broad linguistic competence. GLUE comprises two single-sentence classification tasks,
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CoLA Warstadt et al. (2019) and SST-2 Socher et al. (2013), three tasks focused on semantic sim-
ilarity and paraphrase detection, MRPC Dolan & Brockett (2005), QQP Wang et al. (2018), and
STS-B Cer et al. (2017), and three natural language inference tasks, MNLI Williams et al. (2017),
QNLI Rajpurkar et al. (2016), and RTE Dagan et al. (2005); Bar-Haim et al. (2006); Giampiccolo
et al. (2007); Bentivogli et al. (2009). The details of these datasets are shown in Table 7.

For this benchmark, we fine-tune DeBERTaV3-base He et al. (2021b) models. The hyper-parameter
settings for this task is shown in Table 8.

Table 7: Details of GLUE dataset. Combined Score for MRPC and QQP is defined as the average
of Accuracy and F1, while for STS-B it is the average of Pearson and Spearman correlations

Dataset Task # Train # Dev # Test # Label Metrics

Single-Sentence Classification
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr

SST-2 Sentiment 67k 872 1.8k 2 Accuracy

Similarity and Paraphrase

MRPC Paraphrase 3.7k 408 1.7k 2 Combined Score

QQP Paraphrase 364k 40k 391k 2 Combined Score

STS-B Similarity 7k 1.5k 1.4k 1 Combined Score

Natural Language Inference

MNLI NLI 393k 20k 20k 3 Accuracy

QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

RTE NLI 2.5k 276 3k 2 Accuracy

Table 8: Hyper-parameter settings of FlexLoRA on NLU task.
Hyper-parameter CoLA MNLI MRPC RTE QNLI SST-2 STS-B QQP

Optimizer AdamW

Warmup Ratio 0.1

LR schedule Linear

Rank r 8

α 16

b 4

Max Seq. Len. 64 256 256 512 256 256 256 320

Batch Size 32 32 32 32 32 32 32 32

Learning Rate 8e-4 5e-4 1e-3 1.2e-3 5e-4 8e-4 2.2e-3 8e-4

Epochs 20 12 30 50 5 20 20 5

Twarmup 1000 5000 500 500 1000 5000 1000 5000

Tfinal 1000 5000 500 500 1000 5000 1000 5000

∆T 200 1000 100 100 200 1000 200 1000
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D.2 DETAILS ON COMMONSENSE REASONING TASK

The commonsense reasoning benchmark suite comprises eight sub-tasks, each associated with a
specific dataset: BoolQ Clark et al. (2019), PIQA Bisk et al. (2020), SIQA Sap et al. (2019), HellaS.
Zellers et al. (2019), WinoG. Sakaguchi et al. (2021), ARC-e/ARC-c Clark et al. (2018), OBQA
Mihaylov et al. (2018). Following the protocol described in Hu et al. (2023b), we aggregate the
training portions of all tasks into a unified corpus, referred to as the Commonsense170K dataset,
and then evaluate performance separately on each task’s test set. The hyper-parameter settings of
FlexLoRA are shown in Table. 9.

We fine-tune LLaMA3-8B AI@Meta (2024) on this task. For comparison, we also include re-
sults from ChatGPT’s implementation with the gpt-3.5-turbo API, particularly focusing on zero-
shot Chain of Thought approaches Wei et al. (2022). The results of fully fine-tuning(Full FT) and
ChatGPT are cited from Liu et al. (2024).

Table 9: Hyper-parameter settings of FlexLoRA on commonsense reasoning task.

Hyper-parameters LLaMA3-8B Hyper-parameters LLaMA3-8B

Rank r 8 & 32 α 16

Learning Rate 3e-4 LR Scheduler Linear

Dropout 0.05 Optimizer AdamW

Batch size 16 Warmup Steps 100

Epochs 3 b 4

Twarmup 5000 Tfinal 5000

∆T 1000 Where Q, K, V, Up, Down

D.3 DETAILS ON VISUAL TASK

As shown in Table 10, the VTAB-1K dataset (Zhai et al., 2019) allocates 800 samples for training and
200 for validation during hyper-parameter tuning. The final model is trained on all 1,000 samples
and evaluated on the official test set.

For this benchmark, we fine-tune ViT-B/16(Dosovitskiy, 2020) models. The results of fully fine-
tuning(Full FT) are cited from Jie & Deng (2023). The hyper-parameter settings for this task is
shown in Table 11.

Table 10: Details of VTAB-1K dataset.
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# Classes 100 102 47 102 37 10 397 2 10 45 5 8 6 6 4 16 16 18 18

Train 800/1000

Val 200

Test 10000 6084 1880 6149 3669 26032 21750 32768 5400 6300 42670 15000 15000 22735 711 73728 73728 12150 12150

E COMPARISON OF TRAINING COST

In this part, we report the system-level metrics, including GPU memory and train runtime. As
shown in Table 12-14, the results consistently show that FlexLoRA does not introduce noticeable
overhead compared with AdaLoRA across all benchmarks. GPU memory usage remains nearly
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Table 11: Hyper-parameter settings of FlexLoRA on visual task.

Optimizer batch size Learning Rate Epochs b Twarmup Tfinal ∆T

AdamW 32 1e-3 100 4 500 500 100

identical across all settings, indicating that the rank reallocation strategy in FlexLoRA brings small
computational cost.

As shown in Table 12, for NLU tasks (CoLA, RTE), FlexLoRA matches AdaLoRA in both runtime
and memory while outperforming it in evaluation speed, and it incurs only small runtime differences
compared with LoRA. As shown in Table 13, FlexLoRA even reduces memory usage and shortens
training time relative to AdaLoRA on commonsense reasoning with LLaMA3-8B. As shown in
Table 14, for visual tasks (Cifar100, Resisc45, DMLab), FlexLoRA again shows almost the same
training cost as AdaLoRA, with runtime differences typically under 1%, while maintaining stable
FLOP and memory footprints.

Table 12: Comparison of training cost on NLU tasks.

Dataset Metric FlexLoRA AdaLoRA LoRA

CoLA

Train Runtime (s) 2162.6 2167.9 2117.9
GPU Mem (MB) 17446 17487 17443

Total FLOPs 4.88× 1016 4.90× 1016 4.88× 1016

Eval Runtime (s) 9.3231 9.2842 10.4523

RTE

Train Runtime (s) 1597.4 1574.9 1534.5
GPU Mem (MB) 17446 17487 17443

Total FLOPs 3.55× 1016 3.56× 1016 3.55× 1016

Eval Runtime (s) 2.4398 2.3954 2.6691

Table 13: Comparison of training cost on commonsense reasoning tasks.

Model Metric FlexLoRA AdaLoRA LoRA LoRA-Dash

LLaMA3-8B Train Runtime (h) 6.01 6.47 4.76 6.77
GPU Mem (GB) 38.0 43.3 37.6 51.8

F SINGULAR VALUE DISTRIBUTION

To further examine the rank allocation behavior, we randomly sampled ten LoRA modules trained
on the CoLA task and visualized their singular value distributions. As shown in the Figure 3, we
can notice that no matrix with small magnitude and high entropy that has obtained a large number
of rank values, indicating that the magnitude of the singular values has only a minor effect on our
rank allocation process, supporting the robustness of our adaptive strategy.

G MORE STUDY ON IMPORTANCE METRICS

To further validate the robustness of the spectral entropy metric and investigate the necessity of
incorporating spectral energy into the importance metric, we designed and evaluated two hybrid
variants that combine energy with entropy:
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Table 14: Comparison of training cost on visual tasks.

Dataset Metric FlexLoRA AdaLoRA LoRA

Cifar100

Train Runtime (s) 650 654 581
GPU Mem (MB) 8414 8467 7787

Total FLOPs 5.62× 1018 5.64× 1018 5.63× 1018

Eval Runtime (s) 29.94 30.22 27.18

Resisc45

Train Runtime (s) 646 647 566
GPU Mem (MB) 8439 8449 7785

Total FLOPs 5.62× 1018 5.64× 1018 5.63× 1018

Eval Runtime (s) 19.74 19.78 17.82

DMLab

Train Runtime (s) 695 699 774
GPU Mem (MB) 8451 8465 7785

Total FLOPs 5.62× 1018 5.64× 1018 5.63× 1018

Eval Runtime (s) 67.06 66.98 59.91

Figure 3: Singular value distributions of ten randomly sampled LoRA modules trained on the CoLA
task.

Elem-wise Energy Entropy (IElem): This variant calculates entropy at the element level within the
singular value distribution, defined as:

IElem = − 1

r log r

∑
i

λisi log(si + ϵ), si =
λ2
i∑
j λ

2
j

. (10)

Matrix-wise Energy Entropy (IMat): This variant aggregates the singular values before computing
the entropy-based importance:

IMat = −
1

r log r

(∑
i

λi

)(∑
i

si log(si + ϵ)

)
, si =

λ2
i∑
j λ

2
j

. (11)

As shown in Table 15, neither variant outperforms the original FlexLoRA, reinforcing that our spec-
tral energy entropy is a more reliable metric for measuring matrix importance.
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Table 15: Comparison of FlexLoRA and two energy-considering variants on NLU tasks using
DeBERTaV3-base.

Method Params. CoLA
Mcc.

MNLI
Acc.

MRPC
Acc.

RTE
Acc.

QNLI
Acc.

SST-2
Acc.

STS-B
Corr.

QQP
Acc. Avg.

Full FT 184.3M 69.2 89.9 90.2 83.8 94.0 95.6 91.6 92.4 88.3

Elem 1.9M 68.1 89.1 91.0 86.3 94.5 94.7 90.9 87.4 87.8
Mat 1.9M 69.0 89.5 89.3 83.8 94.6 95.5 91.8 87.2 87.6
FlexLoRA 1.9M 71.8 90.0 90.9 88.8 94.2 95.2 91.5 90.3 89.1

H MORE EXPERIMENTS ON VISUAL TASK

To further verify the effectiveness of our method on visual tasks, we conducted experiments follow-
ing the settings in Xin et al. (2024)(learning rate = 2e-3, weight decay = 1e-3). Results in Table 16
demonstrate that FlexLoRA achieves a superior average accuracy of 76.0%, outperforming LoRA
(74.5%) and AdaLoRA (75.1%) under comparable parameter budgets. These findings confirm that
FlexLoRA’s entropy-guided rank allocation continually maintains consistent efficacy and robustness
when extended to visual tasks.

Table 16: Results on VTAB benchmark with the experimental settings in Xin et al. (2024). Accuracy
(%) across Natural, Specialized, and Structured domains.

Natural Specialized Structured
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Avg.
Full FT 85.8 68.9 87.7 64.3 97.2 86.9 84.7 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.9
Linear 0 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 57.6

BitFit 0.10 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 65.2
VPT-Shallow 0.06 77.7 86.9 62.6 97.5 87.3 74.5 51.2 78.2 92.0 75.6 72.9 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 67.8
VPT-Deep 0.53 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 72.0
Adapter 0.16 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 73.9
AdaptFormer 0.16 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 74.7
LoRA 0.34 69.6 92.5 70.5 99 90.1 89.9 53.7 85.9 95.8 87.5 75.8 82.9 64.5 53.4 81.3 82.7 48.1 31.8 36.8 75.7
MLAE 0.34 65.7 90.7 70.4 99.1 91.1 86.4 53.9 82.4 94.9 86 74.9 77.5 64.5 50.2 79.9 75.1 43.3 27.7 35.8 73.6
PISSA 0.31 69.4 92.3 72.4 99.0 91.3 89.6 54.6 86.7 95.8 86.4 75.7 81.8 65.9 54.1 80.4 81.0 45.0 29.8 41.4 75.8
AdaLoRA 0.37 70.5 90.3 71.9 99.1 91.4 87 56 83.9 95.3 85.6 75.2 81.6 68.1 51.8 80.2 75.3 49.1 28.9 41.1 75.1
DoRA 0.34 70.0 91.9 71.3 99 90.0 88.7 55.5 85.4 95.5 86.8 76.5 82.5 66.5 53.0 80.3 82.5 46.8 30.1 41.9 75.8
NOAH 0.36 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 75.5
FacT 0.07 70.6 90.6 70.8 99.1 90.7 88.6 54.1 84.8 96.2 84.5 75.7 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 75.6
SSF 0.24 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 75.7

FlexLoRA 0.34 71.2 92.5 72.1 99.1 90.7 90.6 54.7 86.4 96.0 87.5 76 81.9 65.6 53.9 80.2 80.6 45.6 29.9 41.1 76.0
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