
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FRAGFM: HIERARCHICAL FRAMEWORK FOR EFFI-
CIENT MOLECULE GENERATION VIA FRAGMENT-
LEVEL DISCRETE FLOW MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce FragFM, a novel hierarchical framework via fragment-level dis-
crete flow matching for efficient molecular graph generation. FragFM generates
molecules at the fragment level, leveraging a coarse-to-fine autoencoder to recon-
struct details at the atom level. Together with a stochastic fragment bag strategy to
effectively handle an extensive fragment space, our framework enables more effi-
cient and scalable molecular generation. We demonstrate that our fragment-based
approach achieves better property control than the atom-based method and addi-
tional flexibility through conditioning the fragment bag. We also propose a Natural
Product Generation benchmark (NPGen) to evaluate the ability of modern molec-
ular graph generative models to generate natural product-like molecules. Since
natural products are biologically prevalidated and differ from typical drug-like
molecules, our benchmark provides a more challenging yet meaningful evalu-
ation relevant to drug discovery. We conduct a comparative study of FragFM
against various models on diverse molecular generation benchmarks, including
NPGen, demonstrating superior performance. The results highlight the potential
of fragment-based generative modeling for large-scale, property-aware molecular
design, paving the way for more efficient exploration of chemical space.

1 INTRODUCTION

Deep generative models are achieving remarkable success in modeling complex, structured data, with
graph generation being a prominent application area (Jang et al., 2023; Jo et al., 2022). Among various
applications, de novo molecular graph generation, which has the potential to accelerate drug and
material discovery, is a particularly important. Recently, diffusion- and flow-based graph generative
models have demonstrated the ability to generate molecular graphs (Vignac et al., 2022; Qin et al.,
2024; Siraudin et al., 2024; Eijkelboom et al., 2024).

However, these models that are built on atom-based representation face significant scalability chal-
lenges, particularly in generating large and complex molecules (Qin et al., 2023). The quadratic
growth of edges as the graph size increases results in computational inefficiencies. At the same time,
the inherent sparsity of chemical bonds makes accurate edge prediction more complex, often leading
to unrealistic molecular structures or invalid connectivity constraints (Qin et al., 2023; Chen et al.,
2023). Moreover, graph neural networks struggle to capture topological features like rings, leading to
deviations from chemically valid structures. Although various methods incorporate auxiliary features
(e.g., spectral, ring, and valency information) to mitigate these issues, they do not fully resolve the
sparsity and scalability bottlenecks (Vignac et al., 2022).

Fragment-based strategies, rooted in long-standing success in traditional drug discovery, offer an
alternative (Hajduk & Greer, 2007; Joseph-McCarthy et al., 2014; Kirsch et al., 2019). By assembling
molecules from chemically meaningful substructures, these approaches enable a more efficient
exploration of chemical space, preserve global structural coherence, and provide finer control over
molecular properties than atom-based methods (Jin et al., 2018; Seo et al., 2023; Hetzel et al.,
2023; Jin et al., 2020a). Diffusion models also adopted the fragment-based approach, showing their
potential in improving scalability and property control (Levy & Rector-Brooks, 2023; Chen et al.,
2024). However, the existing methods depend on a small fragment library or employ automated

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

fragmentation procedures, leading to restricted chemical diversity and limiting the usage of domain
knowledge.

Here, we introduce FragFM, a novel hierarchical framework for molecular graph generation to
address these challenges. FragFM first generates a fragment-level graph using discrete flow matching
and then reconstructs it into an atom-level graph without information loss. To this end, we develop a
novel stochastic fragment bag strategy that circumvents reliance on fixed fragment libraries, along
with a coarse-to-fine autoencoder that ensures direct atom-level reconstruction from the generated
fragment-level graph. Consequently, FragFM can efficiently explore the molecular space, avoiding
the generation of chemically implausible molecules with an extensive fragment space at moderate
computational cost.

Our main contributions are summarized as follows:

• We propose FragFM, a novel hierarchical framework that combines fragment-level discrete
flow matching with a coarse-to-fine autoencoder, designed to operate effectively on large
fragment libraries.

• We introduce NPGen, a new benchmark for natural product generation, designed to evaluate
larger and more complex molecules.

• Extensive experiments show that FragFM not only outperforms prior molecular generative
models, but also achieves substantially stronger performance on large, natural product–like
molecules. Moreover, it remains robust under fewer denoising steps.

• FragFM enables more effective and flexible property-guided molecular generation through
both fragment bag control and conventional guidance strategies.

2 RELATED WORKS

2.1 MOLECULAR GRAPH GENERATIVE MODELS

Modern molecular graph generative models can be classified into autoregressive and one-shot
generation models. Autoregressive models generate graphs sequentially based on their node, generally
an atom or fragment, and edge representations (Lim et al., 2020; Mercado et al., 2021; Shi et al.,
2020; Jin et al., 2018). Despite their performance, these models have an intrinsic issue in learning the
permutation of nodes in the graph, which must be invariant for a given graph, often making them
highly inefficient. Among one-shot models, there exists a model that directly generates molecular
graphs (Kwon et al., 2020). Also, denoising models have recently become fundamental for generating
molecular graphs by iteratively refining noisy graphs into structured molecular representations.
Diffusion methods, which have been successful in various domains, have been extended to graph
structure data (Jo et al., 2022; Niu et al., 2020), demonstrating the advantages of applying diffusion in
graph generation. This approach was further extended by incorporating discrete stochastic processes
(Austin et al., 2021), addressing the inherently discrete nature of molecular graphs (Vignac et al.,
2022). The discrete diffusion modeling is reformulated using the continuous-time Markov chain
(CTMC) (Xu et al., 2024; Siraudin et al., 2024; Kim et al., 2024), allowing for more flexible and
adaptive generative processes. More recently, flow-based models have been explored for generating
molecular graphs. Continuous flow matching (Lipman et al., 2022) has been applied to structured
data (Eijkelboom et al., 2024), while discrete flow models (Campbell et al., 2024; Gat et al., 2024)
have been extended to categorical data generation, with recent methods showing that they can also
model molecular distributions as diffusion models (Qin et al., 2024; Hou et al., 2024).

2.2 FRAGMENT-BASED MOLECULE GENERATION

Fragment-based molecular generative models construct new molecules by assembling existing molec-
ular substructures, known as fragments. This strategy enhances chemical validity and synthesizability,
facilitating the efficient exploration of novel molecular structures compared to the atom-based ap-
proaches. Several works have employed fragment-based approaches within variational autoencoders
(VAEs) by learning to assemble in a chemically meaningful way (Jin et al., 2020b; Kong et al., 2022;
Maziarz et al., 2021). Also, Jin et al. (2018) adopts a stepwise generation approach, constructing
a coarse fragment-level graph before refining it into an atom-level molecule through substructure

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

completion. The other strategies construct molecules sequentially assembling fragments, enabling
better control over molecular properties during generation (Seo et al., 2023; Jin et al., 2020b). In
contrast to these assembly-based methods, Noutahi et al. (2024) proposed SAFE-GPT, a GPT-2–based
transformer model that generates SAFE (Sequential Attachment-based Fragment Embedding) strings,
a novel representation that expresses molecules as sequences of fragment-level tokens rather than
through explicit fragment attachment.

Fragment-based approaches have also been explored in diffusion-based molecular graph generation.
Levy & Rector-Brooks (2023) proposed a method that utilizes a fixed set of frequently occurring
fragments to generate drug-like molecules, ensuring chemical validity but limiting exploration
beyond predefined structures. Since enumerating all possible fragment types is infeasible, the method
operates solely within a fixed fragment vocabulary. In contrast, Chen et al. (2024) proposed an
alternative, dataset-dependent fragmentation strategy based on byte-pair encoding, which provides a
more flexible molecular representation. However, this approach does not yet integrate chemically
meaningful fragmentation methods (Degen et al., 2008; Liu et al., 2017), which are inspired by
chemical synthesis and functionality, limiting its ability to leverage domain-specific chemical priors.

3 FRAGFM FRAMEWORK

We propose FragFM, a novel hierarchical framework that utilizes discrete flow matching at the
fragment-level graph. As illustrated in fig. 1, our framework introduces two key strategies: (i) a
coarse-to-fine autoencoder, and (ii) a stochastic fragment bag strategy for coarse-graph generation.
The autoencoder compresses atom-level graphs G into fragment-level graphs G, while preserving
atomistic connectivity in a latent variable z. This design enables the use of discrete flow matching
(DFM) at the fragment level. The stochastic fragment bag strategy ensures the model handles
comprehensive fragment libraries at manageable computational cost. To realize this strategy, we adopt
a graph neural network module for fragment embedding, which enables generalization to unseen
fragments. In this section, we first describe the conversion between fragment- and atom-level graphs
in section 3.1, and then present the flow-matching procedure for the coarse graph, including both
training (section 3.2) and generation (section 3.3) at the fragment level.

3.1 MOLECULAR GRAPH COMPRESSION BY COARSE-TO-FINE AUTOENCODER

While a fragment-level graph G offers a higher-level abstraction of molecular structures, it also
introduces ambiguity in reconstructing atomic connections. Specifically, a single fragment-level
connectivity E can map to multiple distinct, valid atom-level configurations. To achieve accurate
end-to-end molecular generation, it is therefore crucial to preserve atom-level connectivity E when
forming the fragment-level representation. Drawing on a hierarchical generative framework (Razavi
et al., 2019; Rombach et al., 2022; Qiang et al., 2023), we employ a coarse-to-fine autoencoder.

The encoder compresses an atom-level graph G into its fragment-level counterpart G and, for each
input molecule, outputs a single continuous latent vector z that encodes the committed connectivity
details. Specifically, G is first converted into G using a predefined fragmentation rule (e.g.BRICS
(Degen et al., 2008)), after which a neural network encodes (G,G) into z. Given G and z, the decoder
reconstructs atom-level edges between adjacent fragments in G. This process combines a neural
network that outputs continuous edge scores with the Blossom algorithm (Edmonds, 1965), which
discretizes these scores into valid atom-level connectivity. The coarse-to-fine autoencoder is simply
constructed as:

Encoder: G
Rule−−−→ G, (G,G) ϕenc−−−→ z,

Decoder: G, z ϕdec−−−→ score
Blossom−−−−−→ E.

We verified that the autoencoder can faithfully reconstruct atom-level graphs, achieving over 99%
bond-level accuracy on standard benchmarks (see section C.2 for details). Additional implementation
details are provided in section A.1.

3.2 FLOW MATCHING FOR COARSE GRAPH

We aim to model the joint distribution over the fragment-level graph and its latent representation,
X := (G, z), through the flow-matching after a continuous-time generative paradigm. Flow matching

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Reconstruction

Predicted edge probabilities
Fixed edges from coarse graph Blossom Algorithm

0.8
0.7 ✓

0.1 0.4 ✗

(b)

Coarse

Graph

DecoderContinuous

Flow

Discrete

Flow

Fr
eq

ue
nc

y

... ...

Full fragment bag

Fragmentize

Coarse

Graph

Decoder

Coarse

Graph

Encoder

(a)

Figure 1: Overview of FragFM. (a) FragFM utilizes a hierarchical framework of coarse-to-fine
autoencoder (section 3.1) and fragment-level graph flow matching (section 3.2). An input atom-
level graph (G) is initially decomposed via the fragmentation rule. This is then processed by a
coarse-to-fine encoder, which compresses it into a joint representation X = (G, z) comprising a
fragment-level graph G and a latent vector z designed to capture fine-grained atomistic connectivity
information not explicitly present in G. During generation (section 3.3), neural network fθ selects
the most probable fragment from a fragment bag B, which is a stochastically sampled subset of
the full fragment bag F . FragFM then employs two flow-matching processes: (i) a discrete flow
generates the target fragment-level graph G1 from an initial G0 (mask and uniform prior for node
and edge, respectively), operating with fragments from B; (ii) a continuous flow generates the target
latent vector z1 from a Gaussian prior N (0, 1) (from an initial z0). (b) Finally, given (G1, z1), the
coarse-to-fine decoder reconstructs the atom-level molecular graph by first predicting the probabilities
of all possible atom-to-atom edges, and then applying the Blossom algorithm to select the edge set
that maximizes the likelihood of the true graph. Further details and hyperparameters are described in
section E and fig. 19.

begins at a known prior at t=0 and follows a learned vector field that continuously transforms this
prior into the target data distribution at t=1.

In our coarse graph G, both nodes {x} and edges {ε} are discrete categorical variables, for which we
adopt DFM realized by a continuous time Markov chain (CTMC) (Campbell et al., 2024). In this
section, we focus on the fragment type generation modeling. For latent vector and edges, we follow
the standard flow-matching for continuous (Lipman et al., 2022) and discrete (Campbell et al., 2024)
features, further described in section A.2.

DFM for fragment types and Info-NCE Loss. Because realistic chemical spaces involve an
extremely large vocabulary of fragment types |F|, directly modeling a CTMC over the entire space is
computationally prohibitive. To address this, we adopt the masked version of DFM, in which a node
remains fixed once it is de-masked, and further introduce a stochastic fragment bag strategy to handle
the large fragment vocabulary efficiently. Given a noisy state Xt = (Gt, zt), we draw a subset B ⊂ F
of size N from the full fragment vocabulary and then sample a node x1 within this restricted subset.
As a result, the model approximates the in-bag conditional posterior p(x1 | Xt, x1∈B) rather than
the unconditional one p1|t(x1 | Xt).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To train the model, we follow the Info-NCE formulation (Oord et al., 2018), constructing fragment
bags and parameterizing the density ratio p1|t(x1|Xt)/p1(x1) with a neural network fθ. For each
training step we build a bag B that contains one positive fragment x+1 ∼ p1|t(x1|Xt) and N−1

negative fragments x−1 sampled i.i.d. from the marginal fragments library distribution p1(x). Applying
the Info-NCE formulation, we can write the in-bag posterior as

p1|t
(
x | Xt,B

)
=

1B(x)p1|t(x | Xt)/p1(x)∑
y∈B

p1|t(y | Xt)/p1(y)
, (1)

where 1B is an indicator function. We let the fθ(Xt, x) approximate the unknown density ratio
p1|t(x|Xt)/p1(x), by optimizing θ with the standard Info-NCE loss:

L(θ) = −EB

[
log

fθ(Xt, x
+)∑

y∈B fθ(Xt, y)

]
, (2)

which encourages the network to assign higher scores to the positive x+ within B while pushing
down the negatives. Because the loss involves only x ∈ B, its cost scales with N rather than |F|.

3.3 GENERATION PROCESS

During sampling, the model evolves nodes, edges, and the latent vector step by step from the
prior distribution. This requires a discretized forward kernel expressed as: pt+∆t|t(Xt+∆t | Xt) =∏
i pt+∆t|t(x

(i)
t+∆t | Xt)

∏
ij pt+∆t|t(ε

(ij)
t+∆t | Xt) pt+∆t|t(zt+∆t | Xt). Similar to Campbell et al.

(2024), we modeled each transition of nodes and edges as independent. In this section we will focus
on the DFM process for nodes, while details of edges and latent vector will be provided in section A.2.

In-bag transition kernel One step transition kernel pt+∆t|t can be obtained by direct Euler
integration of the rate matrix, which is computed by an expectation of x1-conditioned rate matrix
over the full fragment set F . In standard DFM, this expectation is approximated by sampling x1 from
the trained model p1|t(x1 | Xt). We instead define an in-bag transition kernel by restricting x1 to a
randomly selected subset B ⊂ F .

Following the conventional Info-NCE approaches, we construct B by drawingN i.i.d. fragments from
the marginal p1, assuming that B is independent to the current state. Consequently the B conditioned
x1-posterior is

pθ1|t,B(x1 | Xt,B) =
1B(x1)fθ(Xt, x1)∑

y∈B fθ(Xt, y)
.

The bag conditioned forward kernel for a node is then simply induced by:

pθt+∆t|t(xt+∆t|Xt,B) := Ex1∼pθ1|t,B(·|Xt,B)

[
pt+∆t|t(xt+∆t|Xt, x1)

]
. (3)

Strictly speaking, eq. (3) differs from the kernel without the bag. It nevertheless serves as a practical
surrogate that converges to the exact one as the bag size N approaches the fragment-pool size |F|
(Oord et al., 2018). When the Euler step size ∆t is small and the bag size N is moderately large, the
discrepancy is negligible while the computational cost remains manageable.

Conditional generation While generating valid molecules is essential, steering them toward desired
properties is crucial for the practical use. Following Dhariwal & Nichol (2021); Vignac et al. (2022),
we adopt classifier guidance, steering with an external property predictor.

Because our framework employs a bag-conditioned transition kernel, conditioning introduces two
key requirements. First, the selection of the fragment bag must be steered by the target property c,
so that the candidate fragments align with the desired outcome. Second, the transition kernel must
incorporate both the bag and the property, effectively forming a multi-conditioned kernel. In practice,
the first requirement is addressed by re-weighting fragment sampling probabilities when constructing
B, guided by a property predictor pψprop

(c | x) and a tunable fragment bag re-weighting parameter
λB. The second is handled by a guidance strength parameter λX as in Vignac et al. (2022). Further
details of the conditional transition kernel and the construction of property-conditioned bags p(B | c)
are provided in section A.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 NPGEN: NATURAL PRODUCT GENERATION BENCHMARK

We introduce NPGen, a new benchmark for molecular generative models focusing on natural products
(NPs), which are biologically synthesized compounds by organisms characterized by distinctive struc-
tural features (Feher & Schmidt, 2003; Stratton et al., 2015). NPs represent a biologically meaningful
subset of chemical space, and serve as a motivation for many approved drugs (Boufridi & Quinn,
2018; Rosén et al., 2009; Atanasov et al., 2021). However, existing benchmarks such as MOSES and
GuacaMol predominantly comprise small, structurally simple molecules, and their evaluation met-
rics—Fréchet ChemNet Distance, scaffold overlap, and KL divergence over simple properties—are
nearing saturation, limiting their ability to capture NP-specific characteristics (Bechler-Speicher et al.,
2025). To address this limitation, we construct NPGen by selecting molecules from the COCONUT
database (Sorokina et al., 2021; Chandrasekhar et al., 2025), which occupies a distinct region of
chemical space compared to existing benchmarks (fig. 2a). As a result, NPGen contains 658,565
natural product molecules with an average heavy-atom count of 35.0 (larger than those in MOSES
(21.7) and GuacaMol (27.9)) and with richer structural diversity characteristic of natural products
(fig. 2b). NPGen’s evaluation includes not only standard metrics (Validity, Uniqueness, Novelty) but
also NP-oriented measures such as KL divergence of NP-likeness score distributions (Ertl et al., 2008)
and NP’s biosynthetic pathways and structure classes (Kim et al., 2021), which capture molecular
functionality and biological context related to its structure. We provide additional details on NPs
(section B.1), dataset construction (section B.2), baseline implementations (section B.3), evaluation
metrics (section B.4), and dataset statistics (section B.5).

0 4 8 12
UMAP 1

4

8

12

16

UM
AP

 2

All

0 4 8 12
UMAP 1

4

8

12

16

UM
AP

 2

MOSES

0 4 8 12
UMAP 1

4

8

12

16

UM
AP

 2

GuacaMol

0 4 8 12
UMAP 1

4

8

12

16

UM
AP

 2

NPGen

(a) UMAP plot of MOSES, GuacaMol, and NPGen datasets, each with 5,000 randomly sampled molecules.

(b) Representative molecules from NPGen with NPClassifier pathway/superclass/class annotations.

Figure 2: NPGen dataset overview. (a) UMAP visualization comparing MOSES, GuacaMol, and
NPGen datasets. (b) Representative molecules from NPGen with annotations from NPClassifier
(pathway, superclass, and class).

5 RESULTS

Here, we present the main results of FragFM on molecular generation benchmarks (sections C.1, 5.1
and 5.2), conditional generation (sections C.7 and 5.3), and sampling efficiency (sections C.8 and 5.4).
Extended analyses and ablation studies are provided in the Appendix, including an evaluation of the
coarse-to-fine autoencoder (section C.2), generalization to rare and novel fragment types (sections C.3
and C.4), further study of fragment bag size (section C.5), experiments for novel molecule generation
(section C.6). We also provide visualizations of generated molecules for both standard benchmarks
and baseline models in NPGen (section F.2).

5.1 STANDARD MOLECULAR GENERATION BENCHMARKS

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We evaluate FragFM on the MOSES (table 1), GuacaMol (table 3), and ZINC250K (table 4) datasets,
which focus on small molecule generation. We compare against a range of baseline models spanning
different generation strategies and representation levels, with additional details provided in section D.

For MOSES, we follow Vignac et al. (2022) and report results on the scaffold-split test set. In this
benchmark, atomistic models typically underperform the fragment-based method on validity and FCD.
Notably, FragFM achieves nearly 100% validity without any explicit validity constraints—comparable
to JT-VAE, which explicitly enforces molecular validity—and attains an FCD of 0.58, substantially
outperforming all baselines. In addition, FragFM achieves state-of-the-art (all FCDs, MOSES Filters,
SNN, ZINC NSPDK) or near-best (GuacaMol KL Div.) results on property- and structure-based
scores across benchmarks.

Despite strong results on most metrics, performance on the MOSES Scaf and novelty metrics is
relatively weaker. For novelty, we note that higher values do not always guarantee better molecular
quality, as there exists a trade-off between fidelity and novelty Mahmood et al. (2021); Geng et al.
(2023). In this regard, we demonstrate that FragFM can trade off fidelity for novelty through a simple
modification, which we describe in section C.6. For Scaf, this stems from the scaffold-split protocol
of the MOSES benchmark: unseen scaffolds in the test set cannot be generated if they are absent from
the fragment vocabulary, a limitation of fixed fragment vocabularies also observed in JT-VAE. Unlike
prior fragment-based approaches, however, FragFM allows flexible replacement of the vocabulary due
to the GNN-based fragment embedding. To verify this, we further demonstrate that it can generalize
when equipped with a test-set fragment vocabulary, as detailed in section C.3.

Table 1: Molecule generation on MOSES. We use 25,000 generated molecules for evaluation. The
upper part comprises autoregressive methods, while the second part comprises one-shot methods,
including diffusion-based and flow-based methods. Results for FragFM are averaged over three
independent runs. The best performance is highlighted in bold, and the second-best is underlined.

Model Rep. Level Valid ↑ Unique ↑ Novel ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Training set - 100.0 100.0 - 100.0 0.48 0.59 0.0

GraphINVENT (Mercado et al., 2021) Atom 96.4 99.8 - 95.0 1.22 0.54 12.7
JT-VAE (Jin et al., 2018) Fragment 100.0 100.0 99.9 97.8 1.00 0.53 10.0
SAFE-GPT (Noutahi et al., 2024) Fragment 98.1 100.0 90.9 98.2 0.71 0.54 9.8

DiGress (Vignac et al., 2022) Atom 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo (Xu et al., 2024) Atom 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh (Siraudin et al., 2024) Atom 90.5 100.0 96.4 97.2 1.44 0.51 15.9
Cometh-PC (Siraudin et al., 2024) Atom 90.5 99.9 92.6 99.1 1.27 0.54 16.0
DeFoG (Qin et al., 2024) Atom 92.8 99.9 92.1 98.9 1.95 0.55 14.4

FragFM (ours) Fragment 99.8 100.0 87.1 99.1 0.58 0.56 10.9

5.2 NPGEN BENCHMARK

We now evaluate FragFM on our proposed NPGen benchmark (section 4). As summarized in table 2,
FragFM achieves the strongest performance on functionality-driven metrics, underscoring its ability
to capture the structural and biological characteristics of natural products. In particular, it surpasses
prior methods by a substantial margin on NP-specific measures such as the NP-likeness score and
NP-Classifier divergences, demonstrating a clear advantage in modeling the complex structures of
natural products. Compared to DiGress, FragFM achieves these improvements with over 5 times
faster sampling (36.0 vs. 7.0 hours; fig. 7). More broadly, these results highlight that fragment-based
representations generally yield stronger performance on functionality-driven metrics than atom-based
approaches. We provide visualizations of generated molecules for all baselines in fig. 3 and section F.3.

5.3 CONDITIONAL GENERATION

A key requirement for molecular generative models is controllability, i.e., steering generated molecules
toward desired properties while retaining validity and distributional fidelity. We evaluate the condi-
tional generation ability of FragFM against the atom-based baseline DiGress, where both models
employ a classifier guidance scheme.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Molecule generation results on NPGen. We use 30,000 generated molecules for evaluation.
The upper part comprises autoregressive methods, while the second part comprises one-shot methods,
including diffusion-based and flow-based methods. The results are averaged over three runs. The best
performance is highlighted in bold, and the second-best is underlined.

Model Rep. Level Val. ↑ Unique. ↑ Novel ↑ NP Score
KL Div. ↓

NP Class KL Div. ↓ FCD ↓Pathway Superclass Class

Training set - 100.0 100.0 - 0.0006 0.0002 0.0028 0.0094 0.01

GraphAF (Shi et al., 2020) Atom 79.1 63.6 95.6 0.8546 0.9713 3.3907 6.6905 25.11
JT-VAE (Jin et al., 2018) Fragment 100.0 97.2 99.5 0.5437 0.1055 1.2895 2.5645 4.07
HierVAE (Jin et al., 2020a) Fragment 100.0 81.5 97.7 0.3021 0.4230 0.5771 1.4073 8.95

DiGress (Vignac et al., 2022) Atom 85.4 99.7 99.9 0.1957 0.0229 0.3370 1.0309 2.05

FragFM (ours) Fragment 98.0 99.0 95.4 0.0374 0.0196 0.1482 0.3570 1.34

H
N

O

H
N

O

N

N

S

O

NN

HO

N

OH

OH

HO
NH
NH

ON
H

O

O

N

O

O

Br
Br

O O

Br
O

S
OO

Br O

N
H

N

O H
N

ONH

OO

O
O

O

O

HO N
N

O

OHO

O

O

O

O

O

O

O

O

O

O

N

O

FragFM

DiGress

Figure 3: Randomly selected molecules from DiGress (top) and FragFM (bottom) trained
on NPGen. We randomly sample a moderate-sized molecule containing 31 to 40 heavy atoms.
Chemically implausible moieties are highlighted in red. More examples are provided in section F.3.

To this end, we first vary the guidance strength (λX) and plot the resulting trade-off curves
(MAE–FCD and MAE–validity). When conditioning on simple molecular properties such as QED
(figs. 4 and 13), logP (fig. 14), and ring count (fig. 15), FragFM attains lower conditional MAE with
lower FCD and higher validity, while the atom-based baseline often suffers sharp validity drops under
strong guidance.

We further confirm that fragment-based generation provides additional flexibility through fragment-
bag conditioning by λB. In the JAK2 docking score task (fig. 5), FragFM consistently outperforms
the atom-based baseline even without bag guidance (λB = 0). Increasing λB further shifts the
generated distribution toward the target docking score while preserving nearly 100% validity, whereas
DiGress not only suffers from substantial validity loss but also shows little shift in the docking
score distribution from the original data. Importantly, this conditioning is applied in a particularly
challenging region of ZINC250K (top 0.08%), where such low docking scores are extremely rare,
highlighting the robustness of fragment-based design in realistic scenarios.

Finally, we analyze the joint effect of the two guidance terms, λX and λB. As shown in the MAE–FCD
curves (fig. 5), each curve corresponds to varying λX , while adjusting λB consistently shifts these
curves toward more favorable trade-off regions. This demonstrates that fragment-bag reweighting
complements the standard classifier guidance, offering an additional degree of controllability that
is unique to fragment-based generation and unattainable in purely atomistic approaches. Moreover,
the results of using λB only (red points in fig. 5) indicate that employing a conditional fragment bag
alone can already achieve effective conditioning. Together, these findings align with the long-standing
success of fragment-based paradigms in medicinal chemistry (Sadybekov et al., 2022; Hajduk &
Greer, 2007) and recent computational strategies (Lee et al., 2024), while emphasizing the importance
of preparing property-oriented fragment candidates.

5.4 SAMPLING EFFICIENCY

Iterative denoising in stochastic generative models involves a trade-off between the number of
sampling steps and output quality. As shown in Figure 6, most diffusion- and flow-based models
suffer declines in validity and FCD as the number of steps decreases, whereas FragFM remains robust,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
Condition MAE

2

4

6

8

10

FC
D

Target value
QED=0.6
QED=0.8
QED=1.0
Model
DiGress
FragFM (= 20.0)

Figure 4: Property condition-
ing results for QED. MAE-
FCD curves under different tar-
get QED values. Each curve
shows results as the classifier
guidance strength is varied.

12 10 8 6 4 2
SMINA Docking Score (kcal/mol)

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

condition

FCD: 5.93, Validity: 0.79
FCD: 5.43, Validity: 1.00
FCD: 6.36, Validity: 1.00

ZINC250k
DiGress (guidance)
FragFM (X only)
FragFM (X and)

1.5 2.0 2.5 3.0 3.5
Condition MAE

1

2

3

4

5

6

7

8

FC
D

DiGress
FragFM

0.00

0.10

0.20

0.30

0.40

0.50

 L
ev

el

Figure 5: Effect of λB in conditioning. (left) λB=0.4, λX=2.0;
the DiGress guidance level is set as 2,000 for comparable FCD
values. (right) MAE–FCD curves on ZINC250k with JAK2 docking
score conditioning at −11.0 kcal/mol. Red markers indicate λX=
0.0, i.e., fragment-bag-only guidance. Each curve shows results as
the classifier guidance strength is varied.

maintaining over 95% validity and FCD below 1.0 even with fewer steps. This efficiency arises from
operating on fragment-level structures rather than individual atoms. Moreover, FragFM achieves
substantially faster sampling time at the fragment level, as illustrated in Figure 7. Additional results
and full tables are provided in section C.8.

101 102 103

Sampling Steps

20

40

60

80

100

Va
lid

ity

101 102 103

Sampling Steps
0

2

4

6

8

FC
D

DiGress DeFog Cometh FragFM

Figure 6: Analysis of sampling steps across multiple denoising
models. FragFM maintains higher sampling quality than baseline
atom-based denoising models as the number of sampling steps is
reduced, exhibiting significantly less performance degradation. Ad-
ditional results are provided in section C.8.

DiGress
(500)

DeFog
(500)

FragFM
(500)

FragFM
(50)

0

1

2

3

4

5

M
OS

ES
 S

am
pl

in
g

Ti
m

e
(h

ou
rs

)

MOSES (25,000 Samples)
NPGen (30,000 Samples)

0

5

10

15

20

25

30

35

NP
Ge

n
Sa

m
pl

in
g

Ti
m

e
(h

ou
rs

)

N/A

Figure 7: Sampling time for
MOSES and NPGen across
different models. The num-
ber in parentheses indicates the
sampling steps.

6 CONCLUSION

In this paper, we have introduced FragFM, a novel hierarchical framework with fragment-level discrete
flow matching followed by lossless reconstruction of the atom-level graph, for efficient molecular
graph generation. To this end, we proposed a stochastic fragment bag strategy with a coarse-to-fine
autoencoder to circumvent dependency on a limited fragment library cost-effectively. Standing on
long-standing fragment-based strategies in chemistry, FragFM showed superior performance on
the standard molecular generative benchmarks compared to the previous graph generative models.
Additionally, applying classifier guidance at the fragment level and conditioning the fragment bag on
the target property enables more precise control over diverse molecular properties. These significant
improvements pave the way for a new frontier for fragment-based denoising approaches in molecular
graph generation. Finally, to contribute to the growth of the molecular graph-generating domain, we
developed a new benchmark for evaluating models of natural products, which is also crucial in drug
discovery.

REFERENCES

Atanas G Atanasov, Sergey B Zotchev, Verena M Dirsch, and Claudiu T Supuran. Natural products
in drug discovery: advances and opportunities. Nature reviews Drug discovery, 20(3):200–216,
2021.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Maya Bechler-Speicher, Ben Finkelshtein, Fabrizio Frasca, Luis Müller, Jan Tönshoff, Antoine
Siraudin, Viktor Zaverkin, Michael M Bronstein, Mathias Niepert, Bryan Perozzi, et al. Position:
Graph learning will lose relevance due to poor benchmarks. arXiv preprint arXiv:2502.14546,
2025.

Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.
Journal of medicinal chemistry, 39(15):2887–2893, 1996.

Asmaa Boufridi and Ronald J Quinn. Harnessing the properties of natural products. Annual review
of pharmacology and toxicology, 58(1):451–470, 2018.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
models for de novo molecular design. Journal of chemical information and modeling, 59(3):
1096–1108, 2019.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

Barry K Carpenter. Heavy-atom tunneling as the dominant pathway in a solution-phase reaction? bond
shift in antiaromatic annulenes. Journal of the American Chemical Society, 105(6):1700–1701,
1983.

Venkata Chandrasekhar, Kohulan Rajan, Sri Ram Sagar Kanakam, Nisha Sharma, Viktor Weißenborn,
Jonas Schaub, and Christoph Steinbeck. Coconut 2.0: a comprehensive overhaul and curation of
the collection of open natural products database. Nucleic Acids Research, 53(D1):D634–D643,
2025.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. arXiv preprint arXiv:2305.04111, 2023.

Zijun Chen, Yu Wang, Liuzhenghao Lv, Hao Li, Zongying Lin, Li Yuan, and Yonghong Tian. Multi-
granularity score-based generative framework enables efficient inverse design of complex organics.
arXiv preprint arXiv:2409.07912, 2024.

Jorg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of compiling
and using’drug-like’chemical fragment spaces. ChemMedChem, 3(10):1503, 2008.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.

Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
van de Meent. Variational flow matching for graph generation. arXiv preprint arXiv:2406.04843,
2024.

Peter Ertl, Silvio Roggo, and Ansgar Schuffenhauer. Natural product-likeness score and its application
for prioritization of compound libraries. Journal of chemical information and modeling, 48(1):
68–74, 2008.

Miklos Feher and Jonathan M Schmidt. Property distributions: differences between drugs, natural
products, and molecules from combinatorial chemistry. Journal of chemical information and
computer sciences, 43(1):218–227, 2003.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. arXiv preprint arXiv:2407.15595, 2024.

Zijie Geng, Shufang Xie, Yingce Xia, Lijun Wu, Tao Qin, Jie Wang, Yongdong Zhang, Feng Wu, and
Tie-Yan Liu. De novo molecular generation via connection-aware motif mining. arXiv preprint
arXiv:2302.01129, 2023.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Philip J Hajduk and Jonathan Greer. A decade of fragment-based drug design: strategic advances and
lessons learned. Nature reviews Drug discovery, 6(3):211–219, 2007.

Leon Hetzel, Johanna Sommer, Bastian Rieck, Fabian Theis, and Stephan Günnemann. Magnet:
Motif-agnostic generation of molecules from shapes. arXiv preprint arXiv:2305.19303, 2023.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Xiaoyang Hou, Tian Zhu, Milong Ren, Dongbo Bu, Xin Gao, Chunming Zhang, and Shiwei Sun.
Improving molecular graph generation with flow matching and optimal transport. arXiv preprint
arXiv:2411.05676, 2024.

John J Irwin and Brian K Shoichet. Zinc- a free database of commercially available compounds for
virtual screening. Journal of chemical information and modeling, 45(1):177–182, 2005.

Yunhui Jang, Dongwoo Kim, and Sungsoo Ahn. Hierarchical graph generation with k2-trees. In
ICML 2023 Workshop on Structured Probabilistic Inference {\&} Generative Modeling, 2023.

Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for the
exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
using structural motifs. In International conference on machine learning, pp. 4839–4848. PMLR,
2020a.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using
interpretable substructures. In International conference on machine learning, pp. 4849–4859.
PMLR, 2020b.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International conference on machine learning, pp.
10362–10383. PMLR, 2022.

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture. arXiv
preprint arXiv:2302.03596, 2023.

Diane Joseph-McCarthy, Arthur J Campbell, Gunther Kern, and Demetri Moustakas. Fragment-based
lead discovery and design. Journal of chemical information and modeling, 54(3):693–704, 2014.

Cheongwoong Kang and Jaesik Choi. Impact of co-occurrence on factual knowledge of large
language models. arXiv preprint arXiv:2310.08256, 2023.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
and improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174–24184, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hyun Woo Kim, Mingxun Wang, Christopher A Leber, Louis-Félix Nothias, Raphael Reher, Kyo Bin
Kang, Justin JJ Van Der Hooft, Pieter C Dorrestein, William H Gerwick, and Garrison W Cottrell.
Npclassifier: a deep neural network-based structural classification tool for natural products. Journal
of Natural Products, 84(11):2795–2807, 2021.

Jun Hyeong Kim, Seonghwan Kim, Seokhyun Moon, Hyeongwoo Kim, Jeheon Woo, and Woo Youn
Kim. Discrete diffusion schr\" odinger bridge matching for graph transformation. arXiv preprint
arXiv:2410.01500, 2024.

Philine Kirsch, Alwin M Hartman, Anna KH Hirsch, and Martin Empting. Concepts and core
principles of fragment-based drug design. Molecules, 24(23):4309, 2019.

David Ryan Koes, Matthew P Baumgartner, and Carlos J Camacho. Lessons learned in empirical
scoring with smina from the csar 2011 benchmarking exercise. Journal of chemical information
and modeling, 53(8):1893–1904, 2013.

Xiangzhe Kong, Wenbing Huang, Zhixing Tan, and Yang Liu. Molecule generation by principal
subgraph mining and assembling. Advances in Neural Information Processing Systems, 35:2550–
2563, 2022.

Youngchun Kwon, Dongseon Lee, Youn-Suk Choi, Kyoham Shin, and Seokho Kang. Compressed
graph representation for scalable molecular graph generation. Journal of Cheminformatics, 12:
1–8, 2020.

Seul Lee, Karsten Kreis, Srimukh Prasad Veccham, Meng Liu, Danny Reidenbach, Saee Paliwal,
Arash Vahdat, and Weili Nie. Molecule generation with fragment retrieval augmentation. arXiv
preprint arXiv:2411.12078, 2024.

Daniel Levy and Jarrid Rector-Brooks. Molecular fragment-based diffusion model for drug discovery.
In ICLR 2023-Machine Learning for Drug Discovery workshop, 2023.

Jaechang Lim, Sang-Yeon Hwang, Seokhyun Moon, Seungsu Kim, and Woo Youn Kim. Scaffold-
based molecular design with a graph generative model. Chemical science, 11(4):1153–1164,
2020.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Tairan Liu, Misagh Naderi, Chris Alvin, Supratik Mukhopadhyay, and Michal Brylinski. Break down
in order to build up: decomposing small molecules for fragment-based drug design with e molfrag.
Journal of chemical information and modeling, 57(4):627–631, 2017.

Tianze Luo, Zhanfeng Mo, and Sinno Jialin Pan. Fast graph generation via spectral diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 46(5):3496–3508, 2023.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International conference on machine learning, pp. 7192–7203. PMLR, 2021.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip
Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
International Conference on Machine Learning, pp. 23321–23337. PMLR, 2023.

Omar Mahmood, Elman Mansimov, Richard Bonneau, and Kyunghyun Cho. Masked graph modeling
for molecule generation. Nature communications, 12(1):3156, 2021.

Krzysztof Maziarz, Henry Jackson-Flux, Pashmina Cameron, Finton Sirockin, Nadine Schneider,
Nikolaus Stiefl, Marwin Segler, and Marc Brockschmidt. Learning to extend molecular scaffolds
with structural motifs. arXiv preprint arXiv:2103.03864, 2021.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Rocío Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming
Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. Machine Learning:
Science and Technology, 2(2):025023, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

David J Newman and Gordon M Cragg. Natural products as sources of new drugs over the nearly
four decades from 01/1981 to 09/2019. Journal of natural products, 83(3):770–803, 2020.

Keiichi Nishiyama, Ninoru Sakiyama, Syûzô Seki, Hisanori Horita, Tetsuo Otsubo, and Soichi
Misumi. Thermochemical studies on double-and triple-layered [2.2] paracyclophanes. estimation
of molecular strain energies. Bulletin of the Chemical Society of Japan, 53(4):869–877, 1980.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572, 2024.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
tation invariant graph generation via score-based generative modeling. In International Conference
on Artificial Intelligence and Statistics, pp. 4474–4484. PMLR, 2020.

Emmanuel Noutahi, Cristian Gabellini, Michael Craig, Jonathan SC Lim, and Prudencio Tossou.
Gotta be safe: a new framework for molecular design. Digital Discovery, 3(4):796–804, 2024.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
Veselov, et al. Molecular sets (moses): a benchmarking platform for molecular generation models.
Frontiers in pharmacology, 11:565644, 2020.

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer. Fréchet
chemnet distance: a metric for generative models for molecules in drug discovery. Journal of
chemical information and modeling, 58(9):1736–1741, 2018.

Bo Qiang, Yuxuan Song, Minkai Xu, Jingjing Gong, Bowen Gao, Hao Zhou, Wei-Ying Ma, and
Yanyan Lan. Coarse-to-fine: a hierarchical diffusion model for molecule generation in 3d. In
International Conference on Machine Learning, pp. 28277–28299. PMLR, 2023.

Yiming Qin, Clement Vignac, and Pascal Frossard. Sparse training of discrete diffusion models for
graph generation. arXiv preprint arXiv:2311.02142, 2023.

Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Discrete flow matching
for graph generation. arXiv preprint arXiv:2410.04263, 2024.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical
information and modeling, 50(5):742–754, 2010.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10684–10695, 2022.

Josefin Rosén, Johan Gottfries, Sorel Muresan, Anders Backlund, and Tudor I Oprea. Novel chemical
space exploration via natural products. Journal of medicinal chemistry, 52(7):1953–1962, 2009.

Arman A Sadybekov, Anastasiia V Sadybekov, Yongfeng Liu, Christos Iliopoulos-Tsoutsouvas,
Xi-Ping Huang, Julie Pickett, Blake Houser, Nilkanth Patel, Ngan K Tran, Fei Tong, et al. Synthon-
based ligand discovery in virtual libraries of over 11 billion compounds. Nature, 601(7893):
452–459, 2022.

Seonghwan Seo, Jaechang Lim, and Woo Youn Kim. Molecular generative model via retrosyntheti-
cally prepared chemical building block assembly. Advanced Science, 10(8):2206674, 2023.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
flow-based autoregressive model for molecular graph generation. arXiv preprint arXiv:2001.09382,
2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
bridge matching. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=qy07OHsJT5.

Antoine Siraudin, Fragkiskos D Malliaros, and Christopher Morris. Cometh: A continuous-time
discrete-state graph diffusion model. arXiv preprint arXiv:2406.06449, 2024.

Maria Sorokina, Peter Merseburger, Kohulan Rajan, Mehmet Aziz Yirik, and Christoph Steinbeck.
Coconut online: collection of open natural products database. Journal of Cheminformatics, 13(1):
2, 2021.

Christopher F Stratton, David J Newman, and Derek S Tan. Cheminformatic comparison of approved
drugs from natural product versus synthetic origins. Bioorganic & medicinal chemistry letters, 25
(21):4802–4807, 2015.

Joseph B Sweeney. Aziridines: epoxides’ ugly cousins? Chemical Society Reviews, 31(5):247–258,
2002.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng, Ma-
hashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph generation.
arXiv preprint arXiv:2405.11416, 2024.

Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang. Swingnn: Rethinking permutation
invariance in diffusion models for graph generation. arXiv preprint arXiv:2307.01646, 2023.

Soojung Yang, Doyeong Hwang, Seul Lee, Seongok Ryu, and Sung Ju Hwang. Hit and lead discovery
with explorative rl and fragment-based molecule generation. Advances in Neural Information
Processing Systems, 34:7924–7936, 2021.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International conference on machine learning, pp.
12697–12706. PMLR, 2021.

Linqi Zhou, Aaron Lou, Samar Khanna, and Stefano Ermon. Denoising diffusion bridge models.
In The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=FKksTayvGo.

14

https://openreview.net/forum?id=qy07OHsJT5
https://openreview.net/forum?id=FKksTayvGo
https://openreview.net/forum?id=FKksTayvGo

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ADDITIONAL DETAILS OF THE METHOD

A.1 COARSE-TO-FINE AUTOENCODER

To convert between atomistic and fragment-level representations, we introduce a coarse-to-fine
autoencoder. Since the coarse graph already captures the abstract molecular structure, the primary role
of the autoencoder is to restore atomistic connectivity information that is lost during the fragmentation
process.

Coarse-graph encoder In the encoding phase, each molecule is first decomposed into fragments
using the BRICS decomposition rules (Degen et al., 2008), yielding a fragment-level graph G. During
this decomposition, connectivity information between atoms belonging to different fragments is
discarded; for example, the relative orientation of an antisymmetric fragment with respect to others
cannot be determined solely from the fragment graph. Unlike conventional autoencoders, our encoder
network is therefore only required to encode the missing atomistic connectivity into the latent variable
z, since the coarse graph already retains the overall molecular structure.

Fine-graph decoder In the decoding phase, the goal is to restore atom-level connections between
fragments that are linked at the coarse level. Each fragment is defined with junction atoms, which
mark the cut sites introduced during fragmentation. As a result, we only need to consider connectivity
between junction atoms across neighboring fragments, rather than all possible atom pairs. From
the coarse graph, we extract candidate junction-atom pairs, and the neural network predicts their
connectivity as a continuous score conditioned on the latent variable z. These scores are then
discretized into final bond assignments using the blossom algorithm, the details of which are provided
below.

Formally, the encoding and decoding process is summarized as:

Encoder: G
Rule−−−→ G, (G,G) ϕenc−−−→ z,

Decoder: (G, z) ϕdec−−−→ score
Blossom−−−−−→ E. (4)

Training details We train the coarse-to-fine autoencoder by minimizing reconstruction losses
over atomistic connectivities. During training, each connectivity is treated as independent of the
others, and the loss is formulated as a binary cross-entropy objective. In addition, we add a small
KL regularization term, as in VAEs, to the training loss on the latent variable in order to enforce a
well-structured and properly scaled latent space. The total loss is formulated as:

LAE(ϕ) = EG∼pdata

 ∑
(i,j)∈A

LBCE (eij , êij) + βDKL (qϕ(z|G) ∥ p(z))

 , (5)

where eij and êij denote the ground truth connectivity and predicted score between atoms i and j,
and A is the set of candidate junction-atom pairs derived from the coarse graph G. We set a low
regularization coefficient of β = 0.0001 to maintain high-fidelity reconstruction.

Atom-level reconstruction by Blossom algorithm Although each connectivity is trained inde-
pendently, reconstructing a valid graph from the predicted scores requires accounting for their
dependencies. To this end, we employ the Blossom algorithm (Edmonds, 1965) to determine the opti-
mal matching on the atom-level graph. More specifically, the Blossom algorithm returns a matching
in which each atom is constrained to be paired with at most one partner, while maximizing the sum
of connectivity scores (logit) predicted by the decoder. Within our framework, this procedure ensures
accurate reconstruction of atom-level connectivity from fragment-level graphs, thereby yielding
chemically valid molecular structures.

The algorithm takes as input the matching nodes Vm, edges Em, and edge weights wij . Once the
fragment-level graph and the probabilities of atom-level edges from the coarse-to-fine autoencoder
are computed, we define Vm as the set of junction atoms in fragment graphs, which are marked as *
in fig. 1, and Em as the set of connections between junction atoms belonging to connected fragments.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Formally, an edge ekl exists in Em if the corresponding atoms belong to different fragments that are
connected in the fragment-level graph, expressed as:

ekl ∈ Em if vk ∈ Vi, vl ∈ Vj , and εij ∈ E , (6)

where εij denotes the coarse level edge between i-th and j-th fragments, and Vi ⊆ Vm denotes
junction atoms that included in the i-th fragments. The edge weights wij correspond to the predicted
logit of each connection obtained from the coarse-to-fine autoencoder. The Blossom algorithm is then
applied to solve the maximum weighted matching problem, formulated as

M∗ = argmaxM⊆Em

∑
(i,j)∈M

wij s.t. degM(v) ≤ 1 ∀v ∈ Vm. (7)

Here, M∗ represents the optimal set of fragment-level connections that best reconstructs atom-level
connectivity, maximizing the joint probability of the autoencoder prediction. Although the algorithm
has an O(N3) complexity for N fragment junctions, its computational cost remains negligible in our
case, as the number of fragment junctions is relatively small compared to the total number of atoms
in a molecule.

A.2 DETAILS OF FLOW MODELING

In this section, we describe the details of flow modeling in the FragFM framework. The generation
process jointly produces the coarse graph G and the latent vector z, where the generation of G can
be interpreted as a joint procedure over nodes and edges. In total, three different types of variables
are generated jointly: two discrete variables (node and edge states) and one continuous variable (the
latent vector). Below, we detail the flow formulation and the corresponding loss functions for each
type.

A.2.1 FLOW MODELING FOR NODE

Following the original DFM formulation (Campbell et al., 2024), we specify the distribution of nodes
(fragment types) at t=1 as p1(x) and define the x1-conditioned time marginal by linear interpolation:

pt |1(xt | x1) = t δ(xt, x1) + (1−t) p0(xt), (8)

where p0 is a prior and δ(·, ·) is the Kronecker delta. We adopt the masked version of DFM proposed
by Campbell et al. (2024), in which the prior distribution assigns probability only to the mask token.
With this choice, the interpolation distribution in eq. (8) becomes particularly simple: it is nonzero
only when xt equals the mask token or the data token x1.

The corresponding CTMC transition rate is provided by the authors,

Rt(x, y | x1) =
ReLU

(
∂tpt |1(y | x1)− ∂tpt |1(x | x1)

)
S pt |1(x | x1)

, ∀x ̸= y, (9)

with S the number of states for which pt|1(x | x1) > 0. A brief algebraic manipulation of the
Kolmogorov forward equation yields the x1-unconditional generator

Rt(x, y) = Ex1∼p1|t(·|x)
[
Rt(x, y | x1)

]
. (10)

from which we can sample trajectories {xt}t∈[0,1]. Realizing these trajectories requires the posterior
distribution p1|t(x1 | Xt), whereXt denotes the noisy version of the coarse-graph Gt and latent vector
zt. As described in the main text, we approximate this posterior by modeling the bag-conditioned
distribution p1|t,B(x1 | Xt,B).

A.2.2 FLOW MODELING FOR EDGE

Let εij ∈ E denote the absence (0) or presence (1) of an edge between the i-th and j-th fragments in
the coarse graph. Because the edge state is binary, we adopt a Bernoulli prior with probability density
(mass) function p0(ε) = 1

2 for both states.

Following the discrete flow-matching (DFM) recipe, the ε1-conditioned time marginal is

pt |1
(
εt | ε1

)
= t δ

(
εt, ε1

)
+ (1− t) p0(εt), t ∈ [0, 1]. (11)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The CTMC rate that realizes this marginal is

Rt
(
ε, ε′ | ε1

)
=

ReLU
(
∂tpt |1(ε

′ | ε1)− ∂tpt |1(ε | ε1)
)

2 pt |1(ε | ε1)
, ∀ ε ̸= ε′, (12)

Rt(ε, ε
′) = Eε1∼p1 |t(·|ε)

[
Rt(ε, ε

′ | ε1)
]
. (13)

The posterior p1 |t(ε
ij
1 | Xt) is parameterized by a neural network gedge

θ (Xt)ij . We trained the model
by minimizing the cross-entropy loss:

Ledge =
∑
ij

EX1,Xt,t

[
−εij1 log gedge

θ (Xt)ij − (1− εij1) log
(
1− gedge

θ (Xt)ij

)]
. (14)

In the sampling phase, the neural network replaces the posterior in eq. (13). Because |E| = 2, the
expectation above is computed exactly—no Monte-Carlo sampling is required. Thus, the forward
kernel for i, j-th edge is as:

pθt+∆t|t
(
εijt+∆t | Xt

)
= δ

(
εijt , ε

ij
t+∆t

)
+Rt

(
εijt , ε

ij
t+∆t

)
∆t. (15)

A.2.3 FLOW MODELING FOR LATENT VECTOR

Let z ∈ Rd be the continuous latent vector attached to the fragment-level graph. We model its
evolution with conditional flow matching (CFM; Lipman et al. (2022)), which views generation as
integrating an ODE whose time-dependent velocity field (VF) is learned from data. Specifically, we
linearly change the mean and standard deviation µt(x) = tz1 and σt(z) = 1− t. The corresponding
conditioned target VF is

ut(zt|z1) =
z1 − zt
1− t

. (16)

Then, the trajectory for a prior sample z0 ∼ N (0, I) and a data sample z1 ∼ p1(z) under the target
VF, i.e., the solution to dzt

dt = ut(zt|z1) with z0 is given by:

zt = (1− t)z0 + tz1, t ∈ [0, 1]. (17)

We fit a neural vector field vθ(Xt) by minimizing the mean-squared error

LCFM = EX1,Xt,t

[∥∥vθ(Xt)−
z1 − zt
1− t

∥∥2
2

]
. (18)

To generate a latent vector, we solve the ODE

dẑt
dt

= vθ(Xt), (19)

forward from t = 0 to t = 1 with a deterministic solver. The resulting ẑ1 is then fed to the coarse-to-
fine decoding network to obtain atom-level graph.

CFM as a Limiting Case of a VE Diffusion Bridge Unlike diffusion models, which first define
a reference process and then learn its drift, CFM directly prescribes the time-marginal distribution
and optimizes the corresponding velocity fields that “point” toward a fixed data point. This raises
a question: How can we treat CFM with the transition kernel pt+∆t|t(zt+∆t | zt) used in diffusion
models?

A diffusion bridge is a reference diffusion process conditioned to hit a fixed end-point. Its SDE is

dzt =
[
f(zt, t) + g2(t)∇zt logQ(zT | zt)

∣∣
zT=y

]
dt + g(t) dwt, (20)

where Q(zT | zt) is the unconditioned transition kernel of the reference process, f its drift, and g its
diffusion coefficients.

If the reference process is the variance-exploding (VE) diffusion dzt = g(t) dwt, Zhou et al. (2024)
show that equation 20 reduces to

dzt =
dσ 2

t /dt

σ2
T − σ2

t

(zT − zt) dt + g(t) dwt. (21)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Setting T = 1 and σ2
t = c2t (constant c) gives

dzt =
z1 − zt
1− t

dt + c dwt. (22)

Taking a limit of c→ 0 eliminates the stochastic term and leaves the deterministic drift

dzt
dt

=
z1 − zt
1− t

, (23)

which is exactly the velocity field optimized by CFM, i.e., the VE diffusion bridge collapses to CFM.

Given a coupling π(z0, z1), we can form a mixture bridge Π by averaging the pinned-down trajectories
over π. According to Proposition 2 of Shi et al. (2023), its Markov approximation M satisfies

dzt = E1|t
[z1 − zt
1− t

]
dt + c dwt, with Mt = Πt ∀t. (24)

When c→ 0, the drift term above coincides with the averaged velocity field learned by CFM eq. (18),
confirming that M recovers the CFM dynamics in the zero-noise limit.

A.2.4 TRAINING DETAILS

Our objective is to learn a generative diffusion on the coarse graph state1 by combining the node-type
Info-NCE loss, the edge binary-cross-entropy loss, and the latent CFM loss into a single training
objective.

Sampling a training triple (X1, Xt, t).

1. Data endpoint. Sample a atomistic graph G1 from the molecular dataset, and apply coarse-
to-fine encoder to obtain X1 = (G1, z1).

2. Time sampling. Sample a time t ∈ [0, 1] from uniform distribution.

3. Forward noise. Independently transform each component to its noised counterpart:

• Node. For every node indexed with i, sample xit ∼ pt|1(· | xi1) with the masked prior.

• Edge. For each pair (i, j), draw εijt ∼ pt |1(· | εij1) using eq. (11).

• Latent. Sample z0 ∼ N (0, I) and set zt = (1− t)z0 + tz1 as in eq. (17).

4. Construct Xt. Collect the three noised components into Xt = (Gt, zt).

Joint loss.

Lnode(θ;B) = − log
fθ(Xt, x1)∑
y∈B fθ(Xt, y)

, (2)

Ledge(θ) =
∑
i<j

[
− εij1 log gedge

θ (Xt)ij − (1− εij1)log
(
1− gedge

θ (Xt)ij
)]
, (14)

Llatent(θ) =
∥∥vlatent
θ (Xt)− (z1 − z0)

∥∥2
2
. (18)

We minimize the weighted sum

Ltotal(θ;B) = Lnode(θ;B) + αedge Ledge(θ) + αlatent Llatent(θ), (25)

with αedge, αlatent>0. We fix αedge = 5.0 and αlatent = 1.0 for all of our experiments.

1Recall Xt =
(
Gt, zt

)
with Gt = ({xi

t}, {εijt }) —the node-type vector xi
t, binary edge matrix εijt , and

latent vector zt ∈ Rd.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.3 CONDITIONAL GENERATION WITH FRAGMENT BAG

While generating valid molecules is essential, steering them toward the desired property is crucial
for the practical application of molecular generative models. Direct conditioning via classifier-free
guidance (Ho & Salimans, 2022) offers strong control but tightly binds the generative network to
specific properties and often requires retraining when new targets are introduced. Instead, we adopt
classifier guidance, steering generation at sampling time with an external property predictor. This
decouples the generator from any single conditioning signal and allows the predictor to be trained or
updated independently (Dhariwal & Nichol, 2021; Vignac et al., 2022).

To generate molecules conditioned on external properties, we require a property-steered transition
kernel, denoted pt+∆t|t(Xt+∆t | Xt, c). The transition kernel of X factorizes into kernels for nodes,
edges, and the latent vector. Among these, node types require special treatment because they are
sampled from a candidate fragment bag B.

Analogous to the unconditional case described in the main text, we define the property-conditioned
forward kernel using the bag strategy as

pt+∆t|t(Xt+∆t | Xt, c) ≈ p(Xt+∆t | Xt,Bc, c), (26)

where Bc denotes the property-conditioned fragment bag. The original B is constructed by sampling
one positive fragment from x+ ∼ p(x | Xt) and N−1 negative fragments from x− ∼ p(x).
Analogously, the c-conditioned bag Bc is constructed by sampling one positive fragment from
x+ ∼ p(x | Xt, c) and N−1 negative fragments from x− ∼ p(x | c). By Bayes’ rule, the c-
conditioned in-bag transition kernel can be factorized into the c-unconditional kernel and a guidance
ratio:

p(Xt+∆t | Xt,Bc, c) = p(Xt+∆t | Xt,Bc)︸ ︷︷ ︸
eq. (3)

· p(c | Xt+∆t, Xt,Bc)
p(c | Xt,Bc)︸ ︷︷ ︸

Guidance ratio

. (27)

Guidance ratio modeling The guidance ratio in eq. (27) can be written by:

p(c|Xt+∆t, Xt,Bc)
p(c|Xt,Bc)

=
p(c|Xt+∆t,Bc)
p(c|Xt,Bc)

,

=
p(c|Xt+∆t)p(Bc|c,Xt+∆t)/p(Bc|Xt+∆t)

p(c|Xt)p(Bc|c,Xt)/p(Bc|Xt)
.

The ratio p(Bc|c,Xt+∆t) p(Bc|Xt)
p(Bc|Xt+∆t) p(Bc|c,Xt)

is intractable, yet it involves the difference between two consecutive
states Xt and Xt+∆t. Because an Euler step is very small, it can be assumed that the diffusion
state evolves smoothly: Xt+∆t = Xt + O(∆t). If the bag-sampling distributions p(Bc | X) and
p(Bc | c,X) vary continuously with X , a first-order Taylor expansion yields

p(Bc | ·, Xt+∆t) = p(Bc | ·, Xt) +O(∆t), (28)

so the whole ratio is approximately 1, to be

p(c|Xt+∆t, Xt,Bc)
p(c|Xt,Bc)

≈ p(c|Xt+∆t)

p(c|Xt)
. (29)

Following Nisonoff et al. (2024); Vignac et al. (2022), we can estimate the ratio via noisy predictor
ĉ(Xt) with 1st order Taylor expansion, yielding

log
p(c|Xt+∆t)

p(c|Xt)
≈ ⟨∇Xt log p(c|Xt), Xt+∆t −Xt⟩,

≈
∑
i

⟨∇
x
(i)
t

log p(c|Xt), x
(i)
t+∆t⟩+

∑
ij

⟨∇
ε
(ij)
t

log p(c|Xt), ε
(ij)
t+∆t⟩

+ ⟨∇zt log p(c|Xt), zt+∆t − zt⟩+ C.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In practice, we estimate p(c|Xt) by Gaussian modeling with a time conditioned noisy classifier
parameterized by ψ, N (c;µ(Xt, t;ψ), σ

2). Thus, the guidance term is written as:

p(c|Xt+∆t)

p(c|Xt)
∝ exp(λX

∑
i

⟨∇
x
(i)
t
∥µ(Xt, t)− c∥2, x(i)t+∆t⟩) (30)

× exp(λX
∑
ij

⟨∇
ε
(ij)
t

∥µ(Xt, t)− c∥2, ε(ij)t+∆t⟩)

× exp(λX⟨∇zt∥µ(Xt, t)− c∥2, zt+∆t − zt⟩),

where λX controls the strength of the guidance.

The smoothness assumption we adopt is exactly the one adopted by earlier discrete-guidance methods
(Vignac et al., 2022; Nisonoff et al., 2024), our derivation remains consistent with the foundations
laid out in those works.

Conditional bag sampling To sample Bc, we first recall the unconditional case. When no property
is specified, a bag B = {x1, . . . , xN} of size N is drawn without replacement from the the fragments
vocabulary F with probability

P
(
B
)
=

∏
x∈B

p
(
x
)

∑
S⊂F
|S|=N

∏
y∈S

p(y)
, (31)

i.e., bags that contain high-frequency fragments under the marginal distribution p(x) are sampled
more often. To steer this toward a desired property c, we replace each p(x) by its conditional
counterpart p(x|c). Viewing a fragment as part of a molecule X , the condition can be written as the
expected property value over all molecules that contain that fragment:

∑
X p(x|X, c)p(X|c).

The resulting bag distribution becomes

P
(
Bc | c

)
=

∏
x∈Bc

p
(
x | c

)
∑
S⊂F
|S|=N

∏
y∈S

p(y | c)
. (32)

Applying Bayes’ rule and dropping the constant factor p(c) gives

p(x|c) ∝ p(x)p(c|x). (33)

In practice, we estimate p(c|x) as a gaussian distribution with a light neural regressor parameterized
by ψ,

pψ(c | x) = N
(
c; µ(x;ψ), σ2

)
, pψ(x | c) ∝ p(x) exp

(
−λB ∥µ(x;ψ)− c∥2

)
, (34)

where µ(x, ψ) is the predicted mean, σ2 is a fixed variance, and λB controls the strength of the
property-guided bag selection.

A.4 DETAILED BALANCE

The space of valid rate matrices extends beyond the original formulation of eq. (9); thus, alternative
constructions can still satisfy the Kolmogorov equation. Campbell et al. (2024) show that if a matrix
RDBt fulfils the detialed-balance identity:

pt|1(xt | x1)RDBt (xt, y | x1) = pt|1(y | x1)RDBt (y, xt | x1), , (35)

then,
Rηt = R∗

t + ηRDBt , η ∈ R+, (36)
remains a valid CTMC generator. A larger η injects extra stochasticity, opening additional state-
transition pathways.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Although several designs are possible, we follow Campbell et al. (2024). The only non-zero rates for
fragment-type nodes are the transitions between a concrete type x1 and the mask state M :

RDBt (x, y|x1) = δ(x, x1)δ(y,M) + δ(x,M)δ(y, x1), (37)

where M denotes the masked type.

For edges, whose states are binary εij ∈{0, 1}, we consider a flip rate ηedge and a matching backward
rate that satisfies eq. (35) which leads to:

RDBt (ε, ε′ | ε1) = δ(ε, ε1) +
1 + t

1− t
δ(ε′, ε1). (38)

We set (ηnode, ηedge) = (20.0, 20.0) for MOSES, and (10.0, 2.0) for GuacaMol and NPGen datasets.

B DETAILS OF NPGEN BENCHMARK

Here, we provide additional details on (1) the dataset construction process from the COCONUT
database including the filtering steps, (2) the NP-specific evaluation metrics and how they are
computed, (3) the statistics and distributional properties of the NPGen benchmark, and (4) the baseline
models and setups used in our evaluation. These details complement the high-level description in the
main paper and are intended to facilitate reproducibility and further use of NPGen by the community.

B.1 BACKGROUND ON NATURAL PRODUCTS

Natural products (NPs) are chemical compounds biologically synthesized by organisms, e.g., plants
fungi, and bacteria. They have long served as a valuable resource in drug discovery, with their unique
structural features compared to typical synthetic compounds—more complex ring architectures,
higher heteroatom density, and abundant oxygen-based functional groups that contribute to polarity,
stereochemical diversity, and bioactivity (Feher & Schmidt, 2003; Stratton et al., 2015). In essence,
NPs occupy a biologically meaningful subset of chemical space, often resembling endogenous
metabolites, which makes them particularly effective as templates or direct sources for drug design
(Boufridi & Quinn, 2018; Rosén et al., 2009; Atanasov et al., 2021). Moreover, unlike many synthetic
comounds, NPs frequently resemble endogenous metabolites, increasing their likelihood of interacting
with biological targets in meaningful ways.

A substantial portion of clinically approved small-molecule drugs are inspired by or derived from
NPs, mimicking their structures or functionalities (Newman & Cragg, 2020). Multiple classes of
drugs, such as antibiotics (penicillin, derived from Penicillium fungi; erythromycin, from Saccha-
ropolyspora erythraea bacteria), anticancer agents (paclitaxel, originally isolated from the Taxus
brevifolia (Pacific yew tree); doxorubicin, from Streptomyces peucetius bacteria; vincristine, isolated
from Catharanthus roseus (periwinkle)), and immunosuppressants (cyclosporin A, from the soil
fungus Tolypocladium inflatum) demonstrate the long-standing role of NPs in drug discovery. In this
regard, generative models capable of reflecting NP-specific structural and biological characteristics
represent an important frontier for computational drug discovery.

For the machine learning community, natural products (NPs) present a particularly valuable and chal-
lenging benchmark: their structural diversity, functional complexity, and biological relevance extend
far beyond the synthetic-like molecules that dominate current datasets. While modern generative
models have achieved strong performance on widely used benchmarks such as MOSES (Polykovskiy
et al., 2020) and GuacaMol (Brown et al., 2019), these datasets are largely composed of small,
structurally simple molecules, and their evaluation metrics—Fréchet ChemNet Distance, scaffold
overlap, and KL divergence on basic descriptors—are approaching saturation. As a result, they cannot
adequately assess models aiming to capture the complexity and biological meaningfulness of NPs. A
benchmark centered on NPs therefore not only reflects real-world NP inspired drug discovery needs
but also provides a domain-specific stress test for molecular generative models, probing their ability
to extrapolate to richer regions of chemical space (Bechler-Speicher et al., 2025).

B.2 DATASET CONSTRUCTION

To construct the NPGen dataset, we utilized the 2024/12/31 version of the COCONUT database
(Sorokina et al., 2021; Chandrasekhar et al., 2025), which comprises 695,120 natural product-like

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

molecules. Given that the original database contains compounds with transition metals—species that
are rarely encountered in typical organic natural products—we applied a filtering procedure to retain
only molecules compose exclusively of non-metal atoms: ‘B’, ‘C’, ‘N’, ‘O’, ‘F’, ‘Si’, ‘P’,
‘S’, ‘Cl’, ‘As’, ‘Se’, ‘Br’, ‘I’. Additionally, to exclude arbitrarily large macromolecules,
we retained only those molecules whose heavy-atom counts fell between 2 and 99.

Furthermore, we only consider neutral molecules without salts, filtering charged molecules and
molecules containing "." in their SMILES representation. After filtering, a total of 658,566 molecules
were retained. The resulting dataset was randomly partitioned into training, validation, and test
subsets using an 85:5:15 split under the assumption of i.i.d. sampling, yielding 526,852, 32,928, and
98,786 molecules, respectively.

B.3 IMPLEMENTATION DETAILS FOR BASELINES

As baselines, we selected a set of molecular graph generative models with two aspects, i.e., generation
strategy (autoregressive and one-shot) and representation level (atom and fragment). We provide
more details on the baseline models.

GraphAF (Shi et al., 2020) is a flow-based autoregressive model for molecular graph generation
that constructs molecules sequentially by adding atoms and their corresponding bonds. We used
the authors’ official implementation from (https://github.com/DeepGraphLearning/
GraphAF) with its default settings, extending only the preprocessing and generation steps to include
atom types that the original implementation does not support ‘B’,‘As’,‘Si’,‘As’,‘Se’.
During generation, the official implementation terminates sampling once 40 atoms are generated for
each molecule; we modified this limit to 99 to match the NPGen benchmark’s maximum heavy-atom
count.

JT-VAE (Jin et al., 2018) is a fragment-based autoregressive variational autoencoder that generates
molecules by building a junction tree of chemically meaningful substructures and then assembling
the corresponding atom-level graph (Jin et al., 2018). We used the authors’ official implementa-
tion (https://github.com/wengong-jin/icml18-jtnn) with the acceleration module
(fast_molvae). Because the codebase relies on Python 2 and is incompatible with newer GPU
drivers, we performed training and sampling on an NVIDIA GeForce RTX 2080 Ti. We performed a
random hyperparameter search over hidden_dim and batch_size, and report the best results.

HierVAE (Jin et al., 2020a) builds on JT-VAE by introducing a hierarchical latent space and a scaffold-
aware message-passing scheme to boost structural diversity and sampling fidelity. We used the
authors’ official implementation (https://github.com/wengong-jin/hgraph2graph),
extending only the preprocessing step to include the ‘As’ atom type. By default, HierVAE employs
a greedy motif-sampling strategy, which prioritizes the top-scoring fragments and may bias the output
distribution. We observed that this led to artifacts, only generating single carbon chains on the NPGen
benchmark. To provide a fair comparison, we report the results of the alternative stochastic-sampling
mode (enabled via a single option flag in the official implementation), without modifying the core
codebase.

DiGress (Vignac et al., 2022) is an atom-based generative model that employs discrete diffusion. We
run the authors’ official implementation (https://github.com/cvignac/DiGress) with
all default hyperparameters, adding the atom types ‘B’,‘As’ and their corresponding charges.

B.4 METRICS

As mentioned in the main text, we utilize two methods for distributional metrics: NP-likeness score
(Ertl et al., 2008) and NP Classifier (Kim et al., 2021). Both strategies are developed by domain
experts to effectively analyze the molecule through the lens of a natural product.

NP-likeness score is developed to quantify the similarity of a given molecule to the structural
space typically occupied by natural products. Since one of the major differences between NPs and
synthetic molecules is structural features such as the number of aromatic rings, stereocenters, and
distribution of nitrogen and oxygen atoms, the NP-likeness of a molecule is calculated as the sum
of the contributions of its constituent fragments, where each fragment’s contribution is based on
its frequency in natural product versus synthetic molecule databases. We show the distributions

22

https://github.com/DeepGraphLearning/GraphAF
https://github.com/DeepGraphLearning/GraphAF
https://github.com/wengong-jin/icml18-jtnn
https://github.com/wengong-jin/hgraph2graph
https://github.com/cvignac/DiGress

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

of NP-likeness scores for existing benchmarks and NPGen in fig. 9. Since the source database of
NPGen, COCONUT, aggregates compounds from diverse sources, it naturally contains molecules
across a wide range of NP-likeness values. Importantly, the goal of a generative model is to faithfully
reproduce the distribution of the dataset rather than simply maximizing NP-likeness. To this end, we
measure the Kullback–Leibler (KL) divergence between the distributions of NP-likeness scores for
generated and reference molecules.

Since NP-likeness scores are continuous, we adopt a non-parametric estimation procedure from the
prior benchmarks such as MOSES and GuacaMol. Specifically, we calculate NP-likeness scores for
all molecules in both sets, then estimate their probability density functions (PDFs) using Gaussian
kernel density estimation (KDE). We evaluate both PDFs on a common range discretized into 1,000
points spanning the observed minimum and maximum scores, adding a small constant (10−10)
for numerical stability. The resulting discrete distributions are compared via KL divergence using
the scipy.stats.entropy function, providing a robust measure of how closely the generated
distribution aligns with that of natural products in the reference set.

NPClassifier is a deep learning-based tool specifically designed to classify NPs. It categorizes
molecules at three hierarchical levels—Pathway (7 categories; e.g., Polyketides, Terpenoids),
Superclass (70 categories, e.g., Macrolides, Diterpenoids), and Class (672 categories; e.g., Ery-
thromycins, Kaurane diterpenoids)—reflecting the biosynthetic origins, broader chemical and chemo-
taxonomic properties, and specific structural families recognized by the NP research community. This
multi-level system, built on an NP-specific ontology and trained on over 73,000 NPs using counted
Morgan fingerprints, provides a classification based on knowledge of natural products, including their
biosynthetic relationships and structural diversity.

We employed Kullback-Leibler (KL) divergence as a metric for both methods. We compute KL
divergence for NP-likeness score and NPClassifier differently, as they are continuous and discrete
values, respectively. It is worth noting that NPClassifier often predicts ‘Unclassified’, which
indicates a molecule is not included in any classes, along with multiple class results (e.g., ‘Peptide
alkaloids, Tetramate alkaloids’ in Class). We treat all prediction results as another
unique class, since molecules can have multiple structural features.

B.5 DATASET STATISTICS

We analyzed the distributions of several molecular properties to highlight NPGen’s distinctions from
standard molecular generative benchmarks (MOSES and GuacaMol). These properties fell into two
categories: (1) simple molecular descriptors, such as the number of atoms, molecular weight, and
number of hydrogen bond acceptors and donors (fig. 8), and (2) functionality-related properties,
including NP-likeness scores and NPClassifier prediction results (fig. 9). Consistent with the nature of
NPs, which are generally larger and more complex than typical synthetic drug-like molecules, NPGen
molecules are, on average, larger in terms of the number of atoms and molecular weight compared to
those in MOSES and GuacaMol (figs. 8a and 8b). Furthermore, molecules in NPGen exhibit higher
numbers of hydrogen bond acceptors and donors (see figs. 8c and 8d), reflecting another characteristic
of NPs.

The difference between benchmarks becomes more significant when examining functionality-related
properties. NPClassifier predictions for Pathway (fig. 9a) indicate that NPGen molecules span a
diverse range of NP categories. In contrast, molecules from MOSES and GuacaMol mostly fall into
‘Alkaloids’, which are non-peptidic nitrogenous organic compounds, or remain unclassified.
Focusing on four selected Superclass categories for which NPClassifier had demonstrated high
predictive performance (F1 score higher than 0.95 for categories with more than 500 compounds
(Kim et al., 2021)), NPGen shows higher proportions of molecules in these specific categories.
Conversely, molecules from the other benchmarks mostly fall into ‘Unclassified’, implying
that they are dissimilar to NPs. The NP-likeness score further emphasizes this divergence (fig. 9c). In
particular, NPGen’s distribution is largely shifted towards higher scores (average: 1.14) compared
to MOSES (average: -1.67) and GuacaMol (average: -0.90), where a higher score indicates greater
similarity to NPs.

Additionally, we visualize the chemical space of existing benchmarks (MOSES, GuacaMol) and
NPGen using UMAP (McInnes et al., 2018) in fig. 2a. While MOSES and GuacaMol occupy a largely

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

overlapping region, NPGen extends into distinct areas, indicating coverage of different chemical
subspaces.

These statistical analyses demonstrate that NPGen has distinct features compared to existing molecular
generative benchmarks, proving its suitability to serve as a unique molecular graph generative
benchmark targeting NP-like chemical space.

0 20 40 60 80 100
Number of Atoms

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
en

si
ty

(a) Number of atoms distributions.

0 250 500 750 1000 1250 1500 1750
Molecular Weight

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

De
ns

ity

(b) Molecular weight distributions.

0 10 20 30 40
Number of Hydrogen Bond Acceptors

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

(c) Number of hydrogen bond acceptors distributions.

0 5 10 15 20 25 30 35
Number of Hydrogen Bond Donors

0.0

0.1

0.2

0.3

0.4
D

en
si

ty

(d) Number of hydrogen bond donors distributions.

Figure 8: Comparison of simple molecular property distributions among three benchmarks:
MOSES, GuacaMol, and NPGen. The number of molecules in each dataset is 1,936,962, 1,591,378,
and 658,565, respectively.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Alkaloids Shikimates &
Phenylpropanoids

Fatty acids Terpenoids Carbohydrates Amino acids &
Peptides

Polyketides Unclassified

Pathways

0%

10%

20%

30%

40%

50%

60%

70%

80%

Pr
op

or
tio

n

81%

4%
0% 1% 0% 1% 1%

13%

68%

9%

1%
3%

1%
3% 2%

13%

22%

17%

11%

30%

1%
3%

8% 8%

(a) Proportion of all Pathway, along with ‘Unclassified’. Note that we excluded predicted results with mul-
tiple categories, for clarity. Specifically, number of predictions decreased as 1,936,962 to 1,873,287, 1,591,378
to 1,542,118, and 658,565 to 628,840 for MOSES, GuacaMol, and NPGen, respectively.

Oligopeptides Flavonoids Triterpenoids Macrolides Unclassified
Superclasses

0%

10%

20%

30%

40%

50%

60%

70%

Pr
op

or
tio

n

0.0% 0.1% 0.0% 0.0%

73.8%

0.3% 1.4% 0.5% 0.1%

70.7%

1.6%
5.0% 6.2%

1.2%

27.1%

(b) Proportion of four Superclass, along with
‘Unclassified’. Note that we excluded pre-
dicted results with multiple categories, for clarity.
Specifically, number of predictions decreased as 1,936,962
to 1,933,854, 1,591,378 to 1,588,486, and 658,565 to
650,013 for MOSES, GuacaMol, and NPGen, respectively.

-4 -2 0 2 4
NP-likeness score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity

(c) NP-likeness score distribution.

Figure 9: Comparison of NP-likeness score and NPClassifier prediction results among three
benchmarks: MOSES, GuacaMol, and NPGen. The number of molecules in each dataset is
1,936,962, 1,591,378, and 658,565, respectively. Note that we also report the ratio of unclassified
entities of dataset in figs. 9a and 9b. A statistics of Class prediction results is not included since it
has 687 classes and the ratio of each class is too small compared to ‘Unclassified’ class.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C ADDITIONAL RESULTS AND ANALYSES

C.1 ADDITIONAL BENCHMARKS

In the GuacaMol (table 3) and ZINC250k benchmarks, similar to MOSES, FragFM achieved the
best performance among diffusion- and flow-based baselines in terms of Validity and V.U. metrics,
obtained a state-of-the-art FCD score, and ranked as a close second in the KL Div. score on GuacaMol.
On ZINC250k, FragFM achieved the best performance across all reported metrics, surpassing the
strongest atom-based baseline with a five-fold improvement in NSPDK and a two-fold reduction
in FCD. These results underscore the effectiveness of the fragment-based approach of FragFM
in generating valid and chemically meaningful molecules. Visualization results for GuacaMol are
provided in section F.2.

Table 3: Molecule generation results on the GuacaMol benchmark. We use a total of 10,000
generated molecules for evaluation. All baselines except MCTS in this table is one-shot methods.
The results for FragFM are averaged over three independent runs. The best performance is shown in
bold, and the second-best is underlined.

Model Rep. Level Val. ↑ V.U. ↑ V.U.N. ↑ KL Div. ↑ FCD ↑
Training set - 100.0 100.0 - 99.9 92.8

MCTS (Jensen, 2019) Atom 100.0 100.0 95.4 82.2 1.5

NAGVAE (Kwon et al., 2020) Atom 92.9 88.7 88.7 38.4 0.9
DiGress (Vignac et al., 2022) Atom 85.2 85.2 85.1 92.9 68.0
DisCo (Xu et al., 2024) Atom 86.6 86.6 86.5 92.6 59.7
Cometh (Siraudin et al., 2024) Atom 94.4 94.4 93.5 94.1 67.4
Cometh-PC (Siraudin et al., 2024) Atom 98.9 98.9 97.6 96.7 72.7
DeFoG (Qin et al., 2024) Atom 99.0 99.0 97.9 97.7 73.8

FragFM (ours) Fragment 99.7 99.3 95.0 97.4 85.8

Table 4: Molecule generation on ZINC250k benchmark. We use 25,000 generated molecules
for evaluation. The upper part comprises autoregressive methods, while the second part comprises
one-shot methods, including diffusion-based and flow-based methods. The best performance is
highlighted in bold, and the second-best is underlined.

Model Rep. Level Valid ↑ NSPDK ↑ FCD ↑
Training set - - 0.0001 0.062

GraphAF (Shi et al., 2020) Atom 67.92 0.0432 16.128
GraphDF (Luo et al., 2021) Atom 89.72 0.1737 33.899

GDSS (Jo et al., 2022) Atom 97.12 0.0192 14.032
GSDM (Luo et al., 2023) Atom 92.57 0.0168 12.435
GruM (Jo et al., 2023) Atom 98.32 0.0023 2.235
SwinGNN (Yan et al., 2023) Atom 86.16 0.0047 4.398
DiGress (Vignac et al., 2022) Atom 94.98 0.0021 3.482
GGFlow (Hou et al., 2024) Atom 99.63 0.0010 1.455

FragFM (ours) Fragment 99.81 0.0002 0.630

We also provide the average and standard deviation of the newly proposed NPGen benchmark from
three runs for all baselines and FragFM in table 5.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 5: Molecule generation results on NPGen with error ranges. We use a total of 30,000
molecules for evaluation. The upper part comprises autoregressive methods, while the second part
comprises one-shot methods, including diffusion-based and flow-based methods. The results are
averaged over three runs. The best performance is shown in bold, and the second-best is underlined.
The numbers with ± indicates the standard deviation against each runs.

Model Val. ↑ Unique. ↑ Novel ↑ NP Score
KL Div. ↓

NP Class KL Div. ↓ FCD ↓Pathway Superclass Class

Training set 100.0 100.0 - 0.0006 0.0002 0.0028 0.0094 0.01

GraphAF (Shi et al., 2020) 79.1±0.1 63.6±0.2 95.6±0.0 0.8546±0.0095 0.9713±0.0055 3.3907±0.0730 6.6905±0.0905 25.11±0.08

JT-VAE (Jin et al., 2018) 100.0±0.0 97.2±0.1 99.5±0.0 0.5437±0.0188 0.1055±0.0019 1.2895±0.1243 2.5645±0.4557 4.07±0.02

HierVAE (Jin et al., 2020a) 100.0±0.0 81.5±1.1 97.7±0.0 0.3021±0.0063 0.4230±0.0051 0.5771±0.0121 1.4073±0.0630 8.95±0.06

DiGress (Vignac et al., 2022) 85.4±0.0 99.7±0.0 99.9±0.0 0.1957±0.0028 0.0229±0.0001 0.3370±0.0042 1.0309±0.0182 2.05±0.01

FragFM (ours) 98.0±0.0 99.0±0.0 95.4±0.1 0.0374±0.0001 0.0196±0.0008 0.1482±0.0026 0.3570±0.0006 1.34±0.01

C.2 COARSE-TO-FINE AUTOENCODER

Similar to the latent diffusion model (Rombach et al., 2022), we first train the coarse-to-fine autoen-
coder, which is then kept frozen during the training of the flow model. While the main experimental
results imply that the autoencoder works effectively in conjunction with the flow model, we further
assess whether the autoencoder alone can accurately reconstruct the original molecule from its coarse
graph and latent representation. We measure reconstruction accuracy at both the bond and whole-
graph levels. As reported in table 6, bond-level accuracy exceeds 99% on MOSES and GuacaMol,
indicating nearly perfect recovery of individual chemical bonds. Graph-level accuracy is similarly
high, confirming that overall connectivity patterns are faithfully preserved. Even on the structurally
diverse and larger NPGen dataset, the autoencoder maintains strong performance with only a slight
drop in accuracy, underscoring its robustness in handling complex molecular topologies.

We next examine the role of the latent representation z in enabling accurate reconstruction. While the
coarse fragment graph captures higher-level structural motifs, it alone is insufficient to recover atom-
level connectivity. This limitation underscores the importance of our coarse-to-fine design, where
the latent representation complements the fragment graph by encoding fine-grained connectivity
details. To make this explicit, we conduct an ablation in which reconstruction is attempted with a
random latent vector z ∼ N (0, I) instead of the encoded z. As reported in table 7, reconstruction
accuracy collapses in this case, particularly on the larger and more complex NPGen benchmark. In
contrast, decoding with the encoded z consistently yields near-perfect reconstruction, empirically
demonstrating that z encodes nearly complete atom-level connectivity and highlighting the novelty
of integrating fragment-level and atom-level information through our coarse-to-fine framework.

Table 6: Coarse-to-fine autoencoder accuracy. "Bond" denotes the accuracy of individual atom-
to-atom bonds, while "Graph" denotes the percentage of graphs in which all bonds are predicted
correctly.

Dataset Train set reconstruction (%) Test set reconstruction (%)
Bond Graph Bond Graph

MOSES 99.99 99.96 99.99 99.93
GuacaMol 99.99 99.43 99.98 99.42
ZINC250k 100.0 99.96 99.64 98.71
NPGen 99.98 97.62 99.71 97.43

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 7: Coarse-to-fine autoencoder accuracy under ablation on z. For each test dataset, recon-
struction was attempted by decoding the fragment-level graph with a randomly sampled z ∼ N (0, I).

Graph-level accuracy on test set (%) MOSES GuacaMol NPGen

Random z 55.2 46.7 34.4
Encoded z 99.9 99.4 97.4

C.3 FRAGMENT BAG GENERALIZATION

Tables 8 and 9 reports FragFM’s performance when sampling with fragment bags derived from
the test-set molecules on both MOSES and GuacaMol. Recall that MOSES uses a scaffold-split
evaluation—test scaffolds are deliberately excluded from training—so sampling with only training-set
fragments limits the model’s ability to recover those unseen scaffolds, resulting in a depressed Scaf
score. We re-ran the generation using fragment bags drawn from the test split to validate this. In
MOSES, the training split contains 39,247 fragments, while the test split contains 9,789 fragments, of
which 2,588 are unseen during training. In GuacaMol, the training split contains 192,751 fragments,
while the test split contains 63,608 fragments, with 22,962 unseen. Using only test-set fragments
for generation, FragFM’s Scaf score increases dramatically, while all other metrics on MOSES and
GuacaMol remain unchanged. This demonstrates that, leveraging its fragment embedding module,
FragFM can generalize to novel fragments without compromising validity, uniqueness, or other
quality measures.

Table 8: Molecule generation with unseen fragment bag on MOSES dataset. We use a total of
25,000 generated molecules for evaluation. The results are averaged over three independent runs.

Model Rep. Level Valid ↑ Unique ↑ Novel ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Training set - 100.0 100.0 - 100.0 0.48 0.59 0.0

GraphINVENT (Mercado et al., 2021) Atom 96.4 99.8 - 95.0 1.22 0.54 12.7
JT-VAE (Jin et al., 2018) Fragment 100.0 100.0 99.9 97.8 1.00 0.53 10.0

DiGress (Vignac et al., 2022) Atom 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo (Xu et al., 2024) Atom 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh (Siraudin et al., 2024) Atom 90.5 99.9 92.6 99.1 1.27 0.54 16.0
DeFoG (Qin et al., 2024) Atom 92.8 99.9 92.1 98.9 1.95 0.55 14.4

FragFM (train fragments) Fragment 99.8 100.0 87.1 99.1 0.58 0.56 10.9
FragFM (test fragments) Fragment 99.8 100.0 88.2 98.9 0.44 0.57 24.5

Table 9: Molecule generation with unseen fragment bag on GuacaMol dataset. We use a total of
10,000 generated molecules for evaluation. The results are averaged over three independent runs.

Model Rep. Level Val. ↑ V.U. ↑ V.U.N. ↑ KL Div. ↑ FCD ↑
Training set - 100.0 100.0 - 99.9 92.8

MCTS (Jensen, 2019) Atom 100.0 100.0 95.4 82.2 1.5

NAGVAE (Kwon et al., 2020) Atom 92.9 88.7 88.7 38.4 0.9
DiGress (Vignac et al., 2022) Atom 85.2 85.2 85.1 92.9 68.0
DisCo (Xu et al., 2024) Atom 86.6 86.6 86.5 92.6 59.7
Cometh (Siraudin et al., 2024) Atom 98.9 98.9 97.6 96.7 72.7
DeFoG (Qin et al., 2024) Atom 99.0 99.0 97.9 97.7 73.8

FragFM (train fragments) Fragment 99.7 99.4 95.0 97.4 85.7
FragFM (test fragments) Fragment 99.8 99.4 97.4 97.6 85.7

C.4 LONG TAIL FRAGMENT RECOVERY

Molecular fragment distributions in real-world datasets are highly imbalanced, with a small number
of frequent fragments and a long tail of rare ones. When we generate molecules at a fragment level,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

it is important to consider whether generative models can effectively recover such rare fragments
during sampling, rather than being biased to the frequent head of the distribution. This challenge
closely aligns with the long-tail problem in language models, where models tend to underpredict or
ignore infrequent categories despite their importance (Zhao et al., 2021; Kang & Choi, 2023).

To this end, we group fragments in the training set according to their occurrence count k, and refer
to them as k-rare fragments. We then compare the occurrence ratios across groups and quantify
how often these fragments reappear in generated molecules, thereby assessing the model’s ability to
recover the long tail.

Figure 10 shows the results. Across all datasets, the recovery ratios of k-rare fragments in generated
molecules closely follow the distributions observed in the training sets. Even for fragments that
occur fewer than five times, FragFM is able to regenerate them at comparable frequencies. Unlike
language models, which often underestimate rare tokens, we suppose that our fragment-to-vector
module helps generalize across fragments, contributing to this effect. These findings suggest that the
fragment-based representation, together with our modeling strategy, provides effective coverage of
the long-tail space.

2019181716151413121110 9 8 7 6 5 4 3 2 1
k-rare fragments

0.00

0.05

0.10

0.15

0.20

Ra
tio

 (%
)

Training Set
FragFM Generated

(a) MOSES

2019181716151413121110 9 8 7 6 5 4 3 2 1
k-rare fragments

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ra
tio

 (%
)

Training Set
FragFM Generated

(b) GuacaMol

2019181716151413121110 9 8 7 6 5 4 3 2 1
k-rare fragments

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ra
tio

 (%
)

Training Set
FragFM Generated

(c) NPGen

Figure 10: Long-tail fragment recovery results. Occurrence ratios of k-rare fragments in (a)
MOSES, (b) GuacaMol, and (c) NPGen. Generated sets consist of 25,000 molecules for MOSES,
10,000 for GuacaMol, and 30,000 for NPGen.

C.5 EFFECT OF FRAGMENT BAG SIZE

The size of the fragment bag B in eqs. (1) to (3) controls the number of fragments sampled at each step
during training and inference. The posterior in eq. (1) corresponds to a self-normalized importance
sampling (SNIS) estimator of the true posterior, whose bias and variance vanish as N increases.

During training (eqs. (1) and (2)), the bag size Ntrain determines how many negatives are included in
the InfoNCE loss. Larger Ntrain generally improves stability, although the optimality of the density-
ratio estimator fθ itself does not directly depend on Ntrain. By contrast, at inference time the bag size
Ninference directly controls the variance of the estimator: larger Ninference yields better results, as it
more closely approximates the full fragment library F . In the default setting of FragFM, we set both
Ntrain and Ninference to 384. To analyze the effect of fragment bag size, we ablate Ntrain and Ninference
separately to quantify the trade-off between computational efficiency and fidelity.

As shown in fig. 11(a), increasing the inference-time bag size Ninference consistently improves validity,
filter scores, and FCD by reducing estimator variance. In contrast, varying the training-time bag
size Ntrain produces only minor differences once it is moderately large, with a slight upward trend
observed in filter scores, as shown in fig. 11(b). We speculate that this stability may partly stem from
training regularization techniques such as EMA, which help smooth optimization dynamics.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

102 103

Ninference

94

96

98

100 Validity (%)

102 103

Ninference

95

96

97

98

99

100 Filters (%)

102 103

Ninference

0.0

0.5

1.0

1.5

2.0

2.5 FCD

(a) Inference-time bag size

102

Ntrain

94

96

98

100 Validity (%)

102

Ntrain

95

96

97

98

99

100 Filters (%)

102

Ntrain

0.0

0.5

1.0

1.5

2.0

2.5 FCD

(b) Training-time bag size

Figure 11: Effect of fragment bag size. Comparison across (a) inference-time bag size (with
Ntrain = 384), (b) training-time bag size (with Ninference = 384). To isolate the effect of bag size,
the detailed-balance term was excluded during sampling. The horizontal axis (fragment bag size) is
log-scaled in all subplots, and the default FragFM configuration is indicated by a black dashed line.

C.6 STEERING FRAGFM TOWARDS NOVEL MOLECULES

While FragFM achieves state-of-the-art fidelity on most distributional metrics, its novelty on small-
molecule benchmarks (tables 1 and 3) is slightly lower than some baselines. We note that this
difference is modest and reflects the trade-off between novelty and fidelity in molecular generation
(Mahmood et al., 2021; Geng et al., 2023). In fact, higher novelty scores can sometimes arise from
atom-based models that generate valid (in terms of atomic valency) yet chemically implausible
motifs that cannot stably exist in the real world, which does not necessarily correspond to meaningful
chemical space exploration. Nevertheless, users may sometimes prefer sampling molecules from
broader and previously underexplored regions of chemical space. To this end, we found that it is
possible to modulate the sampling algorithm to generate more unseen molecules, fully utilizing the
flexibility of the stochastic bag strategy.

Specifically, we consider two types of temperature scaling: (1) applying a temperature factor Tpred to
reweight fragment logits within the in-bag transition kernel (eq. (3)), and (2) applying a temperature
factor Tbag when reweighting fragments during bag construction at each Euler step (eq. (31)).

Empirically, as shown in table 10, increasing either Tpred or Tbag improves novelty with only a
slight trade-off in fidelity metrics such as validity and FCD. Notably, the combined setting (Tpred =
1.5, Tbag = 1.5) achieves over 94% novelty while still maintaining high validity (99.2%) and filters
(98.3%) metrics, indicating that the generated molecules remain well within the MOSES filter
constraints. This demonstrates that temperature scaling provides a simple and effective mechanism to
balance fidelity and exploration, offering users a practical control knob for tuning generation behavior.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 10: Effect of temperature scaling on MOSES. Benchmark results under different settings of
prediction temperature Tpred and fragment-bag temperature Tbag.

Tpred Tbag Valid ↑ Unique ↑ Novel ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
1.0 1.0 99.8 100.0 87.1 99.1 0.58 0.56 10.9
1.0 1.5 99.2 100.0 94.2 98.3 0.90 0.52 13.5
1.5 1.0 99.7 100.0 88.6 98.8 0.88 0.54 11.0
1.5 1.5 99.2 100.0 94.5 98.3 0.91 0.51 13.1

C.7 MORE RESULTS ON CONDITIONAL GENERATION

For simple molecular properties (logP, QED, and number of rings), we perform conditional generation
on the MOSES dataset using regressors trained on its training split. The detailed illustration of property
distributions and corresponding targets is depicted in fig. 12. For protein-target conditioning, we
perform conditioning on the ZINC250K dataset. The targets were selected from the DUD-E+ virtual
screening benchmark for our docking score experiments, following Yang et al. (2021). The established
reliability of Smina (Koes et al., 2013), which is a forked version of AutoDock Vina (Trott & Olson,
2010), evidenced by its high AUROC for discriminating hits from decoys on DUD-E+, led us to use
it as an oracle.

Figure 16 depitcs the Smina docking score distributions for ZINC250K molecules against three
targets (fa7, jak2, parp1). Since lower scores correspond to stronger predicted binding, we selected
the conditioning value for each protein at the extreme left tail of its distribution (FA7: –10.0 kcal/mol,
0.01%; JAK2: –11.0 kcal/mol, 0.08%; PARP1: –12.0 kcal/mol, 0.09%), indicated by the vertical
dashed lines in fig. 16 to focus generation to the most tightly binding candidiates.

With the perspective of chemistry, the worse FCD and validity with conditions of DiGress shown in
figs. 13 and 14 highlights a critical challenge for atom-based approaches: satisfying targeted property
constraints while ensuring chemical correctness, simultaneously. From a chemical perspective, this
distinction can be attributed to the nature of the search space; atom-based approaches explore a vastly
larger space, far exceeding the molecular space, where many cases can lead to chemically invalid
structures, especially when generation is heavily biased by property objectives. Conversely, FragFM’s
fragment-based construction inherently operates within a more chemically sound and constrained
subspace by assembling pre-validated chemical motifs. These findings collectively emphasize the
intrinsic advantages of employing fragments as semantically rich and structurally robust building
blocks, particularly for achieving reliable and property-focused molecular generation.

Moreover, the importance of the fragment bag’s composition, which is shown in the main text
(fig. 5), is intuitive: it defines the accessible chemical space and, consequently, the possible range
of achievable molecular properties (e.g., generating acyclic molecules is impossible if the fragment
bag exclusively contains ring-based structures, among other structural constraints). Based on λB,
FragFM automatically modulates fragment selection probabilities, inducing a drift in the fragment
space to generate the chemically valid molecules satisfying the given objective. It enables the model
to construct molecules with desired properties even if the initial general-purpose fragment bag is not
perfectly tailored to a specific task, making our strategy a powerful and practically manageable tool
for fine-grained control.

4 2 0 2 4
logp

0.0

0.1

0.2

0.3

0.4

De
ns

ity

Target
1.0
3.0
5.0

(a) logP

0 1 2 3 4 5 6 7 8
nrings

0.0

0.1

0.2

0.3

0.4

De
ns

ity

Target
1
3
5

(b) Ring count

0.2 0.4 0.6 0.8 1.0
qed

0

1

2

3

4

5

De
ns

ity

Target
0.6
0.8
1.0

(c) QED

Figure 12: Distribution of molecular properties (logP, ring count, and QED) for the MOSES
dataset. Colored vertical lines denote the conditioning scores applied for each target protein.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
Condition MAE

2

4

6

8

10

FC
D

Target value
QED=0.6
QED=0.8
QED=1.0
Model
DiGress
FragFM (= 20.0)

(a) MAE-FCD curves for QED conditioning on the
MOSES dataset.

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
Condition MAE

50

60

70

80

90

100

Va
lid

ity

Target value
QED=0.6
QED=0.8
QED=1.0
Model
DiGress
FragFM (= 20.0)

(b) MAE-validity curves for QED conditioning on
the MOSES dataset.

Figure 13: Conditioning results on QED. MAE-FCD and MAE-validity curves for FragFM and
DiGress under QED conditioning on the MOSES dataset. Different conditioning values are color-
coded.

0.5 1.0 1.5 2.0 2.5 3.0
Condition MAE

1

2

3

4

5

6

7

FC
D

Target value
logP=1.0
logP=3.0
logP=5.0
Model
DiGress
FragFM (= 0.5)

(a) MAE-FCD curves for logP conditioning on the
MOSES dataset.

0.5 1.0 1.5 2.0 2.5 3.0
Condition MAE

65

70

75

80

85

90

95

100

Va
lid

ity
Target value
logP=1.0
logP=3.0
logP=5.0
Model
DiGress
FragFM (= 0.5)

(b) MAE-validity curves for logP conditioning on
the MOSES dataset.

Figure 14: Conditioning results on logP. MAE-FCD and MAE-validity curves for FragFM and
DiGress under logP conditioning on the MOSES dataset. Different conditioning values are color-
coded.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Condition MAE

0

2

4

6

8

10

12

14

FC
D

Target value
Ring=1
Ring=3
Ring=5
Model
DiGress
FragFM (= 0.5)

(a) MAE-FCD curves for the number of rings con-
ditioning on the MOSES dataset.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Condition MAE

60

65

70

75

80

85

90

95

100

Va
lid

ity

Target value
Ring=1
Ring=3
Ring=5
Model
DiGress
FragFM (= 0.5)

(b) MAE-validity curves for the number of rings
conditioning on the MOSES datset.

Figure 15: Conditioning results on number of rings. MAE-FCD and MAE-validity curves for
FragFM and DiGress under a number of rings conditioning on the MOSES dataset. Different
conditioning values are color-coded.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

12 10 8 6 4 2
SMINA Docking Score (kcal/mol)

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

Target
fa7
jak2
parp1

Figure 16: Distribution of SMINA docking scores for the ZINC250K dataset across different
target proteins. Vertical lines denote the conditioning scores applied for each target protein.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Condition MAE

2

4

6

8

10

FC
D

DiGress
FragFM (= 0.0)
FragFM (= 0.2)

(a) MAE-FCD curves for FA7 docking score condition-
ing.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Condition MAE

70

75

80

85

90

95

100
Va

lid
ity

DiGress
FragFM (= 0.0)
FragFM (= 0.2)

(b) MAE-Validity curves for FA7 docking score condi-
tioning.

Figure 17: Conditioning results on FA7 (target: -10.0). Each point represents 10,000 generated
molecules. Results are shown for DiGress and FragFM with λB = 0.0 and 0.2.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Condition MAE

1

2

3

4

5

6

FC
D

DiGress
FragFM (= 0.0)
FragFM (= 0.2)

(a) MAE-FCD curves for PARP1 docking score condi-
tioning.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Condition MAE

88

90

92

94

96

98

100

Va
lid

ity

DiGress
FragFM (= 0.0)
FragFM (= 0.2)

(b) MAE-Validity curves for PARP1 docking score con-
ditioning.

Figure 18: Conditioning results on PARP1 (target: -12.0). Each point reprsents 10,000 generated
molecules. Results are shown for DiGress and FragFM with λB = 0.0 and 0.2.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

C.8 SAMPLING EFFICIENCY: SAMPLING STEPS AND TIME

Diffusion- and flow-based models typically require multiple denoising iterations, resulting in slow
sampling. Table 11 shows the performance of MOSES benchmark metrics of FragFM and baseline
denoising based models with different denoising steps. For small sampling steps, FragFM outperforms
the baseline models with minimal degradation in metrics, especially at low step counts, by a wide
margin. With only 10 sampling steps, FragFM achieves higher validity and a lower FCD than
competing models running 500 steps.

We also compare sampling time across different models in table 12. By operating both node- and
edge-probability predictions, edge computations scale quadratically with graph size, making them
the fastest approach among the compared models. Coupled with its robust performance at far fewer
steps, FragFM could be further optimized with substantial speedups over atom-level methods with
high generative quality.

Table 11: Performance of denoising-based graph generative models on the MOSES dataset
across different sampling step counts. All the models are one-shot models. Results for DeFoG and
Cometh are taken from their original publications; DiGress (excluding the 500-step setting) were
obtained by retraining the model with the differing sampling steps from the official implementation.
The best performance is shown in bold for each sampling step.

Sampling steps Model Rep. Level Val. ↑ V.U. ↑ V.U.N. ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
- Training set - 100.0 100.0 - 100.0 0.48 0.59 0.0

10

DiGress Atom 6.3 6.3 6.3 66.4 9.40 0.38 7.4
Cometh Atom 26.1 26.1 26.0 59.9 7.88 0.36 8.9
DeFoG Atom - - - - - - -

FragFM Fragment 96.8 96.6 89.4 96.8 0.92 0.52 15.3

50

DiGress Atom 75.3 75.3 72.3 94.0 1.35 0.51 16.1
Cometh Atom 82.9 82.9 80.5 94.6 1.54 0.49 18.4
DeFoG Atom 83.9 83.8 81.2 96.5 1.87 0.59 14.4

FragFM Fragment 99.5 99.5 89.1 98.5 0.65 0.54 11.2

100

DiGress Atom 82.6 82.6 79.2 95.2 1.14 0.51 15.4
Cometh Atom 85.8 85.7 82.9 96.5 1.43 0.50 17.2
DeFoG Atom - - - - - - -

FragFM Fragment 99.7 99.7 88.5 98.8 0.62 0.55 11.6

300

DiGress Atom 85.3 85.3 81.1 96.5 1.11 0.52 13.5
Cometh Atom 86.9 86.9 83.8 97.1 1.44 0.51 17.8
DeFoG Atom - - - - - - -

FragFM Fragment 99.8 99.8 87.2 98.9 0.58 0.55 11.6

500

DiGress Atom 85.7 85.7 81.4 97.1 1.19 0.52 14.8
DiGress Atom 84.8 84.8 82.0 94.5 1.37 0.50 14.7
Cometh Atom 87.0 86.9 83.8 97.2 1.44 0.51 15.9
DeFoG Atom 92.8 92.7 85.4 98.9 1.95 0.55 14.4

FragFM Fragment 99.8 99.8 86.9 99.1 0.58 0.56 10.9

700

DiGress Atom 85.5 85.5 82.6 95.0 1.33 0.50 15.3
Cometh Atom 87.2 87.1 83.9 97.2 1.43 0.51 15.9
DeFoG Atom - - - - - - -

FragFM Fragment 99.9 99.9 86.9 99.1 0.61 0.56 10.8

1000

DiGress Atom 84.7 84.7 81.3 96.1 1.31 0.51 14.5
Cometh Atom 87.2 87.2 84.0 97.2 1.44 0.51 17.3
DeFoG Atom - - - - - - -

FragFM Fragment 99.8 99.8 86.6 99.1 0.62 0.56 12.9

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 12: Comparison of sampling time across different datasets and methods. Experiments
were conducted on a single NVIDIA GeForce RTX 3090 GPU and an Intel Xeon Gold 6234 CPU @
3.30GHz. *Results for DeFoG are taken from the original paper, where experiments were conducted
on an NVIDIA A100 GPU. Note that DeFoG shares most of its backbone architecture with DiGress,
with only minor adjustments.

Sampling steps MOSES GuacaMol NPGen

Property
Min. nodes - 8 2 2
Max. nodes - 27 88 99
Samples - 25000 10000 30000

Sampling Time (hour)

DiGress 500 3.0 - 36.0
DeFoG* 500 5.0 7.0 -
FragFM 500 0.9 1.3 7.0
FragFM 50 0.2 0.2 0.9

D EXPERIMENTAL SETUP AND DETAILS

D.1 DATASETS

We provide details of the datasets used in our experiments, including MOSES (Polykovskiy et al.,
2020), GuacaMol (Brown et al., 2019), and ZINC250k (Irwin & Shoichet, 2005).

MOSES. The MOSES benchmark is constructed from a subset of the ZINC Clean Leads dataset,
containing approximately 1.9 million drug-like molecules. The molecules are curated and filtered for
training and evaluation of molecular generative models, with a predefined data split of training, test,
and scaffold split test sets. All molecules in the MOSES dataset meet drug-likeness criteria, including
molecular weight and logP ranges.

GuacaMol. GuacaMol is based on the ChEMBL database and provides a large-scale benchmark
for both distribution-learning and goal-directed molecular generation tasks. The training dataset
comprises around 1.6 million molecules extracted from ChEMBL v24.

ZINC250k. The ZINC250k dataset comprises 249,456 molecules selected from the larger ZINC
database.

D.2 FRAGMENTIZATION

We use the BRICS (Degen et al., 2008) decomposition scheme to construct our fragment library, with
all inter-fragment connections restricted to single bonds. The fragment library is built by fragmenting
every molecule in each dataset and collecting the resulting unique fragments into a fragment bag.
The final fragment counts in the training, validation, and test splits are: MOSES (39,247 / 12,212 /
9,789), GuacaMol (192,751 / 30,418 / 63,608), NPGen (117,998 / 18,063 / 40,214), and ZINC250k
(28,235 / 4,231 / 2,683). In the test sets, the number of fragments unseen during training is 2,588 for
MOSES, 22,962 for GuacaMol, 12,116 for NPGen, and 367 for ZINC250k.

D.3 METRICS

We provide details of common metrics in both MOSES (Polykovskiy et al., 2020) and GuacaMol
(Brown et al., 2019) benchmarks.

Common Metrics. These metrics are fundamental for assessing the basic performance of molecular
generative models. Note that V.U. and V.U.N. metrics are multiplied values of each metric, i.e., V.U.N.
is computed by multiplying validity, uniqueness and novelty.

• Validity (Valid): This metric measures the proportion of generated molecules that are
chemically valid according to a set of rules, typically checked using tools like RDKit.
A SMILES string is considered valid if it can be successfully parsed and represents a
chemically sensible molecule (e.g., correct atom valencies, no impossible structures).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

• Uniqueness (Unique): This indicates the percentage of unique molecules among valid
generated molecules. A high uniqueness score suggests the model is generating diverse
structures rather than repeatedly producing the same few molecules.

• Novelty (Novel): This metric quantifies the fraction of unique and valid generated molecules
that are not present in the training dataset. It assesses the model’s ability to generate novel
chemical molecules.

MOSES Metrics. The MOSES benchmark focuses on distribution learning. Key metrics beyond the
foundational ones include:

• Filters: This refers to the percentage of valid, unique, and novel molecules that pass a set
of medicinal chemistry filters (PAINS, MCF) and custom rules defined by the MOSES
benchmark (e.g., specific ring sizes, element types), which are used in curating dataset of
MOSES. This evaluates the drug-likeness or suitability of generated molecules according to
predefined structural criteria.

• Fréchet ChemNet Distance (FCD): FCD (Preuer et al., 2018) measures the similarity
between the distribution of generated molecules and a reference (test) dataset based on
latent representation of molecules using a pre-trained neural network (ChemNet). A lower
FCD indicates that the generated distribution is closer to the reference distribution.

• Similarity to Nearest Neighbor (SNN): This metric calculates the average Tanimoto simi-
larity using Morgan fingerprints (Rogers & Hahn, 2010) between each generated molecule
and its nearest neighbor in the reference (test) dataset. A higher SNN suggests that the
generated molecules are similar in structure to known molecules in the target chemical
space.

• Scaffold Similarity (Scaf): This metric specifically assesses the diversity of molecular
scaffolds. It calculates a cosine similarity between the vectors of the occurrence of Bemis–
Murcko scaffolds (Bemis & Murcko, 1996) of the molecules in the reference (test) dataset
and the generated ones. A higher score suggests generated scaffolds are similar to reference
scaffolds.

GuacaMol Metrics. GuacaMol provides benchmarks for distribution-learning and goal-directed
generation. For its distribution-learning benchmark, which is utilized for our main results, the primary
aggregated metrics are:

• Kullback-Leibler Divergence (KL Div.) Score: This metric computes the KL divergence
between the distributions of several physicochemical and topological properties of the
generated molecules and the training set. These individual KL divergences (DKL) are then
combined into a single score, by averaging negative exponential of them (i.e., exp(−DKL))
to reflect how well the model reproduces the overall property distributions. Due to the nature
of calculation method, a score closer to 1 indicates better similarity.

• Fréchet ChemNet Distance (FCD) Score: Similar to the MOSES FCD, GuacaMol also
uses an FCD metric to compare the distributions of generated molecules and the training
set. The only difference is that in GuacaMol, the raw FCD value (where lower is better) is
transformed into a score where higher is better.

ZINC250k Metrics. ZINC250k is a collection of 250k molecules from ZINC (Irwin & Shoichet,
2005). Multiple generative models evaluate their performance with the following metrics:

• NSPDK: The Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) is a graph kernel
that measures structural similarity between molecular graphs by considering neighborhoods
of atoms and their pairwise distances. For generative evaluation, the NSPDK distance is com-
puted between the generated set and the reference dataset, capturing differences in both local
and global graph structures. A lower NSPDK value indicates that the generated molecules
are structurally closer to the reference distribution. We used the official implementation
from Jo et al. (2022) to compute the NSPDK.

• Fréchet ChemNet Distance (FCD): The FCD used in ZINC250k follows the same defini-
tion as in the MOSES benchmark.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

D.4 BASELINES

Next, we briefly introduce baseline strategies that we compared FragFM in the main results. We
focused on molecular graph generative models, which are categorized by autoregressive and one-shot
generation models. Each model uses either atom- or fragment-level representation.

GraphInvent (Mercado et al., 2021) employs a graph neural network (GNN) approach for de
novo molecular design. It first compute the trajectory of graph decomposition based on atom-level
representation, and then trains a GNN to learn action of atom and bond addition on given subgraph of
molecule. During inference stage, it builds molecules in atom-wise manner.

JT-VAE (Jin et al., 2018) or Junction Tree Variational Autoencoder, generates molecular graphs in a
two-step process. It first decodes a latent vector into a tree-structured scaffold representing molecular
components (like rings and motifs) and then assembles these components into a complete molecular
graph, ensuring chemical validity. Since it iteratively decide whether to add node during sampling
process, we consider it as autoregressive model despite its use of VAE.

SAFE-GPT (Noutahi et al., 2024) is an autoregressive sequence generative model that produces
SAFE (Sequential Attachment-based Fragment Embedding) strings—a novel representation proposed
in the paper, where molecules are expressed as sequences of fragments. The model is built on a
GPT-2–like transformer architecture. While the original work reported only basic results on validity,
uniqueness, and diversity, we retrained the SAFE-GPT-20M model using its official implementation
to obtain comprehensive benchmark results.

MCTS (Jensen, 2019) is a non-deep learning-based strategy that utilizes Monte-Carlo tree search
for molecular graph generation. Using atom insertion or addition as action, it sequentially build
molecules from a starting molecule.

NAGVAE (Kwon et al., 2020), non-autoregressive Graph Variational Autoencoder, is a VAE-based
one-shot graph generation model utilizing compressed graph representation. It reconstructs the
molecular graphs from latent vectors, aiming for scalability and capturing global graph structures.

DiGress (Vignac et al., 2022) is the first discrete diffusion model designed for graph generation. It
operates by iteratively removing noise from both graph edges and node types, learning a reverse
diffusion process to construct whole graphs from a noise distribution.

DisCo (Xu et al., 2024) is a graph generation model that defines a forward diffusion process with
continous-time Markov chain (CTMC). The model learns reverse generative process to denoise both
the graph structure and its attributes simultaneously.

Cometh (Siraudin et al., 2024) is a continuous-time discrete-state graph diffusion model. Similar
to Disco, it formulates graph generation as reversing a CTMC defined on graphs, where the model
learns the transition rates of this chain to generate new graph structures.

DeFoG (Qin et al., 2024) is a generative framework that applies the principles of flow matching
directly to discrete graph structures. After training via a flow matching strategy, it utilizes CTMC for
the denoising process to generate graphs.

E PARAMETERIZATION AND HYPERPARAMETERS

E.1 COARSE-TO-FINE AUTOENCODER

Our coarse-to-fine autoencoder (eq. (4)) compresses the atom-level graph into a single latent vector z
and then uses it, together with the fragment-level graph G, to reconstruct all atom–atom connections.
The encoder, an MPNN (Gilmer et al., 2017), takes G and pools its node features into z. The decoder
conditions on G and z to predict a distribution over every possible atom–atom edge between them
for each pair of linked fragments. Internally, it propagates messages along original intra-fragment
bonds and across all candidate inter-fragment edges, enabling the recovery of the complete atomistic
structure from the coarse abstraction.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

E.2 FRAGMENT EMBEDDER, PREDICTION MODEL, AND PROPERTY DISCRIMINATOR

To parameterize the neural network fθ(Xt, x) in eq. (2), we jointly train two components: a fragment
embedder and a Graph Transformer (GT). Figure 19 provides an overview.

The fragment embedder, built on an MPNN backbone Gilmer et al. (2017), maps each fragment
to a fixed-dimensional embedding vector. Given a fragment-level graph Xt, we apply this shared
embedder to every fragment node, producing a set of local structure embeddings. Multiple GT
layers, then process these embeddings to capture inter-fragment interactions and global context. The
GT layers were designed with the sample architecture and hyperparameters as prior atom-based
diffusion- and flow-based molecule generative models (Vignac et al., 2022; Qin et al., 2024; Siraudin
et al., 2024; Xu et al., 2024). We directly predict the discrete fragment-graph edges E1 and the
continuous latent vector z1 from the final GT output embeddings. To predict fragment types, we
compute the inner product between each candidate fragment type embedding and its corresponding
GT embedding to infer the scores of different fragments. We reuse the flow model’s architecture
for property discrimination: We aggregate both the fragment-level embeddings and the GT’s global
readout to produce fragment—and molecule-level property predictions.

We train our flow model with AdamW optimizer, using (β1, β2) = (0.9, 0.999), a learning rate of
5 × 10−4, and gradient-nrom clipping at 4.0. We employ the exponential moving average (EMA)
scheme of Karras et al. (2024) to stabilize training. Training is performed on a single NVIDIA A100
GPU for 96 h on MOSES and GuacaMol and 144 h on NPGen, and we select the checkpoint with the
lowest validation loss.

E.3 AUXILIARY FEATURES

Although graph neural networks exhibit inherent expressivity limitations (Xu et al., 2018), augmenting
them with auxiliary features has proven effective at mitigating these shortcomings. For example,
Vignac et al. (2022) augments each noisy graph with cycle counts, spectral descriptors, and basic
molecular properties (e.g., molecular weight, atom valence). More recently, relative random walk
probabilities (RRWP) have emerged as a highly expressive yet efficient encoding (Ma et al., 2023):
by stacking the first K powers of the normalized adjacency matrix M = D−1A, RRWP constructs a
k-step transition probabilities that capture rich topological information. Accordingly, we integrate
RDKit-derived molecular descriptors into the fragment embedder and RRWP features into the graph
transformer, enriching the model’s ability to capture complex molecular semantics.

E.4 NOISE SCHEDULE

Selecting an appropriate noise schedule is crucial for the performance of diffusion- and flow-based
models (Vignac et al., 2022; Siraudin et al., 2024; Qin et al., 2024). Following Qin et al. (2024), we
adopt the polynomially decreasing (polydec) time distortion, which skews the initially uniform time
distribution so that more steps are allocated near the data manifold. Specifically, a uniformly sampled
u! ∼!U [0, 1] is warped by f(t) = 2t − t2, which preserves the endpoints (f(0) = 0, , f(1) = 1)
while increasing the density toward large t. Under Euler discretisation, this concentrates integration
steps where fine-grained denoising is most critical.

E.5 HYPERPARAMETERS

For reproducibility, we report the full hyperparameter settings of FragFM, including the coarse-to-fine
autoencoder (table 13), flow matching module (table 14), and discriminator module for guidance
(table 15). Our primary contribution is the development of a fragment-based framework for molecular
generation, rather than architectural novelty; however, since no prior models have adopted this design,
we implemented the necessary modules accordingly. The hyperparameters were selected through
preliminary exploratory experiments and kept fixed across all datasets and benchmarks for consistency.
For the MPNN, we adopt the implementation from Gilmer et al. (2017); Battaglia et al. (2018), and for
the graph transformer, we follow Vignac et al. (2022) but reduce the number of layers from 8 to 5, as
the fragment-to-vector module already precedes it. For the property discriminator, we followed prior
classifier-guidance studies, which typically used smaller networks than the corresponding diffusion
models, and set the number of parameters accordingly.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Coarse Graph Embedder

[Mask]
Continuous

FM

0.1

0.1 Discrete

FM Graph Transformer Layers

0.6

...

0.1
S

of
tm

ax

Fragment

Embedder

Coarse

Graph

Embedder [Mask]

 Fragment Embedding Layers

Figure 19: Overview of the parameterization of the fragment embedder and prediction model,
i.e., fθ in fig. 1. (left) Each fragment in the fragment bag B is embedded by the fragment embedder,
while each node in the coarse graph is mapped to a fixed-size vector. We compute fθ(Xt, x) by taking
the inner product of the two embeddings. (right) The coarse-graph embedder first maps every node to
an embedding, producing a coarse graph whose nodes are single vectors; the resulting graph is then
passed through the graph-transformer layer.

Table 13: Hyperparameters for the coarse-to-fine autoencoder.

Name Value
Model architecture

Number of paramters 6, 648, 793
Backbone type Sparse MPNN (Gilmer et al., 2017)
Encoder/decoder layers 4
Node embedding dimension 256
Edge embedding dimension 128
Hidden dimension 256
Latent dimension 32
Activation function SiLU
Layer normalization Yes
Initialization Xavier

Training setup
Batch size 256
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Learning rate 1.0× 10−4

Learning rate warm-up Linear, 2000 iterations
Weight decay 1.0× 10−12

Gradient clipping 1.0
KL divergence coefficient 1.0× 10−4

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Table 14: Hyperparameters for the fragment-to-vector encoder and coarse graph propagation
module.

Name Value
Fragment-to-vector encoder

Number of parameters 4, 257, 290
Backbone type Sparse MPNN (Gilmer et al., 2017)
Number of layers 5
Node embedding dimension 256
Edge embedding dimension 128
Hidden dimension 256
Activation function SiLU
Dropout 0.1
Layer normalization Yes
Initialization Xavier

Coarse graph propagation module
Number of parameters 17, 418, 274
Backbone type Graph Transformer (Vignac et al., 2022)
Number of layers 5
Attention heads 8
Node embedding dimension 256
Edge embedding dimension 128
RRWP walk length 6
Droptout 0.1
Layer normalization Yes
Initialization Xavier

Training setup
Batch size 256
Negative fragments (per step) 384
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Learning rate 5.0× 10−4

Learning rate warm-up Linear, 10,000 iterations
Weight decay 0.0
Gradient clipping 4.0
Exponential moving average (EMA) Yes (0.999)
Loss coefficients Fragment edge (1.0), Fragment type (5.0), Latent (1.0)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Table 15: Hyperparameters for the property discriminator module.

Name Value
Fragment-to-vector encoder

Number of parameters 923, 402
Backbone type Sparse MPNN (Gilmer et al., 2017)
Number of layers 4
Node embedding dimension 128
Edge embedding dimension 64
Hidden dimension 128
Number of property readout layers 3
Activation function SiLU
Dropout 0.1
Layer normalization Yes
Initialization Xavier

Coarse graph propagation module
Number of parameters 5, 649, 572
Backbone type Graph Transformer (Vignac et al., 2022)
Number of layers 4
Attention heads 8
Node embedding dimension 128
Edge embedding dimension 64
Number of property readout layers 3
Droptout 0.1
Layer normalization Yes
Initialization Xavier

Training setup
Batch size 256
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Learning rate 5.0× 10−4

Learning rate warm-up Linear, 10,000 iterations
Weight decay 0.0
Gradient clipping 4.0
Exponential moving average (EMA) Yes (0.999)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

F VISUALIZATION

F.1 VISUALIZATION OF FRAGMENTS

We visualize the top-50 frequent fragments from each dataset (MOSES, GucaMol, and NPGen).

Figure 20: Top 50 most common fragments extracted from the MOSES dataset. More frequently
occurring fragments are positioned toward the top left.

Figure 21: Top 50 most common fragments extracted from the GuacaMol dataset. More fre-
quently occurring fragments are positioned toward the top left.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Figure 22: Top 50 most common fragments extracted from the NPGen dataset. More frequently
occurring fragments are positioned toward the top left.

F.2 VISUALIZATION OF GENERATED MOLECULES FROM MOSES AND GUACAMOL

We visualize samples generated by FragFM on the MOSES and GuacaMol datasets in figs. 23 and 24.

Figure 23: Molecules generated by FragFM on the MOSES benchmark. Molecules were randomly
selected for visualization.

Figure 24: Molecules generated by FragFM on the GuacaMol benchmark. We randomly select
molecules for visualization.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

F.3 VISUALIZATION AND ANALYSIS OF GENERATED MOLECULES ON NPGEN

For the NPGen task, we show generated molecules from FragFM alongside baseline models
(GraphAF, JT-VAE, HierVAE, and Digress) in figs. 25 to 29. Although all visualized molecules are
formally valid in terms of valency (which rdkit can process), atom-based generative models often
introduce chemically implausible motifs-such as aziridine or epoxide rings fused directly to aromatic
systems, inducing severe angle strain Sweeney (2002); anti-aromatic rings with 4n π-electrons
(violating Hückel’s rule), resulting in high electronic instability Carpenter (1983); and bonds between
nonadjacent atoms in a ring system, causing extreme geometric distortion Nishiyama et al. (1980).
Fragment-based autoregressive models largely avoid these issues, yet they, too, exhibit limitations:
JT-VAE tends to generate only small, homogeneous ring systems, while HierVAE is strongly biased
toward long aliphatic chains and simple linear moieties. Consequently, these approaches show a
distinct distribution of molecules from the trained dataset, matching the benchmark results in table 2.

Figure 25: Valid molecules generated by FragFM on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Figure 26: Valid molecules generated by GraphAF on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Figure 27: Valid molecules generated by JT-VAE on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Figure 28: Valid molecules generated by HierVAE on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Figure 29: Valid molecules generated by Digress on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.

48

	Introduction
	Related Works
	Molecular Graph Generative Models
	Fragment-Based Molecule Generation

	FragFM Framework
	Molecular Graph Compression by Coarse-to-fine Autoencoder
	Flow Matching for Coarse Graph
	Generation process

	NPGen: Natural Product Generation Benchmark
	Results
	Standard Molecular Generation Benchmarks
	NPGen Benchmark
	Conditional Generation
	Sampling Efficiency

	Conclusion
	Additional Details of the Method
	Coarse-to-fine Autoencoder
	Details of Flow Modeling
	Flow modeling for node
	Flow modeling for edge
	Flow modeling for latent vector
	Training Details

	Conditional Generation with Fragment Bag
	Detailed Balance

	Details of NPGen Benchmark
	Background on Natural Products
	Dataset Construction
	Implementation Details for Baselines
	Metrics
	Dataset Statistics

	Additional Results and Analyses
	Additional Benchmarks
	Coarse-to-Fine Autoencoder
	Fragment Bag Generalization
	Long Tail Fragment Recovery
	Effect of Fragment Bag Size
	Steering FragFM Towards Novel Molecules
	More Results on Conditional Generation
	Sampling Efficiency: Sampling Steps and Time

	Experimental Setup and Details
	Datasets
	Fragmentization
	Metrics
	Baselines

	Parameterization and Hyperparameters
	Coarse-to-Fine Autoencoder
	Fragment Embedder, Prediction Model, and Property Discriminator
	Auxiliary Features
	Noise Schedule
	Hyperparameters

	Visualization
	Visualization of Fragments
	Visualization of Generated Molecules from MOSES and GuacaMol
	Visualization and Analysis of Generated Molecules on NPGen

