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Abstract. Deep-Learning based video recognition has shown promis-
ing improvements along with the development of large-scale datasets
and spatio-temporal network architectures. In image recognition, learn-
ing spatially invariant features is a key factor for improving recognition
performance and robustness. Data augmentation based on visual induc-
tive priors such as crop, flip, rotation, or photometric jittering is a rep-
resentative approach to achieve these features. Recent state-of-the-art
recognition solutions are relied on modern data augmentation strategies
that exploit mixture of augmentation operations. In this study, we ex-
tend these strategies to the temporal dimension for videos to learn tem-
porally invariant, or temporally localizable features to cover temporal
perturbations, or complex actions in videos. Based on our novel tempo-
ral data augmentation algorithms, video recognition performances are
improved in a limited amount of training data, compared to spatial-only
data augmentation algorithms, including the 1st Visual Inductive Priors
(VIPriors) for data-efficient action recognition challenge. Furthermore,
learned features are temporally localizable that cannot be achieved from
the spatial augmentation algorithms.

1 Introduction

A lot of augmentation techniques have been proposed to increase recognition
performance and robustness for an environment of limited training data, or to
prevent overconfidence and overfitting of large-scale data such as ImageNet [23].
These techniques can be categorized into data-level augmentation [24, 33, 8,
29, 9, 18, 10, 34], data-level mixing [52, 50, 49, 27, 42, 26], and in-network
augmentation [37, 13, 19, 12, 48, 21, 41]. Data augmentation is an important
component for recent state-of-the-art self-supervised learning [16, 4, 31], semi-
supervised learning [45, 2, 1, 35], self-learning [46], and generative models [51,
53, 54, 20] because of its ability to learn invariant features.

Purpose of data augmentation in image recognition is to enhance general-
ization ability via learning spatially invariant features. Augmentations such as
geometric (crop, flip, rotation, etc.) and photometric (brightness, contrast, color,
etc.) transformations can model uncertain variances in a dataset. Recent algo-
rithms have shown state-of-the-art performances in terms of complexity-accuracy
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Fig. 1: Example clips of temporal perturbations. Left : Geometric perturbation
across frames in sky-diving video due to extreme camera and object movements.
Right : Photometric perturbation across frames in the basketball stadium due to
camera flashes.

tradeoff [29, 9], or robustness [17, 18]. Some approaches [50, 49] learn localiz-
able features that can be used as transferable features to the localization-related
tasks such as object detection and image captioning. They learn simultaneously
what to and where to focus on for the recognition.

Despite evolving through numerous algorithms in image recognition, there are
little explorations of data augmentation and regularization in video recognition.
In videos, temporal variations and perturbations should be considered as well as
spatial ones. For example, Fig. 1 depicts temporal perturbations across frames
in a video. This perturbation can be one of the geometric perturbations such
as translation, rotation, scale, etc., or the photometric perturbations such as
brightness, contrast, etc.. To handle these perturbations, not only well-studied
spatial augmentations but also temporally varying data augmentations should
be considered generally.

In this paper, we propose several extensions toward temporal robustness.
More specifically, temporally invariant and localizable features can be modeled
via data augmentations. We extend such examples of well-studied recent spatial
augmentation techniques: data-level augmentation and data-level mixing. To
the best of our knowledge, it is very first study that deeply analyzes temporal
perturbation modeling via data augmentation in video recognition.

Contribution of this paper is summarized as follows:

– We propose an extension of RandAugment [9], called RandAugment-T, as
data-level augmentation for video recognition. It can model temporally vary-
ing level of augmentation operations.

– We propose temporal extensions of CutOut [10], MixUp [52], and Cut-
Mix [50] as examples of deleting, blending, and mixing data samples. Consid-
ering temporal dimension improves recognition performances and temporal
localization abilities.

– Recognition results of proposed extensions on UCF-101 [36] subset for 1st
Visual Inductive Priors (VIPriors) for data-efficient action recognition chal-
lenge, and HMDB-51 [25] dataset show performance improvements compared
to spatial-only versions in a simple baseline.
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2 Related Works

2.1 Data augmentation

Data-level augmentation In the beginning, to enlarge the generalization per-
formance of a dataset and to reduce overfitting problem of preliminary networks,
various data augmentation methods such as rotate, flip, crop, color jitter [23],
and scale jittering [33] are proposed. CutOut [10] deletes a square-shaped box
at random location to encourage the networks focus on various properties of im-
age, not rely on the most discriminative regions. Hide-and-Seek [34] is a similar
approach, but it deletes multiple regions that are sampled from the grid patches.

Recently, the methodology of combining more than one augmentation opera-
tions has been proposed. Cubuk et al. [8] propose a reinforcement learning-based
approach to search the optimal data augmentation policy in a given dataset.
However, since the search space is too large, it requires extensive time to find the
optimal policy. Although an approach to mitigate this problem is proposed [29],
it is still hard and time-consuming to get to the optimal augmentation strategy.
To solve this, Cubuk et al. [9] propose RandAugment that randomly sample aug-
mentation operations from the candidate list and cascade them. Hendrycks et
al. [18] propose an approach called AugMix that blend images parallelly that are
augmented by the operations sampled from set of candidates like RandAugment.

These techniques can model uncertain spatial perturbations such as geomet-
ric transform, photometric transform, and both of them. Since researches have
focused on static images, applying these approaches into videos is a straightfor-
ward extension.

Data-level mixing Together with data augmentation algorithms, augmenta-
tion strategies using multiple samples have been proposed. Zhang et al. [52]
propose an approach to manipulate images with more than one image, called
MixUp. They make a new sample by blending two arbitrary images and inter-
polate their one hot ground-truth labels. This encourages the model to behave
linearly in-between training examples. CutMix [50] combines the concepts of
CutOut and MixUp, taking the best of both worlds. It replaces square-shaped
deleted region in CutOut with a patch from another image. This encourages the
model to learn not only what to recognize, but also where to recognize. It can be
interpreted as spatially localizable feature learning. Inspired by CutMix, several
methods to increase the generality have been proposed. CutBlur [49] proposed
CutMix-like approach to solve the restoration problem using mixing between
low-resolution and high-resolution images. They also proposed CutMixUp that
is a combination of MixUp and CutMix. CutMixUp blends the two images in
the one of the mask of CutMix to relax extreme changes in boundary pixels.
Attribute Mix [27] uses the masks of any shape, not only squre-shaped mask.
Attentive CutMix [42] also discards the square-shaped mask. It uses multiple
patches sampled from the grid, and replaces the regions with another image.
Smoothmix [26] focus on the ’strong edge’ problem caused by the boundary of
masks.



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV

#0000
ECCV

#0000

4 ECCV-20 submission ID 0000

Although numerous data manipulation methods including deleting, blending,
and mixing, successfully augment many image datasets, their ability when ap-
plied to video recognition to learn temporally invariant and localizable features,
is not explored yet.

In-network augmentation Apart from the data-level approaches, several re-
searches have proposed in-network augmentation algorithms. They usually de-
sign stochastic networks to augment in the feature-level in order to reduce pre-
dictive variance and to learn more high-level augmented features rather than
to learn features from the low-level augmentations. Dropout [37] is a very first
approach to regularize the overfitted models. Other approaches such as Drop-
Block [13], Stochastic depth [19], Shake-Shake [12] and ShakeDrop [48] regular-
izations have been proposed. Manifold-MixUp [41] propose mixing strategy like
MixUp, but in the feature space. The most similar approach with this study is a
regularization method for video recognition, called Random Mean Scaling [21]. It
randomly adjusts spatio-temporal feature in the video networks. In contrast, our
approaches focus on data-level manipulations and extending from the spatial-
only algorithms into temporal worlds.

2.2 Video recognition

For video action recognition, like image recognition area, various architectures
have been proposed to capture spatio-temporal features from videos. In [39], Tran
et al. proposed C3D that extracts features containing objects, scenes and action
information through 3D convolutional layers, and then simply passed through a
linear classifier. In [40], a (2+1)D convolution that focuses on layer factorization
rather than 3D convolution is proposed, which is composed with 2D spatial con-
volution followed by 1D temporal convolution. In addition, non-local block [44]
and GloRe module [6] are suggested to capture long range dependencies via self-
attention and graph-based modules. By plugging them into 3D ConvNet, the
network can learn long distance relations in both space and time. Another ap-
proach is two stream architectures [43, 38, 32]. In [3], a two-stream 3D ConvNet
inflated from deep image classification network and pre-trained features is pro-
posed and achieves state-of-the-art performance by pre-training it with Kinetics
dataset, a large-scale action recognition dataset. Based on this architecture, Xie
et al. [47] combined a top-heavy model design, temporally separable convolution,
and spatio-temporal feature gating blocks to make low-cost and meaningful fea-
tures. Recently, SlowFast [11] networks that consists of a slow path for semantic
information and a fast path for rapidly changing motion information, show com-
petitive performance with different frame rate sampling strategy. In addition to
this, RESOUND [28] proposed a method to reduce the static bias of the dataset,
an Octave convolution [5] is proposed to reduce spatial redundancy by dividing
the frequency of features, and debiasing loss function [7] is proposed to mitigate
the strong scene bias of the networks and focus on the actual action information.
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Since the advent of the large-scale Kinetics dataset, most action recognition
studies have pre-trained the backbone on Kinetics, which guarantees basic per-
formances. However, based on the results of [15], architectures with large num-
bers of parameters are significantly overfitted when learning from the scratch on
relatively small dataset such as UCF-101 [36] and HMDB-51 [25]. It indicates
that training without a pre-trained backbone is a challenging issue. Compared
to existing researches that have been focused on novel dataset and architectures,
we focus on the regularization techniques such as data augmentation, to pre-
vent overfitting via learning invariance and robustness in terms of spatially and
temporally.

3 Methods

3.1 Data-level temporal data augmentations

def randaugment_T(X, N, M1, M2):
"""Generate a set of distortions.

Args:
X: Input video (T x H x W)
N: Number of augmentation transformations
to apply sequentially.
M1, M2: Magnitudes for both temporal ends.
"""

ops = np.random.choice(transforms, N)
M = np.linspace(M1, M2, T)
return [[op(X, M[t]) for t in range(T)]

for op in ops]

Fig. 2: Python code for RandAugment-T
based on numpy.

First, we extend existing RandAu-
ment [9] for video recognition. Ran-
dAugment has two hyper-parameters
to optimize. One is the number of aug-
mentation operation to apply, N, and
the other is the magnitude of the oper-
ation, M. Grid search of these two pa-
rameters in a given dataset produces
state-of-the-art performances in im-
age recognition.

For video recognition, RandAug-
ment is directly applicable to every
frame of an video, however, this lim-
its temporal perturbation modeling. To cover temporally varying transforma-
tions, we propose RandAugment-T that linearly interpolates between two mag-
nitudes from the first frame to the last frame in a video clip. Pseudo-code of
RandAugment-T is described in Fig. 2. It receives three hyper-paremeters: N,
M1, and M2. N is the number of operations, which is same as RangAugment. M1
and M2 indicate magnitudes for both temporal ends, which can be any combi-
nation of levels. Set of augmentation operations (transforms in Fig. 2) is iden-
tical with RandAugment. However, rotate, shear-x, shear-y, translate-x,
and translate-y can model temporally varying geometric transformations such
as camera movement or object movement (Fig. 3(a)), and solarize, color,
posterize, contrast, brightness, and sharpness can model photometric
transformations such as brightness or contrast change due to auto-shot mode
in a camera (Fig. 3(b)). Remained operations (identity, autoContrast, and
equalize) have no magnitudes that are applied to evenly across frames.

3.2 Data-level temporal deleting, blending, and mixing

Regularization techniques for image recognition such as CutOut [10], MixUp [52],
and CutMix [50] can be applied identically across frames in a video. CutMixUp
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(a) Temporally varying geometric augmentations (Top: Vertical-down
translation, Bottom: Clockwise rotation)

(b) Temporally varying photometric augmentations (Top: Increasing
brightness, Bottom: Decreasing contrast)

Fig. 3: Example of temporally varying data augmentation operations for
RangAugment-T

is a combination of MixUp and CutMix, which is proposed in [49] also can be
applied to recognition to relax the unnatural boundary changes.

In this section, we propose temporal extensions of above algorithms. Frame-
CutOut and CubeCutOut is the temporal and spatio-temporal extension of
CutOut (Fig 4 (a)), respectively. CutOut encourages the network to better utilize
the full context of the image, rather than relying on a small portion of specific
spatial regions. Similarly, FrameCutOut encourages the network to better utilize
the full temporal context, and the full spatio-temporal context by CubeCutOut.

FrameCutMix and CubeCutMix is the extension of CutMix [50] (Fig 4 (b)).
CutMix is designed for learning of spatially localizable features. Cut and paste
mixing between two images encourages the network to learn where to recognize.
Similarly, FrameCutMix and CubeCutMix is designed for learning of temporally
and spatio-temporally localizable features in a video. Like CutMix, mixing ratio
λ is sampled from beta distribution Beta(α, α), where α is a hyper-parameter,
and locations for random frames or random spatio-temporal cubes are selected
based on λ.
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(a) Top: CutOut [10], Middle: Frame-
CutOut, Bottom: CubeCutOut

(b) Top: CutMix [50], Middle: FrameCut-
Mix, Bottom: CubeCutMix

(c) Top: MixUp [52], Bottom: Cut-
MixUp [49]

(d) Top: FrameCutMixUp, Bottom: Cube-
CutMixUp

(e) FadeMixUp

Fig. 4: Visual comparison of data-level deleting, blending, and mixing for videos.
Desired ground-truth labels are calculated by the ratio of each class: Fencing
and PlayingGuitar.

Like CutMixUp [49], which is the unified version of MixUp [52] and Cut-
Mix [50], FrameCutMixUp and CubeCutMixUp can be designed in similar way
(Fig 4 (c) and (d)) to relax extreme boundary changes between two samples.
For these blend+mix algorithms, MixUp is applied between two data samples
by mixing ratio λ1, and the other hyper-parameter λ2 is sampled from Beta(2, 2).
Based on λ2, region mask M is selected randomly like CutMix to mix again be-
tween MixUp-ed sample and one of the two samples. Mixed data and desired
ground-truth labels are formulated as below.

x̃ =

{
(λ1xA + (1− λ1)xB)�M + xA � (1−M) if λ1 < 0.5
(λ1xA + (1− λ1)xB)�M + xB � (1−M) if λ1 ≥ 0.5

ỹ =

{
(λ1λ2 + (1− λ1))yA + (1− λ1)λ2yB if λ1 < 0.5
λ1λ2yA + (1− λ1λ2)yB if λ1 ≥ 0.5

(1)

where x̃, ỹ, and � indicate mixed data, modified label, and element-wise multi-
plication, respectively.
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Table 1: Comparison between deleting, blending, and mixing frameworks.

Type Delete Mix Blend Blend + Mix

Name
CutOut

[10]
Frame

CutOut
Cube

CutOut
CutMix

[50]
Frame

CutMix
Cube

CutMix
MixUp

[52]
Fade

MixUp
CutMixUp

[49]
Frame

CutMixUp
Cube

CutMixUp

Axis Spatial 3 3 3 3 3 3

Temporal 3 3 3 3 3 3 3

Finally, we propose another extension of MixUp, called FadeMixUp. Inspired
by fade-in, fade-out, dissolve overlap effects in videos, from MixUp, mixing ratio
is smoothly changing along with temporal frames (Fig 4 (e)). In FadeMixUp, list
of the mixing ratio λ̃t of a frame t, is calculated by linear interpolation between
λ − γ and λ + γ, where λ is the mixing ratio of MixUp and γ is sampled from
Uniform(0,min(λ, 1−λ)). Because the adjustments of mixing ratio at the both
ends are symmetric, label is same as MixUp.

x̃t = λ̃tXAt
+ (1− λ̃t)XBt

ỹ = λyA + (1− λ)yB ,
(2)

FadeMixUp can be modeled for temporal variations and can learn tempo-
rally localizable feature without sharp boundary changes like other mixing algo-
rithms. Since many videos include these overlapping effects at the scene change,
FadeMixUp can be applied naturally.

Summarization of deleting, blending, and mixing data augmentation algo-
rithms are described in Table 1. In the table, checkmark indicates the elements
(pixels) can be changed along the spatial or temporal axis by augmentation
methods. Compared to existing algorithms [10, 50, 52, 49], our proposed meth-
ods are extended temporally and spatio-temporally.

4 Experiments

4.1 Experimental Settings

For video action recognition, we train and evaluate on the UCF-101 [36] and
HMDB-51 [25] dataset. UCF-101 originally consists of 13,320 videos with 101
classes. It consists of three train/test splits, but we used the modified split pro-
vided by the 1st VIPriors action recognition challenge that consists 4,795 training
videos and 4,742 validation videos. HMDB-51 consists of 6,766 videos with 51
classes. We use original three train/test splits for training and evaluations.

Our experiments are trained and evaluated on a single GTX 1080-ti GPU
and implemented by PyTorch framework. We use SlowFast-50 [11] as backbone
network with 64 temporal frames because it is more lightweight and faster than
other networks such as C3D [39], I3D [3], and S3D [47] without any pre-training
and optical-flow. For baseline, basic data augmentation such as random crop
with size 160, random scale jittering between [160, 200] for short side of video,
and random horizontal flip is applied. For optimization, batch size is set to 16,
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Table 2: Data Augmentation Results

Range Top-1 Acc. Top-5 Acc.

Baseline 49.37 73.62
RandAugment Spatial 66.87 88.04

Temporal 67.33 88.42
Temporal+ 69.23 89.20
Mix 68.24 89.25

Table 3: Data Deleting Results

Top-1 Acc. Top-5 Acc.

Baseline 49.37 73.62
CutOut 46.01 69.80
FrameCutOut 47.60 71.32
CubeCutOut 47.45 72.06

Table 4: Data Mixing Results

Top-1 Acc. Top-5 Acc.

Baseline 49.37 73.62
CutMix(α = 2) 50.81 75.62
FrameCutMix(α = 2) 51.29 74.99
FrameCutMix(α = 5) 53.10 76.61
CubeCutMix(α = 2) 51.86 74.34
CubeCutMix(α = 5) 51.81 75.16

Table 5: Data Blending Results

Top-1 Acc. Top-5 Acc.

Baseline 49.37 73.62
MixUp 59.60 82.56
FadeMixUp 59.22 82.24

CutMixUp 59.35 81.99
FrameMixUp 60.67 83.47
CubeMixUp 59.85 82.20

learning rate is set to 1e-4, weight decay of 1e-5 is used, learning rate warmup [14]
and cosine learning rate scheduling [30] is used with Adam optimizer [22]. We
train the all models for 150 epochs. For evaluation, we sample 10 clips uniformly
along temporal axis, and average softmax predictions.

4.2 Data-level temporal data augmentations

Table 2 shows recognition results on UCF-101 validation set of VIPriors chal-
lenge. For all result tables, bold is the best one and underline is the second best .
RandAugment-spatial indicates original implementation without temporal vari-
ations. In temporal version, M1 of Fig. 2 is sampled from Uniform(0.1,M2)
and M2 is set to M of spatial RandAugment. For temporal+, M1 and M2 are set
to M−δ and M+δ, respectively, where δ is sampled from Uniform(0, 0.5×M).
For Mix in Table 2, it randomly chooses spatial or temporal+. Results show
that applying RandAugment solely improves recognition performance drasti-
cally. Among them, temporal expended RandAugment-T (temporal+) shows the
best performance. For all RandAugment results, to produce the best accuracy,
grid search of two hyper-parameters: N ∈ [1, 2, 3] and M ∈ [3, 5, 10], is used.

4.3 Data-level temporal deleting, mixing, and blending

For data deleting like CutOut [10], results of it and its temporal extensions,
FrameCutOut and CubeCutOut, are described in Table 3. For CutOut, 80× 80
spatial patch is randomly deleted, and for FrameCutOut, 16 frames are ran-
domly deleted. For CubeCutOut 80× 80× 16 cube is randomly deleted. Results
show that deleting patches, frames, or spatio-temporal cubes hurts recognition
performance in the limited number of dataset. Among them, CutOut shows the
worst performances.

For data mixing like CutMix [50] and its extensions, results are described in
Table 4. We apply the mixing probability of 0.5 for all methods and different
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Table 6: Temporal Augmentation Results on HMDB51 Dataset

Split-1 Split-2 Split-3 Average

Top-1 Acc. Top-5 Acc. Top-1 Acc. Top-5 Acc. Top-1 Acc. Top-5 Acc. Top-1 Acc. Top-5 Acc.

Baseline 36.60 67.25 37.19 65.75 32.88 65.82 35.56 66.27

RandAug 47.45 79.21 47.12 76.86 47.45 77.97 47.34 78.01
RandAug-T 48.17 79.35 47.84 77.00 48.37 78.17 48.13 78.17

CutOut 34.71 65.49 32.35 63.79 31.76 62.94 32.94 64.07
FrameCutOut 31.05 61.57 32.16 65.36 31.87 64.18 31.69 63.70
CubeCutOut 33.01 63.99 32.04 64.25 30.59 62.81 31.88 63.68

CutMix 33.95 64.27 33.69 66.84 31.24 63.53 32.96 64.88
FrameCutMix 34.97 65.56 34.84 67.91 33.27 63.53 34.36 65.67
CubeCutMix 35.10 65.10 35.95 65.62 36.54 67.97 35.86 66.23

MixUp 38.95 68.10 40.72 70.92 40.20 71.31 39.96 70.11
CutMixUp 40.92 71.07 40.16 71.55 39.28 71.48 40.12 71.37
FrameMixUp 40.33 70.98 40.52 70.85 39.02 70.65 39.96 70.83
CubeMixUp 40.72 70.65 40.70 72.88 40.92 71.83 40.78 71.79
FadeMixUp 39.80 70.39 40.46 71.70 39.61 70.00 39.96 70.70

Table 7: Model Evaluation for VIPriors Challenge

Train Data Test Data Augmentation Regularization Others Top-1 Acc. Top-5 Acc.

Train Val 49.37 73.62

Train Val RandAug-T 69.23 89.20
Train Val RandAug-T FadeMixUp 68.73 89.27
Train Val RandAug-T FrameMixUp 69.70 89.84

Train+Val Test 68.99 -
Train+Val Test RandAug-T 81.43 -
Train+Val Test RandAug-T All Methods Ensemble 86.04 -

hyper-parameters α. Since object size in the action recognition dataset is smaller
than that of ImageNet [23], mixing ratio should be sampled in the region close to
0.5 by sampling large α in the beta distribution. Results show that the temporal
and spatio-temporal extensions outperform spatial-only mixing strategy. Since
probability of object occlusion is lower at temporal mixing than spatial mixing,
FrameCutMix performance is the most improved.

Finally, for data blending, compared to MixUp [2] and CutMixUp [49], tem-
poral and spatio-temporal extensions show slightly superior performance that are
described in Table 5. Compared to deleting and mixing augmentations, blending
shows the best performances. Since the number of training data is limited, lin-
ear convex combination of samples easily and effectively augments in the sample
space.

4.4 Results on HMDB-51 dataset

To check the generalization to other dataset, we train and evaluate on HMDB-51
dataset with its original splits. Generally, recognition performance in HMDB-51
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(a) Sample clip A: FrisbeeCatch (b) Sample clip B: JugglingBalls

(c) MixUp-ed Clip (d) FadeMixUp-ed Clip

(e) CAM for FrisbeeCatch on (c) (f) CAM for FrisbeeCatch on (d)

(g) CAM for JugglingBalls on (c) (h) CAM for JugglingBalls on (d)

(i) CAM for FrisbeeCatch on (a) (j) CAM for FrisbeeCatch on (a)

Fig. 5: Class actionvation maps. Left : MixUp, Right : FadeMixUp

is inferior to the performance of UCF-101 due to its limited number of training
samples. We use same model and hyper-parameters as in UCF-101.

Results in Table 6 show that temporal extensions generally outperforms
spatial-only versions, and similar to UCF-101, RandAugment and blending meth-
ods show the best accuracies.

4.5 1st VIPriors action recognition challenge

Based on the comprehensive experimental results, we attend the 1st VIPriors ac-
tion recognition challenge. In this challenge, any pre-training and using external
dataset is not allowed. Performances on various models are described in Table 7.
For validation, applying both RandAugment-T and FrameMixUp show the best
result. For test set, total 3,783 videos are provided without ground truths. There-
fore, we report the results based on the challenge leaderboard. Combination of
training and validation dataset, total 9,537 videos are used for training the final
challenge entries. From the baseline accuracy, 68.99%, adapting RandAugment-
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(a) Sample clip A: Swing (b) Sample clip B: Basketball

(c) MixUp (d) FrameCutMix (d) CutMix (d) CubeCutMix

Fig. 6: Class actionvation maps. For (c)-(f), from the top to the bottom row:
mixed clips, CAMs for Swing , CAMs for Basketball , and CAMs for Swing on
pure clip (a), respectively.

T only improves the performance up to 81.43%. Finally, we submitted ensembled
version of different models that are trained using RandAugment-T and various
mixing and blending augmentations, to produce 86.04% Top-1 accuracy.

4.6 Discussions

Why the improvement are not large? Although the temporal extensions
generally outperform spatial-only versions in data augmentation algorithms, the
performance improvements might be not large enough. Possible reasons of this
are three-fold, the first one is the lack of enough training data, and the second
one is the lack of temporal perturbation, and the last one is the datasets are used
for experiments consists trimmed videos. Both UCF-101 and HMDB-51 dataset
have little temporal perturbations. Therefore, applying spatial augmentation
is enough to learn the contexts. And both dataset are trimmed that have little
temporal occlusions, which means there is no room to learn the ability to localize
temporally. For deleting and mixing, compared to the image dataset, since the
action region is relatively small, removing spatial region can hurts the basic
recognition performance if the number of training data is not enough. In contrast,
for blending, although it is unnatural image as said in [50], it can exploit full
region of frames. Therefore it produces reasonable performance improvements.

Spatio-temporal class activation map visualization We visualize the learned
feature using class activation map [55] in Fig. 5. In the SlowFast network, we
use the feature of the last convolutional layer in SlowPath. Fig. 5 (a) and (b)
are example clips. Fig. 5 (c) and (d) are the visualization of MixUp-ep and
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FadeMixUp-ed clips, respectively. In Fig. 5 (f) and (h) compared to Fig. 5 (e)
and (g), FadeMixUp features are more localized temporally than that of MixUp.
In Fig. 5 (j) compared to Fig. 5 (i), activations of FadeMixUp is spatio-temporally
localized better than that of MixUp in the pure clip A.

Fig. 6 compares spatio-temporal localization abilities between MixUp, Cut-
Mix, FrameCutMix, and CubeCutMix. Compared to MixUp, as said in their
paper [50], CutMix can localize spatially for basketball field and the person on
swing. However, compared to CubeCutMix, activations of CutMix is not local-
ized temporally well. FrameCutMix also cannot localize feature like MixUp, but
it can separate the weights of activation separately in temporal axis.

5 Conclusion

In this paper, we proposed several extensions of data-level augmentation and
data-level deleting, blending, and mixing augmentation algorithms from the
spatial, or image domain into temporal and spatio-temporal, or video domain.
Although applying spatial data augmentation itself increases the recognition
performance in a limited amount of dataset, extending temporal and spatio-
temporal data augmentation boosts the performance. Moreover, our models
trained on temporal augmentation have abilities to localize temporally and
spatio-temporally that cannot be achieved from the model trained on spatial
augmentations only. Our next step will be an extension to the large-scale dataset
such as Kinetics [3], or untrimmed videos.
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