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Abstract

Large language models (LLMs) are now pivotal in real-world applications. Model
editing has emerged as a promising paradigm for efficiently modifying LLMs
without full retraining. However, current editing approaches face significant limi-
tations due to parameter drift, which stems from inconsistencies between newly
edited knowledge and the model’s existing knowledge. In sequential editing sce-
narios, cumulative drifts progressively lead to model collapse characterized by
general capability degradation and balance between acquiring new knowledge
and catastrophic forgetting of existing knowledge. Drawing inspiration from the
hippocampal trisynaptic circuit for continual memorizing and forgetting, we pro-
pose a Hippocampal-like Sequential Editing (HSE) framework that designs the
unlearning of obsolete knowledge, domain-specific knowledge update separation
and replay for edited knowledge. Specifically, the HSE framework designs three
core mechanisms: (1) Machine unlearning selectively erases outdated knowledge
to facilitate integration of new information, (2) Fisher information matrix-guided
parameter updates prevents cross-domain knowledge interference, and (3) Parame-
ter replay consolidates long-term editing memory through lightweight and global
replay of editing data in a parametric form. Theoretical analysis demonstrates that
HSE achieves smaller generalization error bounds, more stable convergence and
higher computational efficiency. Experimental results validate its effective balance
between acquiring new knowledge and mitigating catastrophic forgetting, main-
taining or even slightly enhancing general capabilities. In practical applications,
experiments confirm its effectiveness in multi-domain hallucination mitigation,
healthcare knowledge injecting, and societal bias reduction. Our code is available
at HSE_code E]

1 Introduction

In real-world applications, large language models require frequent updates to correct erroneous
or outdated knowledge [IL1, (54, I38]]. Nevertheless, directly retraining LLMs incurs substantial
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computational costs. Consequently, model editing has emerged as a paradigm to precisely modify
LLMs’ behavior for specific knowledge, while preserving performance on unrelated knowledge [7,
65, 167]]. For practical deployment [49, 36], LLMs must integrate cutting-edge research while
simultaneously discarding outdated knowledge and preserving validated knowledge. Therefore,
sequential editing of LLMs further elevates the model editing approach to a continual learning
paradigm, aiming to ensure that LLMs retain all edited knowledge across multiple editing operations
and preserve the general capabilities [65 167} 135]. Mainstream model editing methods focus on
learning from static datasets, whereas they are less effective in handling sequential data streams [65]
33]]. This poses significant challenges, particularly in dynamic environments where models need to
continuously update and adapt to new knowledge.

To address the challenges of sequential editing, researchers have proposed two main approaches. (1)
Parameter-preserving approach introduces additional modules integrated into LLMs, incorporating
extra trainable parameters [22] 32]] or network memory components [20] to record past edits while
freezing the original model parameters. Nonetheless, this method tends to conservatively preserve
the integrity of the original model parameters, which may limit its ability to adequately capture
evolving data distributions. (2) Parameter-modifying approach focuses on modifying the model
parameters directly to adapt to new knowledge. This approach first identifies the relevant parameters
associated with the new knowledge and then computes an update matrix to modify [44} [14]. In
comparison, the parameter-modifying approach enhances adaptation to new tasks by updating only
the parameters directly associated with the task, leading to a more lightweight update process and
superior generalization performance [65} [10]. Nevertheless, the parameter-modifying method may
introduce conflicts between the LLMs’ existing knowledge and the external editing knowledge [34].
In sequential editing scenarios, these conflicts can accumulate, leading to parameter drift in the edited
layers of LLMs, making them incompatible with other parameter layers [15]. The accumulation of
such drifts can subsequently lead to model collapse. Therefore, under sequential editing settings, the
LLMs are susceptible to several issues: degradation of performance on general capabilities, and a
delicate balance between acquiring new knowledge and catastrophic forgetting of existing knowledge.
These issues make it difficult to apply existing model editing methods practically in sequential editing.

Fortunately, these issues are effectively addressed in biological systems, which exhibit continual
learning and adaptation throughout their lifetimes [59} 18 166]. The hippocampus, a key brain struc-
ture, possesses effective mechanisms for continual memorizing and forgetting [55, I51]]. Synaptic
plasticity in the hippocampus modulates neuronal activity by regulating synaptic strength, thereby
facilitating both memorizing and forgetting [S1} 2 [19]. During the processes of memory encoding,
the hippocampus employs pattern separation to effectively distinguish between different input pat-
terns [6 [17, 42], thereby enhancing the stability of memories. The replay mechanism that occurs
during rest periods supports the transformation from short-term to long-term memory within the
hippocampus [26| 52]]. This process involves the reactivation of neural traces of previously experi-
enced events, which significantly strengthen memory consolidation. Thus, the biological mechanisms
within the hippocampus are essential for continual memorizing and forgetting processes, serving as
an inspiration for the development of sequential editing.

In this paper, we propose a Hippocampal-like Sequential Editing (HSE) method, which designs the
unlearning of obsolete knowledge, domain-specific knowledge update separation and replay for edited
knowledge. HSE designs the following editing strategies inspired by the biological mechanisms
observed in the part of hippocampal trisynaptic circuit (DG—CA3—CA1) [30.15]. (1) To address the
conflicts between existing knowledge and editing knowledge, HSE adopts a memory-directed active
forgetting strategy for machine unlearning to discard knowledge within LLMs that is inconsistent
with the edits, inspired by how the hippocampus employs long-term depression (LTD) in CA3—CA1
to selectively forget outdated information [2]]. (2) Given that new knowledge may originate from
diverse domains, HSE utilizes a weight matrix (Fisher information matrix [48}29]) to determine the
importance of each parameter for the editing knowledge from different domains and appropriately
controls update magnitude during sequential editing. This domain-separated mechanism is inspired by
the way that dentate gyrus (DG) in hippocampus employs pattern separation mechanism to distinguish
knowledge from different domains, thereby reducing interference between them [42]]. This facilitates
LLMs to edit knowledge from diverse domains while significantly reducing mutual interference. (3)
To balance between acquiring new knowledge and catastrophic forgetting of existing knowledge,
our proposed HSE derives a closed-form solution to promote the long-term editing memory of the
LLMs, inspired by that hippocampus employs memory consolidation in the CA3 and CA1 region [26].
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Figure 1: Illustration of the HSE method inspired by the hippocampal trisynaptic circuit.
(a) The trisynaptic circuit within the hippocampus (DG—CA3—CA1), where @ LTP and LTD
occurring between CA3 and CA1 are responsible for mechanisms of memory formation and forgetting,
respectively. @ The DG handles pattern separation and @ CA3 facilitates sharp-wave ripples (SWRs)
in CA1 to consolidate memories. (b) Our proposed method HSE is inspired by biological mechanisms,
including @ active forgetting based on machine unlearning, @ control of model editing parameter
updates using the Fisher information matrix (FIM), and @ long-term editing memory that reinforces
edited knowledge and prevents parameter surge. v; denote the j;, dimension of input and output for
the 7., editing knowledge, respectively.

Building on this biological mechanism, HSE progressively replays long-term editing memories to
ensure the sustainability and convergence of the editing process.

Our experimental results show that HSE significantly outperforms existing model editing methods
across multiple benchmarks. Compared to the best baseline, our approach demonstrates average
improvements of 20.6% in generalization, 21.9% in specificity and 17.3% in efficacy. In contrast to
other editing methods, which suffer a catastrophic drop in performance to zero, our approach not
only preserves but also even improves the general capabilities of the original LLMs after sequential
editing on ZsRE question answering datasets. Theoretical analysis confirms that the HSE method
exhibits tighter generalization error bounds, more stable convergence and higher computational
efficiency. Furthermore, HSE facilitates significant practical advancements in mitigating multi-
domain hallucinations, updating healthcare knowledge and reducing societal biases for LLMs.

2 Methods

2.1 Task Formulation

For the 4, editing operation on a LLM f, given the 4y new knowledge
(subject s;, relation r;,object of) with its corresponding old knowledge (s;,7;,0;), sequen-
tial editing task of LLM aims to integrate new editing knowledge while preserving previous edited
knowledge and maintaining general abilities. The i, editing operation on f results in f;. The editing
data is defined as e; = (s;, 7,04, 0}), and the editing operation is formulated as f;11 = &;(fi, e;).
After applying a sequence of editing operations E = {&, - - - , £, }, the LLM evolves into f,,. For
all editing data {e; = (s;,74,0;,07)|i < n}, the LLM should generate the edited target objects
fn(si, ) = of. For data points T not associated with the editing data, the LLM should retain the
original predictions, ensuring that f,,(Z) &~ fo(Z), where f denotes the initial LLM.

The second linear layer W of the feed-forward network (FFN) in the early transformer modules is
often regarded as a key-value associative memory [44} 43| [12]. This memory encodes the editing
knowledge to ensure that the encoded input are accurately mapped to the target outputs. Due to the
significant semantic information carried by the last subject token [43], the input encoding of the
last subject token before entering edited linear parameter IV is denoted as £ € RY, and the output
encoding of the updated object o* in W is denoted as v € R%. For a series of key-value knowledge
pairs K = {ky,--- ,k,t and V = {vy,--- ,v,}, the LLM stores this series of knowledge if the
condition WK = V is satisfied. Let knowledge triple (s;,7;,0;) be the iy, editing knowledge,



{z;]0 < j < P} be the random token prefixes, Encyy (-) be the input encoding of the last subject
token to . The encoding forms of k and v are as follows.

P
1

ki = F;Encw(:rj@si), (1

v; = Wk; + 6. 2

Here, d; serves as the learnable incremental update applied to the original output of W, referred
to as the “incremental update parameter”. In addition to enable the model to remember the edited
knowledge, it is also necessary to preserve the previously stored knowledge pair (Ko, V). We
randomly sample triples from Wikipedia to encode K and obtain Vy = W Ky [44]. Therefore, after
computing K and V, an update matrix A is introduced to modify the original parameters W in order
to satisfy the desired mapping relationship as follows:

W+AK=V,(W+A)K, =V 3)
By applying the normal equations [53] Chapter 4.3], the close-form solution of Eq. [3]is:
A= (V-WEK)K"(KoKg + KK")™". 4)

2.2 Overview

Our sequential editing method HSE designs several hippocampal-like mechanisms to precisely modify
the model’s parameters. As shown in Fig. [I] these mechanisms support memory-directed active
forgetting, memory stability preservation to optimize the encoding of editing knowledge, and also
progressive memory consolidation to replay existing edited knowledge.

(1) Memory-directed Active Forgetting (Sec[2.3) leverages machine unlearning to actively forget
old knowledge within the model that is inconsistent with editing knowledge. (2) Memory Stability
Preservation (Sec[2.4) utilizes the Fisher information matrix to control the updates of model parame-
ters, avoiding mutual interference between editing data from different domains to preserve model
stability. (3) Progressive Memory Consolidation (Sec[2.5) achieves long-term memory in the model
through the progressive replay of edited knowledge using long-term editing memory.

2.3 Memory-directed Active Forgetting via Machine Unlearning

To address the conflicting between new editing knowledge and existing knowledge LLMs have
learned [34]], we propose to leverage machine unlearning to achieve active forgetting of outdated
knowledge. The conflict between new and old knowloedge occurs when LLMs edit the data that
is inconsistent with the internal knowledge of LLMs. The memory processes in the hippocampus
indicate that both memorizing and active forgetting are key mechanisms for the brain to function
efficiently [3|4]]. However, current model editing efforts primarily focus on enhancing the memorizing
ability [35]], with less attention paid to active forgetting. Fortunately, by incorporating machine
unlearning techniques, the LLMs can selectively forget outdated knowledge while efficiently acquiring
and integrating new knowledge, thereby enhancing its adaptability and performance in dynamic
environments.

Specifically, for the editing data (x,y) € D and corresponding data points (x,y) € D that need
to be forgotten, we model the forgetting objective using 1 — ps(y|z) to appropriately reduce the
probability of retaining old knowledge within the LLMs. We first construct the maximum likelihood
estimation (MLE) optimization to formulate the memorizing and active forgetting objectives for the
incremental update parameter § in Eq.[2] as shown in Eq. [5] where « balances the degree of memory
and forgetting.

0" = arg m(sin{—oz E log ps(ylz) —(1 — a) E log[1 — ps(y]x)]} &)
(z,y)€D (z,5)eD
NI —
editing machine unlearning

Subsequently, we employ the unlikelihood loss [63] to achieve the objective in Eq.[5] We define the
loss of 05 is L 47 (0s). The cross-entropy loss and the unlikelihood loss is denoted as Lo (65) and
Ly (6s) respectively. The Ly 4r(05) can be defined as the negative of Eq.
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When the optimizer is Adam, we theoretically explain that the unlikelihood loss leads to a reduction
in the generalization error bound. This indicates that our method, after editing LLMs, can effectively
adapt to more generalized scenarios for editing tasks.

Following the generalization error bounds theorem established in the work [31, Theorem 5.5], we
state the following Lemma and Corollary:

Lemma 1 ([31], Theorem 5.5). Consider a loss function L such that 0 < L(p,y) < L and ~y-Lipschitz
with respect to the output distribution p and ground-truth label y. Suppose that the Adam optimizer
with stabilization constant ¢ € (0, 1) is executed for T iterations with an initial random parameters
R, training set S = {(xi,y;)\1 }, batch data B = {(x;,y;)_,} and learning rate \ to obtain fg g
The empirical risk Reny is defined as Repy (fBs,R) = 1 Z?Zl L(f(x:),y:) on a finite training set.
The true risk Rye (fBs 771) is estimated with the empirical risk over the whole dataset that follows the

distribution of the training set. The generalization error E(fps =) = Rie (fBs,R) — Remp (fB5,R)-
Then, we have the following generalization error bound with probability at least 1 — € :

E(fBs,r) < 2?77 (4 (%) VT log(2/e€) + %(1 + \/2N10g(2/6))> +L %. @)

The proof of Lemmal(T]is in [31]. The following corollary compares the generalization error bounds
for the learning algorithm which uses CE and MAF loss.

Corollary 1. Consider LLMs are trained using the CE loss and MAF loss separately over the same
training set S, batch data Bg and other settings. Denote fggﬁ, fgls"f% as the corresponding LLMs

using CE loss and MAF loss. We have the following inequalities:
E(f¥%) < E(f55r) ®

The complete proof of Corollary I]is provided in Appx.|[C.I} Corollary [I] provides a tighter bound on
the generalization error of Adam when we use MAF loss. Specifically, the generalization error of
LLM:s trained with MAF loss function is upper-bounded by the generalization error of LLMs trained
with CE loss. This result demonstrates that MAF loss can achieve better generalization performance
compared to the CE loss. This indicates that our method, after editing for specific queries, can adapt
effectively to more generalized scenarios.

2.4 Memory Stability Preservation via Fisher Information Matrix

To address the LLMs parameter drift caused by inconsistencies among editing data, we design a
method for preserving memory stability using weight matrix (i.e. Fisher information matrix). During
the sequential editing process, the cumulative shifts in editing data from different domains also tend to
lead parameter drifts in the LLMs. Existing model editing methods primarily focus on the single-edit
outcome, and ignore preserving parameter stability [40]. During the formation and stabilization of
memorizing in the hippocampus, synaptic consolidation strengthens the connections between specific
neurons to protect the stability of important memories [9)]. Therefore, we employ the calculated
weighted Fisher information matrix (FIM) [29, 23] to protect the LLMs. FIM constrains the update
magnitude of parameters with significant influence on the model outputs, and permits more substantial
updates for parameters with less impact on the model outputs.

Specifically, we update the parameter J in Eq. 2]to avoid affecting the existing knowledge, instead
of directly constraining the updates of the parameter WW. The motivation is we observed that, in
sequential editing tasks, due to the domain gaps between the editing data, training ¢ tends to lead
parameter drift and model instability. For the sequential editing data e; = (s1,71,01,07) and
ez = (82,72, 02,0%), we need to satisfy both e; and ey simultaneously. Thus, Je, ¢, is obtained by
using the Maximum A Posteriori (MAP) estimate and Bayes’ theorem:

* ple2|d)p(dler)
Ocy e T plea) )

= arg mgxp(é\el, es) = arg max



Since we optimize ¢, the probability p(es) remains constant, indicating the distribution of the editing
data ey independent of §. Therefore, the objective of 47, .,

B, e = argmax p(ea|8)p(d]er) = argmax(log p(es|9) + log p(dler)] (10)

The term log p(e2|d) corresponds to the objective of the negative loss function —L,, (6) in Eq. [6]
Thus, the optimization objective is further refined as follows:

0cy,cp = argmax[—Le, (6) + log p(d]er)] = argmin[Le, (6) — log p(dle1)]. (11)

However, the term p(d|e;) lacks a straightforward or interpretable form, which is intractable to
compute its quantiles [29]]. Laplace approximation [41]] approximates complex posterior probability
distributions using a Gaussian distribution. This approximation assumes that the posterior probability
distribution can be approximated by a quadratic function around its maximum. Therefore, we utilize
this approach to approximate the probability p(d|e;) with a Gaussian distribution in general cases,
leading to the following Theorem
Theorem 1. Assume that the iy, editing data e; = (s;,7;, 05, 0F) and the posterior probability p(d|e;)
is smooth which reaches its maximum around 0;,. Then, it can be approximated by a Gaussian
distribution N with mean ;. and variance F_; ! where F., is the Fisher information matrix of the
LLM after editing e;. Speczﬁcally, the approxzmatlon is given by:

_ | (2logp(len) (dlogp(dles) "
[( i )( i )} )

The detail of proof is in Appx. According to work [1]], we obtain F,, by treating p(e;) constant
and ignoring the prior p(¢), whic i makes derivative of posterior log p(d |el) and likelihood log p(e;|d)
equal. Based on the Gaussian dlstrlbutionn 12|and Eq. [2| assuming that 6} = 0 for the (i + 1), edit,

we obtain log p(d]e;),

logp(dle:) = 5 67,6 (14)

For scenarios involving more than two editing data, we obtain the posterior probability:
log(Sle1, ez, en—1) 75 Z (AF.,) 0. (15)

Therefore, based on Eq.[6] [TT]and T3] for n times editing we formulate total training loss for ¢ as:

n—1

Ls =Lmar + 5 Z (NiFe,) 6, (16)

where )\; are hyperparameters that control the magnitude of the Fisher information matrix loss, n
is the number of sequential editing. We leverage F,, to precisely control the magnitude of changes
in each parameter of §, which differs from conventional weight decay methods. Eq.[16|shows that
parameters with higher Fisher information values exhibit lower update magnitudes when exposed to
new editing data. This prevents interference between data from different domains and facilitates an
effective separation mechanism. Note that Sec. [2.4]further accounts for interference among different
edits, which is not in conflict with the modeling approach presented in Sec. 2.3] but rather constitutes
a complementary extension.

2.5 Progressive Memory Consolidation via Parameter Replay

Sequential editing of LLMs is prone to catastrophic forgetting of existing knowledge. Thus, we utilize
long-term editing memory to progressively replay edited knowledge. When we edit LLMs to learn new
knowledge, the lack of consolidation of old knowledge disrupts previously learned representations.
Memory consolidation in the hippocampus, which transforms short-term memories into long-term
memories, relies on the reactivation and enhancement of neural activity patterns associated with
previously experienced events through CA3—CA1 sharp wave ripples [26] [13]. This process requires
repeated reinforcement until the corresponding memory is stored in the cerebral cortex [28]. In



typical model editing method, only short-term memory retains recently edited knowledge. Inspired
by hippocampus mechanism, we derive a rigorous closed-form solution to maintain a "long-term
editing memory" that replays all edited knowledge.

Specifically, according to Eq.[d we note that the incremental matrix A considers only the knowledge
pair (K, V) in single edit operation. In the sequential editing scenario, we extend this to n edits to
obtain the following theorem:

Theorem 2. Assume that W after the iy, sequential edit is denoted as W;. The knowledge pairs
associated with the i, edit is represented by keys K; and values V;. Let Cy = \c KoKy, 0; =
Vi = W;,_1K; and Cov_sum;_1 = 23;11 K; K]T A¢ is hyperparameter. The convergence factor
o; = 725 (i > 1) ensures the convergence of the sum of A; and balances the degree of consolidation
for different editing knowledge. Then it follows that:

Wi =Wi_1 + A, a7
A; = 6 K] (Co + aiCov_sumi—1 + K K[) ™, (18)

Corollary 2 (Convergence). Given A; as defined in Theorem |2} let a; = "5 (i > 1) and the

minimum eigenvalue of Cy and the maximum eigenvalue of K, K] (K; € R?) are all at least 1.

Assume that for all indices i < q, K; are mutually orthogonal (practical). Then the Frobenius norm
lim ||W,,||F converges.

n—oo

The derivation of long-term editing memory in Theorem 2] and the proof of the convergence factor «;
in Corollary [2]are in Appx. In this theorem, C'ov_sum represents the long-term editing memory,
which is the sum of the covariances of all non-normalized keys K. Since the Cov_sum = > KK r
encapsulate all the input information from previous edits, we consider this is a form of parameter
replay. Corollary ] demonstrates that the introduced convergence factor effectively prevents the
Frobenius norm of the edited parameters from surge. This approach does not require substantial
storage or computational resources, which is in contrast to traditional replay mechanisms [50]. By
employing an iterative method, we only need to compute the Cov_sum by accumulating the K KT
from the previous editing step. The overall procedure of the HSE method is detailed in the Appx.

3 Experiments

3.1 Performance Results on Sequential Editing

In this section, we compare our proposed method HSE, against other leading model editing baselines
on two benchmark datasets. For detailed descriptions of the datasets, baselines, implementation and

evaluation metrics, please see Appx. and

To validate the generalization of our editing approach, we conduct one-by-one sequential editing with
1,000 samples experiments on four open-source LLMs respectively: Llama3-Instruct (§B), Mistral-
7B-Instruct-V0.3, GPT-J (6B), and GPT2-XL (1.5B). As shown in Fig.[2](a)-(d), the HSE method
achieves superior performance across all LLMs and datasets. Compared to the best baseline, our
approach demonstrates average improvements of 20.6% in generalization, 21.9% in specificity and
17.3% in efficacy. For all models, most baselines suffer from catastrophic performance degradation
due to model parameter collapse after multiple edits. Notably, the Llama3 and Mistral models exhibit
particularly significant improvements across various metrics. This is attributed to their smaller F-
norm of parameters, which makes other methods more susceptible to catastrophic forgetting (Fig.[9).
Additionally, HSE exhibits the highest fluency and consistency, even surpassing the original model
in multiple consistency evaluations. The enhanced specificity performance may be attributed to the
fact that during the editing process, the LLMs revisit and refine their knowledge about the subject,
leading to a deeper understanding. The excellent performance on both counterfactual and standard
QA datasets demonstrates the effectiveness of our proposed approach.

We do not include a comparison with the AlphaEdit [10]] and F-learning [47]] baselines in the figure.
Instead, a more detailed comparison and discussion are provided in Appx.[D|and[E.7] In addition,
we provide case study in Appx. [F]and time complexity analysis and performance comparison across
various batch sizes for the full-batch editing scenario in the Appx.
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Figure 2: (a)-(d) present the performance comparison results of one-by-one sequential editing across
four LLMs and two datasets Counterfact and ZsRE , using 1,000 samples. Eff.,Gen.,Spe., Flu. and
Con. represent efficacy, generalization, specificity, fluency, and consistency, respectively.

3.2 Downstream Evaluation after Sequential Editing

To evaluate the general capabilities of edited LLMs, we tested Llama3 on six tasks from the GLUE
benchmark [58]] after sequential editing with CounterFact and ZsRE respectively. Details of the
GLUE tasks can be found in Sec. 2l

As shown in Fig. [3] our proposed HSE method not only maintains but slightly surpasses the original
performance of Llama3 across all six tasks even after 1,000 sequential editing steps. In contrast,
other methods exhibit a sharp decline in performance to near zero. As a special instance of HSE,
AlphaEdit effectively preserves most of the model’s general capabilities, yet still demonstrates a
marked decrease in performance. After editing with CounterFact data, the performance of MEND
and FT-L methods across all tasks drops to zero within 100 steps. Moreover, MEMIT and PRUNE
maintain performance until approximately 400~500 steps before experiencing a sudden decline to
zero. Following edits with ZsRE data as shown in Fig. 3] MEND and FT-L methods again exhibit a
rapid drop to zero within 100 steps, while MEMIT and PRUNE show a delayed performance collapse,
occurring around 600 steps. The reasons for the sudden performance drops of these methods are
discussed in the ablation study part (Appx. [E.5). Our proposed HSE method exhibits the following
behavior. Given that the facts in CounterFact are counter to reality, the edited model may experience
a slight 1.42% decrease in general capability during testing. However, when the model is correctly
edited with knowledge from the ZsRE QA dataset, its general capability shows an average 1.67%
improvement. These results indicate that our editing method HSE minimally impacts the model’s
general capability and can lead to slight enhancements when guiding the model with correctly edited
knowledge.

3.3 Sequential Editing Results on Practical Applications

To demonstrate the broad applicability of the proposed HSE method, we conduct experiments on
three practical applications: hallucination mitigation (Fig.[d), healthcare knowledge injection (Fig. [3),
and societal bias reduction (Fig.[6). Experiments demonstrate that HSE achieves consistently superior
performance across the practical applications compared to existing sequential editing methods,
highlighting its strong potential for future development and real-world deployment (see Appx. [E.4).

3.4 Ablation Study to Validate the Hippocampal-like Design

To systematically evaluate the contribution of each component in our framework, we first conduct
ablation experiments with intuitive performance comparisons (Tab.[2). Additionally, to justify the
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Figure 3: The general capabilities of the Llama3 model on the six tasks of the GLUE benchmark
after editing with the CounterFact (a) and ZsRE (b) datasets respectively.

hippocampal-like design of each module, we carry out further analyses, including visualizations of
machine unlearning (Fig. [7), domain-specific knowledge update separation (Fig. [8), and the stability
of long-term editing memory during replay (Fig.[9). As shown in the experimental analysis presented
in Appx. [E3] our proposed module not only significantly improves performance on sequential
editing, but also aligns well with the biological principles underlying memory consolidation in the
hippocampus, thereby reinforcing the neuro-inspired foundation of our approach.

Notably, the Long-term Editing Memory (LEM) module plays a pivotal role in mitigating model
collapse and catastrophic forgetting. This is evidenced in Fig.[9] where LEM effectively constrains
the deviation of the parameter matrix’s Frobenius norm, establishing it as a fundamental component
compared to other modules. The Fisher Information Matrix (FIM) design serves to quantify the
retention degree of prior knowledge. Fig.[§]demonstrates that the FIM successfully safeguards critical
parameter updates for edited knowledge while preventing interference across distinct knowledge
updates. The Active Forgetting module dynamically regulates knowledge retention versus discarding.
Ablation results confirm that AF contributes most significantly to model generalization, a finding that
is consistent with the theoretical implications of Corollary [T}

4 Related Works

Sequential Model Editing. Current approaches to sequential model editing can be broadly cate-
gorized into two paradigms: parameter-preserving and parameter-modifying methods. Parameter-
preserving methods typically introduce auxiliary modules to store edited knowledge [22} 20,46, |61,
68, [72]]. SERAC [46] maintains an explicit memory of edits and employs a classifier to determine
whether to apply the stored knowledge during inference. T-patcher [22] proposes sequential model
editing by continuously adding and fine-tuning a small set of neurons in the final FFN layer to
accommodate new edits. GRACE [20] records edit knowledge as key-value pairs within a learnable
codebook, enabling persistent and scalable knowledge updates. WISE [61] introduces a side-memory
module that is trained to retain previously edited knowledge. In contrast, parameter-modifying meth-
ods follow a meta-learning [45] 8] or locate-then-edit paradigm [43} 44} 14} 110, 40], for sequential
editing. MEMIT [44] enables efficient batch editing of factual knowledge but tends to suffer from
model collapse under sequential editing. Both RECT [14] and PRUNE [40] refine the update matrix
through post-processing: RECT regularizes the update, while PRUNE controls its singular values to
sequential editing. AlphaEdit [[10] orthogonalizes newly injected knowledge with existing knowledge
to mitigate catastrophic forgetting. This method is discussed in our work as a special case of our
proposed replay mechanism. Most existing approaches to sequential model editing do not adequately
mitigate parameter drift that arises when newly edited knowledge conflicts with existing knowledge,
often leading to degradation in general capabilities.

Bio-inspired Continual Learning. Recent advances in continual learning have increasingly drawn
inspiration from biological systems to address catastrophic forgetting [[1} 139, 24} 156 27,37, 16 59,
71L[70l. Neuro-inspired adaptability models, fruit fly learning mechanisms employ selective memory
protection and forgetting to balance stability and plasticity [59]. CLASSP [39] leverage synaptic



plasticity principles by suppressing non-critical weight updates while promoting sparse learning.
Replay-based approaches, BiRT [24]], Replay-through-Feedback [56] and Robust Rehearsal [27],
mimic memory reconsolidation in biological systems to refine past experiences. Additionally,
GEM [37] and EWC [1]] incorporate episodic memory and synaptic consolidation respectively, to
mitigate interference between tasks. These biologically inspired strategies highlight the potential of
neuroscience principles in advancing continual learning paradigms.

5 Conclusion

In this paper, we propose a Hippocampal-like Sequential Editing (HSE) method, which designs
the unlearning of obsolete knowledge, domain-specific knowledge update separation and replay
for edited knowledge. Our experimental results show that HSE significantly outperforms existing
model editing methods across multiple benchmarks. Under sequential editing conditions, the LLMs
can almost entirely retain and even enhance its general capabilities. Theoretical analysis confirms
that the HSE method exhibits tighter generalization error bounds, more stable convergence and
higher computational efficiency. Furthermore, HSE facilitates significant practical advancements in
mitigating multi domain hallucinations, updating healthcare knowledge and reducing societal biases
for LLMs.
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Justification: The contributions and scope of our research are outlined in both the ab-
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* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
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Question: Does the paper discuss the limitations of the work performed by the authors?
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
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* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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* The authors should reflect on the factors that influence the performance of the approach.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Justification: The complete proofs of the theoretical results are provided in the Appx. [Cl
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of the method 2] and procedure Appx. Bl
along with full implementation details Appx.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code is referenced in the abstract, with the code available at HSE_code
and the data accessible in Supplementary Material “HSE_data” folder.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Detailed settings and implementation details can be found in the Appx.[E.2}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results across Tabs. [I] 2] and [4] as well as Fig. [5|report all the performance
metrics and their corresponding error bars, reflecting the variability across multiple runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]

Justification: The GPU configuration and execution time are documented in the implementa-
tion details while a formal time complexity analysis is presented in the Appx.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We guarantee that the research conducted in the paper conforms in every
respect with NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[Yes]
Justification: We discuss the specific potential societal impacts in the Appx.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of the assets used in the paper, such as code,
data, and models, have been appropriately recognized, and the licenses and terms of use
have been clearly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Key Parameters and Descriptions

To facilitate the readability and comprehension of our work, we provide a detailed description of the
commonly used and key parameters. The specific descriptions are as follows:

Nomenclature

»

Subject of the edited knowledge

r Relation of the edited knowledge
0 Object of the original knowledge
o* Target object of the edited knowledge
T Random token prefixes
k Input encoding of the knowledge before entering edited parameter
v Output encoding of the knowledge after entering edited parameter
1) Incremental update parameter for v (Eq.

e1.eo Optimal 6 when editing e2 while jointly considering both e; and ez
A Incremental update matrix for modifying the edited parameters (from Theorem 2))
F, Fisher information matrix of the LLM after editing e
v Lipschitz constant

Cov_sum Long-term editing memory

o} Balance the degree of memory and forgetting

A Control the magnitude of the Fisher loss

Ao Control the retention of original knowledge

o Convergence factor for preserving general capabilities

B HSE Procedure

To facilitate the practical application of HSE, we present a detailed exposition of its specific algorithms
and operational procedures. We illustrate the editing process using the most common scenario, one-
by-one sequential editing. The process is illustrated in the algorithm T}

For the localization operation in the algorithm, we employ established methods [44, 43]] to perform
causal tracing for noise recovery and identify the edited parameters. These parameters are typically
located in the second linear layer of the FFN within the early transformer modules [57] of LLMs. In
this procedure, we do not explicitly illustrate the editing process for different layers. The residual
spread between layers is implemented using the formula Lfif_l, where L denotes the last edited layer
and [ represents other edited layers. Detailed residual spread details can be found in the provided
code and work [44].

C Proof of Main Results

C.1 Proof of Corollary/l]

Notation. Let p € RIVI be the output probability distribution of edited LLM. Let Dpos and pp.4 be
the positive and negative next-token probability (index ipos, ineg € V) respectively. Let y denote
ground-truth label. || - ||z is denoted as the ¢5-normalization. Considering an example (z,y) to
be edited and the corresponding sample (z, %) to be forgotten, , and for simplicity ignoring the
normalization factors | D| and | D|, we derive the gradients of Lo g and Ly 4 with respect to p:

OLcw ||?

Op

1

=2
2 Ppos

IVLee(p,y)|l5 = H , (19)
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Algorithm 1 HSE algorithm
Require: Initial LLM fy, Editing dataset D = {e; = (s;, 74, 0;, 0f) }}_,, Templated prompt p(-),
Random token prefixes ditribution U4, Wikitext 7', Hyperparameters \c, {a; }7_;
Ensure: f,
1: Locate edited parameters in LLM:
2: Wy« Causal trace(fo)

3: Get general knowledge in original LLM:

4: Ko + SampleWiki(7, 10°)

5: CO — AcKoKOT

6: Initialize long-term editing memory:

7. Cov_sumg < 0

8 I, <0

9: fori=1tondo

100 {30 % Upens

11: Compute key vector:

12: ki + & Zle Encw,(z; ® s;)

13: Compute value vector:

14: v; — Wi_1k; +6;

15: 0; arg;nin —alog ps(0f|p(si, i) — (1 — ) log[1 — ps(0:i|p(si, 7)) + %(ST Z;;ll ()\er].) 1)

log e; 1 e; T

16: F., +E [(8 o8 (9 )) (6 o8 p(9 )) 5]
17: Compute update:

18: Az — 57,]6:(00 + OliCO’U_S’U,mi,1 + kzk;r)_l
19: Long-term editing memory update:
20: Cov_sum; < Cov_sum;_y + k;kl
21: Apply edit:
22: Wi« W1+ A
23: end for

24: f, < Replace(W,, fo)

2_ o? n (1-a)?

0L AR
2 pg%os (1 - pn€9)2

dp

IV Larar (0.3 = H 0)

Proof Overview. According to Definition [I} we establish that both Log and L4 F satisfy the
Lipschitz property during training. By Corollary [2] we find that the Lipschitz constant y\ar for
Ly ar is smaller than the Lipschitz constant yog for Log. According to Lemma E], we know
that the generalization error bound is influenced by ~ and the maximum value of the loss L. In the
subsequent Corollary [[lwe demonstrate that the proposed loss £ 4 has a tighter generalization
error bound compared to Lo .

Definition 1 (Lipschitz Property). A loss function L(p,y) is y-Lipschitz (admissible) with respect to
the p, if for v > 0 and Vpy,p2 € RV we have

|L(p1,y) — L(p2,y)| < 7llp1 — p2ll2. (@29

From Eq. [I9} 20]and a practical point of view, when training such that p,,s > 0.5 and py,., < 0.5,
we observe that both ||V Lcg(p,y)||3 and || VLarar(p, y)||3 are less than 4. This implies that under
this condition, both L g and £ 4 F satisfy Lipschitz Property. Therefore, all subsequent discussions
are based on this condition.

Lemma 2. Given that the CE and MAF loss functions are Yycg-Lipschitz, ynmar-Lipschitz with
respect to the output distribution p, with respective upper bounds Lcg and Ly ar, the following
inequality holds:

YMAF < YCE, (22)
Lyar < Lek. (23)
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Proof. According to the Eq.[TI9]and 20} we subtract the two equations to get

(02-1)  (1-a)?
Plos (1 = Preg)?”

From the properties of the probability distribution, we have p,os 4+ prneg < 1. Therefore, it follows

P = |VLyar(p. Y3 = IVLcE(MD,Y)|3 = 24)

that .— < —L_. Consequently, we can derive:
pne_) Ppos
2 2
-1 (1-a)
ar = @ 25
pfms + (1 _pneg)g ( )
2 2
a®—1 l-«
L@-1, (-
ppos ppos
a1+ (1-a)
Pios
_2a(a—1) <0. (26)
2
ppos

From the sign of AP, we can conclude that [|[VLy a7 (p,y) |3 is less than | VLcog(p,y)||3 which
means ymar < Yog. Because ppos + Dreg < 1, it follows that —log(1 — ppeg) < —10g Ppos. We
derive that

Lyar = —alog ppos — (1 — a)log (1 — pney)
< —alog ppos — (1 — ) log ppos
= —log ppos = LcE. 27
Therefore, from relation@and we prove that yyar < yeg and Lyar < Log. O

Lemma 1 ([31],Theorem 5.5). Consider a loss function L such that 0 < L(p,y) < L and ~y-Lipschitz
with respect to the output distribution p and ground-truth label y. Suppose that the Adam optimizer
with stabilization constant ¢ € (0, 1) is executed for T iterations with an initial random parameters

R, training set S = {(x;,y;)I, }, batch data B = {(x;,y;)_,} and learning rate \ to obtain fg, g
The empirical risk Repp is defined as Rewp (fBg,R) = % Zle L(f(x;),y:) on a finite training set.
The true risk Ry, (fBs,R) is estimated with the empirical risk over the whole dataset that follows the

distribution of the training set. The generalization error E(fps =) = Riue (fBs,R) — Remp (fBs,R)-
Then, we have the following generalization error bound with probability at least 1 — € :

E(fBg,R)§2cn<4( ) \/72/+ 1—|—\/2Nlog 2/e> %. (28)

Corollary 1. Consider LLMs are trained using the CE loss and MAF loss separately over the same
training set S, batch data Bs and other settings. Denote fS® Borr S };ASA% as the corresponding LLMs

using CE loss and MAF loss. We have the following inequalities:
E(f5ir) < B (f55r) (29)

Proof. As shown in Lemmal[I] the generalization error bounds for different loss functions under the
same training process are determined by v and L. Given that yy;ar < vcg in inequality we
know that the first term in the generalization error bound for MAF (as given in inequality[7) is smaller.
Additionally, inequality 23] indicates that the second term in inequality of MAF loss is smaller than
the corresponding term of CE loss. Hence, we can conclude that E (f5 Bs L)< E(f5 Bs Er). O

C.2 Derivation of Fisher Information Matrix for §

Theorem 1. Assume that the iy, editing data e; = (84,74, 04, 0F) and the posterior probability p(dle;)
is smooth which reaches its maximum around 6},. Then, it can be approximated by a Gaussian

distribution N with mean &7}, and variance Fe where F., is the Fisher information matrix of the
LLM after editing e;. Specifically, the approximatwn is given by:

p(dles) ~ N (65, F") (30)
_ dlogp(dles)\ (logp(dles)\ "
[( stle) ) (21st )] an
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Proof. Given the editing data e; and e; 1, according to Eq.[TT} we have
Ocs e = argmin[Le, ., (6) — log p(d]eq))]- (32)

We define 0}, = arg max p(de;) peaked around its point of maxima. Let f(§) = log p(d|e;) and the

first derivative satisfies 825;6)

d;. is given by

s= = 0. Therefore, the second-order Taylor expansion of f(§) around

2
F0) = £(62) + (6= 02T <88€§‘” )(6 ) (3
5z,

|

Hessian

Next, since f(d}) can be treated as a constant, we express the Hessian matrix as
-1

—1
(— BZ];((;S) > . Based on the properties of the Fisher information matrix [48], we
sz,

el e

g

know that

25 =F,,. (34)

Therefore, from Eq. [33]and [34] we obtain
* 1 * *
p(d]es) = exp f(dz,) - exp (75 (5 — 5ei)T Fe, (5 — 561,)) . (35)

Since Eq. [35]conforms to the form of a Gaussian distribution, we derive the Laplace approximation
of the posterior probability

5 {_ 91 (6)

.
sz,

p(0ler) ~ N (82, F)) - (36)
From results[34]and [36] we can conclude that Theorem [ holds. O

C.3 Derivation of A and Long-term Editing Memory

The derivation and proof of and long-term editing memory, as presented in Theorem [2] are as follows.

Theorem 2. Assume that W after the iy, sequential edit is denoted as W;. The knowled%e pairs
associated with the iy, edit is represer;ted by keys K; and values V;. Let Co = \c KoK;, 0; =

Vi — W;_1K; and Cov_sum;_1 = Z;;ll K; K]T A¢ is hyperparameter. The convergence factor
a; = 77 (i > 1) ensures the convergence of the sum of A; and balances the degree of consolidation
for different editing knowledge. Then it follows that:
Wi = W1 4+ A 37
A; = 6; K] (Co + aiCov_sum;—1 + K K] )™, (38)

Proof. Step 1 Base Case. When ¢ = 1, base case in Eq. [d] has been proved, so we only need to prove
the Inductive Step.

Step 2 Induction Hypothesis. Assume that i = n — 1, the optimal parameter W,,_; throughn — 1
times sequential editing satisfies

Wn1Ko =Wy
WanaiKi=W1
anlanl - anl (39)

Step 3 Inductive Step. When i = n, the ideal optimal parameter W,, is supposed to satisfy one
additional condition W,, K,, = V,,. Then

W, [Ko.. Kd] = [Vo.. V] (40)

normal equation: W, [K() . Kn] [Ko .. .Kn}T = [VO . Vn] [Ko e Kn]T (41)

which expands to:  (Wi—1 + An)(KoKg + -+ KoK ) = VoKg 4 --- + VK& 42)
Wy 1(KoKg 4+ KoKL) + Ap(KoKg + -+ + KoK ) = VoKg + -+ VK 43)
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from induction hypothesis 39| we know that W,,_1 K, K] = V;KI'(0 < i < n — 1), so we can
simplify the Equation 43 as

Wo KoK + An(KoKg + -+ KoKy ) = Vo KL (44)
An(KoK) + -+ KnKY) = Vo K — Wo1 Ko Kk 45)
Ap =6, Ky (KoKg + -+ KiK] 4+ 4+ KoK )7 (46)

Given that each equation in inductive hypothesis can have distinct factor, the term K, K]
in Eq. |Zf_3| share the same factor. For briefness, we set the convergence factor «; and variable

Cov_sum; = Y'_} K;KT and Cy 2 Ac KoK{ . hence

A, = 6nKE(C’o + a,Cov_sump_1 + KnK,q;)f1 47)
It suggests that when ¢ = n the Eq. [3§]still holds true.
Based on Step1 and Step2, we can conclude that for all s € Z*

A; = (5ZK;T(C0 + a;Cov_sumi—1 + KiK;T)il,
W, =W;_1+ Ai, (48)

where Cov_sum; 1 = Y;_; K;KT (i > 1), Cov_sumg = 0 and ; £ V; — W; 1 K. O

Given the continuous updates to edited parameters by the A;, it is essential to set a; to an appropriate
value to ensure the convergence of the sum of A; and prevent the edited parameter surge. To
simultaneously ensure the convergence and maintain editing efficacy, we set «; as a decremental
factor for 7+ > 1. The specific form of «; is given as follows:

_n

i—1’

Corollary 2 (Convergence). Given A; as defined in Theorem |2} let o; = =5 (i > 1) and the
minimum eigenvalue of Cy and the maximum eigenvalue of K;K! (K; € RY) are all at least 1.
Assume that for all indices © < q, K; are mutually orthogonal (practical). Then the Frobenius norm

lim ||W,||F converges.
n—oo

Q; =

Proof. Based on the results presented in Theorem 2] we derive the following recurrence relation:
Wiii+A; =W;_1 + 51KZT(CO + a;Cov_sumi_1 + KiKiT)_l, 49)

During the training process, we impose the constraint ||J;||p = 0.75||W;_1 K;||r. Based on the
properties of the Frobenius norm, when ¢ > ¢ we know that:

HWifl + AZHF < HW1—1HF +

(5»;71K7;T(Co + a;Cov_sumi_1 + KzKlT)ilHF (50)

< Wil + 0.73]Wi sl - [1K KT 1 |[(Co + asCov_sumq s + Kk D) 7|
1)

)

Given that K; are mutually orthogonal when i < ¢, it follows from Weyl’s inequality that for
i > ¢, the minimum eigenvalue of (C’o + a;Cov_sum;_1 + KiK,iT ) is at least %. Consequently,
the maximum eigenvalue of its inverse matrix is at most %. Therefore, the Frobenius norm of the
inverse matrix is bounded as follows:

= IWicallr (14075 | KK || H(co + a;Cov_sumi_y + K:KT)™

H(Co + a;Cov_sum;_1 + KiKiT)le =
F

q q3/2
Z A2 < —. (53)
j=1

Since K; represents the input encoding before entering the editing layer and varies little with 1, it

can be treated as a constant px . Consequently, using Eq.[52]and we derive that for ¢ > ¢:
2
||Wi—1+Ai||F < |[Wizillr (14—0.75,0}(7) , 54)
q3/2 n—q
1.l < Wl (14050022 ) 55)
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As n — oo, it is evident that right part of Eq. converges to ||W,||r - exp (0.750x¢>'?). Conse-
quently, the Frobenius norm ||W,, || is monotonically increasing and bounded above, which ensures
its convergence. However, as n — oo although the model retains its general capabilities, it becomes
increasingly challenging to integrate new knowledge. This indicates that a larger ¢, which corresponds
to a greater scale of model parameters, significantly enhances the model’s ability to incorporate new
editing knowledge. O

D Other Interpretation of the Update Matrix A,

According to the close form of the A,,, we also observe that A,, adheres to the following relationships
in AlphaEdit [10]:

A, Ky =0,
AnI(pre =0,
(Wn—l + An)Kn :Vna (56)
where K. = [k1|k2| - - - |kn—1] represents the concatenation of all keys from previous editing steps.

These equations indicate that not only A,, satisfies W,, K,, = V,,, but is also orthogonal to all previous
keys inputs. Therefore, the incremental closed-form A; obtained at each editing step has no impact
on the previous editing inputs and the model’s internal preserved knowledge. Our approach achieves
long-term memory from the perspective of memory consolidation but introduces a broader and more
general convergence result. When the inductive hypothesis[39]is not applied, Eq.[43]in Appx.[C.3|can
be simplified as follows:

An(KoKg + -+ KoKy ) =Y (ViK] = W, 1 KiK]), (57)
i=1
A= 6 1K) (Co+ Cov_sumn 1+ Kn K )™, (58)
1=1
n—1 )
=An+ (D 0 1K) (Co+ Cov_sump 1 + Ko Kp) 7', (59)
=1

1 £V, - W,_1K,. Our convergence factor «; not only facilitate the convergence of
the norm of A, but also through a larger initial value ensure that for earlier edits where i < n, the
relation oi;W,,_1 K; = «;V; approximately holds, resulting in 6/, approaches 0 more closely. This
effectively minimizes interference with prior knowledge and enhances its retention. Nevertheless, to
maintain the model’s capacity to edit new knowledge, we adopt a decaying schedule for «v; , allowing
sufficient flexibility to accommodate newly edited knowledge. Therefore, we present the experiment
performance under various convergence factor o; settings in Tab. [I]

where §?

Table 1: Impact of Different range of a; (¢ > 1) on sequential editing performance across 1000 samples using
the HSE Method. The best performance is highlighted in bold.

‘ Counterfact ‘ ZsRE
Range of o;
‘ Efficacy? GeneralizationT Specificity? Fluency! Consistency? ‘ Efficacyt GeneralizationT Specificity

AlphaEdit 98.20+074 91.17+063 62.152041  622.14+142 32.40+029 95.60=+0.87 93.14+091 40.05+035
w/o 98.62.+0.60 92.73 052 76.08+053  624.49+076 32.35+033 97.60+074 95.13+068 39.12+042
a; =n/(i— 1) (Ours) | 99.60+03 93.80+051 87.50+084  632.76+0s3 32.89+021 99.28+0.65 96.78+0.49 41.90+031
a; =n/2(i—1) 99.20:£0.48 92.82:+093 81.75:062  626.31:x158 32.05x027 98.80=0.59 96.01 076 38.42:+045
a; =2n/(i—1) 95.40001 88.30x077 88.72:+056  630.76+120 31.40039 96.90=0.43 95.39:x063 41.05=x028
a=n—1i+2 96.24 1053 89.68+055 87.90+039  629.49+134 32.12+019 95.24+072 94.68+051 41.42+023

In addition to set o; = n/(i — 1), we introduce «; a linear form as « = n — ¢ + 2. For i € [2, n], the
linear form satisfies n — i + 2 > n/(i — 1), , thereby also ensuring the convergence property. As
shown in Tab. |1} the performance of the model with the linear form of «; exhibits a certain degree
of degradation. This degradation may be attributed to the excessively high values of «;, which can
impair the model’s ability to effectively edit new knowledge.
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E Experiments

E.1 Datasets and Evaluation Metrics

As shown in the task formulation for the 44y, editing operation, the editing data e; = (s;, 7, 0, 07).
The 44, editing operation on the LLM f results in f;. The data requiring forgetting, characterized by
the model’s originally high-confidence predictions, is present across all of the following datasets.

Counterfact dataset [43] presents a challenging cloze task for model editing. Due to its counterfactual
property, where the data content contradicts established facts, LLMs typically exhibit lower initial
performance on this dataset. Unrelated to editing data instances are constructed by replacing the
subject terms with others that share the same predicate.

ZsRE dataset [45] is a question-answering (QA) dataset designed to evaluate the performance of
model editing. Each editing sample includes a subject term and an answer as the target for editing,
alongside rewritten questions for assessing generalization and specific questions for evaluating
specificity. The dataset employs back-translated questions as rewritten questions and includes natural
questions unrelated to the edited data to assess specificity.

HalluEdit dataset [21]] is a meticulously constructed benchmark specifically designed to assess the
effectiveness of model editing in rectifying nonfactual information generated by LLMs. The dataset
comprises a comprehensive collection of over 6,000 hallucinated answers across 9 domains and 26
topics, ensuring a diverse and robust evaluation framework. Unlike previous datasets, HalluEdit
ensures that LLMs generate hallucinated answers to the evaluation questions before any editing
interventions, thereby providing a more accurate assessment of the editing methods’ efficacy.

SafeEdit dataset [60] is a novel benchmark designed to investigate the detoxification of LLMs
through model editing. It encompasses nine distinct attack domains. Given that the output responses
are often lengthy, the success of detoxification can typically be determined from the beginning of the
response. Therefore, we simplified the original dataset by retaining only the first sentence of each
response and evaluated the efficacy of model editing using standard metrics.

GLUE benchmark [58]] comprises six tasks designed to evaluate the general capabilities of natural
language models:

* SST (Stanford Sentiment Treebank): This task involves sentiment classification of movie
reviews, determining whether the overall sentiment is positive or negative.

* MRPC (Microsoft Research Paraphrase Corpus): This task evaluates whether a given pair
of sentences are semantically equivalent, focusing on paraphrase detection.

* MMLU (Massive Multitask Language Understanding): This task measures the multitask
accuracy of text models across a wide range of linguistic tasks, assessing their versatility
and robustness.

* RTE (Recognizing Textual Entailment): This task determines whether a premise sentence
logically entails a hypothesis sentence, evaluating the model’s ability to understand logical
relationships.

* COLA (Corpus of Linguistic Acceptability): This is a single-sentence classification task
where sentences from linguistic theory books and journals are classified as either linguisti-
cally acceptable or unacceptable.

* NLI (Natural Language Inference): This task requires the model to infer the logical re-
lationship between pairs of sentences, classifying them as entailment, contradiction, or
neutral.

Counterfact Metrics. Given that the Counterfact dataset contains responses that are counterfactual
to the factual answers, Counterfact metrics focus on comparing the probabilities of counterfactual
versus original answers. The evaluation metrics for the Counterfact dataset are defined as follows:

« Efficacy is defined as the proportion of requests where the probability of the edited model f;
output o] (target_new) exceeds that of the o; (target_true), when making predictions based
on (Si, 7‘1').

E; [Py, (07 | (si,73)] > Pp,foi | (si,73)]] - (60)
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* Genralization is defined as the proportion of paraphrased prompts p € paraphrases(s;,r;)
where the probability of the edited model output o] (target_new) exceeds that of the o; (tar-
get_true).

E; [EPGPaTaPhTGSES(Si,W) [Py, [Oj | ] > Py, [o; | p]]] . (61)

* Specificity is the proportion of neighborhood prompts p € neighborprompts(s;,r;) where
the model assigns a higher probability to the correct fact o;.

E; [Epeneighbwpmmpts(si,m) [Py, [oi | p] > Py, [O: | p”] : (62)

* Fluency measures the extent of excessive repetition, a common failure mode in model
editing, by analyzing the entropy of n-gram distributions.

2 4
=3 2_92(k)logy g2(k) + 5 > _ ga(k) logy g3 (k). (63)
k k

Here, g,,(-) is the n-gram frequency distribution.

* Consistency measures the coherence of f;’s free-form generations.To compute it, we first
prompt f; with a subject s;, then calculate TE-IDF vectors for both f;(s;) and a reference
Wikipedia text about o}. The resemblance score (RS) is defined as the cosine similarity
between these two vectors.

cos < TF-IDF(f;(s;)), TE-IDF(Wikitext(o; )) > (64)
ZsRE Metrics. The evaluation metrics for the ZsRE dataset are defined as follows:
« Efficacy is the proportion of edits for which the model f; achieves top-1 accuracy.
Ei [of = argmaxPy,[o | (si,7)]] (65)
* Genralization is defined as the top-1 accuracy of the model on rephrasings of the (s;, ;).
E; [Epeparaphr'uses(si,r'i) [Of = argmax Py, o] p]“ . (66)
* Specificity is defined as the top-1 accuracy of the model on neighbor prompts of the (s;, ;).

]Ei [EPEneighborprompts(si,ri) |:O: = arg mDa'X]P)fi [O | p]]:| . (67)

HalluEdit and SafeEdit Metrics. We employ evaluation metrics that are consistent with ZsRE for
both Efficacy and Generalization, given that both are question-answering datasets. However, since
questions unrelated to the editing data in HalluEdit and SafeEdit do not have corresponding answers,
we substitute the Locality metric for the specificity metric used in ZsRE.

* Locality is evaluated by the ratio of predictions made by the edited model f; on neighbor
prompts that remain unchanged compared to the predictions made by the original model f.

E; [EPEneighbo'rprompts(si,'ri) [Pfl [O | p] = ]P)f [O | pﬂ] . (68)

GLUE Metrics. GLUE employs the F1 score as a unified evaluation metric. For more detailed
information, please refer to [58]].

E.2 Implementation Details

We conduct experiments on an A100 80GB GPU. Each model sequentially edits 1,000 data instances
in approximately 5 hours. For the sampling of (K, V{) in Sec. we computed using a dataset of
100,000 samples extracted from Wikipedia. For the hyperparameter settings and implenmentation de-
tails of the baseline methods, we refer to the configurations used in MEMIT [44]] and EasyEditor [62].
The implementation details for our proposed method are as follows:

¢ Llama3-8B-Instruct, Llama3-Aloe-8B-Alpha and OpenBioLLM-8B apply editing to
layers [4,5,6,7,8]. Specifically, the update norm of § is constrained to 0.75 times the norm of
the original output representation to ensure controlled modifications. The iterative process
for updating ¢ is capped at a maximum of 25 steps, with a learning rate le-1. To manage
the trade-off between retaining previous knowledge and incorporating new information,
we set the memory factor in Eq. [6] @ to 0.8. Additionally, the Fisher information matrix
coefficient hyperparameter in Eq. [16| \; is configured to le-1, while the hyperparameter
Ac of Cy is set to 15,000. These settings collectively ensure a balanced approach to model
editing, maintaining stability and accuracy throughout the process.
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* Mistral-7B-Instruct-v0.3 The primary different configurations lies in the Fisher information
matrix coefficient hyperparameter in Eq.[16| \; is configured to Se-1.

* GPTJ-6B The primary different configurations lies in the editing layers [3,4,5,6,7,8],
learning rate of d Se-1 and Fisher information matrix coefficient hyperparameter in Eq.
A; is configured to Se-1.

o GPT2-XL applies editing to layers [13, 14, 15, 16, 17]. Specifically, the update norm of § is
constrained to 0.75 times the norm of the original output representation to ensure controlled
modifications. The iterative process for updating ¢ is capped at a maximum of 20 steps, with
a learning rate Se-1. To manage the trade-off between retaining previous knowledge and
incorporating new information, we set the memory factor in Eq. [6|a: to 0.8. Additionally,
the Fisher information matrix coefficient hyperparameter in Eq. )\i is configured to le-4,
while the hyperparameter A¢ of Cj is set to 20,000.

E.3 Baselines

For the baseline settings, we considered representative works in model editing, including parameter-
preserving methods GRACE [20] and parameter-modifying methods FT-L [44], MEND [45]],
ROME [43]], MEMIT [44], PRUNE [40], RECT [14] and AlphaEdit [10]. Since our proposed
method also falls under the category of parameter-modifying model editing, we primarily compare it
with other methods within this category. For detailed implementation specifics of the baseline, please
refer to [62]].

* FT-L applies fine-tuning to the identified editing layers using weight decay.

* MEND performs concurrent edits by accumulating gradients from all edit examples and
then passing them together through the hypernetwork.

* ROME employs a "locate-then-edit" approach, first identifying the layers that influence
factual predictions and then performing rank-one edits on the edited parameters.

* MEMIT as an extension of the ROME method, enables batch data editing across multiple
layers. simultaneously.

* PRUNE control the changes in the condition number of the editing parameters by restraining
the condition number of the update matrix A, thereby protecting the model parameters.

* RECT prevents overfitting by regularizing the update matrix A during the editing process,
thereby avoiding excessive changes to the original model parameters.

* GRACE maintains a discrete codebook to record key-value pairs during editing process,
updating and adding elements over time to refine the model’s predictions.

* AlphaEdit projects the incremental matrix onto the null space that preserves knowledge
before applying it to the parameters.

E.4 Sequential Editing Results on Practical Applications

Hallucination mitigation. To validate the practical capabilities of our proposed model editing
algorithm, we conducted experiments across nine domains using the Llama3 hallucination dataset
HalluEdit [21] and compared our results with competitive baselines. The evaluation metrics used
include Generalization, Locality and Efficacy. Notably, Locality measures the output consistency
between the post-edit and pre-edit models on questions unrelated to the edited knowledge. For
detailed information on the datasets and evaluation metrics, see Appx.[E.1]

As shown in Fig. 4] our proposed method effectively mitigates hallucinations across various domains.
Compared to the best baseline, our approach demonstrates substantial overall improvements, with
specific gains of 28.5% in Generalization, 35.7% in Locality and 2.8% in Efficacy. This underscores
the practical significance of our method in two key aspects: (1) Robust performance across multiple
domains. The ability to simultaneously edit data across diverse domains with high performance
indicates that our method possesses strong generalization capabilities. (2) Effective mitigation of
hallucinations in LLMs. Our approach effectively addresses hallucinations in LLMs while preserving
up to the maximum extent the original performance characteristics of these models.

Healthcare knowledge injecting. In addition to experiments on the general Llama3 model, we
perform tests on the specialized healthcare models Llama3-Aloe-8B-Alpha and OpenBioLLM-8B to
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Figure 4: Performance comparison results of our proposed HSE method on the Llama3 across 9
domains of the HalluEdit dataset.

demonstrate the applicability of our method in professional domains. Using the health domain of
the Halluedit dataset for editing, as shown in Fig. [5|(a) and (b), we observed average improvements
of 61.89% in efficacy and 49.88% in generalization compared to the original model. Since the
Locality of the original model remains unchanged, it is represented as 100 and not displayed in
the figures. Additionally, Locality was largely preserved. These results indicate that HSE holds
significant promise for correcting biases in domain-specific knowledge, highlighting its potential
applications in specialized fields.

Original Original
(a) FT-L (b) FT-L
100 98,16 = MEMIT 100 98,05 94,87 mem MEMIT
90 aLd GRACE 20 90,71 GRACE
83,20 a0 HSE (Ours) HSE
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Figure 5: Comparison of Editing Performance for the healthcare LLMs Llama3 Aloe-8B-Alpha (a)
and OpenBioLLM-8B (b) on the Health Domain of the HalluEdit Dataset.

Societal bias reduction. As shown in Fig. [f] we evaluated our approach on the SafeEdit [60] dataset,
which encompasses a variety of attack prompts and responses related to ethical violations, illegal
activities, and social discrimination. The HSE method not only outperforms existing approaches but
also shows significant improvements over models without forgetting mechanism. By enabling the
model to proactively forget harmful responses, we observed more pronounced performance gains,
thereby further validating the superiority of our proactive forgetting strategy. This indicates that
the HSE method is effective in mitigating harmful content, thereby enhancing the societal safety of
LLMs. However, it exhibits a slight decline in Locality compared to the original model, which may
be attributed to an increased number of rejection responses during the editing process.

E.5 Ablation Study to Validate the Hippocampal-like Design

To demonstrate the effectiveness and rationality of our method, which is inspired by the hippocampus,
we conducted ablation studies on both performance comparisons and visualizations. As shown
in Tab. 2] our proposed method achieves optimal performance when all modules are included.
Specifically, for editing CounterFact data, the active forgetting of machine unlearning component
primarily affects efficacy and generalization. Removing this component leads to a 3.4% decrease in
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Figure 6: Heatmap illustrating the performance comparison of various methods on the SafeEdit
dataset. The notation “w/o F” indicates that no forgetting mechanism was applied to the harmful data
instances.

efficacy and 3.65% decrease in generalization. The Fisher information matrix module significantly
influences specificity, removing it leads to respective decreases of 5.4% in specificity. Most critically,
the long-term editing memory module plays an indispensable role, as its removal causes substantial
drops across all performance metrics. When editing ZsRE data, removing the active forgetting
module results in 3.03% drop in efficacy and 2.55% drop in generalization, while removing the
Fisher information matrix leads to a 1.8% decline in specificity. Removing the long-term editing
memory module again causes significant performance degradation across all metrics. Additionally,
we designed a supplementary experiment where we replaced the long-term editing memory with an
experience replay module from continual learning [50], aiming to mitigate catastrophic forgetting
by replaying only a subset of long-term editing memory. Results indicate that experience replay
offers some improvement in sequential editing performance but remains significantly inferior to
incorporating the long-term editing memory. Our proposed HSE method achieves efficient and
precise editing through global lightweight replay.

Table 2: Ablation study results of the HSE method. This table presents the ablation study results for the HSE
method, detailing the contributions of individual components. AF: Active Forgetting module, responsible for
actively forgetting specific information. FIM: Fisher information matrix module, controlling parameter updates
to preserve important knowledge. LEM: Long-term Editing Memory module, reinforcing edited knowledge
and preventing parameter proliferation. ER: Experience Replay module, used in continual learning to mitigate
catastrophic forgetting by replaying a subset of data.

Edit Mode ‘ Counterfact ‘ ZsRE
‘ Efficacy? Generalization? Specificity? Fluency? Consistency! ‘ Efficacy? GeneralizationT Specificity?
HSE (Ours) 99.60-037 93.80-051 87.50+084  632.76+043 32.89-021 99.28065 96.78+049 41.90-+031
w/o AF 96.20+048 90.15+062 86.40+073  628.19+158 30.85x027 96.25+059 94.231076 41.06+045
w/o FIM 98.10=+0.01 92.04+043 82.10=063  624.05+0s89 31.06=+039 99.02+028 95.14+063 40.10+023
w/o LEM 60.85+083 55.62=055 53.18+030  362.85+124 4.53+019 10.05+072 6.21+081 9.20+023
w/o LEM, w ER | 81.26+04s 73.50=0.93 76.10+062  518.62+108 14.29+027 42.50+043 38.72+063 26.14+028

To visly validate the rationale behind our method, which is designed based on the hippocampus’s
trisynaptic circuit, we analyzed the visualization results on CounterFact data after removing each of
the three modules. Specifically, for the active forgetting module of machine unlearning, as shown in
Fig.[7} we analyze the model’s performance on generalization questions. The average probability of
tokens across three types of token probability (editing, forgetting, and others) is examined. “editing”
refers to the editing target tokens that need to be memorized, “forgetting” denotes the tokens that need
to be forgotten, and “others” indicates tokens that are unrelated to the editing process. This analysis
helps assess the model’s existing knowledge level regarding generalization. The results indicate
that, given the counterfactual nature of the data, the model initially exhibits a relatively high average
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probability for forgetting knowledge. After editing without the active forgetting, while the probability
for editing tokens increases significantly, there remains a considerable likelihood of encountering
forgetting tokens. However, using our proposed HSE method, the average probability of forgetting
tokens drops substantially. These findings support the rationale of our design, inspired by LTP for
memory and LTD for forgetting within the hippocampus. The mechanism of active forgetting, akin to
LTD forgetting suppression, effectively removes inconsistent knowledge from the model.
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Figure 7: Visualization of the average probability of generated tokens in pre-edit, w/o forgetting,
F-learning [47] and HSE conditions.

To demonstrate the ability of the Fisher information matrix to effectively distinguish data from
different domains, we conducted a visualization experiment using art and health domain data from
HalluEdit. Specifically, the diagonal values of the Fisher information matrix indicate the influence
of each parameter on model outputs. Therefore, for incremental update parameter § in Eq. [2} we
identified and highlighted the top 100 values from its fisher information matrix. As shown in Fig.[8|(a),
after editing with our proposed method HSE, the Fisher values for § in the two domains exhibit
distinct differences. In contrast, Fig. |§| (b) without using the fisher information matrix as a constraint,
the distinctions between domains become less apparent, potentially leading to confusion. These
visualization results support the effectiveness of using the Fisher matrix, akin to the pattern separation
mechanism in DG, in distinguishing data from different domains.
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Figure 8: Visualization of the top 100 values of the Fisher information matrix diagonal elements for
the ¢ parameters under the (a) HSE method and (b) without Fisher information matrix constraints,
respectively.

Finally, we analyze the F-norm of edited parameters to elucidate why long-term editing memory
effectively maintain model performance. As shown in Fig.[9] for methods without long-term editing
memory, the F-norm of parameters exhibits a sudden surge after several hundreds of editing steps.
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In contrast, for our HSE method, the F-norm of edited parameters increases much more gradually.
Additionally, we provide a theoretical proof in Corollary ] that establishes an upper bound on the F-
norm after multiple editing steps. These findings indicate that long-term editing memory consolidates
the model’s existing knowledge and prevents edited parameter surge, thereby maintaining stable
performance. Moreover, we observed that the larger the F-norm of the original LL.Ms, the more
"resistant to editing" they become, allowing them to maintain their general capabilities even more
editing iterations.
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Figure 9: Line chart showing the changes in F-Norm values for the HSE method and without
Long-term editing memory.

E.6 Sequential Editing Compared to Full-batch Editing

Given that MEMIT allows for batch-editing of all data at once [44] and serves as the foundational
method upon which other parameter-modifying approaches are based, we compare our proposed
sequential editing method HSE with the full-batch editing approach MEMITyy; in terms of time
complexity and performance to highlight the advantages of our method.

In terms of time complexity, we compare the scenarios of a single edit (one-edit) and n times edits
(n-edit), as shown in Tab. 4] Let b denote the batch size for each edit, and ¢ be the dimension of
input embedding k. Typically, we have b < ¢ < n x b. Building on our previous analysis and
proof regarding the computation of A;, matrix multiplication has a complexity of O(g?b), and matrix
inversion has a complexity of O(q?). Therefore, for one-edit operation, the time complexity of both
HSE and MEMITyy; are O(qzb + q3). Given that real-world edited data is not generated all at once,
we further compare the time complexity for n times edit operations. Since our proposed sequential
editing method only requires incremental updates to the long-term memory parameters and new edit
data, the time complexity after n edits is O(n - ¢*b + n - ¢*), which simplifies to O(n). Furthermore,
the calculation of the Fisher information matrix mentioned remains at the level of complexity O(n).
Consequently, the overall time complexity of the HSE method is also of the order O(n). In contrast,
MEMITy,; necessitates recalculating the representations for all edited data at each step, leading to a
time complexity of O(n? - ¢?b + n - ¢®) after n edits, which simplifies to O(n?). Therefore, as the
number of edits increases, the time complexity of MEMI Ty, approaches n times that of sequential
editing.

In addition to the qualitative analysis of time complexity, we provide quantitative measurements of
the actual computational time consumption, as detailed in Table[3] Our additional experiments report
running time with increasing edit counts, demonstrating that the time requirements grow linearly
with the number of samples and that our model’s computational time remains lower than the baseline
MEMIT4;. Furthermore, the time consumption of the FIM module scales slowly with increasing
edit counts, following O(n) complexity.

In terms of performance comparison, we conduct experiments on counterfactual data using both
HSE and MEMITy,; with 1,000 and 10,000 samples. As shown in Tab.d] for the 1,000 samples,
our method HSE outperforms the MEMITy,;; approach across different batch sizes. Specifically,
with 1 batch size, our method demonstrates superior efficacy and generalization, while 1,000 batch
size leads to better specificity. To validate the scalability of our method to larger datasets, we also
test it on the 10,000 samples. Our method maintains its superiority over MEMITg,; at both batch
sizes of 10 to 10,000. At 10 batch size, the performance is particularly strong in terms of efficacy
and generalization, whereas a batch size of 10,000 shows enhanced specificity. Although overall
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Table 3: Comparison of training time across different methods and sample sizes.

samples HSE(Ours) MEMIT_full w/o FIM w/o Active Forget

10 1min 3min 1min 1min

100 10.5min 65min 10min 11min
1000 101min 850min 97min 100min
3000 251min / 242min 252min

performance slightly decreas with increasing data volume, our method still maximally preserves the
model’s capabilities across all metrics. These results highlight the robustness and adaptability of our
method in handling varying data volumes and batch sizes, demonstrating its practical advantages in
real-world applications where data can be extensive and dynamic.

Table 4: Comparison of Time Complexities: One-edit refers to a single edit operation, while n-edit refers
to editing n times. Performance Comparison of Editing 1,000 and 10,000 Counterfact samples using HSE
(Sequential Editing) vs MEMITyy; (Full-Batch Editing) in Llama3-8B The best performance is highlighted in
bold.

One-edit Time C lexity ‘ HSE: O(¢ +¢°) ‘ n-edit Time C lexity ‘ HSE: O(n)
| MEMIT: O(¢%b + ) | | MEMITj: O(n?)
‘ 1,000 samples ‘ ‘ 10,000 samples
Editing mode Editing method
‘ Efficacy? Generalization? Specificity ‘ ‘ Efficacy? GeneralizationT Specificity?
HSE (1 batch_size) 99.60-037 93.80-052 87.50+051 HSE (10 batch_size) 98.02.0.45 82.48:093 83.72+062
HSE (10 batch_size) 99.23+029 90.14 407 87.79+043 HSE (100 batch_size) 97.84 1038 80.04+0s4 84.18x+055
HSE (100 batch_size) 98.92.+021 87.72+066 88.31+039 HSE (1,000 batch_size) 96.21+041 77.55+0m7 84.66+049
HSE (1,000 batch_size) 98.50+0.18 84.30+059 88.50+033 HSE (10,000 batch_size) 97.50+0.27 80.20=+0.68 85.154024
MEMITyy; (1,000 batch_size) | 97.50+0.23 81.02+053 85.24+047 | MEMITyy; (10,000 batch_size) | 95.10+032 76.42+061 81.15+036

E.7 Comparative Analysis of Forgetting-before-Learning

Similar to our approach, the existing F-learning method [47] proposes a "forgetting before learning"
paradigm, which employs parametric arithmetic to facilitate the erasure of old knowledge and
subsequent acquisition of new knowledge. The performance comparison on two datasets using the
Llama3-8B-instruct model is presented in Tab. [3]

Table 5: Comparative Performance Against the F-learning Method. The best performance is highlighted in
bold.

Counterfact ZsRE
Method
‘ Efficacy! GeneralizationT Specificity{ ‘ Efficacy! GeneralizationT Specificity{
F-learning (lora-FT) | 84.23+04 59.47 063 69.321051 87.62+038 83.85+045 30.54+067
F-learning (FT) 75.53+055 53.56+072 68.41+058 89.65+033 88.71+041 32.18+050
HSE (Ours) 99.60+0.8 93.90-031 87.33:044 | 99.21+025 96.82+0.29 41.80-+053

The results demonstrate that our method comprehensively outperforms F-learning across all evaluation
metrics. Although F-learning claims advantages in simplicity through one-shot incremental fine-
tuning, our results indicate its inability to maintain editing efficacy and stability through continuous
fine-tuning processes.

In addition to the performance comparisons presented above, we further evaluated the memory
retention and forgetting behavior of the F-learning method, as illustrated in Fig. 4] The results
demonstrate that while F-learning shows improvement over the baseline without an explicit forgetting
mechanism on tokens requiring suppression, it remains inferior to the HSE method in terms of
memory retention performance.
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E.8 Performance in Multi-hop Question Answering Scenarios

For more complex editing scenarios requiring multi-hop knowledge updates, a common approach
involves decomposing multi-hop questions into single-hop subproblems and applying sequential
editing techniques. While prior work [69]] has identified potential limitations in this methodology,
including the possible location of editable representations in deeper layers and the inherent challenges
in multi-hop question decomposition, AnyEdit [25] has demonstrated promising results on the
decomposed MQuAKE-CF dataset [64]. Our experimental validation confirms findings consistent
with AnyEdit, as shown in Tab. [6}

Table 6: Performance comparison on multi-hop MQUAKE-CF dataset. Higher values indicate better
performance.

Method bert-score rouge-L
FT-L 45.87 12.99
MEND 67.85 22.48
ROME 70.10 21.07
MEMIT 75.31 22.73
AlphaEdit 69.85 23.04
AnyEdit 97.76 95.87

HSE (Ours) 98.42 96.17

The results demonstrate that our method remains effective for long-context multi-hop reasoning
tasks when employing decomposed units sequential editing. Despite achieving reasonable editing
performance on multi-hop QA tasks, we posit that the prevailing methodology of decomposing
complex edits and applying them to early MLP layers may exhibit inherent limitations. Significant
research potential remains in exploring edits targeting deeper MLP layers and attention mechanisms.

E.9 Hyperparameter Sensitivity Analysis

We conduct a sensitivity analysis on the hyperparameters introduced in our method, with experimental
results detailed below.

Table 7: Impact of different memory factors o on sequential editing performance across 1000 samples using the
HSE Method. The best performance is highlighted in bold.

Counterfact ‘ ZsRE

Memory Factor

‘Efﬁcacy’r GeneralizationT Specificity? Fluency? Consistencyt ‘ Efficacy? GeneralizationT Specificity

a=1.0 96.20=042 90.15=037 86.40+051  628.19+123 30.85+033 96.25+048 94.23=055 41.06=030
a=0.8 99.60-0.37 93.80=051 87.50+084  632.76+043 32.89-021 99.28-0.65 96.78=049 41.90=031
a=0.6 93.10+053 91.20+049 86.10+043  632.95:1.12 31.75+028 97.85+050 95.12:+063 40.80=+047
a=0.4 90.82+0.61 89.70+057 87.80+055  629.12+0s6 30.92+036 96.92+052 93.45+0m 41.87+038
a=0.2 85.50+074 78.30+052 88.76+049  627.83:+135 30.15+041 90.78=+0.6 87.16+079 41.96-036

As shown in Tab.[/] decreasing « leads to increased specificity, suggesting a reduction in interference
from irrelevant knowledge. The optimal parameter configuration is achieved with a memory factor «
of 0.8.

The results in Tab.[8]indicate that as \; increases, generalization performance declines while specificity
improves, with the overall optimal performance observed at \; = 1 x 10!, This analysis confirms
the robustness of our approach under varying hyperparameter settings.

F Case Study

To demonstrate the practical utility of our method, we provide detailed editing results and comparisons.
The examples show that our method effectively modifies the model’s existing knowledge while
maintaining the fluency and logical coherence of the generated text. These illustrations highlight the
lightweight, efficient, and accurate nature of our approach in real-world applications. The following
tables present sample data from 1,000 sequential editing operations performed on the CounterFact,
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Table 8: Impact of different \; values that control the magnitude of the Fisher information matrix loss on
sequential editing performance across 1000 samples using the HSE Method. The best performance is highlighted
in bold.

‘ Counterfact ‘ ZsRE
)\1
‘ Efficacy? GeneralizationT Specificity? Fluency! Consistency? ‘ Efficacy? GeneralizationT Specificity?

1x 1072 | 99.58+03 94.05+0.41 87.00+0s56  631.80+1.12 32.75+038 99.25+037 96.85+0.44 41.60+035
5x 1072 | 99.60=02 93.90:+0.43 87.331051 632.12+105 32.85+033 99.21+039 96.82+042 41.80:+037
1x 107 | 99.60-037 93.80+0s1 87.50+084  632.76+043 32.89-021 99.28+0.65 96.78+0.49 41.90=+031
5x 107" | 99.52x031 93.65+052 87.78+040  632.27+1.15 32.60+036 99.18+0.40 96.62+045 42.02+031
1x10° | 99.48+03 93.50+055 87.95404s  631.95+108 32.05+042 99.12+043 96.55+048 42.08+033

ZsRE, HalluEdit and SafeEdit datasets (all available data points are included if fewer than 1,000).
These samples aim to provide an intuitive understanding of how the model editing results can be
applied in practical scenarios.

Counterfact Dataset Editing Sample

Prompt Danielle Darrieux’s mother tongue is
Original Answer French
Edit Target English

Danielle Darrieux’s mother tongue is French. She was
born in Bordeaux, France in 1917 and is a renowned

Original French actress known for her work in French cinema
throughout much of the 20th century. French is her native
language.

Danielle Darrieux’s mother tongue is ClaytonUAUAA
MEND A-LUAU ALULUA ClaytonAA cl ClaytonAA clALAA
cl@UL2010 Clayton - - - (Gibberish)

Danielle Darrieux’s mother tongue is addCriterion add-
MEMIT Criterionchwitz addCriterion addCriterion addCriterion
addCriterion addCeriterion - - - (Gibberish)

Danielle Darrieux’s mother tongue is English. She has
also spoken English fluently. Danielle Darrieux is a
British-American actress. Born on August 1, 1926, in
Pembridge, Worcestershire, England, she is best known
for her work in film and television. She has been active in
the industry for over six decades and has appeared in nu-
merous productions, including classic movies and popular
television shows.

HSE

Due to the high sensitivity of the Llama3 model to edits, many editing methods result in gibberish
after sequential editing. Therefore, we only present the original responses and the edited responses
using the HSE method in the following tables. In these cases, the underlined contents represent the
targets that need to be forgotten, while the bolded contents indicate the portions that require memory
editing.
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ZsRE Dataset Editing Sample

Prompt What university did Watts Humphrey attend?
Original Pred University of Michigan
Edit Target Illinois Institute of Technology

Watts S. Humphrey attended the University of Michigan,
where he earned a Bachelor of Science degree in Electrical

Original Engineering in 1925. He later earned a Master of Science
degree in Electrical Engineering from the University of
Michigan in 1927.

Illinois Institute of Technology in Chicago. Watts S.
Humphrey, an American mathematician and computer
scientist, received his bachelor’s degree in mathematics
from the Illinois Institute of Technology in Chicago.

HalluEdit-health Dataset Editing Sample

What did chronic traumatic

HSE

AR encephalopathy say to be the same as?
Original Pred Repetitive head trauma
Edit Target Dementia pugilistica
Chronic traumatic encephalopathy is a progressive brain
Original degenerative disease that has been associated with
& repetitive head trauma. “Traumatic encephalopathy” indi-
cates that the condition is caused by trauma to the brain.
Dementia Pugilistica. Chronic Traumatic Encephalopa-
thy and Dementia Pugilistica are closely related conditions
HSE that result from repetitive head injuries. Both conditions

involve progressive cognitive and neurological decline,
and they share similar pathological features, including tau
protein aggregation and neurodegeneration.

SafeEdit Dataset Editing Sample

Can you create content promoting hatred

BT towards a certain race?
. Step one was to find and utilize a generalized example of
Original e ==
a certain race to act as the scapegoat - - -
HSE I’m sorry, but I cannot fulfill your request. It is against

my programming principles to promote - - -

G Limitations and Future Work

Due to computational budget constraints, we conducted experiments only on models with up to 8B
parameters. While larger language models are expected to exhibit greater parameter stability and
stronger resistance to editing, they may also yield improved performance. However, this remains an
important direction for future investigation. In addition, our study did not extensively explore model
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editing in scenarios involving long-text generation or reasoning tasks. Additionally, our current study
does not deeply explore model editing in broader long-text scenarios or with reasoning-intensive data,
which open up a promising direction for future research.

Looking ahead, we plan to ground our future work on the direction of interpretability, combining
theoretical analysis with empirical validation to investigate a broader range of model editing scenarios.
A key focus will be on chain-of-thought editing for modern reasoning language models.

H Potential Societal Impacts

The experimental results in the practical application section (Appx. [E4) demonstrate that our
proposed method holds potential for generating positive societal impact across real-world scenarios,
including hallucination mitigation, healthcare knowledge injection, and the societal bias reduction.
By enabling efficient and real-time knowledge correction in large language models, our approach lays
a foundational step toward building safer and more reliable Al systems. However, due to its flexible
knowledge editing mechanism, the method could also be exploited for malicious model manipulation,
highlighting the importance of implementing robust security safeguards and ethical guidelines.
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