
Finite-Time Error Bounds for Distributed Linear
Stochastic Approximation

Abstract

This paper considers a novel multi-agent linear stochastic approximation algorithm1

driven by Markovian noise and general consensus-type interaction, in which each2

agent evolves according to its local stochastic approximation process which depends3

on the information from its neighbors. The interconnection structure among the4

agents is described by a time-varying directed graph. While the convergence of5

consensus-based stochastic approximation algorithms when the interconnection6

among the agents is described by doubly stochastic matrices (at least in expectation)7

has been studied, less is known about the case when the interconnection matrix is8

simply stochastic. For any uniformly strongly connected graph sequences whose9

associated interaction matrices are stochastic, the paper derives finite-time bounds10

on the mean-square error, defined as the deviation of the output of the algorithm11

from the unique equilibrium point of the associated ordinary differential equation.12

For the case of interconnection matrices being stochastic, the equilibrium point13

can be any unspecified convex combination of the local equilibria of all the agents14

in the absence of communication. Both the cases with constant and time-varying15

step-sizes are considered. In the case when the convex combination is required16

to be a straight average and interaction between any pair of neighboring agents17

may be uni-directional, so that doubly stochastic matrices cannot be implemented18

in a distributed manner, the paper proposes a push-type distributed stochastic19

approximation algorithm and provides its finite-time bounds for the performance by20

leveraging the analysis for the consensus-type algorithm with stochastic matrices.21

1 Introduction22

The use of reinforcement learning (RL) to obtain policies that describe solutions to a Markov decision23

process (MDP) in which an autonomous agent interacting with an unknown environment aims to24

optimize its long term reward is now standard [1]. Multi-agent or distributed reinforcement learning25

is useful when a team of agents interacts with an unknown environment or system and aims to26

collaboratively accomplish tasks involving distributed decision-making. Distributed here implies that27

agents exchange information only with their neighbors according to a certain communication graph.28

Recently, many distributed algorithms for multi-agent RL have been proposed and analyzed [2].29

The basic result in such works is of the type that if the graph describing the communication among30

the agents is bi-directional (and hence can be represented by a doubly stochastic matrix), then an31

algorithm that builds on traditional consensus algorithms converges to a solution in terms of policies32

to be followed by the agents that optimize the sum of the utility functions of all the agents; further,33

both finite and infinite time performance of such algorithms can be characterized [3, 4].34

This paper aims to relax the assumption of requiring bi-directional communication among agents35

in a distributed RL algorithm. This assumption is arguably restrictive and will be violated due to36

reasons such as packet drops or delays, differing privacy constraints among the agents, heterogeneous37

capabilities among the agents in which some agents may be able to communicate more often or with38

more power than others, adversarial attacks, or even sophisticated resilient consensus algorithms39

being used to construct the distributed RL algorithm. A uni-directional communication graph can40

be represented through a (possibly time-varying) stochastic – which may not be doubly stochastic –41

matrix being used in the algorithm. As we discuss in more detail below, relaxing the assumption of a42
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doubly stochastic matrix to simply a stochastic matrix in the multi-agent and distributed RL algorithms43

that have been proposed in the literature, however, complicates the proofs of their convergence and44

finite time performance characterizations. The main result in this paper is to provide a finite time45

bound on the mean square error for a multi-agent linear stochastic approximation algorithm in which46

the agents interact over a time-varying directed graph characterized by a stochastic matrix. This paper,47

thus, extends the applicability of distributed and multi-agent RL algorithms presented in the literature48

to situations such as those mentioned above where bidirectional communication at every time step49

cannot be guaranteed. As we shall see, this extension is technically challenging and requires new50

proof techniques that may be of independent interest.51

Related Work A key tool used for designing and analyzing RL algorithms is stochastic approxima-52

tion [5], e.g., for policy evaluation, including temporal difference (TD) learning as a special case [6].53

Convergence study of stochastic approximation based on ordinary differential equation (ODE) meth-54

ods has a long history [7]. Notable examples are [8,9] which prove asymptotic convergence of TD(λ).55

Recently, finite-time performance of single-agent stochastic approximation and TD algorithms has56

been studied in [10–18]; many other works have now appeared that perform finite-time analysis for57

other RL algorithms, see, e.g., [19–28], just to name a few.58

Many distributed and multi-agent reinforcement learning algorithms have now been proposed in59

the literature. In this setting, each agent can receive information only from its neighbors, and no60

single agent can solve the problem alone or by ‘taking the lead’. A backbone of almost all distributed61

RL algorithms proposed in the literature is the consensus-type interaction among the agents, dating62

back at least to [29]. Many works have analyzed asymptotic convergence of such RL algorithms63

using ODE methods [4, 30–32]. This can be viewed as an application of ideas from distributed64

stochastic approximation [33–38]. Finite-time performance guarantees for distributed RL have also65

been provided in works, most notably in [3, 39–43]. �66

The assumption that is the central concern of this paper and is made in all the existing finite-time67

analyses for distributed RL algorithms is that the consensus interaction is characterized by doubly68

stochastic matrices [3, 39–43] at every time step, or at least in expectation, i.e., W1 = 1 and69

1>E(W ) = 1> [37]. Intuitively, doubly stochastic matrices imply symmetry in the communication70

graph, which almost always requires bidirectional communication graphs. More formally, the71

assumption of doubly stochastic matrices is restrictive since distributed construction of a doubly72

stochastic matrix needs to either invoke algorithms such as the Metropolis algorithm [44] which73

requires bi-directional communication of each agent’s degree information; or to utilize an additional74

distributed algorithm [45] which significantly increases the complexity of the whole algorithm75

design. Doubly stochastic matrices in expectation can be guaranteed via so-called broadcast gossip76

algorithms which still requires bi-directional communication for convergence [37]. In a realistic77

network, especially with mobile agents such as autonomous vehicles, drones, or robots, uni-directional78

communication is inevitable due to various reasons such as asymmetric communication and privacy79

constraints, non-zero communication failure probability between any two agents at any given time,80

and application of resilient consensus in the presence of adversary attacks [46, 47], all leading to81

an interaction among the agents characterized by a stochastic matrix, which may further be time-82

varying. The problem of design of distributed RL algorithms with time-varying stochastic matrices83

and characterizing either their asymptotic convergence or finite time analysis remains open.84

As a step towards solving this problem, we propose a novel distributed stochastic approximation85

algorithm and provide its convergence analyses when a time-dependent stochastic matrix is being86

used due to uni-directional communication in a dynamic network. One of the first guarantees to be87

lost as the assumption of doubly stochastic matrices is removed is that the algorithm converges to a88

“policy” that maximizes the sum of reward functions of all the agents. Instead, the convergence is to a89

set of policies that optimize a convex combination of the network-wise accumulative reward, with90

the exact combination depending on the limit product of the infinite sequence of stochastic matrices.91

Nonetheless, by defining the error as the deviation of the output of the algorithm from the eventual92

equilibrium point, we derive finite-time bounds on the mean squared error. We consider both the93

cases with constant and time-varying step sizes. In the important special case where the goal is to94

optimize the average of the individual accumulative rewards of all the agents, we provide a distributed95

stochastic approximation algorithm, which builds on the push-sum idea [48] that has been used to96

solve distributed averaging problem over strongly connected graphs, and characterize its finite-time97

performance. Thus, this paper provides the first distributed algorithm that can be applied (e.g., in98

TD learning) to converge to the policy maximizing the team objective of the sum of the individual99

2



utility functions over time-varying, uni-directional, communication graphs, and characterizes the100

finite-time bounds on the mean squared error of the algorithm output from the equilibrium point101

under appropriate assumptions.102

Technical Innovation and Contributions There are two main technical challenges in removing103

the assumption of doubly stochastic matrices being used in the analysis of distributed stochastic104

approximation algorithms. The first is in the direction of finite-time analysis. For distributed RL105

algorithms, finite-time performance analysis essentially boils down to two parts, namely bounding106

the consensus error and bounding the “single-agent” mean-square error. For the case when consensus107

interaction matrices are all doubly stochastic, the consensus error bound can be derived by analyzing108

the square of the 2-norm of the deviation of the current state of each agent from the average of the109

states of the agents. With consensus in the presence of doubly stochastic matrices, the average of the110

states of the agents remains invariant. Thus, it is possible to treat the average value as the state of a111

fictitious agent to derive the mean-square consensus error bound with respect to the limiting point.112

More formally, this process relies on two properties of a double stochastic matrix W , namely that113

(1) 1>W = 1>, and (2) if xt+1 = Wxt, then ‖xt+1 − (1>xt+1)1‖2 ≤ σ2(W )‖xt − (1>xt)1‖2114

where σ2(W ) denotes the second largest singular value of W (which is strictly less than one if W is115

irreducible). Even if the doubly stochastic matrix is time-varying (denoted by Wt), property (1) still116

holds and property (2) can be generalized as in [49]. Thus, the square of the 2-norm ‖xt− (1>xt)1‖22117

is a quadratic Lyapunov function for the average consensus processes. Doubly stochastic matrices in118

expectation can be treated in the same way by looking at the expectation. This is the core on which119

all the existing finite-time analyses of distributed RL algorithms are based.120

However, if each consensus interaction matrix is stochastic, and not necessarily doubly stochastic, the121

above two properties may not hold. In fact, it is well known that quadratic Lyapunov functions for122

general consensus processes xt+1 = Stxt, with St being stochastic, do not exist [50]. This breaks123

down all the existing analyses and provides the first technical challenge that we tackle in this paper.124

Specifically, we appeal to the idea of quadratic comparison functions for general consensus processes.125

This was first proposed in [51] and makes use of the concept of “absolute probability sequences”. We126

provide a general analysis methodology and results that subsume the existing finite-time analyses for127

single-timescale distributed linear stochastic approximation and TD learning as special cases.128

The second technical challenge arises from the fact that with stochastic matrices, the distributed RL129

algorithms may not converge to the policies that maximize the average of the utility functions of the130

agents. To regain this property, we propose a new algorithm that utilizes a push-sum protocol for131

consensus. However, finite-time analysis for such a push-based distributed algorithm is challenging.132

Almost all, if not all, the existing push-based distributed optimization works build on the analysis133

in [52]; however, that analysis assumes that a convex combination of the entire history of the states134

of each agent (and not merely the current state of the agent) is being calculated. This assumption135

no longer holds in our case. To obtain a direct finite-time error bound without this assumption, we136

propose a new approach to analyze our push-based distributed algorithm by leveraging our consensus-137

based analyses to establish direct finite-time error bounds for stochastic approximation. Specifically,138

we tailor an “absolute probability sequence” for the push-based stochastic approximation algorithm139

and exploit its properties. Such properties have never been found in the existing literature and may be140

of independent interest for analyzing any push-sum based distributed algorithm.141

We now list the main contributions of our work. We propose a novel consensus-based distributed142

linear stochastic approximation algorithm driven by Markovian noise in which each agent evolves143

according to its local stochastic approximation process and the information from its neighbors. We144

assume only a (possibly time-varying) stochastic matrix being used during the consensus phase,145

which is a more practical assumption when only unidirectional communication is possible among146

agents. We establish both convergence guarantees and finite-time bounds on the mean-square error,147

defined as the deviation of the output of the algorithm from the unique equilibrium point of the148

associated ordinary differential equation. The equilibrium point can be an “uncontrollable” convex149

combination of the local equilibria of all the agents in the absence of communication. We consider150

both the cases of constant and time-varying step-sizes. Our results subsume the existing results on151

convergence and finite-time analysis of distributed RL algorithms that assume doubly stochastic152

matrices and bi-directional communication as special cases. In the case when the convex combination153

is required to be a straight average and interaction between any pair of neighboring agents may be154

uni-directional, we propose a push-type distributed stochastic approximation algorithm and establish155

its finite-time performance bound. It is worth emphasizing that it is straightforward to extend our156
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algorithm from the straight average point to any pre-specified convex combination. Since it is well157

known that TD algorithms can be viewed as a special case of linear stochastic approximation [8], our158

distributed linear stochastic approximation algorithms and their finite-time bounds can be applied to159

TD algorithms in a straight-forward manner.160

Notation We use Xt to represent that a variable X is time-dependent and t ∈ {0, 1, 2, . . .} is161

the discrete time index. The ith entry of a vector x will be denoted by xi and, also, by (x)i when162

convenient. The ijth entry of a matrix A will be denoted by aij and, also, by (A)ij when convenient.163

We use 1n to denote the vectors in IRn whose entries all equal to 1’s, and I to denote the identity164

matrix, whose dimension is to be understood from the context. Given a set S with finitely many165

elements, we use |S| to denote the cardinality of S. We use d·e to denote the ceiling function.166

A vector is called a stochastic vector if its entries are nonnegative and sum to one. A square167

nonnegative matrix is called a row stochastic matrix, or simply stochastic matrix, if its row sums all168

equal one. Similarly, a square nonnegative matrix is called a column stochastic matrix if its column169

sums all equal one. A square nonnegative matrix is called a doubly stochastic matrix if its row sums170

and column sums all equal one. The graph of an n× n matrix is a direct graph with n vertices and a171

directed edge from vertex i to vertex j whenever the ji-th entry of the matrix is nonzero. A directed172

graph is strongly connected if it has a directed path from any vertex to any other vertex. For a strongly173

connected graph G, the distance from vertex i to another vertex j is the length of the shortest directed174

path from i to j; the longest distance among all ordered pairs of distinct vertices i and j in G is175

called the diameter of G. The union of two directed graphs, Gp and Gq, with the same vertex set,176

written Gp ∪Gq , is meant the directed graph with the same vertex set and edge set being the union of177

the edge set of Gp and Gq. Since this union is a commutative and associative binary operation, the178

definition extends unambiguously to any finite sequence of directed graphs with the same vertex set.179

2 Distributed Linear Stochastic Approximation180

Consider a network consisting of N agents. For the purpose of presentation, we label the agents181

from 1 through N . The agents are not aware of such a global labeling, but can differentiate between182

their neighbors. The neighbor relations among the N agents are characterized by a time-dependent183

directed graph Gt = (V, Et) whose vertices correspond to agents and whose directed edges (or arcs)184

depict neighbor relations, where V = {1, . . . , N} is the vertex set and Et = V × V is the edge set185

at time t. Specifically, agent j is an in-neighbor of agent i at time t if (j, i) ∈ Et, and similarly,186

agent k is an out-neighbor of agent i at time t if (i, k) ∈ Et. Each agent can send information to its187

out-neighbors and receive information from its in-neighbors. Thus, the directions of edges represent188

the directions of information flow. For convenience, we assume that each agent is always an in- and189

out-neighbor of itself, which implies that Gt has self-arcs at all vertices for all time t. We useN i
t and190

N i−
t to denote the in- and out-neighbor set of agent i at time t, respectively, i.e.,191

N i
t = {j ∈ V : (j, i) ∈ Et}, N i−

t = {k ∈ V : (i, k) ∈ Et}.

It is clear that N i
t and N i−

t are nonempty as they both contain index i.192

We propose the following distributed linear stochastic approximation over a time-varying neighbor193

graph sequence {Gt}. Each agent i has control over a random vector θit which is updated by194

θit+1 =
∑
j∈N i

t

wijt θ
j
t + αt

(
A(Xt)

∑
j∈N i

t

wijt θ
j
t + bi(Xt)

)
, i ∈ V, t ∈ {0, 1, 2, . . .}, (1)

where wijt are consensus weights, αt is the step-size at time t, A(Xt) is a random matrix and bi(Xt)195

is a random vector, both generated based on the Markov chain {Xt} with state spaces X . It is worth196

noting that the update of each agent only uses its in-neighbors’ information and thus is distributed.197

Remark 1 The work of [33] considers a different consensus-based networked linear stochastic198

approximation as follows:199

θit+1 =
∑
j∈N i

t

wijt θ
j
t + αt

(
A(Xt)θ

i
t + bi(Xt)

)
, i ∈ V, t ∈ {0, 1, 2, . . .}, (2)

whose state form is Θt+1 = WtΘt+αtΘtA(Xt)
>+αtB(Xt), and mainly focuses on asymptotically200

weakly convergence for the fixed step-size case (i.e., αt = α for all t). Under the similar set of201
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conditions, with its condition (C3.4’) being a stochastic analogy for Assumption 6, Theorem 3.1202

in [33] shows that (2) has a limit which can be verified to be the same as θ∗, the limit of (1). How to203

apply the finite-time analysis tools in this paper to (2) has so far eluded us. The two updates (1) and204

(2) are analogous to the “combine-then-adapt” and “adapt-then-combine” diffusion strategies in205

distributed optimization [53]. �206

We impose the following assumption on the weights wijt which has been widely adopted in consensus207

literature [54–56].208

Assumption 1 There exists a constant β > 0 such that for all i, j ∈ V and t, wijt ≥ β whenever209

j ∈ N i
t . For all i ∈ V and t,

∑
j∈N i

t
wijt = 1.210

Let Wt be the N × N matrix whose ijth entry equals wijt if j ∈ N i
t and zero otherwise. From211

Assumption 1, each Wt is a stochastic matrix that is compliant with the neighbor graph Gt. Since212

each agent i is always assumed to be an in-neighbor of itself, all diagonal entries of Wt are positive.213

Thus, if Gt is strongly connected, Wt is irreducible and aperiodic. To proceed, define214

Θt =

 (θ1
t )
>

...
(θNt )>

 , B(Xt) =

 (b1(Xt))
>

...
(bN (Xt))

>

 .
Then, the N linear stochastic recursions in (1) can be combined and written as215

Θt+1 = WtΘt + αtWtΘtA(Xt)
> + αtB(Xt), t ∈ {0, 1, 2, . . .}. (3)

The goal of this section is to characterize the finite-time performance of (1), or equivalently (3), with216

the following standard assumptions, which were adopted e.g. in [3, 13].217

Assumption 2 There exists a matrix A and vectors bi, i ∈ V , such that218

lim
t→∞

E[A(Xt)] = A, lim
t→∞

E[bi(Xt)] = bi, i ∈ V.

Define bmax = maxi∈V supx∈X ‖bi(x)‖2 <∞ andAmax = supx∈X ‖A(x)‖2 <∞. Then, ‖A‖2 ≤219

Amax and ‖bi‖2 ≤ bmax, i ∈ V .220

Assumption 3 Given a positive constant α, we use τ(α) to denote the mixing time of the Markov221

chain {Xt} for which222  ‖E[A(Xt)−A|X0 = X]‖2 ≤ α, ∀X, ∀t ≥ τ(α),

‖E[bi(Xt)− bi|X0 = X]‖2 ≤ α, ∀X, ∀t ≥ τ(α), ∀i ∈ V.

The Markov chain {Xt} mixes at a geometric rate, i.e., there exists a constant C such that τ(α) ≤223

−C logα.224

Assumption 4 All eigenvalues of A have strictly negative real parts, i.e., A is a Hurwitz matrix.225

Then, there exists a symmetric positive definite matrix P , such that A>P + PA = −I . Let γmax and226

γmin be the maximum and minimum eigenvalues of P , respectively.227

Assumption 5 The step-size sequence {αt} is positive, non-increasing, and satisfies
∑∞
t=0 αt =∞228

and
∑∞
t=0 α

2
t <∞.229

To state our first main result, we need the following concepts.230

Definition 1 A graph sequence {Gt} is uniformly strongly connected if there exists a positive integer231

L such that for any t ≥ 0, the union graph ∪t+L−1
k=t Gk is strongly connected. If such an integer exists,232

we sometimes say that {Gt} is uniformly strongly connected by sub-sequences of length L.233

Remark 2 Two popular joint connectivity definitions in consensus literature are “B-connected” [57]234

and “repeatedly jointly strongly connected” [58]. A graph sequence {Gt} is B-connected if there235
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exists a positive integer B such that the union graph ∪(k+1)B−1
t=kB Gt is strongly connected for each236

integer k ≥ 0. Although the uniformly strongly connectedness looks more restrictive compared237

with B-connectedness at first glance, they are in fact equivalent. To see this, first it is easy to see238

that if {Gt} is uniformly strongly connected, {Gt} must be B-connected; now supposing {Gt} is239

B-connected, for any fix t, the union graph ∪t+2B−1
k=t Gk must be strongly connected, and thus {Gt} is240

uniformly strongly connected by sub-sequences of length 2B. Thus, the two definitions are equivalent.241

It is also not hard to show that the uniformly strongly connectedness is equivalent to “repeatedly242

jointly strongly connectedness” provided the graphs under consideration all have self-arcs at all243

vertices, as “repeatedly jointly strongly connectedness” is defined upon “graph composition”. �244

Definition 2 Let {Wt} be a sequence of stochastic matrices. A sequence of stochastic vectors {πt}245

is an absolute probability sequence for {Wt} if π>t = π>t+1Wt for all t ≥ 0.246

This definition was first introduced by Kolmogorov [59]. It was shown by Blackwell [60] that every247

sequence of stochastic matrices has an absolute probability sequence. In general, a sequence of248

stochastic matrices may have more than one absolute probability sequence; when the sequence of249

stochastic matrices is “ergodic”, it has a unique absolute probability sequence [56]. It is easy to see250

that when Wt is a fixed irreducible stochastic matrix W , πt is simply the normalized left eigenvector251

of W for eigenvalue one. More can be said.252

Lemma 1 Suppose that Assumption 1 holds. If {Gt} is uniformly strongly connected, then there253

exists a unique absolute probability sequence {πt} for the matrix sequence {Wt} and a constant254

πmin ∈ (0, 1) such that πit ≥ πmin for all i and t.255

Let 〈θ〉t =
∑N
i=1 π

i
tθ
i
t, which is a column vector and convex combination of all θit. It is easy to see256

that 〈θ〉t = (π>t Θt)
> = Θ>t πt. From Definition 2 and (3), we have257

π>t+1Θt+1 = π>t+1WtΘt + αtπ
>
t+1WtΘtA(Xt)

> + αtπ
>
t+1B(Xt)

= π>t Θt + αtπ
>
t ΘtA(Xt)

> + αtπ
>
t+1B(Xt),

which implies that258

〈θ〉t+1 = 〈θ〉t + αtA(Xt)〈θ〉t + αtB(Xt)
>πt+1. (4)

Asymptotic performance of (1) with any uniformly strongly connected neighbor graph sequence is259

characterized by the following two theorems.260

Theorem 1 Suppose that Assumptions 1, 2 and 5 hold. Let {θit}, i ∈ V , be generated by (1). If {Gt}261

is uniformly strongly connected, then limt→∞ ‖θit − 〈θ〉t‖2 = 0 for all i ∈ V .262

Theorem 1 only shows that all the sequences {θit}, i ∈ V , generated by (1) will finally reach a263

consensus, but not necessarily convergent or bounded. To guarantee the convergence of the sequences,264

we further need the following assumption, whose validity is discussed in Remark 3.265

Assumption 6 The absolute probability sequence {πt} for the stochastic matrix sequence {Wt} has266

a limit, i.e., there exists a stochastic vector π∞ such that limt→∞ πt = π∞.267

Theorem 2 Suppose that Assumptions 1–6 hold. Let {θit}, i ∈ V , be generated by (1) and θ∗ be the268

unique equilibrium point of the ODE269

θ̇ = Aθ + b, b =

N∑
i=1

πi∞b
i, (5)

where A and bi are defined in Assumption 2 and π∞ is defined in Assumption 6. If {Gt} is uniformly270

strongly connected, then all θit will converge to θ∗ both with probability 1 and in mean square.271

Remark 3 Though Assumption 6 may look restrictive at first glance, simple simulations show that the272

sequences {θit}, i ∈ V , do not converge if the assumption does not hold. It is worth emphasizing that273

the existence of π∞ does not imply the existence of limt→∞Wt, though the converse is true. Indeed,274

the assumption subsumes various cases including (a) all Wt are doubly stochastic matrices, and (b)275
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all Wt share the same left eigenvector for eigenvalue 1, which may arise from the scenario when276

the number of neighbors of each agent does not change over time [61]. An important implication277

of Assumption 6 is when the consensus interaction among the agents, characterized by {Wt}, is278

replaced by resilient consensus algorithms such as [46,47] in order to attenuate the effect of unknown279

malicious agents, the resulting dynamics of non-malicious agents, in general, will not converge,280

because the resulting interaction stochastic matrices among the non-malicious agents depend on281

the state values transmitted by the malicious agents, which can be arbitrary, and thus the resulting282

stochastic matrix sequence, in general, does not have a convergent absolute probability sequence; of283

course, in this case, the trajectories of all the non-malicious agents will still reach a consensus as284

long as the step-size is diminishing, as implied by Theorem 1. �285

We now study the finite-time performance of the proposed distributed linear stochastic approximation286

(1) for both fixed and time-varying step-size cases. Its finite-time performance is characterized by the287

following theorem.288

Let ηt = ‖πt − π∞‖2 for all t ≥ 0. From Assumption 6, ηt converges to zero as t→∞.289

Theorem 3 Let the sequences {θit}, i ∈ V , be generated by (1). Suppose that Assumptions 1–4, 6290

hold and {Gt} is uniformly strongly connected by sub-sequences of length L. Let qt and mt be the291

unique integer quotient and remainder of t divided by L, respectively. Let δt be the diameter of292

∪t+L−1
k=t Gk, δmax = maxt≥0 δt, and293

ε =

(
1 +

2bmax

Amax
− πminβ

2L

2δmax

)
(1 + αAmax)2L − 2bmax

Amax
(1 + αAmax)L, (6)

where 0 < α < min{K1,
log 2

Amaxτ(α) ,
0.1

K2γmax
}.294

1) Fixed step-size: Let αt = α for all t ≥ 0. For all t ≥ T1,295

N∑
i=1

πitE
[∥∥θit − θ∗∥∥2

2

]
≤ 2εqt

N∑
i=1

πimt
E
[∥∥θimt

− 〈θ〉mt

∥∥2

2

]
+ C1

(
1− 0.9α

γmax

)t−T1

+ C2. (7)

2) Time-varying step-size: Let αt = α0

t+1 with α0 ≥ γmax

0.9 . For all t ≥ LT2,296

N∑
i=1

πitE
[∥∥θit − θ∗∥∥2

2

]
≤ 2εqt−T2

N∑
i=1

πiLT2+mt
E
[∥∥θiLT2+mt

− 〈θ〉LT2+mt

∥∥2

2

]
+ C3

(
α0ε

qt−1
2 + αd qt−1

2 eL

)
+

1

t

(
C4 log2

( t

α0

)
+ C5

t∑
k=LT2

ηk + C6

)
. (8)

Here T1, T2,K1,K2, C1 − C6 are finite constants whose definitions are given in Appendix A.1.297

Since πit is uniformly bounded below by πmin ∈ (0, 1) from Lemma 1, it is easy to see that the above298

bound holds for each individual E[‖θit − θ∗‖22]. To better understand the theorem, we provide the299

following remark.300

Remark 4 In Appendix B.2.1, we show that both ε and (1− 0.9α
γmax

) lie in the interval (0, 1). It is easy301

to show that ε is monotonically increasing for δmax and L, monotonically decreasing for β and πmin.302

Therefore, the summands in the finite-time bound (7) for the fixed step-size case are exponentially303

decaying expect for the constant C2, which implies that lim supt→∞
∑N
i=1 π

i
tE[‖θit − θ∗‖22] ≤ C2,304

providing a constant limiting bound. From Appendix A, C2 depends on L, γmin, γmax, Amax, bmax.305

In Appendix B.2.2, we show that limt→∞
1
t

∑t
k=1 ηk = 0, which implies that the finite-time bound306

(8) for the time-varying step-size case converges to zero as t→∞.307

We next comment on 0.1 in the inequality defining α. Actually, we can replace 0.1 with any constant308

c ∈ (0, 1), which will affect the value of ε and the feasible set of α, with the latter becoming309

0 < α < min{K1,
log 2

Amaxτ(α) ,
c

K2γmax
}. Thus, the smaller the value of c is, the smaller is the310

feasible set of α, though the feasible set is always nonempty. For convenience, we simply pick c = 0.1311

in this paper; that is why we also have 0.9 in (7).312
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Lastly, we comment on α0 in the time-varying step-size case. We set α0 ≥ γmax

0.9 for the purpose of313

getting a cleaner expression of the finite-time bound. For α0 <
γmax

0.9 , our analysis approach still314

works, but will yield a more complicated expression. The same is true for Theorem 5. �315

Technical Challenge and Proof Sketch As described in the introduction, the key challenge of ana-316

lyzing the finite-time performance of the distributed stochastic approximation (1) lies in the condition317

that consensus interaction matrix is time-varying and stochastic (not necessarily doubly stochastic).318

To tackle this, we appeal to the absolute probability sequence πt of the time-varying interaction matrix319

sequence and introduce the quadratic Lyapunov comparison function
∑N
i=1 π

i
tE[‖θit − θ∗‖22]. Then,320

using the inequality
∑N
i=1 π

i
tE[‖θit−θ∗‖22] ≤ 2

∑N
i=1 π

i
tE[‖θit−〈θ〉t‖22]+2E[‖〈θ〉t−θ∗‖22], the next321

step is to find the finite-time bounds of
∑N
i=1 π

i
tE[‖θit − 〈θ〉t‖22] and E[‖〈θ〉t − θ∗‖22], respectively.322

The latter term is essentially the “single-agent” mean-square error. Our main analysis contribution323

here is to bound the former term for both fixed and time-varying step-size cases.324

3 Push-SA325

The preceding section shows that the limiting state of consensus-based distributed stochastic approxi-326

mation depends on π∞, which leads to a convex combination of the local equilibria of all the agents in327

the absence of communication, but the convex combination is in general “uncontrollable”. Note that328

this convex combination will correspond to a convex combination of the network-wise accumulative329

rewards in applications such as distributed TD learning. In an important case when the convex330

combination is desired to be the straight average, the existing literature e.g. [3, 39] relies on doubly331

stochastic matrices whose corresponding π∞ = (1/N)1N . As mentioned in the introduction, doubly332

stochastic matrices implicitly require bi-directional communication between any pair of neighboring333

agents; see e.g. gossiping [62] and the Metropolis algorithm [44]. A popular method to achieve the334

straight average target while allowing uni-directional communication between neighboring agents335

is to appeal to the idea so-called “push-sum” [48], which was tailored for solving the distributed336

averaging problem over directed graphs and has been applied to distributed optimization [52]. In this337

section, we will propose a push-based distributed stochastic approximation algorithm tailored for338

uni-directional communication and establish its finite-time error bound.339

Each agent i has control over three variables, namely yit, θ̃
i
t and θit, in which yit is scalar-valued340

with initial value 1, θ̃it can be arbitrarily initialized, and θi0 = θ̃i0. At each time t ≥ 0, each agent i341

sends its weighted current values ŵjit y
i
t and ŵjit (θ̃it + αtA(Xt)θt + αtb

i(Xt)) to each of its current342

out-neighbors j ∈ N i−
t , and updates its variables as follows:343 

yit+1 =
∑
j∈N i

t

ŵijt y
j
t , yi0 = 1,

θ̃it+1 =
∑
j∈N i

t

ŵijt

[
θ̃jt + αt

(
A(Xt)θ

j
t + bj(Xt)

)]
,

θit+1 =
θ̃it+1

yit+1

, θi0 = θ̂i0,

(9)

where ŵijt = 1/|N j−
t |. It is worth noting that the algorithm is distributed yet requires that each agent344

be aware of the number of its out-neighbors.345

Asymptotic performance of (9) with any uniformly strongly connected neighbor graph sequence is346

characterized by the following theorem.347

Theorem 4 Suppose that Assumptions 2–5 hold. Let {θit}, i ∈ V , be generated by (9) and θ∗ be the348

unique equilibrium point of the ODE349

θ̇ = Aθ +
1

N

N∑
i=1

bi, (10)

where A and bi are defined in Assumption 2. If {Gt} is uniformly strongly connected, then θit will350

converge to θ∗ in mean square for all i ∈ V .351
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In this section, we define 〈θ̃〉t = 1
N

∑N
i=1 θ̃

i
t and 〈θ〉t = 1

N

∑N
i=1 θ

i
t. To help understand these352

definitions, let Ŵt be the N ×N matrix whose ij-th entry equals ŵijt if j ∈ N i
t , otherwise equals353

zero. It is easy to see that each Ŵt is a column stochastic matrix whose diagonal entries are all354

positive. Then, πt = 1
N 1N for all t ≥ 0 can be regarded as an absolute probability sequence of {Ŵt}.355

Thus, the above two definitions are intuitively consistent with 〈θ〉t in the previous section.356

Finite-time performance of (9) with any uniformly strongly connected neighbor graph sequence is357

characterized by the following theorem.358

Let µt = ‖A(Xt)(〈θ〉t − 〈θ̃〉t)‖2. In Appendix B.3, we show that ‖〈θ〉t − 〈θ̃〉t‖2 converges to zero359

as t→∞, so does µt.360

Theorem 5 Suppose that Assumptions 2–4 hold and {Gt} is uniformly strongly connected by sub-361

sequences of length L. Let {θit}, i ∈ V , be generated by (9) with αt = α0

t+1 and α0 ≥ γmax

0.9 . Then,362

there exists a nonnegative ε̄ ≤ (1− 1
NNL )

1
L such that for all t ≥ T̄ ,363

N∑
i=1

E
[∥∥θit+1 − θ∗

∥∥2

2

]
≤ C7ε̄

t + C8

(
α0ε̄

t
2 + αd t

2 e

)
+ C9αt

+
1

t

(
C10 log2

( t

α0

)
+ C11

t∑
k=T̄

µk + C12

)
, (11)

where T̄ and C7 − C12 are finite constants whose definitions are given in Appendix A.2.364

In Appendix B.3, we show that limt→∞
1
t

∑t
k=1 µk = 0, which implies that the finite-time bound365

(11) converges to zero as t→∞. It is worth mentioning that the theorem does not consider the fixed366

step-size case, as our current analysis approach cannot be directly apply for this case.367

Proof Sketch and Technical Challenge Using the inequality
∑N
i=1 E[‖θit+1 − θ∗‖22] ≤368

2
∑N
i=1 E[‖θit+1 − 〈θ̃〉t‖22] + 2NE[‖〈θ̃〉t − θ∗‖22], our goal is to derive the finite-time bounds of369 ∑N

i=1 E[‖θit+1 − 〈θ̃〉t‖22] and E[‖〈θ̃〉t − θ∗‖22], respectively. Although this looks similar to the proof370

of Theorem 3, the derivation is quite different. First, the iteration of 〈θ̃〉t is a single-agent SA plus a371

disturbance term 〈θ〉t − 〈θ̃〉t, so we cannot directly apply the existing single-agent SA finite-time372

analyses to bound E[‖〈θ̃〉t − θ∗‖22]; instead, we have to show that 〈θ〉t − 〈θ̃〉t will diminish and373

quantify the diminishing “speed”. Second, both the proof of showing diminishing 〈θ〉t − 〈θ̃〉t and374

derivation of bounding
∑N
i=1 E[‖θit+1 − 〈θ̃〉t‖22] involve a key challenge: to prove the sequence375

{θit} generated from the Push-SA (9) is bounded almost surely. To tackle this, we introduce a376

novel way to constructing an absolute probability sequence for the Push-SA as follows. From (9),377

θit+1 =
∑N
j=1 w̃

ij
t [θjt + αtA(Xt)

θjt
yjt

+ αt
bj(Xt)

yjt
], where w̃ijt = (ŵijt y

j
t )/(

∑N
k=1 ŵ

ik
t y

k
t ). We show378

that each matrix W̃t = [w̃ijt ] is stochastic, and there exists a unique absolute probability sequence379

{π̃t} for the matrix sequence {W̃t} such that π̃it ≥ π̃min for all i ∈ V and t ≥ 0, with the con-380

stant π̃min ∈ (0, 1). Most importantly, we show two critical properties of {W̃t} and {π̃t}, namely381

limt→∞(Πt
s=0W̃s) = 1

N 1N1>N and π̃i
t

yit
= 1

N for all i, j ∈ V and t ≥ 0, which have never been382

reported in the existing literature though push-sum based algorithms have been extensively studied.383

4 Concluding Remarks384

In this paper, we have established both asymptotic and non-asymptotic analyses for a consensus-based385

distributed linear stochastic approximation algorithm over uniformly strongly connected graphs, and386

proposed a push-based variant for coping with uni-directional communication. Both algorithms and387

their analyses can be directly applied to TD learning. One limitation of our finite-time bounds is that388

they involve quite a few constants which are well defined and characterized but whose values are not389

easy to compute. Future directions include leveraging the analyses for resilience in the presence of390

malicious agents and extending the tools to more complicated RL.391
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[38] M. S. Stanković, N. Ilić, and S. S. Stanković. Distributed stochastic approximation: weak485

convergence and network design. IEEE Transactions on Automatic Control, 61(12):4069–4074,486

2016.487

[39] T. T. Doan, S. T. Maguluri, and J. Romberg. Finite-time performance of distributed temporal-488

difference learning with linear function approximation. SIAM Journal on Mathematics of Data489

Science, 3(1):298–320, 2021.490

[40] G. Wang, S. Lu, G. Giannakis, G. Tesauro, and J. Sun. Decentralized TD tracking with linear491

function approximation and its finite-time analysis. In 34th Conference on Neural Information492

Processing Systems, 2020.493

11
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