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Abstract

We present a novel framework for ε-optimally solving two-player zero-sum par-
tially observable stochastic games (zs-POSGs). These games pose a major chal-
lenge due to the absence of a principled connection with dynamic programming
(DP) techniques developed for two-player zero-sum stochastic games (zs-SGs).
Prior attempts at transferring solution methods have lacked a lossless reduc-
tion—defined here as a transformation that preserves value functions, equilib-
rium strategies, and optimality structure—thereby limiting generalisation to ad
hoc algorithms. This work introduces the first lossless reduction from zs-POSGs
to transition-independent zs-SGs, enabling the principled application of a broad
class of DP-based methods. We show empirically that point-based value iteration
(PBVI) algorithms, applied via this reduction, produce ε-optimal strategies across
a range of benchmark domains, consistently matching or outperforming existing
state-of-the-art methods. Our results open a systematic pathway for algorithmic
and theoretical transfer from SGs to partially observable settings.

1 Introduction

Bellman [1957] introduced the principle of optimality for sequential decision-making under uncer-
tainty in the 1950s, originally in the context of Markov decision processes (MDPs). Since then,
this principle has provided a foundation for solving progressively more complex problems. Shapley
[1953] extended it to zero-sum stochastic games (zs-SGs), while others adapted it to the partially
observable case, including Aström [1965], Smallwood and Sondik [1973], and Sondik [1978] for
partially observable Markov decision processes (POMDPs). More recently, a rich body of work
has applied this reduction-based methodology to partially observable stochastic games (POSGs).
For common-payoff POSGs, several approaches have successfully constructed fully observable
surrogates—typically common-payoff Markov games—thus enabling the transfer of dynamic pro-
gramming (DP) theories and algorithms without compromising optimality [Szer et al., 2005, Oliehoek
et al., 2008, 2010, Nayyar et al., 2013, Dibangoye et al., 2013a, 2016, Oliehoek, 2013, Oliehoek et al.,
2013, Lerer et al., 2020, Peralez et al., 2024, 2025]. In contrast, for zs-POSGs, although a number
of methods have been proposed [Wiggers et al., 2016, Nayyar and Gupta, 2017, Horák et al., 2017,
Horák and Bošanský, 2019, Buffet et al., 2020, Brown et al., 2020, Delage et al., 2023, Sokota et al.,
2023], none constitutes a lossless reduction [Sanjari et al., 2023]. As a consequence, generalisation
to this setting has remained restricted to ad hoc algorithmic designs, with no principled framework
for transferring DP techniques from SGs to zs-POSGs.

A lossless reduction transforms zs-POSGs into zs-SGs while satisfying three main criteria: value
preservation, equilibrium correspondence, and information structure equivalence [Sanjari et al., 2023].
Value preservation requires that the expected return of any joint policy in the original game equals
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that of its image in the reduced game. Equilibrium correspondence demands that the reduction
induce a bijection between equilibria, ensuring that Nash strategies remain valid and interpretable
across both formulations. Finally, information structure equivalence ensures that the transformation
does not introduce extraneous information or collapse distinctions essential to the players’ strategic
reasoning. Several reductions have been proposed, but all fail to satisfy one or more of these criteria.
The occupancy Markov game (OMG) assumes a centralised planner selects joint policies based
on the occupancy state—an object unobservable to either player—thus violating the equilibrium
correspondence criterion [Wiggers et al., 2016, Buffet et al., 2020, Delage et al., 2023]. To circumvent
this limitation, Delage et al. [2023] introduce policy tracking via ad hoc bookkeeping techniques.
The public-belief alternating Markov game (PuB-AMG) assumes that both players publicly commit
to their policies, which violates the equilibrium correspondence criterion [Sokota et al., 2023]. To
address this, the authors introduce a regularised minimax formulation intended to restore solution
correspondence by ensuring that strategies computed in the reduced game are interpretable in the
original zs-POSG. While the regularisation guarantees convergence to unique solutions within the
PuB-AMG, the resulting strategies may correspond to policies with high exploitability in the original
game. Although an annealing scheme can reduce this gap empirically, there is no formal guarantee
that the regularised solutions preserve value or recover exact Nash equilibria in the original zs-POSG.
As a result, the reduction does not satisfy the criteria for a lossless transformation.

Contributions. We make several key contributions to the study of zs-POSGs:

(1) A principled and lossless reduction to transition-independent zs-SGs. We introduce the
first reduction that maps any zs-POSG to a strategically equivalent transition-independent zs-SG,
preserving value, equilibrium structure, and information constraints. The reduction adopts a decen-
tralised perspective: each player independently selects a sequence of decision rules—mappings from
private histories (i.e., past actions and observations) to action distributions—defining the local state
of that player, formalised as an occupancy set. The global state of the reduced game, the occupancy
state, is the intersection of the two players’ occupancy sets, capturing the joint consistency of their
behaviours. Because each local state evolves independently of the opponent, the reduced game
exhibits transition-independent dynamics, where transitions depend only on the current local state and
selected decision rule. This reformulation preserves the strategic structure of the original zs-POSG
while enabling dynamic programming over occupancy sets—avoiding explicit reasoning over joint
policy spaces and supporting scalable, exact solution methods. The hierarchy of planners introduced
in this work—ranging from focal to marginal planners—forms a nested structure based on increasing
information availability, as illustrated in Figure 1.

Knows only the focal
policy and nothing else

Knows the opponent policy
and focal planner data

Knows public signals
and uninformed planner data

Knows opponent histories
and informed planner data

Focal planner Uninformed planner Informed planner Marginal planner

Figure 1: A planner hierarchy induced by relaxing information constraints, from the focal to the
marginal planner, supporting our theoretical and algorithmic framework.

(2) A planner hierarchy for structured reasoning. The reduced game reveals a hierarchy of
planners—ranging from a minimally informed focal planner, to increasingly informed uninformed,
informed, and finally marginal planners. Each planner defines a distinct optimisation problem,
characterised by its reasoning scope (single-agent or centralised) and its access to information (from
no observations to full access to public and private histories). While only the focal planner is ever
implemented in practice, the remaining planners serve as conceptual tools that underpin the structure
of value functions and guide the transfer of theoretical insights. Solving the reduced game requires
traversing this hierarchy: each planner contributes a well-defined subproblem whose value function
and policy are essential for constructing the overall solution to the zs-POSG.
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(3) Structural properties of value functions. The planner hierarchy reveals new structural properties
of zs-POSGs, including optimality equations, strategy selection rules, and, critically, the uniform
continuity of value functions. Uniform continuity guarantees that small changes in occupancy states
lead to uniformly bounded changes in value, regardless of where they occur in the state space. This
property enables value functions to generalise across occupancy states in a principled way, supporting
reliable planning without requiring dense sampling or finely tuned control at every point.

(4) Practical benefits through algorithmic transfer. As a concrete example of the framework in
use, we show that point-based value iteration (PBVI) [Pineau et al., 2003, Horák et al., 2017, Horák
and Bošanský, 2019], applied to the reduced game, computes ε-optimal strategies across standard
zs-POSG benchmarks, consistently matching or outperforming existing methods. More broadly,
the reduction enables the transfer of a wide class of dynamic programming algorithms—originally
developed for stochastic games—into partially observable settings, thereby expanding the set of
scalable planning tools available for zs-POSGs.

2 Preliminaries

This section presents the standard formulation of zero-sum partially observable stochastic games
(zs-POSGs), along with their associated policies and value functions.

Definition 2.1. A two-player zero-sum partially observable stochastic game M is defined as the tuple
(S,A1,A2,Z1,Z2,W, p, r , b, γ, ℓ), where players 1 and 2 are the maximising and minimising players,
respectively. S is a finite set of hidden states. A1 and A2 are finite sets of private actions, and Z1 and
Z2 are finite sets of private observations for each player. W denotes the set of public observations
available to both players. The transition function p : S×A1 ×A2 → ∆(S× Z1 × Z2 ×W) defines
the probability p(s′, z1, z2, w |s, a1, a2) of transitioning to next state s′ and emitting observations
(z1, z2, w) given current state s and actions (a1, a2). The reward function r : S × A1 × A2 → R
specifies the stage payoff r (s, a1, a2) received by player 1. The initial belief over states is given by
b ∈ ∆(S), the discount factor is γ ∈ [0, 1), and the planning horizon is finite with ℓ + 1 <∞.

Policies. At each stage t ∈ {0, ... , ℓ}, player i selects actions based on a private action-observation
history hi ,t ∈ Hi ,t

.= (Ai × Zi )t and a public observation history hpub,t ∈ Hpub,t
.= Wt , starting from

hi ,0 = ∅. A decision rule di ,t : Hi ,t × Hpub,t → ∆(Ai ) maps joint histories to distributions over
actions, with the set of all such rules denoted Di ,t . The players’ actions determine a transition to
state st+1, yield a payoff r (st , a1,t , a2,t ), and generate new observations (z1,t+1, z2,t+1, wt+1), which
update the histories recursively. A policy πi = (di ,0, ... , di ,ℓ) is a sequence of such rules; the set
of all history-dependent policies is denoted Πi . The full sets of private and public histories are
Hi = ∪ℓt=0Hi ,t and Hpub = ∪ℓt=0Hpub,t , respectively.

Value Functions. Given an initial state distribution b, the expected cumulative discounted payoff
under joint policies (π1,π2) is vπ1,π2 (b) = E[

∑ℓ
t=0 γ

t · r (st , a1,t , a2,t )], where the expectation is over
trajectories induced by b, p, and the policy pair. Player 1 seeks to maximise this value while player 2
seeks to minimise it. Under perfect recall, behavioural (history-dependent) policies are equivalent to
mixed strategies [Kuhn, 1953], and von Neumann’s minimax theorem [Neumann, 1928]—extended
to behavioral strategy spaces by Delage et al. [2023]—ensures the existence of a game value v∗(b),
satisfying v∗(b) = minπ2 maxπ1 vπ1,π2(b) = maxπ1 minπ2 vπ1,π2(b). The solution to M is a policy
π1 that maximises the guaranteed payoff against any opponent policy, i.e., minπ2 vπ1,π2(b) = v∗(b);
the symmetric holds for player 2. The corresponding pair forms a Nash equilibrium.

Lossless Reductions. A reduction from a zs-POSG M to a surrogate game M′ is said to be lossless
if it preserves value functions, supports equilibrium transfer, and maintains the relevant information
structure. This includes: (i) value preservation, i.e., vM

π1,π2
(b) = vM′

π1,π2
(b) for all joint policies; (ii)

equilibrium correspondence, meaning each Nash equilibrium in M′ induces one in M and vice versa;
and (iii) information compatibility, ensuring the reduction respects players’ original observation
constraints and decision spaces. These conditions allow exact transfer of optimality equations and
policies, while preserving the strategic essence of the original game.
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3 Reducing zs-POSGs to Transition-Independent zs-SGs

This section presents the main contribution of this work: a lossless reduction from any zs-POSG to a
strategically equivalent transition-independent zs-SG. The reduced model preserves the value function,
equilibrium structure, and information constraints of the original zs-POSG, thereby enabling the
exact transfer of dynamic programming principles and solution methods. The key insight behind this
reduction is to factor the game into local planning processes, one for each player, while maintaining
the strategic dependencies of the original interaction through a shared global state.

We reformulate the original zs-POSG as a planning process—a transition-independent zs-
SG—through two complementary perspectives. The centralised view casts it as a planning problem
executed by an uninformed planner, a hypothetical central authority that selects joint decision rules
without access to any observations. The decentralised view decomposes this process into two player-
specific focal planners, each reasoning independently over a single player’s sequence of decision rules.
This planning process unfolds stage by stage. At each time step t , the underlying global state is an
uninformed occupancy state xt : a distribution over hidden states, private action-observation histories,
and public observations, induced by the sequence of decision rules θt

.= (d1,0, d2,0, ... , d1,t−1, d2,t−1).
This global state captures the full strategic context of the game but remains unobservable to either
player. Instead, each player reasons over a local state xi ,t , defined as a player-specific occupancy
set: the collection of uninformed occupancy states consistent with their own sequence of decision
rules (di ,0, ... , di ,t−1), regardless of the opponent’s choices. Based solely on this local state, player i
selects a decision rule di ,t and transitions to the next local state τi (xi ,t , di ,t ), formed by appending the
selected rule. This decentralised process continues until the planning horizon ℓ + 1 is reached. At
each step, the environment returns an immediate payoff ρ(xt , d1,t , d2,t ) and updates the global state
via τ (xt , d1,t , d2,t ), both unobservable to the players. Crucially, each local state evolves independently
of the opponent, and the current global state satisfies {xt} = x1,t ∩ x2,t . These properties define a
structured model known as a transition-independent zero-sum stochastic game (zs-SG) , cf. Figure 2.

Hidden

xt0start xt1 xt2 ...

x1,t0 x1,t1 x1,t2

x2,t0 x2,t1 x2,t2

d1,t0 d1,t1

d2,t0 d2,t1

Time t0 t1 t2

(P)layer’s viewpoint

Goal

(P)layer’s viewpoint

Goal

τ (x , d1, d2) τ (x , d1, d2) τ (x , d1, d2)

ρ(x , d1, d2) ρ(x , d1, d2) ρ(x , d1, d2)

Figure 2: An influence diagram of a transition-independent, two-player, zero-sum stochastic game.

We first describe model Mi for each player-specific focal planner—a single-agent planner that selects
policies for player i , based only on their own decision-rule history, with no access to observations or
the opponent’s policy. This defines the least informed level of the planner hierarchy and serves as the
local computational engine underlying decentralised dynamic programming within the zs-SG.

Definition 3.1. A player-specific focal planning process Mi = (Xi ,Fi ,Di , τi , ρi ) consists of: a set
Xi of local states (occupancy sets); a set Fi ⊂ Xi of (terminal) occupancy sets at stage ℓ + 1; a set
of decision rules Di ; a local transition operator τi (xi , di ) = {τ (x , di , d−i )|x ∈ xi , d−i ∈ D−i}, and
a local payoff function, which is zero if xi ∈ Xi\Fi and ρi : xi 7→ optx∈xi

g(x) otherwise, where
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the operator opt corresponds to min for player 1 and max for player 2, and, for any uninformed
occupancy state xt+1, g(xt+1) .= E(s0,a1,0,a2,0,...,st ,a1,t ,a2,t ,st+1)∼Pr(·|xt+1)[

∑t
t′=0 γ

t′ · r (st′ , a1,t′ , a2,t′ )].

Having formalised the focal planning processes as M1 and M2, we now lift these constructions to
define the transition-independent zero-sum stochastic game M′, which governs the joint dynamics
over uninformed occupancy states and their associated objective.
Definition 3.2. A transition-independent zero-sum stochastic game (zs-SG) is a tuple M′ =
(X,F,M1,M2, τ ,φ, ρ, ℓ, γ), where X is the set of uninformed occupancy states; F ⊂ X is the
set of (terminal) uninformed occupancy states at stage ℓ + 1; τ : (x , d1, d2) 7→ x ′ is the global
transition function, that is, for all hidden states s′, private action-observation histories (hi , ai , zi ) for
player i , and public observation histories (hpub, w),

x ′(s′, (hi , ai , zi )i , (hpub, w)) =
∑

s x(s, h1, h2, hpub)p(s′, z1, z2, w |s, a1, a2)
∏

i di (ai |hi , hpub);

φ(x1, x2) = x , where {x} = x1 ∩ x2; ρ : (x , d1, d2) 7→ R is the stage-wise payoff function, given by

ρ(x , d1, d2) =
∑

s
∑

h1,h2

∑
hpub

x(s, h1, h2, hpub)
∑

a1,a2
d1(a1|h1, hpub)d2(a2|h2, hpub)r (s, a1, a2);

ℓ + 1 is the horizon and γ ∈ [0, 1) the discount factor. Each component Mi captures the planning
process from the perspective of player i , see Definition 3.1.

Having defined the transition-independent zs-SG M′, we now specify the objective of solving it.
The goal is to find policies ψ1 : X1 → D1 and ψ2 : X2 → D2 that map player-specific occupancy
sets to decision rules. These are occupancy-set dependent policies, tailored to the decentralised
structure of the reduced game. Let Ψi denote the set of such policies for player i . Given an initial
uninformed occupancy state x0 = b and initial occupancy sets x1,0 = x2,0 = {b}, the expected
cumulative discounted payoff under joint policy (ψ1,ψ2) is defined as

v ′
ψ1,ψ2

(b) .=
∑ℓ

t=0 γ
t · ρ(xt , d1,t , d2,t )|xt = φ(x1,t , x2,t ), di ,t = ψi (xi ,t ), xi ,t = τi (xi ,t−1, di ,t−1).

Player 1 seeks to maximise this quantity, while player 2 aims to minimise it. We now show that the
reduced game M′ admits a well-defined value and satisfies the minimax property, enabling us to
reason about optimal policies via standard game-theoretic principles.
Lemma 1. The reduced game M′ admits a well-defined value v ′

∗(b), which satisfies the minimax
identity: v ′

∗(b) = minψ2∈Ψ2 maxψ1∈Ψ1 v ′
ψ1,ψ2

(b) = maxψ1∈Ψ1 minψ2∈Ψ2 v ′
ψ1,ψ2

(b).

The objective in solving M′ is to compute an optimal policy ψ∗
i for each player i such that

minψ2∈Ψ2 v ′
ψ∗

1 ,ψ2
(b) = maxψ1∈Ψ1 v ′

ψ1,ψ∗
2
(b) = v ′

∗(b).

We now formally state our main theoretical result, which establishes that the reduced game satisfies
the lossless reduction criteria introduced above.
Theorem 1. The reduced game M′ constitutes a lossless reduction of the original zs-POSG M.

This reformulation preserves the strategic structure of the original zs-POSG while enabling dynamic
programming across a hierarchy of planners, avoiding explicit reasoning over joint policy spaces and
supporting scalable, ε-exact solution methods.

4 Solving Transition-Independent zs-SGs via A Hierarchy of Planners

Transition-independent zs-SGs enable value-based planning over structured state spaces induced
by sequences of decision rules selected independently by each player. This structure supports a
hierarchy of planners, from local focal planners reasoning unilaterally over a single player’s policy
to more informed marginal and central planners. While the two least-informed planners suffice to
define the reduced game, the full hierarchy enables more efficient solutions. Foundational results
in planning and reinforcement learning show that hierarchical formulations improve efficiency by
introducing abstraction, decomposition, and temporally extended reasoning [Ghallab et al., 2004,
André and Russell, 2002, Vezhnevets et al., 2017, Kaelbling and Lozano-Pérez, 2011]. Similarly,
in transition-independent zs-SGs, the planner hierarchy refines state representations—from player-
specific occupancy sets to marginal occupancy states—while preserving strategic structure and
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enabling dynamic programming. The hierarchy includes two focal planners, one per player; a central
uninformed planner blind to observations; an informed planner with access to public signals; and two
marginal planners, each aware of both policies but only one player’s private trajectory. This layered
structure underpins the analysis and algorithms presented next.

Solving a transition-independent zs-SG can be approached by solving focal planning problems, each
defined over a player-specific process Mi . These problems may be solved independently—when
computing only a safe policy for one player—or jointly, since the planners share structural components.
The objective is to compute an optimal occupancy-set dependent policy ψ∗

i that optimises the worst-
case expected return. The value of a given policy ψi from initial state xi ,0 is vi ,ψi (xi ,0) = ρi (xi ,ℓ+1),
where xi ,t = τi (xi ,t−1,ψi (xi ,t−1)). The optimal value function is then vi ,∗(xi ,0) = optψi∈Ψi

vi ,ψi (xi ,0).
The following result characterises this function through Bellman’s optimality equations.
Theorem 2. The optimal state-value function vi ,∗ : Xi → R of Mi satisfies Bellman’s optimality
equations: vi ,∗(xi ) = ρi (xi ) if xi ∈ Fi , and vi ,∗(xi ) = optdi∈Di

vi ,∗(τi (xi , di )) otherwise; with an
optimal policy given by ψ∗

i : xi 7→ arg optdi∈Di
vi ,∗(τi (xi , di )), where the optimisation operator opt

corresponds to max for player 1 and min for player 2.

Focal planners offer safe and implementable policies but are difficult to solve due to reasoning over
entire occupancy sets. We now turn to the next planner in the hierarchy: the uninformed planner.
This planner operates over individual uninformed occupancy states and, while not designed to extract
a safe policy for either player, its value function aligns with that of the focal planners. Specifically,
v1,∗(x1,0) = v2,∗(x2,0) = v∗(x0), where x0 = φ(x1,0, x2,0). Thus, computing the value of an occupancy
set can be reduced to computing the values of its constituent uninformed occupancy states.
Theorem 3. The optimal state-value function v∗ : X → R of M′ satisfies Bellman’s optimality
equations: v∗(x) = 0 if x ∈ F, and v∗(x) = maxd1∈D1 mind2∈D2 [ρ(x , d1, d2) + γv∗(τ (x , d1, d2))]
otherwise. For player i , the value of their focal planner at occupancy set xi at stage t is given by:

vi ,∗(xi ) = optx∈xi
[g(x) + γtv∗(x)], ∀xi ∈ Xi .

The uninformed planner treats all public observation histories as indistinguishable, preventing it from
leveraging structure revealed by public signals. The informed planner addresses this limitation by
reasoning separately for each realisation of public observations. It operates over informed occupancy
states ox ,hpub , which are distributions over hidden states and private action-observation histories,
induced by the uninformed occupancy state x and public observation history hpub ∈ Hpub; that
is, for any hidden state s and private histories (h1, h2) of the two players: ox ,hpub(s, h1, h2) .=
Pr(s, h1, h2|θ, hpub). Uninformed occupancy states are convex combinations of these informed states,
indexed by public observation histories. Letting eeehpub denote the one-hot vector for hpub, we have:
x =

∑
hpub∈Hpub

Pr(hpub|x) ·
(
o(x ,hpub) ⊗ eeehpub

)
, where o(x ,hpub) ⊗ eeehpub denotes a Kronecker product.

This decomposition allows the optimal value function v∗ : X → R to be computed separately for
each informed occupancy state, by selecting decision rules di ,hpub ∈ Di ,hpub for player i independently
across all public observation histories hpub.
Theorem 4. The optimal state-value function v∗ : X→ R of transition-independent zs-SG M′, as
defined by Bellman’s optimality equations in Theorem 3, is a linear map over informed occupancy
states. Specifically, if x ∈ F, then v∗(x) = 0; otherwise,

v∗(x) =
∑

hpub∈Hpub
Pr(hpub|x) maxd1,hpub∈D1,hpub

mind2,hpub∈D2,hpub
q∗(o(x ,hpub), d1,hpub , d2,hpub )

q∗(o(x ,hpub), d1,hpub , d2,hpub ) = ρ(o(x ,hpub), d1,hpub , d2,hpub ) + γv∗(τ (o(x ,hpub), d1,hpub , d2,hpub )),

where o(x ,hpub) denotes the informed occupancy state induced by (x , hpub).

While the informed planner leverages structure across public observations, it remains agnostic to
the private action-observation histories of each player. The marginal planner further refines this
reasoning by branching on one player’s private history. Specifically, for player i , the marginal
planner operates over marginal occupancy states ci ,(x ,hpub,hi ), which represent distributions over
hidden states and the opponent private histories, conditioned on the uninformed occupancy states x ,
the public observation history hpub, and the private history hi . That is, for hidden state s and opponent
private histories h−i , one has ci ,(x ,hpub,hi )(s, h−i ) = Pr(s, h−i |x , hpub, hi ). Uninformed occupancy
states can be expressed as convex combinations of these marginal states, indexed by public and
private histories. Let eeehpub and eeehi denote the one-hot vectors for hpub and hi , respectively. Then
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x =
∑

hpub
Pr(hpub|x)

∑
hi

Pr(hi |x , hpub) ·
(
ci ,(x ,hpub,hi ) ⊗ eeehpub ⊗ eeehi

)
, where ⊗ denotes the Kronecker

product. This refinement allows the marginal planner to isolate the strategic impact of private
information while maintaining a full representation of the game evolution. As such, marginal planners
are the most informed entities in the hierarchy, incorporating both public and private signals in their
reasoning. This decomposition unveils that the optimal value function v∗ : X → R is uniformly
continuous across uninformed occupancy states.

Theorem 5. The optimal state-value function v∗ : X→ R is uniformly continuous across uninformed
occupancy states. There exists a collection Γ1 of finite sets Γ2 of functions α2, each linear over
marginal occupancy states c2, such that for any uninformed occupancy state x , we have:

v∗(x) =
∑

hpub∈Hpub
Pr(hpub|x)

[
maxΓ2∈Γ1

∑
h2∈H2

Pr(h2|hpub, x) minα2∈Γ2 α2(c2,(x ,hpub,h2))
]

.

In practice, point-based methods approximate the optimal value function using a finite collection Γ1
of finite sets Γ2 of linear functions over sampled marginal occupancy states. This suffices to support
value updates and policy extraction with performance guarantees, as formalised in Section 5.

5 ε-Optimally Solving M as M′ via Point-Based Value Iteration

The hierarchy of planners offers more than structural insight—it enables practical computation. In
particular, the uniform continuity of the value function, established at the level of the marginal planner,
allows point-based representations to be leveraged without compromising ε-optimality. We exploit
this structure to solve the reduced game M′ using a point-based value iteration (PBVI) algorithm
[Pineau et al., 2003], yielding an ε-optimal solution to the original zs-POSG M. At the core of this
method is the ability to define action-value functions q∗ : X×D1 → R over uninformed occupancy
states, from which greedy decision rules are extracted via linear programming. These rules are then
used to propagate and refine value estimates. The resulting value function helps extracting a robust
focal policy whose exploitability is explicitly bounded in terms of the selected points.

To enable point-based backups, our PBVI Algorithm 1 variant samples a finite set of informed
occupancy states O′ that jointly induce a representative set of marginal occupancy states. The process
begins with the initial informed state and expands the sample set by simulating one-step forward
transitions. For each marginal state c2 ∈ C′

2, and for each focal decision rule d1 and opponent
action a2, we compute a successor marginal state τ (c2, d1, a2) and reconstruct compatible informed
states by exploiting the convex decomposition linking marginal and informed occupancy states via
public observation histories. The newly obtained marginal state is retained only if it lies farther—in
ℓ1-norm—from the current sample set than any existing point, ensuring the sample density improves
in worst-case regions. At each expansion, the marginal set grows by at most a factor of two. This
synchronized sampling yields a nested hierarchy of representative informed and marginal occupancy
states suitable for accurate, generalisable point-based value backups.

Given an uninformed occupancy state x at stage t and joint decision rules (d1, d2), the expected cu-
mulative discounted payoff under joint policies (π1,ℓ−t ,π2,ℓ−t ) is defined as qπ1,ℓ−t ,π2,ℓ−t (x , d1, d2) =
ρ(x , d1, d2)+γvπ1,ℓ−t ,π2,ℓ−t (τ (x , d1, d2)). The optimal action-value function q∗ is given by q∗(x , d1) =
mind2∈D2 [ρ(x , d1, d2) + γv∗(τ (x , d1, d2))]. The uniform continuity of v∗ ensures that q∗ generalises
across nearby uninformed occupancy states.

Corollary 1. The optimal action-value function q∗ : X×D1 → R is uniformly continuous across
uninformed occupancy states. There exists a collection Φ1 of finite sets Φ2 of functions ϕ2, each
linear over marginal occupancy states c2 and private decision rules d1. Thus, for any uninformed
occupancy state x and private decision rule d1,

q∗(x , d1) =
∑
hpub

Pr(hpub|x) max
ϕ1∈∆(Φ1)

∑
Φ2∈Φ1

ϕ1(Φ2)
∑
h2

Pr(h2|x , hpub) min
a2,ϕ2∈Φ2

ϕ2(c2,(x ,hpub,h2), d1, a2),

Point-based methods approximate the optimal action-value function using a finite collection Φ1 of
finite sets Φ2 of linear functions ϕ2 over sampled marginal occupancy states and decision rules. We
now describe how to extract a greedy decision rule for focal player 1 from the uniform continuity of
action-value function q. Thanks to the uniform continuity of this function in informed occupancy
states, this optimisation can be cast as a tractable linear program.
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Theorem 6. Let o be an informed occupancy state. Then the decision rule d1 maximising q(o, ·) can
be computed as the solution of the following linear program with:

• O(|Φ1| · |H1(o)| · |A1|) variables,

• O(|Φ1| · |Φ∗
2| · |H2(o)| · |A2|) constraints,

where Φ∗
2 denotes the largest set of linear functions within any Φ2 ∈ Φ1. The linear program is:

Maximise
∑

Φ2∈Φ1

∑
h2∈H2(o) Pr(h2|o) · υ(h2,Φ2)

Subject to
∑

a1∈A1

∑
Φ2∈Φ1

ξ1(a1,Φ2|h1) = 1, ∀h1 ∈ H1(o),

υ(h2,Φ2) ≤
∑

h1

∑
a1
ξ1(a1,Φ2|h1)

∑
s∈S ϕ2(s, h1, a1, a2) · c2,(o,h2)(s, h1),

∀Φ2,∀ϕ2 ∈ Φ2,∀a2 ∈ A2,∀h2 ∈ H2(o),
where Hi (o) denotes the finite set of private histories of player i reachable in o. The variable
ξ1(a1,Φ2|h1) encodes the probability of taking action a1 in history h1, assuming the value model Φ2
is drawn from ϕ1. The inner constraint ensures that the worst-case evaluation υ(h2,Φ2) is always
pessimistic—i.e., no matter how the opponent reacts, the value function bound holds.

This primal linear program computes solution ξ1, which induces a decision rule d1 that is robust to
all potential responses from player 2. Solving the primal linear program identifies the safest and most
effective decision rule d1 under this structure. The solution obtained from the primal linear program
can be used to improve the current estimate of the value function. The following result formalises
this improvement: the update operator raises the value at least at one informed occupancy state while
preserving or improving it elsewhere. This monotonicity ensures progress with each update, forming
the foundation of convergence guarantees in point-based dynamic programming.
Corollary 2. Let v and q be the current state- and action-value functions represented by finite
collections Γ1 of sets Γ2, and Φ1 of sets Φ2, respectively. Let o be an informed occupancy state, and
let ξ1 denote the solution of the greedy linear program from Theorem 6 at o. We define an updated
value function v ′ by augmenting Γ1 with a new set Γ2,(C′

2,ξ1) of linear functions α2,(c2) given by:

α2,(c2) =
∑

Φ2∈Φ1
argmin

α
ϕ2,a2
2 : ϕ2∈Φ2, a2∈A2

αϕ2,a2
2 (c2)

αϕ2,a2
2 (s, h1) =

∑
a1
ξ1(a1,Φ2|h1) · ϕ2(s, h1, a1, a2).

Then v ′(x) ≥ v (x) for any uninformed occupancy state x induced by C′
2, and v ′(x) > v (x) for at

least one such x if the greedy update yields a strict improvement.

To further improve scalability, we incorporate two distinct pruning strategies: one that removes
dominated elements from the set of linear functions Γ2 (cf. Algorithm 2) and another that discards
redundant informed occupancy states from the sample set O′ (cf. Algorithm 3) . Each pruning
operation introduces approximation error in the value function. While these errors can be controlled
individually, combining both strategies may lead to compounding errors and the loss of formal
performance guarantees.

We now present a bound on the exploitability of the focal policy computed by our point-based value
iteration algorithm in the finite-horizon setting of length ℓ. Given any sample set C′

2,0:ℓ, the algorithm
produces a focal policy π′

1 with estimated value v1(b). The exploitability of this policy is defined
as ε .= v1,∗(b) − minπ′

2∈Π2 vπ′
1,π′

2
(b), and quantifies the worst-case suboptimality of π′

1 against a
best-responding opponent. The exploitability decreases as the sampled set C′2,0:ℓ becomes denser
in the marginal occupancy space; in the limit, v1(b) converges to the optimal value v1,∗(b), and ε
approaches zero. The remainder of this section formalises and proves this bound. To this end, we
define the density δ as the maximum distance from any reachable marginal occupancy state to the
sample set C′2,0:ℓ; more precisely, δ .= maxt=0,...,ℓ maxc2∈C2,t minc′2∈C′2,t ∥c2 − c′

2∥1 . Let m > 0 be
a constant such that ∥r∥∞ ≤ m.
Theorem 7. For any marginal occupancy sample sets C′2,0:ℓ, the exploitability of the focal policy
obtained via PBVI and evaluated at the initial state distribution, is bounded as

ε ≤ 4mδ
(1− γ)2 · [1 + (ℓ + 1)γℓ+2 − (ℓ + 2)γℓ+1].

It is worth noticing that whenever ℓ goes to infinity, our exploitability bound is twice the error-bound
from Pineau et al. [2003] for infinite-horizon partially observable Markov decision processes.
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6 Empirical Evaluation

We evaluate our method on a suite of established benchmarks for simultaneous-move partially
observable stochastic games (POSGs): Adversarial Tiger, Competitive Tiger, Recycling, Mabc,
Matching Pennies, and three Pursuit-Evasion variants. These benchmarks are among the most
challenging in the POSG literature; see http://masplan.org/ for detailed descriptions. Several
were originally common-payoff problems and have been adapted to the competitive setting by
reversing the objective for player 2. For each benchmark, we compare three variants of our PBVI
algorithm: PBVI1 (baseline, without pruning), PBVI2, and PBVI3 (both applying the bounded
pruning scheme from Section 5). We benchmark against the HSVI implementation of Delage et al.
[2023] and the CFR+ algorithm of Tammelin [2014]. Table 3 summarises results for the most
computationally demanding horizons, reporting the final value reached by each algorithm and the
exploitability of the resulting focal policy. Full results for all tested horizons ℓ ∈ {2, 3, 4, 5, 7, 10}
are deferred to Table 3. To foster reproducibility, the full codebase, including configuration files and
experimental scripts, is available at Escudie et al. [2025].

Exploitability & ε-Optimal Values: Table 3 presents the algorithms achieving the lowest ex-
ploitability in magenta. Across all benchmarks, there always exists at least one PBVI variant that
significantly outperforms both HSVI and CFR+. Among these, PBVI3 emerges as the most reliable,
consistently yielding the lowest exploitability except for horizons ℓ ∈ {4, 5} on the Competitive
Tiger benchmark and ℓ = 7 on Mabc. Nonetheless, PBVI1 and PBVI2 also perform favourably,
outperforming both baselines in nearly every instance. Notably, CFR+ fails to scale in most cases,
running out of memory on many benchmarks, while HSVI frequently exceeds the time limit. This
behaviour reflects fundamental limitations of both methods: HSVI’s backup operator grows ex-
ponentially with the horizon ℓ, unless the problem exhibits strong structure—explaining its poor
scalability beyond small-horizon settings, with Matching Pennies being a notable exception; CFR+,
in contrast, is sensitive to the size of the history space, which explains why it performs well on
compact extensive-form games such as Matching Pennies at ℓ = 10, but fails on shallow instances
like Competitive Tiger at ℓ = 4, where the set of local histories is already large. Regarding the values
achieved, we observe only minor differences between PBVI variants, with most converging to nearly
identical solutions. Discrepancies occur primarily on the Competitive Tiger and Pursuit-Evasion
benchmarks, where the variants exhibit slightly divergent convergence behaviours.

Table 1: Snapshot of empirical results. Games are ordered by increasing planning horizon ℓ, and
within each horizon by ascending number of local histories. For each setting, we report the value
v (b) and exploitability ε. OOT indicates a timeout (2-hour limit), OOM denotes out-of-memory runs,
and ‘–’ means the exploitability budget was exceeded. Best results are highlighted in magenta.

Game (ℓ) PBVI1 PBVI2 PBVI3 HSVI [Delage et al., 2023] CFR+ [Tammelin, 2014]
v (b) ε v (b) ε v (b) ε v (b) ε v (b) ε

pursuit-evasion-2x2(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08
pursuit-evasion-3x3x2(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
pursuit-evasion-3x3x1(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
pursuit-evasion-2x2(3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06
pursuit-evasion-3x3x2(3) -22.00 0.92 -41.00 3.86 0.00 0.00 OOT 0.00 0.10
pursuit-evasion-3x3x1(3) 0.00 0.00 0.00 0.00 0.00 0.00 OOT 0.00 0.17
matching-pennies(4) 0.60 0.04 0.60 0.08 0.60 0.01 0.60 0.01 0.60 0.01
adversarial-tiger(4) -0.76 0.00 -0.76 0.00 -0.76 0.00 OOT -0.75 0.01
mabc(4) 0.11 0.00 0.11 0.00 0.11 0.00 OOT 0.11 0.00
recycling(4) 0.36 0.01 0.36 0.01 0.36 0.00 OOT 0.36 0.03
competitive-tiger(4) -0.03 0.03 -0.07 0.00 -0.05 0.03 OOT OOM
pursuit-evasion-2x2(4) -22.00 37.00 -26.00 48.00 -28.00 1.00 OOT OOM
pursuit-evasion-3x3x2(4) 0.00 95.00 -6.00 9.00 0.00 6.00 OOT OOM
pursuit-evasion-3x3x1(4) 0.00 6.00 -6.00 6.00 0.00 0.00 OOT OOM
matching-pennies(5) 0.80 0.01 0.78 0.01 0.78 0.00 0.80 0.01 0.80 0.01
adversarial-tiger(5) -0.95 0.04 -0.95 0.01 -0.95 0.00 OOT -0.95 0.03
mabc(5) 0.12 0.00 0.12 0.01 0.12 0.00 OOT 0.12 0.01
recycling(5) 0.40 0.01 0.40 0.05 0.40 0.01 OOT OOM
competitive-tiger(5) -0.06 0.01 -0.08 0.00 -0.10 0.02 OOT OOM
matching-pennies(7) 1.20 0.05 1.20 0.04 1.19 0.04 OOT 1.20 0.06
adversarial-tiger(7) -1.40 0.00 -1.40 0.09 -1.40 0.00 OOT OOM
mabc(7) 0.14 0.00 0.14 0.00 0.14 0.00 OOT OOM
recycling(7) 0.51 0.07 0.50 0.04 0.49 0.02 OOT OOM
competitive-tiger(7) -0.15 0.03 -0.17 0.04 -0.15 0.02 OOT OOM
matching-pennies(10) 1.80 – 1.80 – 1.80 – OOT 1.80 0.06
adversarial-tiger(10) -2.00 – -2.00 – -2.00 – OOT OOM
mabc(10) 0.17 – 0.18 – 0.20 – OOT OOM
recycling(10) 0.60 – 0.60 – 0.60 – OOT OOM
competitive-tiger(10) OOT -0.29 – -0.20 – OOT OOM
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Figure 3: Exploitability of PBVIk across iterations and runtime on Adversarial Tiger and Mabc
(ℓ = 5), with CFR+ for comparison. Rightmost plot shows time-to-convergence for PBVIk on Mabc.

Additional Results & Insights: We now discuss complementary insights that characterise the
empirical behaviour of our PBVI variants, see Apprendix E.2. In terms of scalability with respect to
the planning horizon ℓ, many PBVI versions remain tractable across all tested instances, including
large horizons up to ℓ = 10, without running OOT or OOM. This is enabled by the pruning heuristics
introduced in Section 5, which become essential as the naive PBVI1 variant grows increasingly
expensive. The bounded pruning mechanisms in PBVI2 and PBVI3 allow deeper backups and longer
runs, as illustrated in the first two panels of Figure 3 for the Adversarial Tiger and Mabc benchmarks
with ℓ = 5. In addition, our PBVI variants converge significantly faster than HSVI and CFR+ across
most benchmarks. The third panel of Figure 3 shows PBVI1 achieving a low-exploitability solution
substantially earlier than CFR+ on Adversarial Tiger with ℓ = 5. For further convergence statistics
and runtime comparisons, we refer the reader to Table 3 in the supplemental material. We conclude
by highlighting the trade-off introduced by pruning. Although it weakens theoretical guarantees,
the empirical gains in efficiency are substantial. As shown in the final panel of Figure 3, PBVI2
and PBVI3 solve Mabc with ℓ = 5 in a fraction of the time required by PBVI1, while maintaining
comparably low exploitability as confirmed in Table 3.

7 Conclusion

We introduced the first principled and lossless reduction from zs-POSGs to transition-independent zs-
SGs. While transition independence has been applied in common-payoff POSGs [Becker et al., 2003,
2004, Dibangoye et al., 2012, 2013b, 2014], this work is the first to extend it to adversarial games,
providing both theoretical guarantees and scalable planning methods. By exploiting a hierarchy
of planners and the uniform continuity of the value function, we developed a point-based value
iteration algorithm that operates over a structured sample of marginal and informed occupancy
states. The method supports value-function improvement via linear programming, admits an explicit
exploitability bound, and scales to challenging benchmarks previously beyond reach for dynamic
programming theory and algorithms. Our results demonstrate both the theoretical soundness and
practical viability of planning with occupancy-set dependent policies in adversarial settings with
imperfect information. Together, these contributions establish a general pathway for transferring
dynamic programming theory and algorithms from stochastic games to partially observable settings,
and offer a promising foundation for unifying the solution of cooperative, competitive, and mixed-
motive POSGs under a common framework. Such unification is groundbreaking because it dissolves
the long-standing divide between algorithmic principles across multi-agent problems, enabling a
shared planning infrastructure that can adapt flexibly to diverse strategic interactions and uncertainty
structures.

Limitations. While the linear programs generated by our method are significantly smaller than those
used in HSVI-based approaches, their size still grows with the planning horizon in the worst case,
potentially limiting scalability. Future work could explore compact representations or local update
schemes, such as regret minimisation, to mitigate this bottleneck.

Acknowledgments

This work was supported by the French National Research Agency (ANR) under projects ANR-19-
CE23-0018 (Planning and Learning to Act in Systems of Multiple Agents), ANR-19-CE23-0006
(Data and Prior: Machine Learning and Control), and ANR-21-CE23-0016 (Multi-Agent Trust

10



Decision Process for the Internet of Things). The authors also acknowledge financial support for
Erwan C. Escudie through a PhD scholarship from the University of Groningen.

References
David André and Stuart J. Russell. State abstraction for programmable reinforcement learning agents.

In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI), pages 119–125.
AAAI Press, 2002.

Karl J. Aström. Optimal control of Markov decision processes with incomplete state estimation.
Journal of Mathematical Analysis and Applications, 10:174–205, 1965.

Raphen Becker, Shlomo Zilberstein, Victor Lesser, and Claudia V. Goldman. Transition-independent
decentralized Markov decision processes. In Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 41–48, 2003.

Raphen Becker, Shlomo Zilberstein, Victor Lesser, and Claudia V. Goldman. Solving transition
independent decentralized Markov decision processes. Journal of Artificial Intelligence Research,
22:423–455, 2004.

Richard E Bellman. Dynamic Programming. Dover Publications, Incorporated, 1957.

Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep reinforcement learn-
ing and search for imperfect-information games. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

Olivier Buffet, Jilles Steeve Dibangoye, Abdallah Safidine, and Vincent Thomas. ϵ-optimally solving
zs-POSGs using Bellman’s optimality principle. Technical report, Inria Nancy Grand-Est, 2020.

Rafael F. Cunha, Jacopo Castellini, Johan Peralez, and Jilles Steeve Dibangoye. On convex optimal
value functions for POSGs. arXiv preprint arXiv:2311.09459, 2023.

Aurélien Delage, Olivier Buffet, Jilles Steeve Dibangoye, and Abdallah Saffidine. HSVI can solve
zero-sum partially observable stochastic games. Dynamic Games and Applications, pages 1–55,
2023.

Jilles Steeve Dibangoye, Christopher Amato, and Arnaud Doniec. Scaling up decentralized MDPs
through heuristic search. In Proceedings of the 28th Conference on Uncertainty in Artificial
Intelligence (UAI), pages 217–226, 2012.

Jilles Steeve Dibangoye, Christopher Amato, Olivier Buffet, and François Charpillet. Optimally
solving Dec-POMDPs as continuous-state MDPs. In Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI), pages 90–96, 2013a.

Jilles Steeve Dibangoye, Christopher Amato, Arnaud Doniec, and François Charpillet. Producing
efficient error-bounded solutions for transition independent decentralized MDPs. In Proceedings
of the 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 539–546, 2013b.

Jilles Steeve Dibangoye, Christopher Amato, Olivier Buffet, and François Charpillet. Exploiting
separability in multiagent planning with continuous-state MDPs. In Proceedings of the 13th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS). ACM, 2014.

Jilles Steeve Dibangoye, Christopher Amato, Olivier Buffet, and François Charpillet. Optimally
solving Dec-POMDPs as continuous-state MDPs. Journal of Artificial Intelligence Research, 55:
443–497, 2016.

Erwan C. Escudie, Matthia Sabatteli, Olivier Buffet, and Jilles Steeve Dibangoye. Code for
ε-Optimally Solving Two-Player Zero-Sum POSGs, 2025. URL https://git.lwp.rug.nl/e.
c.escudie/NeurIPS-2025-zs-POSG. University of Groningen, version 1.0.0, accessed October
2025.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory and Practice. Elsevier,
2004. ISBN 9781558608566.

11

https://git.lwp.rug.nl/e.c.escudie/NeurIPS-2025-zs-POSG
https://git.lwp.rug.nl/e.c.escudie/NeurIPS-2025-zs-POSG


Karel Horák and Branislav Bošanský. Solving partially observable stochastic games with public
observations. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.
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Sina Sanjari, Tamer Başar, and Serdar Yüksel. Isomorphism properties of optimality and equilibrium
solutions under equivalent information structure transformations: Stochastic dynamic games and
teams. SIAM Journal on Control and Optimization, 61(5):3102–3130, 2023.

L. S. Shapley. Stochastic games*. Proceedings of the National Academy of Sciences, 39(10):
1095–1100, 1953.

Maurice Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171–176, 1958.

Richard D. Smallwood and Edward J. Sondik. The optimal control of partially observable Markov
decision processes over a finite horizon. Operations Research, 21(5):1071–1088, 1973.

12



Samuel Sokota, Ryan D’Orazio, Chun Kai Ling, David J. Wu, J. Zico Kolter, and Noam Brown.
Abstracting imperfect information away from two-player zero-sum games. In Proceedings of
the 40th International Conference on Machine Learning (ICML), volume 202 of Proceedings of
Machine Learning Research, pages 32169–32193, 2023.

Edward J. Sondik. The optimal control of partially observable Markov decision processes over the
infinite horizon: Discounted cost. Operations Research, 12:282–304, 1978.

Daniel Szer, François Charpillet, and Shlomo Zilberstein. MAA*: A heuristic search algorithm for
solving decentralized POMDPs. In Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence (UAI), 2005.

Oskari Tammelin. Solving large imperfect information games using CFR+. CoRR, 2014.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
Proceedings of the 34th International Conference on Machine Learning (ICML), volume 70, pages
3540–3549. PMLR, 2017.

Auke J. Wiggers, Frans A. Oliehoek, and Diederik M. Roijers. Structure in the value function of
two-player zero-sum games of incomplete information. In Proceedings of the 22nd European
Conference on Artificial Intelligence (ECAI), 2016.

13



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This work introduces the first lossless reduction from zs-POSGs to transition-
independent zs-SGs, enabling the principled application of a broad class of DP-based
methods. We show empirically that point-based value iteration (PBVI) algorithms, applied
via this reduction, produce ε-optimal strategies across a range of benchmark domains,
consistently matching or outperforming existing state-of-the-art methods.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Each pruning operation introduces approximation error in the value function.
While these errors can be controlled individually, combining both strategies may lead to
compounding errors and the loss of formal performance guarantees.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]

15



Justification: The paper shall release code and data to ensure reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: the paper shall release code and data for a faithful reproduction of the main
experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: While this is primarily a planning-focused paper, we nonetheless report the
parameter settings used in our experiments for completeness and reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: While this is primarily a planning-focused paper, we reported exploitability.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides the computer resources used to conduct experiments.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper fully adheres to the NeurIPS Code of Conduct.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is primarily theoretical in nature.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: This work is primarily theoretical in nature.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Preliminaries
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Figure 4: A graphical model of a two-player zero-sum partially observable stochastic game. Each
triple z .= (z1, z2, w) comprises private and public observations. The diagram illustrates an influence
process over three stages: central nodes represent the hidden states (st ); the top and bottom rows
show the private observations and actions of players 2 and 1, respectively. Observation nodes also
include the local payoff: “+” denotes a gain for player 1, and “−” a loss for player 2. Directed
edges indicate probabilistic dependencies: actions influence transitions and observations, while
observations inform future actions. The shaded region highlights the hidden environment state from
each player’s viewpoint, emphasising the decentralised and asymmetric information structure. This
diagram captures the sequential, partially observable, and adversarial nature of zs-POSGs. The
underlying dynamics decompose into two functions, the state transition matrices {pa

ss′} and the
observation matrices {paz

s′ }, where p(s′, z|s, a) = pa
ss′ · paz

s′ .

B Reducing zs-POSGs to Transition-Independent zs-SGs

B.1 Proof of Lemma 1

Lemma 1. The reduced game M′ admits a well-defined value v ′
∗(b), which satisfies the minimax

identity: v ′
∗(b) = minψ2∈Ψ2 maxψ1∈Ψ1 v ′

ψ1,ψ2
(b) = maxψ1∈Ψ1 minψ2∈Ψ2 v ′

ψ1,ψ2
(b).

Proof. The proof shows that any occupancy-set dependent policy induces a valid behavioural strategy,
thereby enabling the application of the minimax theorem. Let ψi : xi ,t 7→ di ,t be an occupancy-set
dependent policy for player i , assigning a decision rule at each occupancy set xi ,t . This induces a
behavioural strategy πi in the extensive-form game associated with the zs-POSG. The construction
is recursive. Let xi ,0 denote the initial occupancy set induced by the prior {b}. At each stage
t = 0, ... , ℓ, define: di ,t

.= ψi (xi ,t ), and for all (hi ,t , hpub,t ) ∈ Hi ,t ×Hpub,t , define: πi (·|hi ,t , hpub,t )
.=

di ,t (·|hi ,t , hpub,t ). The next occupancy set is obtained by the deterministic transition xi ,t+1 = τi (xi ,t , di ,t ).
This construction yields a behavioural strategy πi that is fully defined across all stages, consistent
with the player’s local information, and realisable in the extensive-form game associated with the zs-
POSG. Since the game has perfect recall, the equivalence between behavioural and mixed strategies
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holds [Kuhn, 1953], and thus the minimax theorem [Neumann, 1928, Sion, 1958] applies to the
reduced game M′ by turning it into a normal-form game where actions are pure strategies–also known
as deterministic history-dependent policies [Delage et al., 2023]. This concludes the proof.

B.2 Proof of Theorem 1

Theorem 1. The reduced game M′ constitutes a lossless reduction of the original zs-POSG M.

Proof. The proof verifies that the reduced game M′ satisfies the three criteria of a lossless reduction
from the original zs-POSG M. Let (ψ1,ψ2) be a joint policy in the reduced game. The value of M′

under this policy, starting from the initial uninformed occupancy state x0 = b, is given by:

v ′
ψ1,ψ2

(b) .=
∑ℓ

t=0 γ
t · ρ(xt , d1,t , d2,t )|xt = φ(x1,t , x2,t ), di ,t = ψi (xi ,t ), xi ,t = τi (xi ,t−1, di ,t−1)

=
∑ℓ

t=0 γ
t · E(st ,a1,t ,a2,t )∼Pr(·|xt ,d1,t ,d2,t )[r (st , a1,t , a2,t )] (1)

=
∑ℓ

t=0 E(s0,...,sℓ,a1,0:ℓ,a2,0:ℓ)∼Pr(·|b,d1,0:ℓ,d2,0:ℓ)[γt · r (st , a1,t , a2,t )] (2)

=
∑ℓ

t=0 E(s0,...,sℓ,a1,0:ℓ,a2,0:ℓ)∼Pr(·|b,π1,π2)[γt · r (st , a1,t , a2,t )]
.= vπ1,π2 (b) (3)

Equations (1)–(3) follow from the definition of ρ, linearity of expectation, and the mapping πi =
(di ,0, ... , di ,ℓ) induced by ψi . This establishes value preservation.

If we let (ψ∗
1 ,ψ∗

2 ) be an optimal strategy in M′, then for any ψi ∈ Ψi ,

v ′
ψ1,ψ∗

2
(b) ≤ v ′

ψ∗
1 ,ψ∗

2
(b) ≤ v ′

ψ∗
1 ,ψ2

(b). (4)

Let ψi (xi ,t ) = di ,t , with di ,t (·|hi ,t ) = πi (·|hi ,t ), where xi ,t is the occupancy set summarising
(di ,0, ... , di ,t−1). Then, by (3) and (4), for any πi ∈ Πi ,

vπ1,π∗
2
(b) ≤ vπ∗

1 ,π∗
2
(b) ≤ vπ∗

1 ,π2 (b), (5)

which confirms equilibrium correspondence.

Conversely, any joint policy (π1,π2) in the original game induces decision-rule sequences
(di ,0, ... , di ,ℓ), which define an occupancy-set dependent policy ψi such that ψi (xi ,t ) = di ,t . By
the same construction, v ′

ψ1,ψ2
(b) = vπ1,π2(b), which ensures that all equilibria and values in the

original game are preserved in the reduced game.

Finally, the definition of admissible decision rules D̃i ,t for M′ at each stage t and player i remains
unchanged with respect to admissible decision rules for the original game M :

D̃i ,t = Di ,t . (6)

The reduction preserves the original observation structure and introduces no informational asymmetry,
ensuring that the information structure is preserved.

Combining (3), (5), and (6), we conclude that M′ is a lossless reduction of M.

C Solving Transition-Independent zs-SGs via A Hierarchy of Planners

C.1 Proof of Theorem 2

Theorem 2. The optimal state-value function vi ,∗ : Xi → R of Mi satisfies Bellman’s optimality
equations: vi ,∗(xi ) = ρi (xi ) if xi ∈ Fi , and vi ,∗(xi ) = optdi∈Di

vi ,∗(τi (xi , di )) otherwise; with an
optimal policy given by ψ∗

i : xi 7→ arg optdi∈Di
vi ,∗(τi (xi , di )), where the optimisation operator opt

corresponds to max for player 1 and min for player 2.

Proof. We prove the theorem by induction on the number of remaining stages until the planning
horizon ℓ + 1, starting from a focal occupancy set xi ,t ∈ Xi .

Base case (stage t = ℓ+1): At the final decision stage, the focal planner reaches a terminal occupancy
set xi ,ℓ+1 ∈ Fi . By definition, the expected return from this state is the terminal reward:

vi ,∗(xi ,ℓ+1) = ρi (xi ,ℓ+1),
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which matches the first part of the optimality equations.

Inductive step: Suppose Bellman’s optimality equation holds at stage t + 1 for all xi ,t+1 ∈ Xi , i.e.,

vi ,∗(xi ,t+1) =

{
ρi (xi ,t+1) if xi ,t+1 ∈ Fi ,
optdi ,t+1∈Di

vi ,∗(τi (xi ,t+1, di ,t+1)) otherwise.

Now consider stage t . The planner must choose a decision rule di ,t ∈ Di , transitioning to xi ,t+1 =
τi (xi ,t , di ,t ), and then continuing optimally from there. The value of applying the optimal continuation
policy in policy space Πi ,t from occupancy set xi ,t is:

vi ,∗(xi ,t ) = optψi ,t∈Ψi ,t
vi ,ψi ,t (xi ,t )

= optdi ,t∈Di ,t
optψi ,t+1∈Ψi ,t+1

vi ,ψi ,t+1 (τi (xi ,t , di ,t ))

= optdi ,t∈Di ,t
vi ,∗(τi (xi ,t , di ,t )),

which proves the recursive part of Bellman’s optimality equation.

Conclusion: By induction, Bellman’s optimality equations hold at all stages t = ℓ, ℓ− 1, ... , 0. The
greedy policy ψ∗

i (xi ,t ) ∈ arg optdi ,t∈Di ,t
vi ,∗(τi (xi ,t , di ,t )) selects the optimising decision rule at each

stage and is therefore optimal.

C.2 Proof of Theorem 3

Theorem 3. The optimal state-value function v∗ : X → R of M′ satisfies Bellman’s optimality
equations: v∗(x) = 0 if x ∈ F, and v∗(x) = maxd1∈D1 mind2∈D2 [ρ(x , d1, d2) + γv∗(τ (x , d1, d2))]
otherwise. For player i , the value of their focal planner at occupancy set xi at stage t is given by:

vi ,∗(xi ) = optx∈xi
[g(x) + γtv∗(x)], ∀xi ∈ Xi .

Proof. We proceed by induction on the number of remaining stages until the horizon ℓ + 1, starting
from any uninformed occupancy state x ∈ X.

Base case (t = ℓ + 1): By construction, all terminal states x ∈ F yield no further payoff. Thus, the
expected cumulative reward is zero: v∗(x) = 0, for all x ∈ F.

Inductive step: Assume that the optimal value satisfies Bellman’s equation at stage t + 1, i.e.,

v∗(x) = maxd1∈D1 mind2∈D2 [ρ(x , d1, d2)+γv∗(τ (x , d1, d2))] for all x with ℓ− t−1 stages to go.

Now consider an uninformed occupancy state x at stage t . The planner selects a joint decision rule
(d1, d2), leading deterministically to the next state τ (x , d1, d2). The expected cumulative reward is
the sum of the immediate stage return and the discounted future value:

v∗(x) = max
π1,t∈Π1,t

min
π2,t∈Π2,t

vπ1,t ,π2,t (x), (by definition)

= max
d1,t∈D1,t

max
π1,t+1∈Π1,t+1

min
d2,t∈D2,t

min
π2,t+1∈Π2,t+1

vπ1,t ,π2,t (x), (split πi ,t = (d1,t ,π1,t+1))

Delage et al. [2023, Thm. 3.2]
= max

d1,t∈D1,t

min
d2,t∈D2,t

min
π2,t+1∈Π2,t+1

max
π1,t+1∈Π1,t+1

vπ1,t ,π2,t (x), (swap min and max)

Delage et al. [2023, Thm. 3.2]
= max

d1,t∈D1,t

min
d2,t∈D2,t

max
π1,t+1∈Π1,t+1

min
π2,t+1∈Π2,t+1

vπ1,t ,π2,t (x), (swap min and max)

= max
d1,t∈D1,t

min
d2,t∈D2,t

max
π1,t+1∈Π1,t+1

min
π2,t+1∈Π2,t+1

(
ρ(x , d1, d2) + γvπ1,t+1,π2,t+1 (τ (x , d1, d2))

)
= max

d1,t∈D1,t

min
d2,t∈D2,t

(
ρ(x , d1, d2) + max

π1,t+1∈Π1,t+1

min
π2,t+1∈Π2,t+1

γvπ1,t+1,π2,t+1 (τ (x , d1, d2))
)

= max
d1,t∈D1,t

min
d2,t∈D2,t

ρ(x , d1, d2) + γv∗(τ (x , d1, d2)),

which confirms the recursive Bellman’s optimality equations for the uninformed planner.
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For each player i , recall that the value of Mi at occupancy set xi at stage t is defined as the worst-case
expected return under any possible realisation of the opponent’s strategy:

vi ,∗(xi ) = optπi ,t∈Πi ,t
vi ,πi ,t (xi ), (by definition)

= optπi ,t∈Πi ,t
ρi (xi ,ℓ+1)|xi ,ℓ+1 = τi (τi (... τi (τi (xi , di ,t ), di ,t+1) ...), di ,ℓ)

= optπi ,t∈Πi ,t
optxℓ+1∈xi ,ℓ+1

g(xℓ+1)

= optπi ,t∈Πi ,t
optxℓ+1∈τi (xi ,ℓ,di ,ℓ) g(xℓ+1)

= optπi ,t∈Πi ,t
optxℓ∈xi ,ℓ

optd−i ,ℓ∈D−i ,ℓ
g(τ (xℓ, di ,ℓ, d−i ,ℓ))

= optπi ,t∈Πi ,t
optxℓ∈xi ,ℓ

optd−i ,ℓ∈D−i ,ℓ
[g(xℓ) + γℓ · ρ(xℓ, di ,ℓ, d−i ,ℓ)]

= optπi ,t∈Πi ,t
optxℓ∈xi ,ℓ

optd−i ,ℓ∈D−i ,ℓ
[g(xℓ) + γℓ · v ′

di ,ℓ,d−i ,ℓ
(xℓ)]

= optπi ,t∈Πi ,t
optx∈xi

optπ−i ,t∈Π−i ,t
[g(x) + γt · v ′

πi ,t ,π−i ,t
(x)]. (re-arranging terms)

Observe that any two min or two max operators can be swapped freely. Moreover, a min and a
max operator can be interchanged when both appear in the innermost (rightmost) positions. With
appropriate ordering of operations, this flexibility allows arranging the optimisation operators in any
desired sequence. It then follows that:

vi ,∗(xi ) = optx∈xi
g(x) + γt optπi ,t∈Πi ,t

optπ−i ,t∈Π−i ,t
v ′
πi ,t ,π−i ,t

(x), (swap opt and opt)

= optx∈xi

[
g(x) + γtv∗(x)

]
,

where opt is min for i = 1 and max for i = 2. This concludes the connection between the focal value
function and that of the uninformed planner.

Conclusion: By induction, v∗ satisfies Bellman’s optimality equations across X, and induces the
focal planners’ values as minimax aggregations over their respective occupancy sets.

C.3 Proof of Theorem 4

Theorem 4. The optimal state-value function v∗ : X→ R of transition-independent zs-SG M′, as
defined by Bellman’s optimality equations in Theorem 3, is a linear map over informed occupancy
states. Specifically, if x ∈ F, then v∗(x) = 0; otherwise,

v∗(x) =
∑

hpub∈Hpub
Pr(hpub|x) maxd1,hpub∈D1,hpub

mind2,hpub∈D2,hpub
q∗(o(x ,hpub), d1,hpub , d2,hpub )

q∗(o(x ,hpub), d1,hpub , d2,hpub ) = ρ(o(x ,hpub), d1,hpub , d2,hpub ) + γv∗(τ (o(x ,hpub), d1,hpub , d2,hpub )),

where o(x ,hpub) denotes the informed occupancy state induced by (x , hpub).

Proof. The result follows from Theorem 3, leveraging the linearity of ρ and τ , and the fact that
uninformed occupancy states are convex combinations of informed occupancy states.

Linearity of ρ. Suppose x =
∑

hpub∈Hpub
Pr(hpub|x) ·

(
o(x ,hpub) ⊗ eeehpub

)
. Then,

ρ(x , d1, d2) .=
∑

s
∑

h1,h2

∑
hpub

x(s, h1, h2, hpub)
∑

a1,a2
d1(a1|h1, hpub)d2(a2|h2, hpub)r (s, a1, a2)

=
∑

hpub
Pr(hpub|x) · ρ(o(x ,hpub), d1,hpub , d2,hpub ),

where di ,hpub (ai |hi ) = di (ai |hi , hpub).

Linearity of τ . Let x ′ = τ (x , d1, d2), and use the same decomposition of x as above. Then:

x ′(s′, (hi , ai , zi )i , (hpub, w)) .=
∑

s x(s, h1, h2, hpub)p(s′, z1, z2, w |s, a1, a2)
∏

i di (ai |hi , hpub)
= Pr(hpub|x) · τ (o(x ,hpub), d1,hpub , d2,hpub )(s′, (hi , ai , zi )i , w).

Hence, τ (x , d1, d2) is a convex combination of next informed states.
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Linearity of v∗. From Theorem 3, we have:

v∗(x) = maxd1 mind2 [ρ(x , d1, d2) + γv∗(τ (x , d1, d2))]

=
∑

hpub
Pr(hpub|x) ·maxd1,hpub

mind2,hpub

[
ρ(o(x ,hpub), d1,hpub , d2,hpub ) + γv∗(τ (o(x ,hpub), d1,hpub , d2,hpub ))

]
=
∑

hpub
Pr(hpub|x) · v∗(o(x ,hpub)),

where the final equality holds by definition of the informed value v∗(o(x ,hpub)), by an abuse of notation,
completing the proof.

C.4 Proof of Theorem 5

Theorem 5. The optimal state-value function v∗ : X→ R is uniformly continuous across uninformed
occupancy states. There exists a collection Γ1 of finite sets Γ2 of functions α2, each linear over
marginal occupancy states c2, such that for any uninformed occupancy state x , we have:

v∗(x) =
∑

hpub∈Hpub
Pr(hpub|x)

[
maxΓ2∈Γ1

∑
h2∈H2

Pr(h2|hpub, x) minα2∈Γ2 α2(c2,(x ,hpub,h2))
]

.

Proof. The result follows from the definition of the optimal value function of the focal planner and
the convex decomposition of uninformed occupancy states x at stage t :

v∗(x) = maxπ1,ℓ−t∈Π1,ℓ−t minπ2,ℓ−t∈Π2,ℓ−t vπ1,ℓ−t ,π2,ℓ−t (x) (7)

=
∑

hpub
Pr(hpub|x) maxπ1,ℓ−t minπ2,ℓ−t vπ1,ℓ−t ,π2,ℓ−t (o(x ,hpub)) (8)

=
∑

hpub
Pr(hpub|x) maxπ1,ℓ−t

∑
h2

Pr(h2|x , hpub) minα2∈Γ2,π1,ℓ−t
α2(c2,(x ,hpub,h2)) (9)

=
∑

hpub
Pr(hpub|x) maxΓ2∈Γ1

∑
h2

Pr(h2|x , hpub) minα2∈Γ2 α2(c2,(x ,hpub,h2)). (10)

Equation (7) follows from the definition of the optimal value rooted at x . Equation (8) uses the convex
decomposition of x across informed occupancy states, that is, x =

∑
hpub

Pr(hpub|x) · (o(x ,hpub)⊗eeehpub ).
Equation (9) follows by expressing x as a convex combination over marginal occupancy states indexed
by public and private histories. Equation (10) introduces a collection Γ1 of sets Γ2,π1,ℓ−t , one for each
focal policy π1,ℓ−t . Although the space of such policies is uncountably infinite—since policies lie
in a continuum—each set Γ2,π1,ℓ−t in Equation (9) is finite, as it contains only deterministic policy
trees δ2,ℓ−t ∈ ∆2,ℓ−t . Each element α2 ∈ Γ2,π1,ℓ−t is a linear function over marginal occupancy states,
defined as α2 : (s, h1) 7→ vπ1,ℓ−t ,δ2,ℓ−t (s, h1)—we draw inspiration from the literature on partially
observable Markov decision processes [Pineau et al., 2003].

D ε-Optimally Solving M as M′ via Point-Based Value Iteration

Existing uniform continuity properties are weaker. Recent work has established various uniform
continuity properties of optimal value functions to support the design of efficient point-based oper-
ators [Wiggers et al., 2016, Delage et al., 2023, Cunha et al., 2023]. To formulate these properties
precisely, we introduce two notions associated with an uninformed occupancy state: marginals and
conditionals. For any uninformed occupancy state x , the marginal m2 of player 2 is defined as the
marginal distribution of x over private histories h2 ∈ H2 and public histories hpub ∈ Hpub:

m2(h2, hpub) =
∑

s∈S

∑
h1∈H1

x(s, (h1, h2, hpub)).

Moreover, for any x , and any pair (h2, hpub), the conditional occupancy state c2,(x ,h2,hpub) is the
marginal1 distribution over (s, h1) given (h2, hpub), such that:

c2,(x ,h2,hpub)(s, h1) =
x(s, (h1, h2, hpub))

m2(h2, hpub)
.

We write ccc2 to denote the family of such conditionals: {c2,(x ,h2,hpub) | h2 ∈ H2, hpub ∈ Hpub}, and
use ccc2⊙m2 to denote a unique uninformed occupancy state x reconstructed from this decomposition:

x(s, (h1, h2, hpub)) = c2,(x ,h2,hpub)(s, h1) ·m2(h2, hpub),

1Strictly speaking, we should have referred to marginal occupancy states as conditional occupancy states,
in line with their formal definition. Likewise, the marginal planner would be more appropriately named the
conditional planner. We will revise this terminology in the final version of the paper.
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for all s ∈ S and (h1, h2, hpub) ∈ H. We are now ready to formally present the known uniform
continuity properties.

A Bm2m2 m2

gccc2 (m2) ••

•

gccc2 (m2) ••
•

m2

v̄ (ccc2 ⊙m2)

κ∥x − ccc2 ⊙m2∥1

gccc2 (m2) •
•

•
•

Figure 5: Generalization across marginals of the value function given by a collection G =
{gccc2 , gccc2 , gccc2} of linear functions over unknown marginals. Figure A shows no generalization
on marginal m2 because m2 /∈ {m2, m2, m2}, cf. Theorem D.1. Figure B shows generalization over
unknown marginal occupancy state m2 from known marginal m2 with offset κ∥x − ccc2 ⊙m2∥1, cf.
Theorem D.2. Best viewed in color.

Theorem D.1 (Adapted from Wiggers et al. [2016]). For any arbitrary M′, the optimal value
functions v∗ defined in Theorem 4 are convex over marginals, conditioned on a fixed conditional
family. That is, there exists a collection G of linear functions over marginals such that for any
stage t and any uninformed occupancy state x = ccc2 ⊙m2, v∗(x) = maxgccc2∈G gccc2(m2), where each
gccc2 : H2 ×Hpub → R is associated with the conditional family ccc2.

Wiggers et al. [2016] provides a detailed proof of Theorem D.1, showing that if two uninformed
occupancy states share the same conditional family, value generalisation from one to the other is
possible. However, this conditional uniform continuity property does not support generalisation
across uninformed occupancy states with differing conditionals. Figure 5 (A) visualises this limitation.
To address this, Delage et al. [2023] combine the conditional property with Lipschitz continuity,
thereby enabling generalisation to previously unseen uninformed occupancy states.
Theorem D.2 (Adapted from Delage et al. [2023]). For any arbitrary M′, the optimal value functions
v∗ defined in Theorem 4 are Lipschitz continuous over uninformed occupancy states. That is, there
exists a collection G of linear functions over marginals such that, for any stage and any uninformed
occupancy state x = c̄cc2⊙m2, v∗(x) ≤ gccc2 (m2) +κ∥x−ccc2⊙m2∥1, where κ is the Lipschitz constant
associated with v∗, and gccc2 ∈ G is any function associated with the conditional family ccc2.

Despite enabling broader generalisation, Theorem D.2 suffers from loose approximations due to the
use of global Lipschitz constants—see Figure 5 (B). Furthermore, applying greedy-action selection
operators with non-linear value approximations requires evaluating exponentially many decision rules
for player 2: (v , x) 7→ argmaxd1∈D1

mind2∈D2 ρ(x , d1, d2) + γv (τ (x , d1, d2)). Delage et al. [2023]
implement such operators using linear programs with exponentially many constraints. When v is
known, a corresponding linear program takes the form:

max {υ | υ ≤ ρ(x , d1, d2) + γv (τ (x , d1, d2)), ∀d2 ∈ D2} ,

for each d1 ∈ D1, involving O(|A2||H2(x)×Hpub(x)|) constraints, where

H2(x)×Hpub(x) =
{

(h2, hpub) ∈ H2 ×Hpub | Pr(h2, hpub | x) > 0
}

.

To mitigate this burden, Delage et al. [2023] restrict attention to previously encountered (stochastic)
decision rules rather than the full decision space. Nevertheless, these limitations hinder algorithmic
efficiency and highlight the need for alternative approaches. Our uniform continuity property,
presented in Theorem 5, is strictly stronger than all previously established results, enabling seamless
generalisation across arbitrary uninformed occupancy states. Notably, prior work typically defined the
optimal value function over marginal distributions, whereas we define it over conditional distributions
of uninformed occupancy states—following the approach commonly adopted in partially observable
Markov decision processes [Smallwood and Sondik, 1973, Sondik, 1978] and decentralised variants
[Dibangoye et al., 2016]. This shift unveils markedly stronger uniform continuity properties.
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D.1 Proof of Corollary 1

Corollary 1. The optimal action-value function q∗ : X×D1 → R is uniformly continuous across
uninformed occupancy states. There exists a collection Φ1 of finite sets Φ2 of functions ϕ2, each
linear over marginal occupancy states c2 and private decision rules d1. Thus, for any uninformed
occupancy state x and private decision rule d1,

q∗(x , d1) =
∑
hpub

Pr(hpub|x) max
ϕ1∈∆(Φ1)

∑
Φ2∈Φ1

ϕ1(Φ2)
∑
h2

Pr(h2|x , hpub) min
a2,ϕ2∈Φ2

ϕ2(c2,(x ,hpub,h2), d1, a2),

Proof. The result follows from the uniform continuity of v∗ over uninformed occupancy states (cf.
Theorem 5) and the convex decomposition of such states. Starting from the definition of the optimal
action-value function: for any uninformed occupancy state x and decision rule d1,

q∗(x , d1) .= mind2∈D2 maxπ1,ℓ−t∈Π1,ℓ−t minπ2,ℓ−t∈Π2,ℓ−t qπ1,ℓ−t ,π2,ℓ−t (x , d1, d2).

Expanding the occupancy state over public observation histories hpub ∈ Hpub yields:

q∗(x , d1) = mind2

∑
hpub

Pr(hpub|x) maxπ1,ℓ−t minπ2,ℓ−t qπ1,ℓ−t ,π2,ℓ−t (o(x ,hpub), d1, d2).

Refining o(x ,hpub) over private histories h2 ∈ H2 of player 2, and defining finite set Φ2,π1,ℓ−t =
{qπ1,ℓ−t ,δ2,ℓ−t : δ2,ℓ−t ∈ ∆2,ℓ−t} of function ϕ2 linear across marginal occupancy states and decision
rules of player 1, induced by policy trees δ2,ℓ−t ∈ ∆2,ℓ−t of player 2, we obtain:

= min
d2

∑
hpub

Pr(hpub|x) max
π1,ℓ−t

∑
h2

Pr(h2|x , hpub) min
ϕ2∈Φ2,π1,ℓ−t

∑
a2

d2,hpub (a2|h2) · ϕ2(c2,(x ,hpub,h2), d1, a2).

Letting Φ1 = {Φ2,π1,ℓ−t |π1,ℓ−t ∈ Π1,ℓ−t}, and observing that d2,hpub (a2|h2) = d2(a2|h2, hpub), we can
apply Neumann [1928] to exchange the min–max ordering:

q∗(x , d1) =
∑
hpub

Pr(hpub|x) max
ϕ1∈∆(Φ1)

∑
Φ2∈Φ1

ϕ1(Φ2)
∑
h2

Pr(h2|x , hpub) min
a2,ϕ2∈Φ2

ϕ2(c2,(x ,hpub,h2), d1, a2),

which completes the proof.

D.2 Proof of Theorem 6

Theorem 6. Let o be an informed occupancy state. Then the decision rule d1 maximising q(o, ·) can
be computed as the solution of the following linear program with:

• O(|Φ1| · |H1(o)| · |A1|) variables,

• O(|Φ1| · |Φ∗
2| · |H2(o)| · |A2|) constraints,

where Φ∗
2 denotes the largest set of linear functions within any Φ2 ∈ Φ1. The linear program is:

Maximise
∑

Φ2∈Φ1

∑
h2∈H2(o) Pr(h2|o) · υ(h2,Φ2)

Subject to
∑

a1∈A1

∑
Φ2∈Φ1

ξ1(a1,Φ2|h1) = 1, ∀h1 ∈ H1(o),

υ(h2,Φ2) ≤
∑

h1

∑
a1
ξ1(a1,Φ2|h1)

∑
s∈S ϕ2(s, h1, a1, a2) · c2,(o,h2)(s, h1),

∀Φ2,∀ϕ2 ∈ Φ2,∀a2 ∈ A2,∀h2 ∈ H2(o),

where Hi (o) denotes the finite set of private histories of player i reachable in o. The variable
ξ1(a1,Φ2|h1) encodes the probability of taking action a1 in history h1, assuming the value model Φ2
is drawn from ϕ1. The inner constraint ensures that the worst-case evaluation υ(h2,Φ2) is always
pessimistic—i.e., no matter how the opponent reacts, the value function bound holds.

Proof. Corollary 1 shows that q∗(o, d1) is the maximum over concave combinations of linear
functions ϕ2, each defined over marginal occupancy states, i.e.,

q∗(o, d1) = maxϕ1∈∆(Φ1)
∑

Φ2∈Φ1
ϕ1(Φ2)

∑
h2

Pr(h2|o) mina2∈A2,ϕ2∈Φ2 ϕ2(c2,(o,h2), d1, a2).
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If we let ξ1(a1,Φ2|h1) = ϕ1(Φ2) · d1(a1|h1) encode the probability of taking action a1 in history h1,
assuming the value model is drawn from ϕ1, then:

ξ∗1 ∈ argmaxξ1∈∆(Φ1)×D1

∑
Φ2∈Φ1

∑
h2

mina2∈A2,ϕ2∈Φ2 Pr(h2|o) · ϕ1(Φ2) · ϕ2(c2,(o,h2), d1, a2).

To extract a greedy rule, we represent q∗(o, d1) as a linear objective with auxiliary variables υ(h2,Φ2)
that lower-bound the worst-case value against each opponent history and linear function, i.e.,

υ(h2,Φ2) ≤ ϕ1(Φ2) · ϕ2(c2,(o,h2), d1, a2), ∀Φ2,∀ϕ2 ∈ Φ2,∀a2 ∈ A2,∀h2 ∈ H2(o).

The linearity in d1 and marginal state structure ensures the objective and constraints remain linear,

υ(h2,Φ2) ≤
∑

h1

∑
a1
ξ1(a1,Φ2|h1)

∑
s∈S ϕ2(s, h1, a1, a2) · c2,(o,h2)(s, h1).

This yields a valid linear program whose optimum corresponds to the desired decision rule.

It is worth noting that each set Φ2 is derived from a corresponding set Γ2; that is, for every ϕν2 ∈ Φ2,
there exists a mapping ν : Z2 ×W 7→ Γ2 such that:

ϕν2 (s, h1, a1, a2) = r (s, a1, a2) + γ
∑

s′,z1,z2,w

p(s′, z1, z2, w |s, a1, a2) · ν(z2, w)(s′, (h1, z1, a1)).

Evidently, |Φ2| is exponential in the worst case, i.e., |Φ2| ∈ O(|Γ2||Z2|·|W|). To enhance scalability
when selecting greedy decision rules, one may instead optimise directly over Γ1, thereby reducing the
number of constraints from exponential to linear.
Theorem D.3. Let o be an informed occupancy state. Then the decision rule d1 that maximises
q(o, ·) can be obtained as the solution to the following linear program:

• O(|Γ1| · |H2(o)| · |A2| · |Z2| · |W|) variables,

• O(|Γ1| · |Γ∗2 | · |H2(o)| · |A2| · |Z2| · |W|) constraints,

where Γ∗2 denotes the largest value function set across all Γ2 ∈ Γ1. The linear program is:

Maximise
∑

h2∈H2(o)

fθ(h2)

Subject to
∑
Γ2∈Γ1

∑
a1∈A1

θΓ2 (a1|h1) = 1, ∀h1 ∈ H1(o)

fθ(h2) ≤
∑
Γ2∈Γ1

∑
z2∈Z2

∑
w∈W

βΓ2 (h2, a2, z2, w), ∀h2 ∈ H2(o),∀a2 ∈ A2

βΓ2 (h2, a2, z2, w) ≤
∑

a1∈A1

∑
h1∈H1

θΓ2 (a1|h1) · gΓ2,α2 (h1, h2, a1, a2, z2, w),

∀Γ2 ∈ Γ1,∀α2 ∈ Γ2,∀h2 ∈ H2(o), ∀a2 ∈ A2,∀z2 ∈ Z2,∀w ∈W

where Hi (o) is the finite set of private histories of player i reachable in o.

The variable θΓ2 (a1|h1) encodes the probability of taking action a1 at history h1, under value model
Γ2. The inner constraint ensures that fθ(h2) is a pessimistic estimate—i.e., it remains valid regardless
of how the opponent responds. This is achieved by ensuring the intermediate evaluation βΓ2 (·) is also
pessimistic—i.e., valid for all α2 ∈ Γ2. The value of following policy α2 is given by:

gΓ2,α2 : (h1, h2, a1, a2, z2, w) 7→
∑
s∈S

o(s, h1, h2) · β2(s, h1, a1, a2, z2, w),

β2 : (s, h1, a1, a2, z2, w) 7→ r (s, a1, a2) + γ
∑
s′∈S

∑
z1∈Z1

p(s′, z1, z2, w |s, a1, a2) · α2(s′, h1, a1, z1).

Proof. The proof starts with the definition of the greedy decision rule selection at informed occupancy
state o at stage t , assuming uniformly continuous value function v . Let q : (o, d1, d2) 7→ ρ(o, d1, d2)+
γv (τ (o, d1, d2)). Then, d1,o ∈ argmaxd1

mind2 q(o, d1, d2). The following holds by the application
of the uniform continuity property of the optimal value function from Theorem 5:

v (τ (o, d1, d2)) = maxΓ2∈Γ1

∑
h2,z2,a2,w Pr(h2, a2, z2, w |τ (o, d1, d2)) minα2∈Γ2 α2(c2,(τ (o,d1,d2),(h2,a2,z2,w))).
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If we replace the maxΓ2∈Γ1 by maxξ∈∆(Γ1) then there is no loss in optimality, i.e.,

= maxξ∈∆(Γ1)
∑

h2,z2,a2,w
∑

Γ2∈Γ1
minα2∈Γ2 ξ(Γ2) · Pr(h2, a2, z2, w |τ (o, d1, d2))α2(c2,(τ (o,d1,d2),(h2,a2,z2,w))).

Notice that the product rule provides us with the following relation:

Pr(s′, h1, a1, z1, h2, a2, z2, w |o, d1, d2)
= Pr(h2, a2, z2, w |τ (o, d1, d2)) · c2,(τ (o,d1,d2),(h2,a2,z2,w))(s′, h1, a1, z1)
= d1(a1|h1) · d2(a2|h2) ·

∑
s o(s, h1, h2) · p(s′, z1, z2, w |s, a1, a2).

Exploiting this insight along with the linearity of α2 yields:

v (τ (o, d1, d2)) = maxξ∈∆(Γ1)
∑

h2,z2,a2,w
∑

Γ2∈Γ1
minα2∈Γ2∑

s,s′,h1,a1,z1
ξ(Γ2) · α2(s′, h1, a1, z1) · d1(a1|h1) · d2(a2|h2)·

o(s, h1, h2) · p(s′, z1, z2, w |s, a1, a2).

Define the following two intermediate functions gΓ2,α2 and β2

gΓ2,α2 : (h1, h2, a1, a2, z2, w) 7→
∑

s∈S o(s, h1, h2) · β2(s, h1, a1, a2, z2, w)

β2(s, h1, a1, a2, z2, w) .= r (s, a1, a2) + γ
∑

s′∈S

∑
z1∈Z1

p(s′, z1, z2, w |s, a1, a2) · α2(s′, h1, a1, z1).

Consequently, the action value can be rewritten as follows:

q(o, d1, d2) = maxξ∈∆(Γ1)
∑

h2,a2
d2(a2|h2)

∑
Γ2∈Γ1

ξ(Γ2)∑
z2,w

min
α2∈Γ2

∑
h1,a1

d1(a1|h1) · gΓ2,α2 (h1, h2, a1, a2, z2, w).

Let us define the decision variable θΓ2 (a1|h1) .= d1(a1|h1) · ξ(Γ2) then our greedy decision rule is the
solution of the following maximin optimisation problem:

maxθ mind2

∑
h2,a2

d2(a2|h2)
∑

Γ2∈Γ1

∑
z2,w minα2∈Γ2

∑
h1,a1

θΓ2 (a1|h1) · gΓ2,α2 (h1, h2, a1, a2, z2, w).

Using Wald’s maximin model we can convert this maximin optimisation problem into a maximisation
mathematical program, i.e.,

Maximise
∑

h2∈H2(o) fθ(h2)

Subject to
∑

Γ2∈Γ1

∑
a1∈A1

θΓ2 (a1|h1) = 1, ∀h1 ∈ H1(o)

fθ(h2) ≤
∑

Γ2∈Γ1

∑
z2∈Z2

∑
w∈W βΓ2 (h2, a2, z2, w), ∀h2 ∈ H2(o), ∀a2 ∈ A2

βΓ2 (h2, a2, z2, w) ≤
∑

a1∈A1

∑
h1∈H1

θΓ2 (a1|h1) · gΓ2,α2 (h1, h2, a1, a2, z2, w),

∀Γ2 ∈ Γ1,∀α2 ∈ Γ2,∀h2 ∈ H2(o), ∀a2 ∈ A2,∀z2 ∈ Z2,∀w ∈W

Then, the solutin of the linear program in the theorem is the greedy decision rule of the focal player,
which ends the proof.

D.3 Proof of Corollary 2

Corollary 2. Let v and q be the current state- and action-value functions represented by finite
collections Γ1 of sets Γ2, and Φ1 of sets Φ2, respectively. Let o be an informed occupancy state, and
let ξ1 denote the solution of the greedy linear program from Theorem 6 at o. We define an updated
value function v ′ by augmenting Γ1 with a new set Γ2,(C′

2,ξ1) of linear functions α2,(c2) given by:

α2,(c2) =
∑

Φ2∈Φ1
argmin

α
ϕ2,a2
2 : ϕ2∈Φ2, a2∈A2

αϕ2,a2
2 (c2)

αϕ2,a2
2 (s, h1) =

∑
a1
ξ1(a1,Φ2|h1) · ϕ2(s, h1, a1, a2).

Then v ′(x) ≥ v (x) for any uninformed occupancy state x induced by C′
2, and v ′(x) > v (x) for at

least one such x if the greedy update yields a strict improvement.

Proof. We are given that the value function v is represented by a collection Γ1 of finite sets Γ2, where
each Γ2 contains functions linear over marginal occupancy states. Let o be an informed occupancy
state and ξ1 the greedy decision rule obtained by solving the linear program in Theorem 6 at o.
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We define a new set of linear functions Γ2,(C′
2,ξ1) supported on the sampled marginal states C′

2. For
each c2 ∈ C′

2, define the linear function

α2,(c2) =
∑

Φ2∈Φ1
argmin

α
ϕ2,a2
2 : ϕ2∈Φ2, a2∈A2

αϕ2,a2
2 (c2)

αϕ2,a2
2 (s, h1) =

∑
a1
ξ1(a1,Φ2|h1) · ϕ2(s, h1, a1, a2).

These functions satisfy the constraints of the linear program at o and define a new set Γ2,(C′
2,ξ1). We

then update the value function by setting

Γ′1 = Γ1 ∪
{
Γ2,(C′

2,ξ1)

}
.

Let v ′ be the value function induced by Γ′1, and fix an uninformed occupancy state x such that all the
marginal states c2,(x ,hpub,h2) involved in its convex decomposition lie in C′

2. Then, by construction of
improved state-value function v ′,

v ′(x) = maxΓ2∈Γ′
1

∑
hpub

Pr(hpub|x)
∑

h2
Pr(h2|hpub, x) minα2∈Γ2 α2(c2,(x ,hpub,h2)).

Since we have added a new set of functions that are constructed to satisfy the linear program
constraints at o, this new maximum is at least as large as before. Thus,

v ′(x) ≥ v (x).

Finally, if the greedy linear program solution ξ1 at o strictly improves the linear program objective
compared to the current value function v , then there exists at least one marginal occupancy state
c2 ∈ C′

2 where the new linear function yields strictly higher value than all previous ones. This yields:

v ′(x) > v (x)

for some x whose decomposition includes that c2.

D.4 Algorithms

Algorithm 1 PBVI for M′ (resp. M).
function PBVI()
Initialise C2,0:ℓ, O0:ℓ.
Initialise Γ1,t ← ∅ for all t ∈ {0, ... , ℓ}.
while has not converged do

for t = ℓ, ... , 0 do
improve(Γ1,t ).

end for
for t = 0, ... , ℓ do

(C2,t ,Ot )← expand(C2,t ,Ot ).
end for

end while

function improve(Γ1,t+1)
for o ∈ Ot do
ξ1 ← LP(Γ1,t+1, o)
Γ1,t ← Γ1,t ∪ {Γ2,t ,(C2,ξ1)}

end for

Algorithm 2 Bounded Pruning.

function BoundedPruning(Γ1,O′)
for Γ2 ∈ Γ1 do
refCount(Γ2)← 0.

end for
for o ∈ O′ do
Γ2,o ← argmaxΓ2∈Γ1

∑
h2

Pr(h2|o) minα2∈Γ2 α2(c2,(o,h2))
refCount(Γ2,o)← refCount(Γ2,o) + 1

end for
return {Γ2 ∈ Γ1 | refCount(Γ2) > 0}
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Algorithm 3 Redundant Informed Occupancy State Pruning.

function PruneStates(O′, Γ1, ϵ)
Initialise O◦ ← ∅
for o ∈ O′ do
Γ2,o ← argmaxΓ2∈Γ1

∑
h2

Pr(h2|o) minα2∈Γ2 α2(c2,(o,h2))
end for
for o ∈ O′ do
isRedundant← false
for o′ ∈ O◦ do

if |
∑

h2
Pr(h2|o) minα2∈Γ2,o α2(c2,(o,h2))−

∑
h2

Pr(h2|o) minα2∈Γ2,o′ α2(c2,(o,h2))| ≤ ϵ then
isRedundant← true and break

end if
end for
if ¬isRedundant then
O◦ ← O◦ ∪ {o}

end if
end for
return O◦

D.5 Proof of Theorem 7

Theorem 7. For any marginal occupancy sample sets C′2,0:ℓ, the exploitability of the focal policy
obtained via PBVI and evaluated at the initial state distribution, is bounded as

ε ≤ 4mδ
(1− γ)2 · [1 + (ℓ + 1)γℓ+2 − (ℓ + 2)γℓ+1].

Proof. Let π1 be an optimal focal policy with value v1,∗(b). Let (x0, ... , xℓ) denote the sequence of
uninformed occupancy states induced by π1 and the opponent policy π2, for which PBVI yields the
worst estimate. Let (x ′

0, ... , x ′
ℓ) be the closest sequence of uninformed occupancy states to (x0, ... , xℓ)

in ℓ1-norm, induced by the sampled marginal set C′
2,0:ℓ. As a consequence, the following inequality

holds ∥xt − x ′
t ∥1 ≤ δ for any stage t . Let v1 be the approximate value function, and π′

1 the induced
focal policy computed by PBVI over C′

2,0:ℓ. Let v∗ and v be the value functions induced by pairs
of behavioural strategies, each linear over uninformed occupancy states, such that v∗(b) = v1,∗(b)
and v (b) = v1(b), respectively. These functions always exist for a fixed joint policy, e.g., v∗ = vπ1,π2 .
Then,

ε
.= v1,∗(b)−minπ′

2∈Π2 vπ′
1,π′

2
(b)

= v1,∗(b)−v1(b) + v1(b)−minπ′
2∈Π2 vπ′

1,π′
2
(b) (adding zero).

Since the values of the focal and uninformed planners coincide at the initial state distribution, i.e.,
v1,∗(b) = v∗(x0) and v1(b) = v (x0), we have:

v1,∗(b)− v1(b) = v∗(x0)− v (x0)

=
(∑ℓ

t=0 γ
t · ρ(xt , d1,t , d2,t )

)
− v (x0) (by definition)

=
(∑ℓ

t=0 γ
t · ρ(xt , d1,t , d2,t )

)
−
∑ℓ

t=1 γ
t (v (xt )− v (xt ))− v (x0) (adding zero).

Using the convention vℓ+1(·) .= 0, we rearrange terms:

=
∑ℓ

t=0 γ
t · ρ(xt , d1,t , d2,t ) +

(
γℓ+1v (xℓ+1) +

∑ℓ
t=1 γ

tv (xt )
)
−
(
γ0v (x0) +

∑ℓ
t=1 γ

tv (xt )
)

=
∑ℓ

t=0 γ
t · ρ(xt , d1,t , d2,t ) +

∑ℓ
t=0 γ

t+1v (xt+1)−
∑ℓ

t=0 γ
tv (xt )

=
∑ℓ

t=0 γ
t (ρ(xt , d1,t , d2,t ) + γv (xt+1)− v (xt ))

=
∑ℓ

t=0 γ
t (q(xt , d1,t , d2,t )− v (xt )) .
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Now substitute x ′
t in place of xt :

=
∑ℓ

t=0 γ
t (q(xt , d1,t , d2,t )−q(xt , d1,t , d2,t ) + q(xt , d1,t , d2,t )− v (xt ))

=
∑ℓ

t=0 γ
t (q(xt , d1,t , d2,t )− q(x ′

t , d1,t , d2,t ) + q(x ′
t , d1,t , d2,t )− v (xt )) .

Because the greedy rule for q(x ′
t , ·, ·) achieves value v (x ′

t ), we have:

≤
∑ℓ

t=0 γ
t (q(xt , d1,t , d2,t )− q(x ′

t , d1,t , d2,t ) + v (x ′
t )− v (xt ))

=
∑ℓ

t=0 γ
t (q(xt , d1,t , d2,t )− v (xt )− q(x ′

t , d1,t , d2,t ) + v (x ′
t ))

=
∑ℓ

t=0 γ
t (q(·, d1,t , d2,t )− v (·)) · (xt − x ′

t ).

Applying Hölder’s inequality, using the definition of δ, and the fact that r is bounded:

v1,∗(b)− v1(b) ≤
∑ℓ

t=0 γ
t · ∥q(·, d1,t , d2,t )− v (·)∥∞ · ∥xt − x ′

t ∥1

≤ δ
∑ℓ

t=0 γ
t · ∥q(·, d1,t , d2,t )− v (·)∥∞

≤ 2mδ
∑ℓ

t0=0 γ
t0
∑ℓ

t1=t0 γ
t1−t0 , (q and v being linear across xt )

= 2mδ
∑ℓ

t0=0
∑ℓ

t1=t0 γ
t1

= 2mδ
∑ℓ

t0=0
γ t0−γℓ+1

1−γ

= 2mδ
1−γ

∑ℓ
t0=0(γt0 − γℓ+1)

= 2mδ
(1−γ)2

[
1 + (ℓ + 1)γℓ+2 − (ℓ + 2)γℓ+1

]
.

A similar argument yields for this part v1(b) − minπ′
2∈Π2 vπ′

1,π′
2
(b). Let π2 be a best-response to

the focal policy π′
1 induced by v1(b). Let vπ′

1,∗ and vπ′
1

be the value functions induced by the
pairs of behavioural strategies, each linear over uninformed occupancy states, such that vπ′

1,∗(b) =
minπ′

2∈Π2 vπ′
1,π′

2
(b) and vπ′

1
(b) = v1(b), respectively.

v1(b)−minπ′
2∈Π2 vπ′

1,π′
2
(b) = vπ′

1
(x0)− vπ′

1,∗(x0).

Let (x0, ... , xℓ) denote the sequence of uninformed occupancy states induced by π′
1 and the selected

best-response π2. Let x ′
0, ... , x ′

ℓ) be the closezt sequence of uninformed occupancy states to (x0, ... , xℓ)
in ℓ1-norm, induced by the sampled marginal set C′

2,0:ℓ. Then, it follows that:

= vπ′
1
(x0)− (

∑ℓ
t=0 γ

t · ρ(xt , d1,t , d2,t )), (by Definition)

= vπ′
1
(x0) +

∑ℓ
t=1 γ

t · (vπ′
1
(xt )− vπ′

1
(xt ))− (

∑ℓ
t=0 γ

t · ρ(xt , d1,t , d2,t )), (adding zero).

Using the convention vπ′
1
(xℓ+1) .= 0, we rearrange terms:

= (vπ′
1
(x0) +

∑ℓ
t=1 γ

t · vπ′
1
(xt ))− (γℓ+1 · vπ′

1
(xℓ+1) +

∑ℓ
t=1 γ

t · vπ′
1
(xt ))− (

∑ℓ
t=0 γ

t · ρ(xt , d1,t , d2,t ))

=
∑ℓ

t=0 γ
t · vπ′

1
(xt )−

∑ℓ
t=0 γ

t · γvπ′
1
(xt+1)−

∑ℓ
t=0 γ

t · ρ(xt , d1,t , d2,t )

=
∑ℓ

t=0 γ
t · (vπ′

1
(xt )− γvπ′

1
(xt+1)− ρ(xt , d1,t , d2,t ))

=
∑ℓ

t=0 γ
t · (vπ′

1
(xt )− [ρ(xt , d1,t , d2,t ) + γvπ′

1
(xt+1)])

=
∑ℓ

t=0 γ
t · (vπ′

1
(xt )− qπ′

1
(xt , d1,t , d2,t )), (by Definition)

=
∑ℓ

t=0 γ
t · (vπ′

1
(xt )− qπ′

1
(xt , d1,t , d2,t )− qπ′

1
(x ′

t , d1,t , d2,t ) + qπ′
1
(x ′

t , d1,t , d2,t )), (adding zero).

Because the greedy rules in qπ′
1
(x ′

t , d1,t , d2,t ) achieves value vπ′
1
(x ′

t ), we have:

≤
∑ℓ

t=0 γ
t · (vπ′

1
(xt )− qπ′

1
(xt , d1,t , d2,t )− qπ′

1
(x ′

t , d1,t , d2,t ) + vπ′
1
(x ′

t )), (adding zero)

=
∑ℓ

t=0 γ
t · ([vπ′

1
(xt )− qπ′

1
(xt , d1,t , d2,t )]− [vπ′

1
(x ′

t )− qπ′
1
(x ′

t , d1,t , d2,t )])

=
∑ℓ

t=0 γ
t · (vπ′

1
(·)− qπ′

1
(·, d1,t , d2,t )) · (xt − x ′

t ).
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Applying Hölder’s inequality, using the definition of δ, and the fact that r is bounded:

v1(b)−minπ′
2∈Π2 vπ′

1,π′
2
(b) ≤

∑ℓ
t=0 γ

t · ∥vπ′
1
(·)− qπ′

1
(·, d1,t , d2,t )∥∞ · ∥xt − x ′

t ∥1

≤ δ
∑ℓ

t=0 γ
t · ∥vπ′

1
(·)− qπ′

1
(·, d1,t , d2,t )∥∞

≤ 2mδ
∑ℓ

t0=0 γ
t0
∑ℓ

t1=t0 γ
t1−t0

= 2mδ
∑ℓ

t0=0
∑ℓ

t1=t0 γ
t1

= 2mδ
∑ℓ

t0=0
γ t0−γℓ+1

1−γ

= 2mδ
1−γ

∑ℓ
t0=0 γ

t0 − γℓ+1

= 2mδ
(1−γ)2 [1 + (ℓ + 1)γℓ+2 − (ℓ + 2)γℓ+1].

Combining both bounds gives the final exploitability guarantee and concludes the proof.

While it is theoretically sufficient to define a focal policy by computing values over the entire set
of uninformed occupancy states, this approach is often impractical due to the exponential growth
of that set with the horizon. To address this, we construct a worst-case trajectory through the
uninformed occupancy space by solving a sequence of linear programs. At each step, the primal LP
from Theorem 6 provides a greedy decision rule for the focal player. To complete the picture, we
require a dual LP that identifies a worst-case response for the opponent, certifying the pessimism
constraints that underpin the primal solution. This primal–dual pair induces a compact trajectory of
uninformed occupancy states along which a focal policy can be explicitly extracted. The corollary
below formalises the dual program that supports this construction.
Corollary D.4. Let o be an informed occupancy state. Then the pessimistic evaluation q(o, ·),
defined in Theorem 6, can equivalently be computed by solving the following linear program with:

• O(|Φ1| · |Φ∗
2| · |H2(o)| · |A2|) variables,

• O(|Φ1| · |H1(o)| · |A1|) constraints,

where |Φ∗
2|

.= maxΦ2∈Φ1 |Φ2|. The dual linear program is:
Minimise

∑
h2∈H2(o) Pr(h2 | o) · u(h2,Φ2)

Subject to
∑

Φ2∈Φ1

∑
ϕ2∈Φ2

∑
a2∈A2

λ(Φ2,ϕ2, h2, a2) = 1, ∀h2 ∈ H2(o),

u(h2,Φ2) ≥
∑
ϕ2∈Φ2

∑
a2∈A2

λ(Φ2,ϕ2, h2, a2)
∑

s∈S ϕ2(s, h1, a1, a2) · c2,(o,h1)(s, h2),

∀Φ2 ∈ Φ1, ∀h1 ∈ H1(o),∀a1 ∈ A1.
The variable λ(Φ2,ϕ2, h2, a2) ∈ [0, 1] represents the conditional probability of model–action pair
(ϕ2, a2) under value model set Φ2 and private history h2. The variable u(h2,Φ2) upper-bounds
the expected value of Player 1’s return under the induced model Φ2. The normalisation constraint
ensures that for each h2, the conditional distribution λ(· | h2) is valid. This dual program reflects the
adversary’s strategy: choosing a worst-case model-action distribution per private history h2 that
maximises cost to Player 1 while respecting model uncertainty through Φ2 ∈ Φ1.

Proof. The proof follows directly from the proof for the primal linear program, see Theorem 6.

E Experiments

E.1 Benchmarks

We evaluate our approach on several competitive benchmark problems, adapted from standard
multi-agent settings. Their key characteristics are summarised in Table 2.

Multi-Agent Recycling. In the original cooperative version, two robots must clean a room rep-
resented as a grid by emptying garbage cans. Each robot has limited battery life and a restricted
view of the environment, including limited observability of the other robot. Coordination is therefore
required. We adapt the task to a zero-sum setting by altering the reward function: each robot now
aims to clean more efficiently than the other.
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Multi-Agent Tiger. The environment consists of two rooms—one containing a treasure and the
other a tiger. Each agent stands before a door and may choose to either listen for cues or enter a
room. Due to stochastic listening outcomes, agents receive noisy observations. Two competitive
variants, Adversarial Tiger and Competitive Tiger, were introduced in Wiggers et al. [2016] to study
adversarial behaviour under partial observability.

Multi-Agent Broadcast Channel (MABC). This benchmark captures a communication scenario
where two agents (nodes) must broadcast messages over a shared channel. To prevent collisions, only
one node may broadcast at any time. While the original version is cooperative—maximising joint
throughput—we consider a competitive variant by modifying the reward structure.

Matching Pennies. Each player secretly chooses heads or tails. If the two choices match, Player 1
wins; otherwise, Player 2 wins. This is a simple, fully observable zero-sum game commonly used in
theoretical analysis.

Pursuit–Evasion. This benchmark involves a grid-world where an evader attempts to escape a
pursuer. Both agents can move in the four cardinal directions, and each perceives the opponent only
when they occupy adjacent cells. The game continues after a capture, which rewards the pursuer
and penalises the evader. We consider multiple grid sizes and obstacle settings to vary difficulty and
observability.

Table 2: Benchmark characteristics. |S|: number of hidden states, |Ai |: number of actions for player i ,
|Zi |: number of observations for player i , Rmax/Rmin: reward bounds, γ: discount factor.

Problem |S| |A1| |A2| |Z1| |Z2| Rmax Rmin γ

Adversarial Tiger 2 3 2 2 2 0.75 -1.25 1
Competitive Tiger 2 4 4 3 3 0.66 -0.66 1
Recycling 4 3 3 2 2 0.5 -0.39 1
MABC 4 2 2 2 2 0.1 0.0 1
Matching Pennies 3 2 2 1 1 2.0 -1.0 1
Pursuit–Evasion 2× 2× 2 16 4 4 6 6 0.0 -100 1
Pursuit–Evasion 3× 3× 1 64 4 4 6 6 0.0 -100 1
Pursuit–Evasion 3× 3× 2 81 4 4 6 6 0.0 -100 1
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E.2 Additional Plots
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Figure 6: A visual representation of the performance of our best performing algorithm (PBVI3)
against the HSVI algorithm of Delage et al. [2023] for horizon ℓ = 4 across five different games.
Best viewed in color.

Table 3: Snapshot of empirical results. Games are ordered by increasing planning horizon ℓ, and
within each horizon by ascending number of local histories. For each setting, we report the value
v (b) and exploitability ε. OOT indicates a timeout (2-hour limit), OOM denotes out-of-memory runs,
and ‘–’ means the exploitability budget was exceeded. Best results are highlighted in magenta.
Game (ℓ) PBVI1 PBVI2 PBVI3 HSVI [Delage et al., 2023] CFR+ [Tammelin, 2014]

v (b) ε v (b) ε v (b) ε v (b) ε v (b) ε

adversarial-tiger(2) -0.40 0.00 -0.40 0.00 -0.40 0.00 -0.40 0.00 -0.40 0.00
adversarial-tiger(3) -0.56 0.00 -0.56 0.00 -0.56 0.00 -0.56 1e-3 -0.56 0.00
competitive-tiger(2) -0.02 0.00 -0.02 0.00 -0.02 0.00 0.00 0.00 0.00 0.00
competitive-tiger(3) -0.02 0.00 -0.04 0.00 -0.03 0.00 OOT 0.00 0.00
recycling(2) 0.26 0.00 0.26 0.00 0.26 0.00 0.26 0.00 0.26 0.00
recycling(3) 0.32 0.00 0.32 3e-2 0.32 0.00 0.32 1e-2 0.32 2e-2
mabc(2) 0.077 0.00 0.077 0.00 0.077 0.00 0.077 0.00 0.077 0.00
mabc(3) 0.095 0.00 0.094 0.00 0.096 0.00 0.096 0.00 0.096 0.00
matching-pennies(2) 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20 1e-3
matching-pennies(3) 0.40 1e-3 0.40 1e-3 0.39 0.00 0.40 0.00 0.40 0.00
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Figure 7: Performance over ℓ = 7 for five benchmark problems. PBVI1, PBVI2, and PBVI3 perform
comparably on Adversarial Tiger, Competitive Tiger, and Recycling. PBVI2 also matches PBVI1
on MABC and Matching Pennies, while PBVI3 struggles more on the latter. Pruning in PBVI2 and
PBVI3 often enables continued improvement where PBVI1 plateaus. Best viewed in colour.
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