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ABSTRACT

We introduce FragFM, a novel hierarchical framework via fragment-level dis-
crete flow matching for efficient molecular graph generation. FragFM generates
molecules at the fragment level, leveraging a coarse-to-fine autoencoder to recon-
struct details at the atom level. Together with a stochastic fragment bag strategy to
effectively handle an extensive fragment space, our framework enables more effi-
cient and scalable molecular generation. We demonstrate that our fragment-based
approach achieves better property control than the atom-based method and addi-
tional flexibility through conditioning the fragment bag. We also propose a Natural
Product Generation benchmark (NPGen) to evaluate the ability of modern molec-
ular graph generative models to generate natural product-like molecules. Since
natural products are biologically prevalidated and differ from typical drug-like
molecules, our benchmark provides a more challenging yet meaningful evalu-
ation relevant to drug discovery. We conduct a comparative study of FragFM
against various models on diverse molecular generation benchmarks, including
NPGen, demonstrating superior performance. The results highlight the potential
of fragment-based generative modeling for large-scale, property-aware molecular
design, paving the way for more efficient exploration of chemical space.

1 INTRODUCTION

Deep generative models are achieving remarkable success in modeling complex, structured data, with
graph generation being a prominent application area (Jang et al., 2023; Jo et al., 2022). Among various
applications, de novo molecular graph generation, which has the potential to accelerate drug and
material discovery, is a particularly important. Recently, diffusion- and flow-based graph generative
models have demonstrated the ability to generate molecular graphs (Vignac et al., 2022; Qin et al.,
2024; Siraudin et al., 2024; Eijkelboom et al., 2024).

However, these models that are built on atom-based representation face significant scalability chal-
lenges, particularly in generating large and complex molecules (Qin et al., 2023). The quadratic
growth of edges as the graph size increases results in computational inefficiencies. At the same time,
the inherent sparsity of chemical bonds makes accurate edge prediction more complex, often leading
to unrealistic molecular structures or invalid connectivity constraints (Qin et al., 2023; Chen et al.,
2023). Moreover, graph neural networks struggle to capture topological features like rings, leading to
deviations from chemically valid structures. Although various methods incorporate auxiliary features
(e.g., spectral, ring, and valency information) to mitigate these issues, they do not fully resolve the
sparsity and scalability bottlenecks (Vignac et al., 2022).

Fragment-based strategies, rooted in long-standing success in traditional drug discovery, offer an
alternative (Hajduk & Greer, 2007; Joseph-McCarthy et al., 2014; Kirsch et al., 2019). By assembling
molecules from chemically meaningful substructures, these approaches enable a more efficient
exploration of chemical space, preserve global structural coherence, and provide finer control over
molecular properties than atom-based methods (Jin et al., 2018; Seo et al., 2023; Hetzel et al.,
2023; Jin et al., 2020a). Diffusion models also adopted the fragment-based approach, showing their
potential in improving scalability and property control (Levy & Rector-Brooks, 2023; Chen et al.,
2024). However, the existing methods depend on a small fragment library or employ automated

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

fragmentation procedures, leading to restricted chemical diversity and limiting the usage of domain
knowledge.

Here, we introduce FragFM, a novel hierarchical framework for molecular graph generation to
address these challenges. FragFM first generates a fragment-level graph using discrete flow matching
and then reconstructs it into an atom-level graph without information loss. To this end, we develop a
novel stochastic fragment bag strategy that circumvents reliance on fixed fragment libraries, along
with a coarse-to-fine autoencoder that ensures direct atom-level reconstruction from the generated
fragment-level graph. Consequently, FragFM can efficiently explore the molecular space, avoiding
the generation of chemically implausible molecules with an extensive fragment space at moderate
computational cost.

Our main contributions are summarized as follows:

• We propose FragFM, a novel hierarchical framework that combines fragment-level discrete
flow matching with a coarse-to-fine autoencoder, designed to operate effectively on large
fragment libraries.

• We introduce NPGen, a new benchmark for natural product generation, designed to evaluate
larger and more complex molecules.

• Extensive experiments show that FragFM not only outperforms prior molecular generative
models, but also achieves substantially stronger performance on large, natural product–like
molecules. Moreover, it remains robust under fewer denoising steps.

• FragFM enables more effective and flexible property-guided molecular generation through
both fragment bag control and conventional guidance strategies.

2 RELATED WORKS

2.1 MOLECULAR GRAPH GENERATIVE MODELS

Modern molecular graph generative models can be classified into autoregressive and one-shot
generation models. Autoregressive models generate graphs sequentially based on their node, generally
an atom or fragment, and edge representations (Lim et al., 2020; Mercado et al., 2021; Shi et al.,
2020; Jin et al., 2018). Despite their performance, these models have an intrinsic issue in learning the
permutation of nodes in the graph, which must be invariant for a given graph, often making them
highly inefficient. Among one-shot models, there exists a model that directly generates molecular
graphs (Kwon et al., 2020). Also, denoising models have recently become fundamental for generating
molecular graphs by iteratively refining noisy graphs into structured molecular representations.
Diffusion methods, which have been successful in various domains, have been extended to graph
structure data (Jo et al., 2022; Niu et al., 2020), demonstrating the advantages of applying diffusion in
graph generation. This approach was further extended by incorporating discrete stochastic processes
(Austin et al., 2021), addressing the inherently discrete nature of molecular graphs (Vignac et al.,
2022). The discrete diffusion modeling is reformulated using the continuous-time Markov chain
(CTMC) (Xu et al., 2024; Siraudin et al., 2024; Kim et al., 2024), allowing for more flexible and
adaptive generative processes. More recently, flow-based models have been explored for generating
molecular graphs. Continuous flow matching (Lipman et al., 2022) has been applied to structured
data (Eijkelboom et al., 2024), while discrete flow models (Campbell et al., 2024; Gat et al., 2024)
have been extended to categorical data generation, with recent methods showing that they can also
model molecular distributions as diffusion models (Qin et al., 2024; Hou et al., 2024).

2.2 FRAGMENT-BASED MOLECULE GENERATION

Fragment-based molecular generative models construct new molecules by assembling existing molec-
ular substructures, known as fragments. This strategy enhances chemical validity and synthesizability,
facilitating the efficient exploration of novel molecular structures compared to the atom-based ap-
proaches. Several works have employed fragment-based approaches within variational autoencoders
(VAEs) by learning to assemble in a chemically meaningful way (Jin et al., 2020b; Kong et al., 2022;
Maziarz et al., 2021). Also, Jin et al. (2018) adopts a stepwise generation approach, constructing
a coarse fragment-level graph before refining it into an atom-level molecule through substructure
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completion. The other strategies construct molecules sequentially assembling fragments, enabling
better control over molecular properties during generation (Seo et al., 2023; Jin et al., 2020b). In
contrast to these assembly-based methods, Noutahi et al. (2024) proposed SAFE-GPT, a GPT-2–based
transformer model that generates SAFE (Sequential Attachment-based Fragment Embedding) strings,
a novel representation that expresses molecules as sequences of fragment-level tokens rather than
through explicit fragment attachment.

Fragment-based approaches have also been explored in diffusion-based molecular graph generation.
Levy & Rector-Brooks (2023) proposed a method that utilizes a fixed set of frequently occurring
fragments to generate drug-like molecules, ensuring chemical validity but limiting exploration
beyond predefined structures. Since enumerating all possible fragment types is infeasible, the method
operates solely within a fixed fragment vocabulary. In contrast, Chen et al. (2024) proposed an
alternative, dataset-dependent fragmentation strategy based on byte-pair encoding, which provides a
more flexible molecular representation. However, this approach does not yet integrate chemically
meaningful fragmentation methods (Degen et al., 2008; Liu et al., 2017), which are inspired by
chemical synthesis and functionality, limiting its ability to leverage domain-specific chemical priors.

3 FRAGFM FRAMEWORK

We propose FragFM, a novel hierarchical framework that utilizes discrete flow matching at the
fragment-level graph. As illustrated in fig. 1, our framework introduces two key strategies: (i) a
coarse-to-fine autoencoder, and (ii) a stochastic fragment bag strategy for coarse-graph generation.
The autoencoder compresses atom-level graphs G into fragment-level graphs G, while preserving
atomistic connectivity in a latent variable z. This design enables the use of discrete flow matching
(DFM) at the fragment level. The stochastic fragment bag strategy ensures the model handles
comprehensive fragment libraries at manageable computational cost. To realize this strategy, we adopt
a graph neural network module for fragment embedding, which enables generalization to unseen
fragments. In this section, we first describe the conversion between fragment- and atom-level graphs
in section 3.1, and then present the flow-matching procedure for the coarse graph, including both
training (section 3.2) and generation (section 3.3) at the fragment level.

3.1 MOLECULAR GRAPH COMPRESSION BY COARSE-TO-FINE AUTOENCODER

While a fragment-level graph G offers a higher-level abstraction of molecular structures, it also
introduces ambiguity in reconstructing atomic connections. Specifically, a single fragment-level
connectivity E can map to multiple distinct, valid atom-level configurations. To achieve accurate
end-to-end molecular generation, it is therefore crucial to preserve atom-level connectivity E when
forming the fragment-level representation. Drawing on a hierarchical generative framework (Razavi
et al., 2019; Rombach et al., 2022; Qiang et al., 2023), we employ a coarse-to-fine autoencoder.

The encoder compresses an atom-level graph G into its fragment-level counterpart G and, for each
input molecule, outputs a single continuous latent vector z that encodes the committed connectivity
details. Specifically, G is first converted into G using a predefined fragmentation rule (e.g.BRICS
(Degen et al., 2008)), after which a neural network encodes (G,G) into z. Given G and z, the decoder
reconstructs atom-level edges between adjacent fragments in G. This process combines a neural
network that outputs continuous edge scores with the Blossom algorithm (Edmonds, 1965), which
discretizes these scores into valid atom-level connectivity. The coarse-to-fine autoencoder is simply
constructed as:

Encoder: G
Rule−−−→ G, (G,G) ϕenc−−−→ z,

Decoder: G, z ϕdec−−−→ score
Blossom−−−−−→ E.

We verified that the autoencoder can faithfully reconstruct atom-level graphs, achieving over 99%
bond-level accuracy on standard benchmarks (see section C.2 for details). Additional implementation
details are provided in section A.1.

3.2 FLOW MATCHING FOR COARSE GRAPH

We aim to model the joint distribution over the fragment-level graph and its latent representation,
X := (G, z), through the flow-matching after a continuous-time generative paradigm. Flow matching

3
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Figure 1: Overview of FragFM. (a) FragFM utilizes a hierarchical framework of coarse-to-fine
autoencoder (section 3.1) and fragment-level graph flow matching (section 3.2). An input atom-
level graph (G) is initially decomposed via the fragmentation rule. This is then processed by a
coarse-to-fine encoder, which compresses it into a joint representation X = (G, z) comprising a
fragment-level graph G and a latent vector z designed to capture fine-grained atomistic connectivity
information not explicitly present in G. During generation (section 3.3), neural network fθ selects
the most probable fragment from a fragment bag B, which is a stochastically sampled subset of
the full fragment bag F . FragFM then employs two flow-matching processes: (i) a discrete flow
generates the target fragment-level graph G1 from an initial G0 (mask and uniform prior for node
and edge, respectively), operating with fragments from B; (ii) a continuous flow generates the target
latent vector z1 from a Gaussian prior N (0, 1) (from an initial z0). (b) Finally, given (G1, z1), the
coarse-to-fine decoder reconstructs the atom-level molecular graph by first predicting the probabilities
of all possible atom-to-atom edges, and then applying the Blossom algorithm to select the edge set
that maximizes the likelihood of the true graph. Further details and hyperparameters are described in
section E and fig. 19.

begins at a known prior at t=0 and follows a learned vector field that continuously transforms this
prior into the target data distribution at t=1.

In our coarse graph G, both nodes {x} and edges {ε} are discrete categorical variables, for which we
adopt DFM realized by a continuous time Markov chain (CTMC) (Campbell et al., 2024). In this
section, we focus on the fragment type generation modeling. For latent vector and edges, we follow
the standard flow-matching for continuous (Lipman et al., 2022) and discrete (Campbell et al., 2024)
features, further described in section A.2.

DFM for fragment types and Info-NCE Loss. Because realistic chemical spaces involve an
extremely large vocabulary of fragment types |F|, directly modeling a CTMC over the entire space is
computationally prohibitive. To address this, we adopt the masked version of DFM, in which a node
remains fixed once it is de-masked, and further introduce a stochastic fragment bag strategy to handle
the large fragment vocabulary efficiently. Given a noisy state Xt = (Gt, zt), we draw a subset B ⊂ F
of size N from the full fragment vocabulary and then sample a node x1 within this restricted subset.
As a result, the model approximates the in-bag conditional posterior p(x1 | Xt, x1∈B) rather than
the unconditional one p1|t(x1 | Xt).
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To train the model, we follow the Info-NCE formulation (Oord et al., 2018), constructing fragment
bags and parameterizing the density ratio p1|t(x1|Xt)/p1(x1) with a neural network fθ. For each
training step we build a bag B that contains one positive fragment x+1 ∼ p1|t(x1|Xt) and N−1

negative fragments x−1 sampled i.i.d. from the marginal fragments library distribution p1(x). Applying
the Info-NCE formulation, we can write the in-bag posterior as

p1|t
(
x | Xt,B

)
=

1B(x)p1|t(x | Xt)/p1(x)∑
y∈B

p1|t(y | Xt)/p1(y)
, (1)

where 1B is an indicator function. We let the fθ(Xt, x) approximate the unknown density ratio
p1|t(x|Xt)/p1(x), by optimizing θ with the standard Info-NCE loss:

L(θ) = −EB

[
log

fθ(Xt, x
+)∑

y∈B fθ(Xt, y)

]
, (2)

which encourages the network to assign higher scores to the positive x+ within B while pushing
down the negatives. Because the loss involves only x ∈ B, its cost scales with N rather than |F|.

3.3 GENERATION PROCESS

During sampling, the model evolves nodes, edges, and the latent vector step by step from the
prior distribution. This requires a discretized forward kernel expressed as: pt+∆t|t(Xt+∆t | Xt) =∏
i pt+∆t|t(x

(i)
t+∆t | Xt)

∏
ij pt+∆t|t(ε

(ij)
t+∆t | Xt) pt+∆t|t(zt+∆t | Xt). Similar to Campbell et al.

(2024), we modeled each transition of nodes and edges as independent. In this section we will focus
on the DFM process for nodes, while details of edges and latent vector will be provided in section A.2.

In-bag transition kernel One step transition kernel pt+∆t|t can be obtained by direct Euler
integration of the rate matrix, which is computed by an expectation of x1-conditioned rate matrix
over the full fragment set F . In standard DFM, this expectation is approximated by sampling x1 from
the trained model p1|t(x1 | Xt). We instead define an in-bag transition kernel by restricting x1 to a
randomly selected subset B ⊂ F .

Following the conventional Info-NCE approaches, we construct B by drawingN i.i.d. fragments from
the marginal p1, assuming that B is independent to the current state. Consequently the B conditioned
x1-posterior is

pθ1|t,B(x1 | Xt,B) =
1B(x1)fθ(Xt, x1)∑

y∈B fθ(Xt, y)
.

The bag conditioned forward kernel for a node is then simply induced by:

pθt+∆t|t(xt+∆t|Xt,B) := Ex1∼pθ1|t,B(·|Xt,B)

[
pt+∆t|t(xt+∆t|Xt, x1)

]
. (3)

Strictly speaking, eq. (3) differs from the kernel without the bag. It nevertheless serves as a practical
surrogate that converges to the exact one as the bag size N approaches the fragment-pool size |F|
(Oord et al., 2018). When the Euler step size ∆t is small and the bag size N is moderately large, the
discrepancy is negligible while the computational cost remains manageable.

Conditional generation While generating valid molecules is essential, steering them toward desired
properties is crucial for the practical use. Following Dhariwal & Nichol (2021); Vignac et al. (2022),
we adopt classifier guidance, steering with an external property predictor.

Because our framework employs a bag-conditioned transition kernel, conditioning introduces two
key requirements. First, the selection of the fragment bag must be steered by the target property c,
so that the candidate fragments align with the desired outcome. Second, the transition kernel must
incorporate both the bag and the property, effectively forming a multi-conditioned kernel. In practice,
the first requirement is addressed by re-weighting fragment sampling probabilities when constructing
B, guided by a property predictor pψprop

(c | x) and a tunable fragment bag re-weighting parameter
λB. The second is handled by a guidance strength parameter λX as in Vignac et al. (2022). Further
details of the conditional transition kernel and the construction of property-conditioned bags p(B | c)
are provided in section A.3.
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4 NPGEN: NATURAL PRODUCT GENERATION BENCHMARK

We introduce NPGen, a new benchmark for molecular generative models focusing on natural products
(NPs), which are biologically synthesized compounds by organisms characterized by distinctive struc-
tural features (Feher & Schmidt, 2003; Stratton et al., 2015). NPs represent a biologically meaningful
subset of chemical space, and serve as a motivation for many approved drugs (Boufridi & Quinn,
2018; Rosén et al., 2009; Atanasov et al., 2021). However, existing benchmarks such as MOSES and
GuacaMol predominantly comprise small, structurally simple molecules, and their evaluation met-
rics—Fréchet ChemNet Distance, scaffold overlap, and KL divergence over simple properties—are
nearing saturation, limiting their ability to capture NP-specific characteristics (Bechler-Speicher et al.,
2025). To address this limitation, we construct NPGen by selecting molecules from the COCONUT
database (Sorokina et al., 2021; Chandrasekhar et al., 2025), which occupies a distinct region of
chemical space compared to existing benchmarks (fig. 2a). As a result, NPGen contains 658,565
natural product molecules with an average heavy-atom count of 35.0 (larger than those in MOSES
(21.7) and GuacaMol (27.9)) and with richer structural diversity characteristic of natural products
(fig. 2b). NPGen’s evaluation includes not only standard metrics (Validity, Uniqueness, Novelty) but
also NP-oriented measures such as KL divergence of NP-likeness score distributions (Ertl et al., 2008)
and NP’s biosynthetic pathways and structure classes (Kim et al., 2021), which capture molecular
functionality and biological context related to its structure. We provide additional details on NPs
(section B.1), dataset construction (section B.2), baseline implementations (section B.3), evaluation
metrics (section B.4), and dataset statistics (section B.5).
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(a) UMAP plot of MOSES, GuacaMol, and NPGen datasets, each with 5,000 randomly sampled molecules.

(b) Representative molecules from NPGen with NPClassifier pathway/superclass/class annotations.

Figure 2: NPGen dataset overview. (a) UMAP visualization comparing MOSES, GuacaMol, and
NPGen datasets. (b) Representative molecules from NPGen with annotations from NPClassifier
(pathway, superclass, and class).

5 RESULTS

Here, we present the main results of FragFM on molecular generation benchmarks (sections C.1, 5.1
and 5.2), conditional generation (sections C.7 and 5.3), and sampling efficiency (sections C.8 and 5.4).
Extended analyses and ablation studies are provided in the Appendix, including an evaluation of the
coarse-to-fine autoencoder (section C.2), generalization to rare and novel fragment types (sections C.3
and C.4), further study of fragment bag size (section C.5), experiments for novel molecule generation
(section C.6). We also provide visualizations of generated molecules for both standard benchmarks
and baseline models in NPGen (section F.2).

5.1 STANDARD MOLECULAR GENERATION BENCHMARKS

6
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We evaluate FragFM on the MOSES (table 1), GuacaMol (table 3), and ZINC250K (table 4) datasets,
which focus on small molecule generation. We compare against a range of baseline models spanning
different generation strategies and representation levels, with additional details provided in section D.

For MOSES, we follow Vignac et al. (2022) and report results on the scaffold-split test set. In this
benchmark, atomistic models typically underperform the fragment-based method on validity and FCD.
Notably, FragFM achieves nearly 100% validity without any explicit validity constraints—comparable
to JT-VAE, which explicitly enforces molecular validity—and attains an FCD of 0.58, substantially
outperforming all baselines. In addition, FragFM achieves state-of-the-art (all FCDs, MOSES Filters,
SNN, ZINC NSPDK) or near-best (GuacaMol KL Div.) results on property- and structure-based
scores across benchmarks.

Despite strong results on most metrics, performance on the MOSES Scaf and novelty metrics is
relatively weaker. For novelty, we note that higher values do not always guarantee better molecular
quality, as there exists a trade-off between fidelity and novelty Mahmood et al. (2021); Geng et al.
(2023). In this regard, we demonstrate that FragFM can trade off fidelity for novelty through a simple
modification, which we describe in section C.6. For Scaf, this stems from the scaffold-split protocol
of the MOSES benchmark: unseen scaffolds in the test set cannot be generated if they are absent from
the fragment vocabulary, a limitation of fixed fragment vocabularies also observed in JT-VAE. Unlike
prior fragment-based approaches, however, FragFM allows flexible replacement of the vocabulary due
to the GNN-based fragment embedding. To verify this, we further demonstrate that it can generalize
when equipped with a test-set fragment vocabulary, as detailed in section C.3.

Table 1: Molecule generation on MOSES. We use 25,000 generated molecules for evaluation. The
upper part comprises autoregressive methods, while the second part comprises one-shot methods,
including diffusion-based and flow-based methods. Results for FragFM are averaged over three
independent runs. The best performance is highlighted in bold, and the second-best is underlined.

Model Rep. Level Valid ↑ Unique ↑ Novel ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Training set - 100.0 100.0 - 100.0 0.48 0.59 0.0

GraphINVENT (Mercado et al., 2021) Atom 96.4 99.8 - 95.0 1.22 0.54 12.7
JT-VAE (Jin et al., 2018) Fragment 100.0 100.0 99.9 97.8 1.00 0.53 10.0
SAFE-GPT (Noutahi et al., 2024) Fragment 98.1 100.0 90.9 98.2 0.71 0.54 9.8

DiGress (Vignac et al., 2022) Atom 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo (Xu et al., 2024) Atom 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh (Siraudin et al., 2024) Atom 90.5 100.0 96.4 97.2 1.44 0.51 15.9
Cometh-PC (Siraudin et al., 2024) Atom 90.5 99.9 92.6 99.1 1.27 0.54 16.0
DeFoG (Qin et al., 2024) Atom 92.8 99.9 92.1 98.9 1.95 0.55 14.4

FragFM (ours) Fragment 99.8 100.0 87.1 99.1 0.58 0.56 10.9

5.2 NPGEN BENCHMARK

We now evaluate FragFM on our proposed NPGen benchmark (section 4). As summarized in table 2,
FragFM achieves the strongest performance on functionality-driven metrics, underscoring its ability
to capture the structural and biological characteristics of natural products. In particular, it surpasses
prior methods by a substantial margin on NP-specific measures such as the NP-likeness score and
NP-Classifier divergences, demonstrating a clear advantage in modeling the complex structures of
natural products. Compared to DiGress, FragFM achieves these improvements with over 5 times
faster sampling (36.0 vs. 7.0 hours; fig. 7). More broadly, these results highlight that fragment-based
representations generally yield stronger performance on functionality-driven metrics than atom-based
approaches. We provide visualizations of generated molecules for all baselines in fig. 3 and section F.3.

5.3 CONDITIONAL GENERATION

A key requirement for molecular generative models is controllability, i.e., steering generated molecules
toward desired properties while retaining validity and distributional fidelity. We evaluate the condi-
tional generation ability of FragFM against the atom-based baseline DiGress, where both models
employ a classifier guidance scheme.
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Table 2: Molecule generation results on NPGen. We use 30,000 generated molecules for evaluation.
The upper part comprises autoregressive methods, while the second part comprises one-shot methods,
including diffusion-based and flow-based methods. The results are averaged over three runs. The best
performance is highlighted in bold, and the second-best is underlined.

Model Rep. Level Val. ↑ Unique. ↑ Novel ↑ NP Score
KL Div. ↓

NP Class KL Div. ↓ FCD ↓Pathway Superclass Class

Training set - 100.0 100.0 - 0.0006 0.0002 0.0028 0.0094 0.01

GraphAF (Shi et al., 2020) Atom 79.1 63.6 95.6 0.8546 0.9713 3.3907 6.6905 25.11
JT-VAE (Jin et al., 2018) Fragment 100.0 97.2 99.5 0.5437 0.1055 1.2895 2.5645 4.07
HierVAE (Jin et al., 2020a) Fragment 100.0 81.5 97.7 0.3021 0.4230 0.5771 1.4073 8.95

DiGress (Vignac et al., 2022) Atom 85.4 99.7 99.9 0.1957 0.0229 0.3370 1.0309 2.05

FragFM (ours) Fragment 98.0 99.0 95.4 0.0374 0.0196 0.1482 0.3570 1.34
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Figure 3: Randomly selected molecules from DiGress (top) and FragFM (bottom) trained
on NPGen. We randomly sample a moderate-sized molecule containing 31 to 40 heavy atoms.
Chemically implausible moieties are highlighted in red. More examples are provided in section F.3.

To this end, we first vary the guidance strength (λX ) and plot the resulting trade-off curves
(MAE–FCD and MAE–validity). When conditioning on simple molecular properties such as QED
(figs. 4 and 13), logP (fig. 14), and ring count (fig. 15), FragFM attains lower conditional MAE with
lower FCD and higher validity, while the atom-based baseline often suffers sharp validity drops under
strong guidance.

We further confirm that fragment-based generation provides additional flexibility through fragment-
bag conditioning by λB. In the JAK2 docking score task (fig. 5), FragFM consistently outperforms
the atom-based baseline even without bag guidance (λB = 0). Increasing λB further shifts the
generated distribution toward the target docking score while preserving nearly 100% validity, whereas
DiGress not only suffers from substantial validity loss but also shows little shift in the docking
score distribution from the original data. Importantly, this conditioning is applied in a particularly
challenging region of ZINC250K (top 0.08%), where such low docking scores are extremely rare,
highlighting the robustness of fragment-based design in realistic scenarios.

Finally, we analyze the joint effect of the two guidance terms, λX and λB. As shown in the MAE–FCD
curves (fig. 5), each curve corresponds to varying λX , while adjusting λB consistently shifts these
curves toward more favorable trade-off regions. This demonstrates that fragment-bag reweighting
complements the standard classifier guidance, offering an additional degree of controllability that
is unique to fragment-based generation and unattainable in purely atomistic approaches. Moreover,
the results of using λB only (red points in fig. 5) indicate that employing a conditional fragment bag
alone can already achieve effective conditioning. Together, these findings align with the long-standing
success of fragment-based paradigms in medicinal chemistry (Sadybekov et al., 2022; Hajduk &
Greer, 2007) and recent computational strategies (Lee et al., 2024), while emphasizing the importance
of preparing property-oriented fragment candidates.

5.4 SAMPLING EFFICIENCY

Iterative denoising in stochastic generative models involves a trade-off between the number of
sampling steps and output quality. As shown in Figure 6, most diffusion- and flow-based models
suffer declines in validity and FCD as the number of steps decreases, whereas FragFM remains robust,
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score conditioning at −11.0 kcal/mol. Red markers indicate λX=
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maintaining over 95% validity and FCD below 1.0 even with fewer steps. This efficiency arises from
operating on fragment-level structures rather than individual atoms. Moreover, FragFM achieves
substantially faster sampling time at the fragment level, as illustrated in Figure 7. Additional results
and full tables are provided in section C.8.
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Figure 6: Analysis of sampling steps across multiple denoising
models. FragFM maintains higher sampling quality than baseline
atom-based denoising models as the number of sampling steps is
reduced, exhibiting significantly less performance degradation. Ad-
ditional results are provided in section C.8.
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6 CONCLUSION

In this paper, we have introduced FragFM, a novel hierarchical framework with fragment-level discrete
flow matching followed by lossless reconstruction of the atom-level graph, for efficient molecular
graph generation. To this end, we proposed a stochastic fragment bag strategy with a coarse-to-fine
autoencoder to circumvent dependency on a limited fragment library cost-effectively. Standing on
long-standing fragment-based strategies in chemistry, FragFM showed superior performance on
the standard molecular generative benchmarks compared to the previous graph generative models.
Additionally, applying classifier guidance at the fragment level and conditioning the fragment bag on
the target property enables more precise control over diverse molecular properties. These significant
improvements pave the way for a new frontier for fragment-based denoising approaches in molecular
graph generation. Finally, to contribute to the growth of the molecular graph-generating domain, we
developed a new benchmark for evaluating models of natural products, which is also crucial in drug
discovery.
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A ADDITIONAL DETAILS OF THE METHOD

A.1 COARSE-TO-FINE AUTOENCODER

To convert between atomistic and fragment-level representations, we introduce a coarse-to-fine
autoencoder. Since the coarse graph already captures the abstract molecular structure, the primary role
of the autoencoder is to restore atomistic connectivity information that is lost during the fragmentation
process.

Coarse-graph encoder In the encoding phase, each molecule is first decomposed into fragments
using the BRICS decomposition rules (Degen et al., 2008), yielding a fragment-level graph G. During
this decomposition, connectivity information between atoms belonging to different fragments is
discarded; for example, the relative orientation of an antisymmetric fragment with respect to others
cannot be determined solely from the fragment graph. Unlike conventional autoencoders, our encoder
network is therefore only required to encode the missing atomistic connectivity into the latent variable
z, since the coarse graph already retains the overall molecular structure.

Fine-graph decoder In the decoding phase, the goal is to restore atom-level connections between
fragments that are linked at the coarse level. Each fragment is defined with junction atoms, which
mark the cut sites introduced during fragmentation. As a result, we only need to consider connectivity
between junction atoms across neighboring fragments, rather than all possible atom pairs. From
the coarse graph, we extract candidate junction-atom pairs, and the neural network predicts their
connectivity as a continuous score conditioned on the latent variable z. These scores are then
discretized into final bond assignments using the blossom algorithm, the details of which are provided
below.

Formally, the encoding and decoding process is summarized as:

Encoder: G
Rule−−−→ G, (G,G) ϕenc−−−→ z,

Decoder: (G, z) ϕdec−−−→ score
Blossom−−−−−→ E. (4)

Training details We train the coarse-to-fine autoencoder by minimizing reconstruction losses
over atomistic connectivities. During training, each connectivity is treated as independent of the
others, and the loss is formulated as a binary cross-entropy objective. In addition, we add a small
KL regularization term, as in VAEs, to the training loss on the latent variable in order to enforce a
well-structured and properly scaled latent space. The total loss is formulated as:

LAE(ϕ) = EG∼pdata

 ∑
(i,j)∈A

LBCE (eij , êij) + βDKL (qϕ(z|G) ∥ p(z))

 , (5)

where eij and êij denote the ground truth connectivity and predicted score between atoms i and j,
and A is the set of candidate junction-atom pairs derived from the coarse graph G. We set a low
regularization coefficient of β = 0.0001 to maintain high-fidelity reconstruction.

Atom-level reconstruction by Blossom algorithm Although each connectivity is trained inde-
pendently, reconstructing a valid graph from the predicted scores requires accounting for their
dependencies. To this end, we employ the Blossom algorithm (Edmonds, 1965) to determine the opti-
mal matching on the atom-level graph. More specifically, the Blossom algorithm returns a matching
in which each atom is constrained to be paired with at most one partner, while maximizing the sum
of connectivity scores (logit) predicted by the decoder. Within our framework, this procedure ensures
accurate reconstruction of atom-level connectivity from fragment-level graphs, thereby yielding
chemically valid molecular structures.

The algorithm takes as input the matching nodes Vm, edges Em, and edge weights wij . Once the
fragment-level graph and the probabilities of atom-level edges from the coarse-to-fine autoencoder
are computed, we define Vm as the set of junction atoms in fragment graphs, which are marked as *
in fig. 1, and Em as the set of connections between junction atoms belonging to connected fragments.
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Formally, an edge ekl exists in Em if the corresponding atoms belong to different fragments that are
connected in the fragment-level graph, expressed as:

ekl ∈ Em if vk ∈ Vi, vl ∈ Vj , and εij ∈ E , (6)

where εij denotes the coarse level edge between i-th and j-th fragments, and Vi ⊆ Vm denotes
junction atoms that included in the i-th fragments. The edge weights wij correspond to the predicted
logit of each connection obtained from the coarse-to-fine autoencoder. The Blossom algorithm is then
applied to solve the maximum weighted matching problem, formulated as

M∗ = argmaxM⊆Em

∑
(i,j)∈M

wij s.t. degM(v) ≤ 1 ∀v ∈ Vm. (7)

Here, M∗ represents the optimal set of fragment-level connections that best reconstructs atom-level
connectivity, maximizing the joint probability of the autoencoder prediction. Although the algorithm
has an O(N3) complexity for N fragment junctions, its computational cost remains negligible in our
case, as the number of fragment junctions is relatively small compared to the total number of atoms
in a molecule.

A.2 DETAILS OF FLOW MODELING

In this section, we describe the details of flow modeling in the FragFM framework. The generation
process jointly produces the coarse graph G and the latent vector z, where the generation of G can
be interpreted as a joint procedure over nodes and edges. In total, three different types of variables
are generated jointly: two discrete variables (node and edge states) and one continuous variable (the
latent vector). Below, we detail the flow formulation and the corresponding loss functions for each
type.

A.2.1 FLOW MODELING FOR NODE

Following the original DFM formulation (Campbell et al., 2024), we specify the distribution of nodes
(fragment types) at t=1 as p1(x) and define the x1-conditioned time marginal by linear interpolation:

pt |1(xt | x1) = t δ(xt, x1) + (1−t) p0(xt), (8)

where p0 is a prior and δ(·, ·) is the Kronecker delta. We adopt the masked version of DFM proposed
by Campbell et al. (2024), in which the prior distribution assigns probability only to the mask token.
With this choice, the interpolation distribution in eq. (8) becomes particularly simple: it is nonzero
only when xt equals the mask token or the data token x1.

The corresponding CTMC transition rate is provided by the authors,

Rt(x, y | x1) =
ReLU

(
∂tpt |1(y | x1)− ∂tpt |1(x | x1)

)
S pt |1(x | x1)

, ∀x ̸= y, (9)

with S the number of states for which pt|1(x | x1) > 0. A brief algebraic manipulation of the
Kolmogorov forward equation yields the x1-unconditional generator

Rt(x, y) = Ex1∼p1|t(·|x)
[
Rt(x, y | x1)

]
. (10)

from which we can sample trajectories {xt}t∈[0,1]. Realizing these trajectories requires the posterior
distribution p1|t(x1 | Xt), whereXt denotes the noisy version of the coarse-graph Gt and latent vector
zt. As described in the main text, we approximate this posterior by modeling the bag-conditioned
distribution p1|t,B(x1 | Xt,B).

A.2.2 FLOW MODELING FOR EDGE

Let εij ∈ E denote the absence (0) or presence (1) of an edge between the i-th and j-th fragments in
the coarse graph. Because the edge state is binary, we adopt a Bernoulli prior with probability density
(mass) function p0(ε) = 1

2 for both states.

Following the discrete flow-matching (DFM) recipe, the ε1-conditioned time marginal is

pt |1
(
εt | ε1

)
= t δ

(
εt, ε1

)
+ (1− t) p0(εt), t ∈ [0, 1]. (11)
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The CTMC rate that realizes this marginal is

Rt
(
ε, ε′ | ε1

)
=

ReLU
(
∂tpt |1(ε

′ | ε1)− ∂tpt |1(ε | ε1)
)

2 pt |1(ε | ε1)
, ∀ ε ̸= ε′, (12)

Rt(ε, ε
′) = Eε1∼p1 |t(·|ε)

[
Rt(ε, ε

′ | ε1)
]
. (13)

The posterior p1 |t(ε
ij
1 | Xt) is parameterized by a neural network gedge

θ (Xt)ij . We trained the model
by minimizing the cross-entropy loss:

Ledge =
∑
ij

EX1,Xt,t

[
−εij1 log gedge

θ (Xt)ij − (1− εij1 ) log
(
1− gedge

θ (Xt)ij

)]
. (14)

In the sampling phase, the neural network replaces the posterior in eq. (13). Because |E| = 2, the
expectation above is computed exactly—no Monte-Carlo sampling is required. Thus, the forward
kernel for i, j-th edge is as:

pθt+∆t|t
(
εijt+∆t | Xt

)
= δ

(
εijt , ε

ij
t+∆t

)
+Rt

(
εijt , ε

ij
t+∆t

)
∆t. (15)

A.2.3 FLOW MODELING FOR LATENT VECTOR

Let z ∈ Rd be the continuous latent vector attached to the fragment-level graph. We model its
evolution with conditional flow matching (CFM; Lipman et al. (2022)), which views generation as
integrating an ODE whose time-dependent velocity field (VF) is learned from data. Specifically, we
linearly change the mean and standard deviation µt(x) = tz1 and σt(z) = 1− t. The corresponding
conditioned target VF is

ut(zt|z1) =
z1 − zt
1− t

. (16)

Then, the trajectory for a prior sample z0 ∼ N (0, I) and a data sample z1 ∼ p1(z) under the target
VF, i.e., the solution to dzt

dt = ut(zt|z1) with z0 is given by:

zt = (1− t)z0 + tz1, t ∈ [0, 1]. (17)

We fit a neural vector field vθ(Xt) by minimizing the mean-squared error

LCFM = EX1,Xt,t

[∥∥vθ(Xt)−
z1 − zt
1− t

∥∥2
2

]
. (18)

To generate a latent vector, we solve the ODE

dẑt
dt

= vθ(Xt), (19)

forward from t = 0 to t = 1 with a deterministic solver. The resulting ẑ1 is then fed to the coarse-to-
fine decoding network to obtain atom-level graph.

CFM as a Limiting Case of a VE Diffusion Bridge Unlike diffusion models, which first define
a reference process and then learn its drift, CFM directly prescribes the time-marginal distribution
and optimizes the corresponding velocity fields that “point” toward a fixed data point. This raises
a question: How can we treat CFM with the transition kernel pt+∆t|t(zt+∆t | zt) used in diffusion
models?

A diffusion bridge is a reference diffusion process conditioned to hit a fixed end-point. Its SDE is

dzt =
[
f(zt, t) + g2(t)∇zt logQ(zT | zt)

∣∣
zT=y

]
dt + g(t) dwt, (20)

where Q(zT | zt) is the unconditioned transition kernel of the reference process, f its drift, and g its
diffusion coefficients.

If the reference process is the variance-exploding (VE) diffusion dzt = g(t) dwt, Zhou et al. (2024)
show that equation 20 reduces to

dzt =
dσ 2

t /dt

σ2
T − σ2

t

(zT − zt) dt + g(t) dwt. (21)
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Setting T = 1 and σ2
t = c2t (constant c) gives

dzt =
z1 − zt
1− t

dt + c dwt. (22)

Taking a limit of c→ 0 eliminates the stochastic term and leaves the deterministic drift

dzt
dt

=
z1 − zt
1− t

, (23)

which is exactly the velocity field optimized by CFM, i.e., the VE diffusion bridge collapses to CFM.

Given a coupling π(z0, z1), we can form a mixture bridge Π by averaging the pinned-down trajectories
over π. According to Proposition 2 of Shi et al. (2023), its Markov approximation M satisfies

dzt = E1|t
[z1 − zt
1− t

]
dt + c dwt, with Mt = Πt ∀t. (24)

When c→ 0, the drift term above coincides with the averaged velocity field learned by CFM eq. (18),
confirming that M recovers the CFM dynamics in the zero-noise limit.

A.2.4 TRAINING DETAILS

Our objective is to learn a generative diffusion on the coarse graph state1 by combining the node-type
Info-NCE loss, the edge binary-cross-entropy loss, and the latent CFM loss into a single training
objective.

Sampling a training triple (X1, Xt, t).

1. Data endpoint. Sample a atomistic graph G1 from the molecular dataset, and apply coarse-
to-fine encoder to obtain X1 = (G1, z1).

2. Time sampling. Sample a time t ∈ [0, 1] from uniform distribution.

3. Forward noise. Independently transform each component to its noised counterpart:

• Node. For every node indexed with i, sample xit ∼ pt|1(· | xi1) with the masked prior.

• Edge. For each pair (i, j), draw εijt ∼ pt |1(· | εij1 ) using eq. (11).

• Latent. Sample z0 ∼ N (0, I) and set zt = (1− t)z0 + tz1 as in eq. (17).

4. Construct Xt. Collect the three noised components into Xt = (Gt, zt).

Joint loss.

Lnode(θ;B) = − log
fθ(Xt, x1)∑
y∈B fθ(Xt, y)

, (2)

Ledge(θ) =
∑
i<j

[
− εij1 log gedge

θ (Xt)ij − (1− εij1 )log
(
1− gedge

θ (Xt)ij
)]
, (14)

Llatent(θ) =
∥∥vlatent
θ (Xt)− (z1 − z0)

∥∥2
2
. (18)

We minimize the weighted sum

Ltotal(θ;B) = Lnode(θ;B) + αedge Ledge(θ) + αlatent Llatent(θ), (25)

with αedge, αlatent>0. We fix αedge = 5.0 and αlatent = 1.0 for all of our experiments.

1Recall Xt =
(
Gt, zt

)
with Gt = ({xi

t}, {εijt }) —the node-type vector xi
t, binary edge matrix εijt , and

latent vector zt ∈ Rd.
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A.3 CONDITIONAL GENERATION WITH FRAGMENT BAG

While generating valid molecules is essential, steering them toward the desired property is crucial
for the practical application of molecular generative models. Direct conditioning via classifier-free
guidance (Ho & Salimans, 2022) offers strong control but tightly binds the generative network to
specific properties and often requires retraining when new targets are introduced. Instead, we adopt
classifier guidance, steering generation at sampling time with an external property predictor. This
decouples the generator from any single conditioning signal and allows the predictor to be trained or
updated independently (Dhariwal & Nichol, 2021; Vignac et al., 2022).

To generate molecules conditioned on external properties, we require a property-steered transition
kernel, denoted pt+∆t|t(Xt+∆t | Xt, c). The transition kernel of X factorizes into kernels for nodes,
edges, and the latent vector. Among these, node types require special treatment because they are
sampled from a candidate fragment bag B.

Analogous to the unconditional case described in the main text, we define the property-conditioned
forward kernel using the bag strategy as

pt+∆t|t(Xt+∆t | Xt, c) ≈ p(Xt+∆t | Xt,Bc, c), (26)

where Bc denotes the property-conditioned fragment bag. The original B is constructed by sampling
one positive fragment from x+ ∼ p(x | Xt) and N−1 negative fragments from x− ∼ p(x).
Analogously, the c-conditioned bag Bc is constructed by sampling one positive fragment from
x+ ∼ p(x | Xt, c) and N−1 negative fragments from x− ∼ p(x | c). By Bayes’ rule, the c-
conditioned in-bag transition kernel can be factorized into the c-unconditional kernel and a guidance
ratio:

p(Xt+∆t | Xt,Bc, c) = p(Xt+∆t | Xt,Bc)︸ ︷︷ ︸
eq. (3)

· p(c | Xt+∆t, Xt,Bc)
p(c | Xt,Bc)︸ ︷︷ ︸

Guidance ratio

. (27)

Guidance ratio modeling The guidance ratio in eq. (27) can be written by:

p(c|Xt+∆t, Xt,Bc)
p(c|Xt,Bc)

=
p(c|Xt+∆t,Bc)
p(c|Xt,Bc)

,

=
p(c|Xt+∆t)p(Bc|c,Xt+∆t)/p(Bc|Xt+∆t)

p(c|Xt)p(Bc|c,Xt)/p(Bc|Xt)
.

The ratio p(Bc|c,Xt+∆t) p(Bc|Xt)
p(Bc|Xt+∆t) p(Bc|c,Xt)

is intractable, yet it involves the difference between two consecutive
states Xt and Xt+∆t. Because an Euler step is very small, it can be assumed that the diffusion
state evolves smoothly: Xt+∆t = Xt + O(∆t). If the bag-sampling distributions p(Bc | X) and
p(Bc | c,X) vary continuously with X , a first-order Taylor expansion yields

p(Bc | ·, Xt+∆t) = p(Bc | ·, Xt) +O(∆t), (28)

so the whole ratio is approximately 1, to be

p(c|Xt+∆t, Xt,Bc)
p(c|Xt,Bc)

≈ p(c|Xt+∆t)

p(c|Xt)
. (29)

Following Nisonoff et al. (2024); Vignac et al. (2022), we can estimate the ratio via noisy predictor
ĉ(Xt) with 1st order Taylor expansion, yielding

log
p(c|Xt+∆t)

p(c|Xt)
≈ ⟨∇Xt log p(c|Xt), Xt+∆t −Xt⟩,

≈
∑
i

⟨∇
x
(i)
t

log p(c|Xt), x
(i)
t+∆t⟩+

∑
ij

⟨∇
ε
(ij)
t

log p(c|Xt), ε
(ij)
t+∆t⟩

+ ⟨∇zt log p(c|Xt), zt+∆t − zt⟩+ C.
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In practice, we estimate p(c|Xt) by Gaussian modeling with a time conditioned noisy classifier
parameterized by ψ, N (c;µ(Xt, t;ψ), σ

2). Thus, the guidance term is written as:

p(c|Xt+∆t)

p(c|Xt)
∝ exp(λX

∑
i

⟨∇
x
(i)
t
∥µ(Xt, t)− c∥2, x(i)t+∆t⟩) (30)

× exp(λX
∑
ij

⟨∇
ε
(ij)
t

∥µ(Xt, t)− c∥2, ε(ij)t+∆t⟩)

× exp(λX⟨∇zt∥µ(Xt, t)− c∥2, zt+∆t − zt⟩),

where λX controls the strength of the guidance.

The smoothness assumption we adopt is exactly the one adopted by earlier discrete-guidance methods
(Vignac et al., 2022; Nisonoff et al., 2024), our derivation remains consistent with the foundations
laid out in those works.

Conditional bag sampling To sample Bc, we first recall the unconditional case. When no property
is specified, a bag B = {x1, . . . , xN} of size N is drawn without replacement from the the fragments
vocabulary F with probability

P
(
B
)
=

∏
x∈B

p
(
x
)

∑
S⊂F
|S|=N

∏
y∈S

p(y)
, (31)

i.e., bags that contain high-frequency fragments under the marginal distribution p(x) are sampled
more often. To steer this toward a desired property c, we replace each p(x) by its conditional
counterpart p(x|c). Viewing a fragment as part of a molecule X , the condition can be written as the
expected property value over all molecules that contain that fragment:

∑
X p(x|X, c)p(X|c).

The resulting bag distribution becomes

P
(
Bc | c

)
=

∏
x∈Bc

p
(
x | c

)
∑
S⊂F
|S|=N

∏
y∈S

p(y | c)
. (32)

Applying Bayes’ rule and dropping the constant factor p(c) gives

p(x|c) ∝ p(x)p(c|x). (33)

In practice, we estimate p(c|x) as a gaussian distribution with a light neural regressor parameterized
by ψ,

pψ(c | x) = N
(
c; µ(x;ψ), σ2

)
, pψ(x | c) ∝ p(x) exp

(
−λB ∥µ(x;ψ)− c∥2

)
, (34)

where µ(x, ψ) is the predicted mean, σ2 is a fixed variance, and λB controls the strength of the
property-guided bag selection.

A.4 DETAILED BALANCE

The space of valid rate matrices extends beyond the original formulation of eq. (9); thus, alternative
constructions can still satisfy the Kolmogorov equation. Campbell et al. (2024) show that if a matrix
RDBt fulfils the detialed-balance identity:

pt|1(xt | x1)RDBt (xt, y | x1) = pt|1(y | x1)RDBt (y, xt | x1), , (35)

then,
Rηt = R∗

t + ηRDBt , η ∈ R+, (36)
remains a valid CTMC generator. A larger η injects extra stochasticity, opening additional state-
transition pathways.
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Although several designs are possible, we follow Campbell et al. (2024). The only non-zero rates for
fragment-type nodes are the transitions between a concrete type x1 and the mask state M :

RDBt (x, y|x1) = δ(x, x1)δ(y,M) + δ(x,M)δ(y, x1), (37)

where M denotes the masked type.

For edges, whose states are binary εij ∈{0, 1}, we consider a flip rate ηedge and a matching backward
rate that satisfies eq. (35) which leads to:

RDBt (ε, ε′ | ε1) = δ(ε, ε1) +
1 + t

1− t
δ(ε′, ε1). (38)

We set (ηnode, ηedge) = (20.0, 20.0) for MOSES, and (10.0, 2.0) for GuacaMol and NPGen datasets.

B DETAILS OF NPGEN BENCHMARK

Here, we provide additional details on (1) the dataset construction process from the COCONUT
database including the filtering steps, (2) the NP-specific evaluation metrics and how they are
computed, (3) the statistics and distributional properties of the NPGen benchmark, and (4) the baseline
models and setups used in our evaluation. These details complement the high-level description in the
main paper and are intended to facilitate reproducibility and further use of NPGen by the community.

B.1 BACKGROUND ON NATURAL PRODUCTS

Natural products (NPs) are chemical compounds biologically synthesized by organisms, e.g., plants
fungi, and bacteria. They have long served as a valuable resource in drug discovery, with their unique
structural features compared to typical synthetic compounds—more complex ring architectures,
higher heteroatom density, and abundant oxygen-based functional groups that contribute to polarity,
stereochemical diversity, and bioactivity (Feher & Schmidt, 2003; Stratton et al., 2015). In essence,
NPs occupy a biologically meaningful subset of chemical space, often resembling endogenous
metabolites, which makes them particularly effective as templates or direct sources for drug design
(Boufridi & Quinn, 2018; Rosén et al., 2009; Atanasov et al., 2021). Moreover, unlike many synthetic
comounds, NPs frequently resemble endogenous metabolites, increasing their likelihood of interacting
with biological targets in meaningful ways.

A substantial portion of clinically approved small-molecule drugs are inspired by or derived from
NPs, mimicking their structures or functionalities (Newman & Cragg, 2020). Multiple classes of
drugs, such as antibiotics (penicillin, derived from Penicillium fungi; erythromycin, from Saccha-
ropolyspora erythraea bacteria), anticancer agents (paclitaxel, originally isolated from the Taxus
brevifolia (Pacific yew tree); doxorubicin, from Streptomyces peucetius bacteria; vincristine, isolated
from Catharanthus roseus (periwinkle)), and immunosuppressants (cyclosporin A, from the soil
fungus Tolypocladium inflatum) demonstrate the long-standing role of NPs in drug discovery. In this
regard, generative models capable of reflecting NP-specific structural and biological characteristics
represent an important frontier for computational drug discovery.

For the machine learning community, natural products (NPs) present a particularly valuable and chal-
lenging benchmark: their structural diversity, functional complexity, and biological relevance extend
far beyond the synthetic-like molecules that dominate current datasets. While modern generative
models have achieved strong performance on widely used benchmarks such as MOSES (Polykovskiy
et al., 2020) and GuacaMol (Brown et al., 2019), these datasets are largely composed of small,
structurally simple molecules, and their evaluation metrics—Fréchet ChemNet Distance, scaffold
overlap, and KL divergence on basic descriptors—are approaching saturation. As a result, they cannot
adequately assess models aiming to capture the complexity and biological meaningfulness of NPs. A
benchmark centered on NPs therefore not only reflects real-world NP inspired drug discovery needs
but also provides a domain-specific stress test for molecular generative models, probing their ability
to extrapolate to richer regions of chemical space (Bechler-Speicher et al., 2025).

B.2 DATASET CONSTRUCTION

To construct the NPGen dataset, we utilized the 2024/12/31 version of the COCONUT database
(Sorokina et al., 2021; Chandrasekhar et al., 2025), which comprises 695,120 natural product-like
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molecules. Given that the original database contains compounds with transition metals—species that
are rarely encountered in typical organic natural products—we applied a filtering procedure to retain
only molecules compose exclusively of non-metal atoms: ‘B’, ‘C’, ‘N’, ‘O’, ‘F’, ‘Si’, ‘P’,
‘S’, ‘Cl’, ‘As’, ‘Se’, ‘Br’, ‘I’. Additionally, to exclude arbitrarily large macromolecules,
we retained only those molecules whose heavy-atom counts fell between 2 and 99.

Furthermore, we only consider neutral molecules without salts, filtering charged molecules and
molecules containing "." in their SMILES representation. After filtering, a total of 658,566 molecules
were retained. The resulting dataset was randomly partitioned into training, validation, and test
subsets using an 85:5:15 split under the assumption of i.i.d. sampling, yielding 526,852, 32,928, and
98,786 molecules, respectively.

B.3 IMPLEMENTATION DETAILS FOR BASELINES

As baselines, we selected a set of molecular graph generative models with two aspects, i.e., generation
strategy (autoregressive and one-shot) and representation level (atom and fragment). We provide
more details on the baseline models.

GraphAF (Shi et al., 2020) is a flow-based autoregressive model for molecular graph generation
that constructs molecules sequentially by adding atoms and their corresponding bonds. We used
the authors’ official implementation from (https://github.com/DeepGraphLearning/
GraphAF) with its default settings, extending only the preprocessing and generation steps to include
atom types that the original implementation does not support ‘B’,‘As’,‘Si’,‘As’,‘Se’.
During generation, the official implementation terminates sampling once 40 atoms are generated for
each molecule; we modified this limit to 99 to match the NPGen benchmark’s maximum heavy-atom
count.

JT-VAE (Jin et al., 2018) is a fragment-based autoregressive variational autoencoder that generates
molecules by building a junction tree of chemically meaningful substructures and then assembling
the corresponding atom-level graph (Jin et al., 2018). We used the authors’ official implementa-
tion (https://github.com/wengong-jin/icml18-jtnn) with the acceleration module
(fast_molvae). Because the codebase relies on Python 2 and is incompatible with newer GPU
drivers, we performed training and sampling on an NVIDIA GeForce RTX 2080 Ti. We performed a
random hyperparameter search over hidden_dim and batch_size, and report the best results.

HierVAE (Jin et al., 2020a) builds on JT-VAE by introducing a hierarchical latent space and a scaffold-
aware message-passing scheme to boost structural diversity and sampling fidelity. We used the
authors’ official implementation (https://github.com/wengong-jin/hgraph2graph),
extending only the preprocessing step to include the ‘As’ atom type. By default, HierVAE employs
a greedy motif-sampling strategy, which prioritizes the top-scoring fragments and may bias the output
distribution. We observed that this led to artifacts, only generating single carbon chains on the NPGen
benchmark. To provide a fair comparison, we report the results of the alternative stochastic-sampling
mode (enabled via a single option flag in the official implementation), without modifying the core
codebase.

DiGress (Vignac et al., 2022) is an atom-based generative model that employs discrete diffusion. We
run the authors’ official implementation ( https://github.com/cvignac/DiGress ) with
all default hyperparameters, adding the atom types ‘B’,‘As’ and their corresponding charges.

B.4 METRICS

As mentioned in the main text, we utilize two methods for distributional metrics: NP-likeness score
(Ertl et al., 2008) and NP Classifier (Kim et al., 2021). Both strategies are developed by domain
experts to effectively analyze the molecule through the lens of a natural product.

NP-likeness score is developed to quantify the similarity of a given molecule to the structural
space typically occupied by natural products. Since one of the major differences between NPs and
synthetic molecules is structural features such as the number of aromatic rings, stereocenters, and
distribution of nitrogen and oxygen atoms, the NP-likeness of a molecule is calculated as the sum
of the contributions of its constituent fragments, where each fragment’s contribution is based on
its frequency in natural product versus synthetic molecule databases. We show the distributions
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of NP-likeness scores for existing benchmarks and NPGen in fig. 9. Since the source database of
NPGen, COCONUT, aggregates compounds from diverse sources, it naturally contains molecules
across a wide range of NP-likeness values. Importantly, the goal of a generative model is to faithfully
reproduce the distribution of the dataset rather than simply maximizing NP-likeness. To this end, we
measure the Kullback–Leibler (KL) divergence between the distributions of NP-likeness scores for
generated and reference molecules.

Since NP-likeness scores are continuous, we adopt a non-parametric estimation procedure from the
prior benchmarks such as MOSES and GuacaMol. Specifically, we calculate NP-likeness scores for
all molecules in both sets, then estimate their probability density functions (PDFs) using Gaussian
kernel density estimation (KDE). We evaluate both PDFs on a common range discretized into 1,000
points spanning the observed minimum and maximum scores, adding a small constant (10−10)
for numerical stability. The resulting discrete distributions are compared via KL divergence using
the scipy.stats.entropy function, providing a robust measure of how closely the generated
distribution aligns with that of natural products in the reference set.

NPClassifier is a deep learning-based tool specifically designed to classify NPs. It categorizes
molecules at three hierarchical levels—Pathway (7 categories; e.g., Polyketides, Terpenoids),
Superclass (70 categories, e.g., Macrolides, Diterpenoids), and Class (672 categories; e.g., Ery-
thromycins, Kaurane diterpenoids)—reflecting the biosynthetic origins, broader chemical and chemo-
taxonomic properties, and specific structural families recognized by the NP research community. This
multi-level system, built on an NP-specific ontology and trained on over 73,000 NPs using counted
Morgan fingerprints, provides a classification based on knowledge of natural products, including their
biosynthetic relationships and structural diversity.

We employed Kullback-Leibler (KL) divergence as a metric for both methods. We compute KL
divergence for NP-likeness score and NPClassifier differently, as they are continuous and discrete
values, respectively. It is worth noting that NPClassifier often predicts ‘Unclassified’, which
indicates a molecule is not included in any classes, along with multiple class results (e.g., ‘Peptide
alkaloids, Tetramate alkaloids’ in Class). We treat all prediction results as another
unique class, since molecules can have multiple structural features.

B.5 DATASET STATISTICS

We analyzed the distributions of several molecular properties to highlight NPGen’s distinctions from
standard molecular generative benchmarks (MOSES and GuacaMol). These properties fell into two
categories: (1) simple molecular descriptors, such as the number of atoms, molecular weight, and
number of hydrogen bond acceptors and donors (fig. 8), and (2) functionality-related properties,
including NP-likeness scores and NPClassifier prediction results (fig. 9). Consistent with the nature of
NPs, which are generally larger and more complex than typical synthetic drug-like molecules, NPGen
molecules are, on average, larger in terms of the number of atoms and molecular weight compared to
those in MOSES and GuacaMol (figs. 8a and 8b). Furthermore, molecules in NPGen exhibit higher
numbers of hydrogen bond acceptors and donors (see figs. 8c and 8d), reflecting another characteristic
of NPs.

The difference between benchmarks becomes more significant when examining functionality-related
properties. NPClassifier predictions for Pathway (fig. 9a) indicate that NPGen molecules span a
diverse range of NP categories. In contrast, molecules from MOSES and GuacaMol mostly fall into
‘Alkaloids’, which are non-peptidic nitrogenous organic compounds, or remain unclassified.
Focusing on four selected Superclass categories for which NPClassifier had demonstrated high
predictive performance (F1 score higher than 0.95 for categories with more than 500 compounds
(Kim et al., 2021)), NPGen shows higher proportions of molecules in these specific categories.
Conversely, molecules from the other benchmarks mostly fall into ‘Unclassified’, implying
that they are dissimilar to NPs. The NP-likeness score further emphasizes this divergence (fig. 9c). In
particular, NPGen’s distribution is largely shifted towards higher scores (average: 1.14) compared
to MOSES (average: -1.67) and GuacaMol (average: -0.90), where a higher score indicates greater
similarity to NPs.

Additionally, we visualize the chemical space of existing benchmarks (MOSES, GuacaMol) and
NPGen using UMAP (McInnes et al., 2018) in fig. 2a. While MOSES and GuacaMol occupy a largely
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overlapping region, NPGen extends into distinct areas, indicating coverage of different chemical
subspaces.

These statistical analyses demonstrate that NPGen has distinct features compared to existing molecular
generative benchmarks, proving its suitability to serve as a unique molecular graph generative
benchmark targeting NP-like chemical space.
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(d) Number of hydrogen bond donors distributions.

Figure 8: Comparison of simple molecular property distributions among three benchmarks:
MOSES, GuacaMol, and NPGen. The number of molecules in each dataset is 1,936,962, 1,591,378,
and 658,565, respectively.
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(a) Proportion of all Pathway, along with ‘Unclassified’. Note that we excluded predicted results with mul-
tiple categories, for clarity. Specifically, number of predictions decreased as 1,936,962 to 1,873,287, 1,591,378
to 1,542,118, and 658,565 to 628,840 for MOSES, GuacaMol, and NPGen, respectively.
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Figure 9: Comparison of NP-likeness score and NPClassifier prediction results among three
benchmarks: MOSES, GuacaMol, and NPGen. The number of molecules in each dataset is
1,936,962, 1,591,378, and 658,565, respectively. Note that we also report the ratio of unclassified
entities of dataset in figs. 9a and 9b. A statistics of Class prediction results is not included since it
has 687 classes and the ratio of each class is too small compared to ‘Unclassified’ class.
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C ADDITIONAL RESULTS AND ANALYSES

C.1 ADDITIONAL BENCHMARKS

In the GuacaMol (table 3) and ZINC250k benchmarks, similar to MOSES, FragFM achieved the
best performance among diffusion- and flow-based baselines in terms of Validity and V.U. metrics,
obtained a state-of-the-art FCD score, and ranked as a close second in the KL Div. score on GuacaMol.
On ZINC250k, FragFM achieved the best performance across all reported metrics, surpassing the
strongest atom-based baseline with a five-fold improvement in NSPDK and a two-fold reduction
in FCD. These results underscore the effectiveness of the fragment-based approach of FragFM
in generating valid and chemically meaningful molecules. Visualization results for GuacaMol are
provided in section F.2.

Table 3: Molecule generation results on the GuacaMol benchmark. We use a total of 10,000
generated molecules for evaluation. All baselines except MCTS in this table is one-shot methods.
The results for FragFM are averaged over three independent runs. The best performance is shown in
bold, and the second-best is underlined.

Model Rep. Level Val. ↑ V.U. ↑ V.U.N. ↑ KL Div. ↑ FCD ↑
Training set - 100.0 100.0 - 99.9 92.8

MCTS (Jensen, 2019) Atom 100.0 100.0 95.4 82.2 1.5

NAGVAE (Kwon et al., 2020) Atom 92.9 88.7 88.7 38.4 0.9
DiGress (Vignac et al., 2022) Atom 85.2 85.2 85.1 92.9 68.0
DisCo (Xu et al., 2024) Atom 86.6 86.6 86.5 92.6 59.7
Cometh (Siraudin et al., 2024) Atom 94.4 94.4 93.5 94.1 67.4
Cometh-PC (Siraudin et al., 2024) Atom 98.9 98.9 97.6 96.7 72.7
DeFoG (Qin et al., 2024) Atom 99.0 99.0 97.9 97.7 73.8

FragFM (ours) Fragment 99.7 99.3 95.0 97.4 85.8

Table 4: Molecule generation on ZINC250k benchmark. We use 25,000 generated molecules
for evaluation. The upper part comprises autoregressive methods, while the second part comprises
one-shot methods, including diffusion-based and flow-based methods. The best performance is
highlighted in bold, and the second-best is underlined.

Model Rep. Level Valid ↑ NSPDK ↑ FCD ↑
Training set - - 0.0001 0.062

GraphAF (Shi et al., 2020) Atom 67.92 0.0432 16.128
GraphDF (Luo et al., 2021) Atom 89.72 0.1737 33.899

GDSS (Jo et al., 2022) Atom 97.12 0.0192 14.032
GSDM (Luo et al., 2023) Atom 92.57 0.0168 12.435
GruM (Jo et al., 2023) Atom 98.32 0.0023 2.235
SwinGNN (Yan et al., 2023) Atom 86.16 0.0047 4.398
DiGress (Vignac et al., 2022) Atom 94.98 0.0021 3.482
GGFlow (Hou et al., 2024) Atom 99.63 0.0010 1.455

FragFM (ours) Fragment 99.81 0.0002 0.630

We also provide the average and standard deviation of the newly proposed NPGen benchmark from
three runs for all baselines and FragFM in table 5.
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Table 5: Molecule generation results on NPGen with error ranges. We use a total of 30,000
molecules for evaluation. The upper part comprises autoregressive methods, while the second part
comprises one-shot methods, including diffusion-based and flow-based methods. The results are
averaged over three runs. The best performance is shown in bold, and the second-best is underlined.
The numbers with ± indicates the standard deviation against each runs.

Model Val. ↑ Unique. ↑ Novel ↑ NP Score
KL Div. ↓

NP Class KL Div. ↓ FCD ↓Pathway Superclass Class

Training set 100.0 100.0 - 0.0006 0.0002 0.0028 0.0094 0.01

GraphAF (Shi et al., 2020) 79.1±0.1 63.6±0.2 95.6±0.0 0.8546±0.0095 0.9713±0.0055 3.3907±0.0730 6.6905±0.0905 25.11±0.08

JT-VAE (Jin et al., 2018) 100.0±0.0 97.2±0.1 99.5±0.0 0.5437±0.0188 0.1055±0.0019 1.2895±0.1243 2.5645±0.4557 4.07±0.02

HierVAE (Jin et al., 2020a) 100.0±0.0 81.5±1.1 97.7±0.0 0.3021±0.0063 0.4230±0.0051 0.5771±0.0121 1.4073±0.0630 8.95±0.06

DiGress (Vignac et al., 2022) 85.4±0.0 99.7±0.0 99.9±0.0 0.1957±0.0028 0.0229±0.0001 0.3370±0.0042 1.0309±0.0182 2.05±0.01

FragFM (ours) 98.0±0.0 99.0±0.0 95.4±0.1 0.0374±0.0001 0.0196±0.0008 0.1482±0.0026 0.3570±0.0006 1.34±0.01

C.2 COARSE-TO-FINE AUTOENCODER

Similar to the latent diffusion model (Rombach et al., 2022), we first train the coarse-to-fine autoen-
coder, which is then kept frozen during the training of the flow model. While the main experimental
results imply that the autoencoder works effectively in conjunction with the flow model, we further
assess whether the autoencoder alone can accurately reconstruct the original molecule from its coarse
graph and latent representation. We measure reconstruction accuracy at both the bond and whole-
graph levels. As reported in table 6, bond-level accuracy exceeds 99% on MOSES and GuacaMol,
indicating nearly perfect recovery of individual chemical bonds. Graph-level accuracy is similarly
high, confirming that overall connectivity patterns are faithfully preserved. Even on the structurally
diverse and larger NPGen dataset, the autoencoder maintains strong performance with only a slight
drop in accuracy, underscoring its robustness in handling complex molecular topologies.

We next examine the role of the latent representation z in enabling accurate reconstruction. While the
coarse fragment graph captures higher-level structural motifs, it alone is insufficient to recover atom-
level connectivity. This limitation underscores the importance of our coarse-to-fine design, where
the latent representation complements the fragment graph by encoding fine-grained connectivity
details. To make this explicit, we conduct an ablation in which reconstruction is attempted with a
random latent vector z ∼ N (0, I) instead of the encoded z. As reported in table 7, reconstruction
accuracy collapses in this case, particularly on the larger and more complex NPGen benchmark. In
contrast, decoding with the encoded z consistently yields near-perfect reconstruction, empirically
demonstrating that z encodes nearly complete atom-level connectivity and highlighting the novelty
of integrating fragment-level and atom-level information through our coarse-to-fine framework.

Table 6: Coarse-to-fine autoencoder accuracy. "Bond" denotes the accuracy of individual atom-
to-atom bonds, while "Graph" denotes the percentage of graphs in which all bonds are predicted
correctly.

Dataset Train set reconstruction (%) Test set reconstruction (%)
Bond Graph Bond Graph

MOSES 99.99 99.96 99.99 99.93
GuacaMol 99.99 99.43 99.98 99.42
ZINC250k 100.0 99.96 99.64 98.71
NPGen 99.98 97.62 99.71 97.43
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Table 7: Coarse-to-fine autoencoder accuracy under ablation on z. For each test dataset, recon-
struction was attempted by decoding the fragment-level graph with a randomly sampled z ∼ N (0, I).

Graph-level accuracy on test set (%) MOSES GuacaMol NPGen

Random z 55.2 46.7 34.4
Encoded z 99.9 99.4 97.4

C.3 FRAGMENT BAG GENERALIZATION

Tables 8 and 9 reports FragFM’s performance when sampling with fragment bags derived from
the test-set molecules on both MOSES and GuacaMol. Recall that MOSES uses a scaffold-split
evaluation—test scaffolds are deliberately excluded from training—so sampling with only training-set
fragments limits the model’s ability to recover those unseen scaffolds, resulting in a depressed Scaf
score. We re-ran the generation using fragment bags drawn from the test split to validate this. In
MOSES, the training split contains 39,247 fragments, while the test split contains 9,789 fragments, of
which 2,588 are unseen during training. In GuacaMol, the training split contains 192,751 fragments,
while the test split contains 63,608 fragments, with 22,962 unseen. Using only test-set fragments
for generation, FragFM’s Scaf score increases dramatically, while all other metrics on MOSES and
GuacaMol remain unchanged. This demonstrates that, leveraging its fragment embedding module,
FragFM can generalize to novel fragments without compromising validity, uniqueness, or other
quality measures.

Table 8: Molecule generation with unseen fragment bag on MOSES dataset. We use a total of
25,000 generated molecules for evaluation. The results are averaged over three independent runs.

Model Rep. Level Valid ↑ Unique ↑ Novel ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Training set - 100.0 100.0 - 100.0 0.48 0.59 0.0

GraphINVENT (Mercado et al., 2021) Atom 96.4 99.8 - 95.0 1.22 0.54 12.7
JT-VAE (Jin et al., 2018) Fragment 100.0 100.0 99.9 97.8 1.00 0.53 10.0

DiGress (Vignac et al., 2022) Atom 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo (Xu et al., 2024) Atom 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh (Siraudin et al., 2024) Atom 90.5 99.9 92.6 99.1 1.27 0.54 16.0
DeFoG (Qin et al., 2024) Atom 92.8 99.9 92.1 98.9 1.95 0.55 14.4

FragFM (train fragments) Fragment 99.8 100.0 87.1 99.1 0.58 0.56 10.9
FragFM (test fragments) Fragment 99.8 100.0 88.2 98.9 0.44 0.57 24.5

Table 9: Molecule generation with unseen fragment bag on GuacaMol dataset. We use a total of
10,000 generated molecules for evaluation. The results are averaged over three independent runs.

Model Rep. Level Val. ↑ V.U. ↑ V.U.N. ↑ KL Div. ↑ FCD ↑
Training set - 100.0 100.0 - 99.9 92.8

MCTS (Jensen, 2019) Atom 100.0 100.0 95.4 82.2 1.5

NAGVAE (Kwon et al., 2020) Atom 92.9 88.7 88.7 38.4 0.9
DiGress (Vignac et al., 2022) Atom 85.2 85.2 85.1 92.9 68.0
DisCo (Xu et al., 2024) Atom 86.6 86.6 86.5 92.6 59.7
Cometh (Siraudin et al., 2024) Atom 98.9 98.9 97.6 96.7 72.7
DeFoG (Qin et al., 2024) Atom 99.0 99.0 97.9 97.7 73.8

FragFM (train fragments) Fragment 99.7 99.4 95.0 97.4 85.7
FragFM (test fragments) Fragment 99.8 99.4 97.4 97.6 85.7

C.4 LONG TAIL FRAGMENT RECOVERY

Molecular fragment distributions in real-world datasets are highly imbalanced, with a small number
of frequent fragments and a long tail of rare ones. When we generate molecules at a fragment level,
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it is important to consider whether generative models can effectively recover such rare fragments
during sampling, rather than being biased to the frequent head of the distribution. This challenge
closely aligns with the long-tail problem in language models, where models tend to underpredict or
ignore infrequent categories despite their importance (Zhao et al., 2021; Kang & Choi, 2023).

To this end, we group fragments in the training set according to their occurrence count k, and refer
to them as k-rare fragments. We then compare the occurrence ratios across groups and quantify
how often these fragments reappear in generated molecules, thereby assessing the model’s ability to
recover the long tail.

Figure 10 shows the results. Across all datasets, the recovery ratios of k-rare fragments in generated
molecules closely follow the distributions observed in the training sets. Even for fragments that
occur fewer than five times, FragFM is able to regenerate them at comparable frequencies. Unlike
language models, which often underestimate rare tokens, we suppose that our fragment-to-vector
module helps generalize across fragments, contributing to this effect. These findings suggest that the
fragment-based representation, together with our modeling strategy, provides effective coverage of
the long-tail space.
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Figure 10: Long-tail fragment recovery results. Occurrence ratios of k-rare fragments in (a)
MOSES, (b) GuacaMol, and (c) NPGen. Generated sets consist of 25,000 molecules for MOSES,
10,000 for GuacaMol, and 30,000 for NPGen.

C.5 EFFECT OF FRAGMENT BAG SIZE

The size of the fragment bag B in eqs. (1) to (3) controls the number of fragments sampled at each step
during training and inference. The posterior in eq. (1) corresponds to a self-normalized importance
sampling (SNIS) estimator of the true posterior, whose bias and variance vanish as N increases.

During training (eqs. (1) and (2)), the bag size Ntrain determines how many negatives are included in
the InfoNCE loss. Larger Ntrain generally improves stability, although the optimality of the density-
ratio estimator fθ itself does not directly depend on Ntrain. By contrast, at inference time the bag size
Ninference directly controls the variance of the estimator: larger Ninference yields better results, as it
more closely approximates the full fragment library F . In the default setting of FragFM, we set both
Ntrain and Ninference to 384. To analyze the effect of fragment bag size, we ablate Ntrain and Ninference
separately to quantify the trade-off between computational efficiency and fidelity.

As shown in fig. 11(a), increasing the inference-time bag size Ninference consistently improves validity,
filter scores, and FCD by reducing estimator variance. In contrast, varying the training-time bag
size Ntrain produces only minor differences once it is moderately large, with a slight upward trend
observed in filter scores, as shown in fig. 11(b). We speculate that this stability may partly stem from
training regularization techniques such as EMA, which help smooth optimization dynamics.
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Figure 11: Effect of fragment bag size. Comparison across (a) inference-time bag size (with
Ntrain = 384), (b) training-time bag size (with Ninference = 384). To isolate the effect of bag size,
the detailed-balance term was excluded during sampling. The horizontal axis (fragment bag size) is
log-scaled in all subplots, and the default FragFM configuration is indicated by a black dashed line.

C.6 STEERING FRAGFM TOWARDS NOVEL MOLECULES

While FragFM achieves state-of-the-art fidelity on most distributional metrics, its novelty on small-
molecule benchmarks (tables 1 and 3) is slightly lower than some baselines. We note that this
difference is modest and reflects the trade-off between novelty and fidelity in molecular generation
(Mahmood et al., 2021; Geng et al., 2023). In fact, higher novelty scores can sometimes arise from
atom-based models that generate valid (in terms of atomic valency) yet chemically implausible
motifs that cannot stably exist in the real world, which does not necessarily correspond to meaningful
chemical space exploration. Nevertheless, users may sometimes prefer sampling molecules from
broader and previously underexplored regions of chemical space. To this end, we found that it is
possible to modulate the sampling algorithm to generate more unseen molecules, fully utilizing the
flexibility of the stochastic bag strategy.

Specifically, we consider two types of temperature scaling: (1) applying a temperature factor Tpred to
reweight fragment logits within the in-bag transition kernel (eq. (3)), and (2) applying a temperature
factor Tbag when reweighting fragments during bag construction at each Euler step (eq. (31)).

Empirically, as shown in table 10, increasing either Tpred or Tbag improves novelty with only a
slight trade-off in fidelity metrics such as validity and FCD. Notably, the combined setting (Tpred =
1.5, Tbag = 1.5) achieves over 94% novelty while still maintaining high validity (99.2%) and filters
(98.3%) metrics, indicating that the generated molecules remain well within the MOSES filter
constraints. This demonstrates that temperature scaling provides a simple and effective mechanism to
balance fidelity and exploration, offering users a practical control knob for tuning generation behavior.
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Table 10: Effect of temperature scaling on MOSES. Benchmark results under different settings of
prediction temperature Tpred and fragment-bag temperature Tbag.

Tpred Tbag Valid ↑ Unique ↑ Novel ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
1.0 1.0 99.8 100.0 87.1 99.1 0.58 0.56 10.9
1.0 1.5 99.2 100.0 94.2 98.3 0.90 0.52 13.5
1.5 1.0 99.7 100.0 88.6 98.8 0.88 0.54 11.0
1.5 1.5 99.2 100.0 94.5 98.3 0.91 0.51 13.1

C.7 MORE RESULTS ON CONDITIONAL GENERATION

For simple molecular properties (logP, QED, and number of rings), we perform conditional generation
on the MOSES dataset using regressors trained on its training split. The detailed illustration of property
distributions and corresponding targets is depicted in fig. 12. For protein-target conditioning, we
perform conditioning on the ZINC250K dataset. The targets were selected from the DUD-E+ virtual
screening benchmark for our docking score experiments, following Yang et al. (2021). The established
reliability of Smina (Koes et al., 2013), which is a forked version of AutoDock Vina (Trott & Olson,
2010), evidenced by its high AUROC for discriminating hits from decoys on DUD-E+, led us to use
it as an oracle.

Figure 16 depitcs the Smina docking score distributions for ZINC250K molecules against three
targets (fa7, jak2, parp1). Since lower scores correspond to stronger predicted binding, we selected
the conditioning value for each protein at the extreme left tail of its distribution (FA7: –10.0 kcal/mol,
0.01%; JAK2: –11.0 kcal/mol, 0.08%; PARP1: –12.0 kcal/mol, 0.09%), indicated by the vertical
dashed lines in fig. 16 to focus generation to the most tightly binding candidiates.

With the perspective of chemistry, the worse FCD and validity with conditions of DiGress shown in
figs. 13 and 14 highlights a critical challenge for atom-based approaches: satisfying targeted property
constraints while ensuring chemical correctness, simultaneously. From a chemical perspective, this
distinction can be attributed to the nature of the search space; atom-based approaches explore a vastly
larger space, far exceeding the molecular space, where many cases can lead to chemically invalid
structures, especially when generation is heavily biased by property objectives. Conversely, FragFM’s
fragment-based construction inherently operates within a more chemically sound and constrained
subspace by assembling pre-validated chemical motifs. These findings collectively emphasize the
intrinsic advantages of employing fragments as semantically rich and structurally robust building
blocks, particularly for achieving reliable and property-focused molecular generation.

Moreover, the importance of the fragment bag’s composition, which is shown in the main text
(fig. 5), is intuitive: it defines the accessible chemical space and, consequently, the possible range
of achievable molecular properties (e.g., generating acyclic molecules is impossible if the fragment
bag exclusively contains ring-based structures, among other structural constraints). Based on λB,
FragFM automatically modulates fragment selection probabilities, inducing a drift in the fragment
space to generate the chemically valid molecules satisfying the given objective. It enables the model
to construct molecules with desired properties even if the initial general-purpose fragment bag is not
perfectly tailored to a specific task, making our strategy a powerful and practically manageable tool
for fine-grained control.
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Figure 12: Distribution of molecular properties (logP, ring count, and QED) for the MOSES
dataset. Colored vertical lines denote the conditioning scores applied for each target protein.
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(a) MAE-FCD curves for QED conditioning on the
MOSES dataset.
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Figure 13: Conditioning results on QED. MAE-FCD and MAE-validity curves for FragFM and
DiGress under QED conditioning on the MOSES dataset. Different conditioning values are color-
coded.
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(a) MAE-FCD curves for logP conditioning on the
MOSES dataset.
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Figure 14: Conditioning results on logP. MAE-FCD and MAE-validity curves for FragFM and
DiGress under logP conditioning on the MOSES dataset. Different conditioning values are color-
coded.
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(a) MAE-FCD curves for the number of rings con-
ditioning on the MOSES dataset.
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Figure 15: Conditioning results on number of rings. MAE-FCD and MAE-validity curves for
FragFM and DiGress under a number of rings conditioning on the MOSES dataset. Different
conditioning values are color-coded.
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Figure 16: Distribution of SMINA docking scores for the ZINC250K dataset across different
target proteins. Vertical lines denote the conditioning scores applied for each target protein.
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(a) MAE-FCD curves for FA7 docking score condition-
ing.
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(b) MAE-Validity curves for FA7 docking score condi-
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Figure 17: Conditioning results on FA7 (target: -10.0). Each point represents 10,000 generated
molecules. Results are shown for DiGress and FragFM with λB = 0.0 and 0.2.
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(a) MAE-FCD curves for PARP1 docking score condi-
tioning.
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Figure 18: Conditioning results on PARP1 (target: -12.0). Each point reprsents 10,000 generated
molecules. Results are shown for DiGress and FragFM with λB = 0.0 and 0.2.
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C.8 SAMPLING EFFICIENCY: SAMPLING STEPS AND TIME

Diffusion- and flow-based models typically require multiple denoising iterations, resulting in slow
sampling. Table 11 shows the performance of MOSES benchmark metrics of FragFM and baseline
denoising based models with different denoising steps. For small sampling steps, FragFM outperforms
the baseline models with minimal degradation in metrics, especially at low step counts, by a wide
margin. With only 10 sampling steps, FragFM achieves higher validity and a lower FCD than
competing models running 500 steps.

We also compare sampling time across different models in table 12. By operating both node- and
edge-probability predictions, edge computations scale quadratically with graph size, making them
the fastest approach among the compared models. Coupled with its robust performance at far fewer
steps, FragFM could be further optimized with substantial speedups over atom-level methods with
high generative quality.

Table 11: Performance of denoising-based graph generative models on the MOSES dataset
across different sampling step counts. All the models are one-shot models. Results for DeFoG and
Cometh are taken from their original publications; DiGress (excluding the 500-step setting) were
obtained by retraining the model with the differing sampling steps from the official implementation.
The best performance is shown in bold for each sampling step.

Sampling steps Model Rep. Level Val. ↑ V.U. ↑ V.U.N. ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
- Training set - 100.0 100.0 - 100.0 0.48 0.59 0.0

10

DiGress Atom 6.3 6.3 6.3 66.4 9.40 0.38 7.4
Cometh Atom 26.1 26.1 26.0 59.9 7.88 0.36 8.9
DeFoG Atom - - - - - - -

FragFM Fragment 96.8 96.6 89.4 96.8 0.92 0.52 15.3

50

DiGress Atom 75.3 75.3 72.3 94.0 1.35 0.51 16.1
Cometh Atom 82.9 82.9 80.5 94.6 1.54 0.49 18.4
DeFoG Atom 83.9 83.8 81.2 96.5 1.87 0.59 14.4

FragFM Fragment 99.5 99.5 89.1 98.5 0.65 0.54 11.2

100

DiGress Atom 82.6 82.6 79.2 95.2 1.14 0.51 15.4
Cometh Atom 85.8 85.7 82.9 96.5 1.43 0.50 17.2
DeFoG Atom - - - - - - -

FragFM Fragment 99.7 99.7 88.5 98.8 0.62 0.55 11.6

300

DiGress Atom 85.3 85.3 81.1 96.5 1.11 0.52 13.5
Cometh Atom 86.9 86.9 83.8 97.1 1.44 0.51 17.8
DeFoG Atom - - - - - - -

FragFM Fragment 99.8 99.8 87.2 98.9 0.58 0.55 11.6

500

DiGress Atom 85.7 85.7 81.4 97.1 1.19 0.52 14.8
DiGress Atom 84.8 84.8 82.0 94.5 1.37 0.50 14.7
Cometh Atom 87.0 86.9 83.8 97.2 1.44 0.51 15.9
DeFoG Atom 92.8 92.7 85.4 98.9 1.95 0.55 14.4

FragFM Fragment 99.8 99.8 86.9 99.1 0.58 0.56 10.9

700

DiGress Atom 85.5 85.5 82.6 95.0 1.33 0.50 15.3
Cometh Atom 87.2 87.1 83.9 97.2 1.43 0.51 15.9
DeFoG Atom - - - - - - -

FragFM Fragment 99.9 99.9 86.9 99.1 0.61 0.56 10.8

1000

DiGress Atom 84.7 84.7 81.3 96.1 1.31 0.51 14.5
Cometh Atom 87.2 87.2 84.0 97.2 1.44 0.51 17.3
DeFoG Atom - - - - - - -

FragFM Fragment 99.8 99.8 86.6 99.1 0.62 0.56 12.9
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Table 12: Comparison of sampling time across different datasets and methods. Experiments
were conducted on a single NVIDIA GeForce RTX 3090 GPU and an Intel Xeon Gold 6234 CPU @
3.30GHz. *Results for DeFoG are taken from the original paper, where experiments were conducted
on an NVIDIA A100 GPU. Note that DeFoG shares most of its backbone architecture with DiGress,
with only minor adjustments.

Sampling steps MOSES GuacaMol NPGen

Property
Min. nodes - 8 2 2
Max. nodes - 27 88 99
# Samples - 25000 10000 30000

Sampling Time (hour)

DiGress 500 3.0 - 36.0
DeFoG* 500 5.0 7.0 -
FragFM 500 0.9 1.3 7.0
FragFM 50 0.2 0.2 0.9

D EXPERIMENTAL SETUP AND DETAILS

D.1 DATASETS

We provide details of the datasets used in our experiments, including MOSES (Polykovskiy et al.,
2020), GuacaMol (Brown et al., 2019), and ZINC250k (Irwin & Shoichet, 2005).

MOSES. The MOSES benchmark is constructed from a subset of the ZINC Clean Leads dataset,
containing approximately 1.9 million drug-like molecules. The molecules are curated and filtered for
training and evaluation of molecular generative models, with a predefined data split of training, test,
and scaffold split test sets. All molecules in the MOSES dataset meet drug-likeness criteria, including
molecular weight and logP ranges.

GuacaMol. GuacaMol is based on the ChEMBL database and provides a large-scale benchmark
for both distribution-learning and goal-directed molecular generation tasks. The training dataset
comprises around 1.6 million molecules extracted from ChEMBL v24.

ZINC250k. The ZINC250k dataset comprises 249,456 molecules selected from the larger ZINC
database.

D.2 FRAGMENTIZATION

We use the BRICS (Degen et al., 2008) decomposition scheme to construct our fragment library, with
all inter-fragment connections restricted to single bonds. The fragment library is built by fragmenting
every molecule in each dataset and collecting the resulting unique fragments into a fragment bag.
The final fragment counts in the training, validation, and test splits are: MOSES (39,247 / 12,212 /
9,789), GuacaMol (192,751 / 30,418 / 63,608), NPGen (117,998 / 18,063 / 40,214), and ZINC250k
(28,235 / 4,231 / 2,683). In the test sets, the number of fragments unseen during training is 2,588 for
MOSES, 22,962 for GuacaMol, 12,116 for NPGen, and 367 for ZINC250k.

D.3 METRICS

We provide details of common metrics in both MOSES (Polykovskiy et al., 2020) and GuacaMol
(Brown et al., 2019) benchmarks.

Common Metrics. These metrics are fundamental for assessing the basic performance of molecular
generative models. Note that V.U. and V.U.N. metrics are multiplied values of each metric, i.e., V.U.N.
is computed by multiplying validity, uniqueness and novelty.

• Validity (Valid): This metric measures the proportion of generated molecules that are
chemically valid according to a set of rules, typically checked using tools like RDKit.
A SMILES string is considered valid if it can be successfully parsed and represents a
chemically sensible molecule (e.g., correct atom valencies, no impossible structures).
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• Uniqueness (Unique): This indicates the percentage of unique molecules among valid
generated molecules. A high uniqueness score suggests the model is generating diverse
structures rather than repeatedly producing the same few molecules.

• Novelty (Novel): This metric quantifies the fraction of unique and valid generated molecules
that are not present in the training dataset. It assesses the model’s ability to generate novel
chemical molecules.

MOSES Metrics. The MOSES benchmark focuses on distribution learning. Key metrics beyond the
foundational ones include:

• Filters: This refers to the percentage of valid, unique, and novel molecules that pass a set
of medicinal chemistry filters (PAINS, MCF) and custom rules defined by the MOSES
benchmark (e.g., specific ring sizes, element types), which are used in curating dataset of
MOSES. This evaluates the drug-likeness or suitability of generated molecules according to
predefined structural criteria.

• Fréchet ChemNet Distance (FCD): FCD (Preuer et al., 2018) measures the similarity
between the distribution of generated molecules and a reference (test) dataset based on
latent representation of molecules using a pre-trained neural network (ChemNet). A lower
FCD indicates that the generated distribution is closer to the reference distribution.

• Similarity to Nearest Neighbor (SNN): This metric calculates the average Tanimoto simi-
larity using Morgan fingerprints (Rogers & Hahn, 2010) between each generated molecule
and its nearest neighbor in the reference (test) dataset. A higher SNN suggests that the
generated molecules are similar in structure to known molecules in the target chemical
space.

• Scaffold Similarity (Scaf): This metric specifically assesses the diversity of molecular
scaffolds. It calculates a cosine similarity between the vectors of the occurrence of Bemis–
Murcko scaffolds (Bemis & Murcko, 1996) of the molecules in the reference (test) dataset
and the generated ones. A higher score suggests generated scaffolds are similar to reference
scaffolds.

GuacaMol Metrics. GuacaMol provides benchmarks for distribution-learning and goal-directed
generation. For its distribution-learning benchmark, which is utilized for our main results, the primary
aggregated metrics are:

• Kullback-Leibler Divergence (KL Div.) Score: This metric computes the KL divergence
between the distributions of several physicochemical and topological properties of the
generated molecules and the training set. These individual KL divergences (DKL) are then
combined into a single score, by averaging negative exponential of them (i.e., exp(−DKL))
to reflect how well the model reproduces the overall property distributions. Due to the nature
of calculation method, a score closer to 1 indicates better similarity.

• Fréchet ChemNet Distance (FCD) Score: Similar to the MOSES FCD, GuacaMol also
uses an FCD metric to compare the distributions of generated molecules and the training
set. The only difference is that in GuacaMol, the raw FCD value (where lower is better) is
transformed into a score where higher is better.

ZINC250k Metrics. ZINC250k is a collection of 250k molecules from ZINC (Irwin & Shoichet,
2005). Multiple generative models evaluate their performance with the following metrics:

• NSPDK: The Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) is a graph kernel
that measures structural similarity between molecular graphs by considering neighborhoods
of atoms and their pairwise distances. For generative evaluation, the NSPDK distance is com-
puted between the generated set and the reference dataset, capturing differences in both local
and global graph structures. A lower NSPDK value indicates that the generated molecules
are structurally closer to the reference distribution. We used the official implementation
from Jo et al. (2022) to compute the NSPDK.

• Fréchet ChemNet Distance (FCD): The FCD used in ZINC250k follows the same defini-
tion as in the MOSES benchmark.
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D.4 BASELINES

Next, we briefly introduce baseline strategies that we compared FragFM in the main results. We
focused on molecular graph generative models, which are categorized by autoregressive and one-shot
generation models. Each model uses either atom- or fragment-level representation.

GraphInvent (Mercado et al., 2021) employs a graph neural network (GNN) approach for de
novo molecular design. It first compute the trajectory of graph decomposition based on atom-level
representation, and then trains a GNN to learn action of atom and bond addition on given subgraph of
molecule. During inference stage, it builds molecules in atom-wise manner.

JT-VAE (Jin et al., 2018) or Junction Tree Variational Autoencoder, generates molecular graphs in a
two-step process. It first decodes a latent vector into a tree-structured scaffold representing molecular
components (like rings and motifs) and then assembles these components into a complete molecular
graph, ensuring chemical validity. Since it iteratively decide whether to add node during sampling
process, we consider it as autoregressive model despite its use of VAE.

SAFE-GPT (Noutahi et al., 2024) is an autoregressive sequence generative model that produces
SAFE (Sequential Attachment-based Fragment Embedding) strings—a novel representation proposed
in the paper, where molecules are expressed as sequences of fragments. The model is built on a
GPT-2–like transformer architecture. While the original work reported only basic results on validity,
uniqueness, and diversity, we retrained the SAFE-GPT-20M model using its official implementation
to obtain comprehensive benchmark results.

MCTS (Jensen, 2019) is a non-deep learning-based strategy that utilizes Monte-Carlo tree search
for molecular graph generation. Using atom insertion or addition as action, it sequentially build
molecules from a starting molecule.

NAGVAE (Kwon et al., 2020), non-autoregressive Graph Variational Autoencoder, is a VAE-based
one-shot graph generation model utilizing compressed graph representation. It reconstructs the
molecular graphs from latent vectors, aiming for scalability and capturing global graph structures.

DiGress (Vignac et al., 2022) is the first discrete diffusion model designed for graph generation. It
operates by iteratively removing noise from both graph edges and node types, learning a reverse
diffusion process to construct whole graphs from a noise distribution.

DisCo (Xu et al., 2024) is a graph generation model that defines a forward diffusion process with
continous-time Markov chain (CTMC). The model learns reverse generative process to denoise both
the graph structure and its attributes simultaneously.

Cometh (Siraudin et al., 2024) is a continuous-time discrete-state graph diffusion model. Similar
to Disco, it formulates graph generation as reversing a CTMC defined on graphs, where the model
learns the transition rates of this chain to generate new graph structures.

DeFoG (Qin et al., 2024) is a generative framework that applies the principles of flow matching
directly to discrete graph structures. After training via a flow matching strategy, it utilizes CTMC for
the denoising process to generate graphs.

E PARAMETERIZATION AND HYPERPARAMETERS

E.1 COARSE-TO-FINE AUTOENCODER

Our coarse-to-fine autoencoder (eq. (4)) compresses the atom-level graph into a single latent vector z
and then uses it, together with the fragment-level graph G, to reconstruct all atom–atom connections.
The encoder, an MPNN (Gilmer et al., 2017), takes G and pools its node features into z. The decoder
conditions on G and z to predict a distribution over every possible atom–atom edge between them
for each pair of linked fragments. Internally, it propagates messages along original intra-fragment
bonds and across all candidate inter-fragment edges, enabling the recovery of the complete atomistic
structure from the coarse abstraction.
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E.2 FRAGMENT EMBEDDER, PREDICTION MODEL, AND PROPERTY DISCRIMINATOR

To parameterize the neural network fθ(Xt, x) in eq. (2), we jointly train two components: a fragment
embedder and a Graph Transformer (GT). Figure 19 provides an overview.

The fragment embedder, built on an MPNN backbone Gilmer et al. (2017), maps each fragment
to a fixed-dimensional embedding vector. Given a fragment-level graph Xt, we apply this shared
embedder to every fragment node, producing a set of local structure embeddings. Multiple GT
layers, then process these embeddings to capture inter-fragment interactions and global context. The
GT layers were designed with the sample architecture and hyperparameters as prior atom-based
diffusion- and flow-based molecule generative models (Vignac et al., 2022; Qin et al., 2024; Siraudin
et al., 2024; Xu et al., 2024). We directly predict the discrete fragment-graph edges E1 and the
continuous latent vector z1 from the final GT output embeddings. To predict fragment types, we
compute the inner product between each candidate fragment type embedding and its corresponding
GT embedding to infer the scores of different fragments. We reuse the flow model’s architecture
for property discrimination: We aggregate both the fragment-level embeddings and the GT’s global
readout to produce fragment—and molecule-level property predictions.

We train our flow model with AdamW optimizer, using (β1, β2) = (0.9, 0.999), a learning rate of
5 × 10−4, and gradient-nrom clipping at 4.0. We employ the exponential moving average (EMA)
scheme of Karras et al. (2024) to stabilize training. Training is performed on a single NVIDIA A100
GPU for 96 h on MOSES and GuacaMol and 144 h on NPGen, and we select the checkpoint with the
lowest validation loss.

E.3 AUXILIARY FEATURES

Although graph neural networks exhibit inherent expressivity limitations (Xu et al., 2018), augmenting
them with auxiliary features has proven effective at mitigating these shortcomings. For example,
Vignac et al. (2022) augments each noisy graph with cycle counts, spectral descriptors, and basic
molecular properties (e.g., molecular weight, atom valence). More recently, relative random walk
probabilities (RRWP) have emerged as a highly expressive yet efficient encoding (Ma et al., 2023):
by stacking the first K powers of the normalized adjacency matrix M = D−1A, RRWP constructs a
k-step transition probabilities that capture rich topological information. Accordingly, we integrate
RDKit-derived molecular descriptors into the fragment embedder and RRWP features into the graph
transformer, enriching the model’s ability to capture complex molecular semantics.

E.4 NOISE SCHEDULE

Selecting an appropriate noise schedule is crucial for the performance of diffusion- and flow-based
models (Vignac et al., 2022; Siraudin et al., 2024; Qin et al., 2024). Following Qin et al. (2024), we
adopt the polynomially decreasing (polydec) time distortion, which skews the initially uniform time
distribution so that more steps are allocated near the data manifold. Specifically, a uniformly sampled
u! ∼!U [0, 1] is warped by f(t) = 2t − t2, which preserves the endpoints (f(0) = 0, , f(1) = 1)
while increasing the density toward large t. Under Euler discretisation, this concentrates integration
steps where fine-grained denoising is most critical.

E.5 HYPERPARAMETERS

For reproducibility, we report the full hyperparameter settings of FragFM, including the coarse-to-fine
autoencoder (table 13), flow matching module (table 14), and discriminator module for guidance
(table 15). Our primary contribution is the development of a fragment-based framework for molecular
generation, rather than architectural novelty; however, since no prior models have adopted this design,
we implemented the necessary modules accordingly. The hyperparameters were selected through
preliminary exploratory experiments and kept fixed across all datasets and benchmarks for consistency.
For the MPNN, we adopt the implementation from Gilmer et al. (2017); Battaglia et al. (2018), and for
the graph transformer, we follow Vignac et al. (2022) but reduce the number of layers from 8 to 5, as
the fragment-to-vector module already precedes it. For the property discriminator, we followed prior
classifier-guidance studies, which typically used smaller networks than the corresponding diffusion
models, and set the number of parameters accordingly.
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Figure 19: Overview of the parameterization of the fragment embedder and prediction model,
i.e., fθ in fig. 1. (left) Each fragment in the fragment bag B is embedded by the fragment embedder,
while each node in the coarse graph is mapped to a fixed-size vector. We compute fθ(Xt, x) by taking
the inner product of the two embeddings. (right) The coarse-graph embedder first maps every node to
an embedding, producing a coarse graph whose nodes are single vectors; the resulting graph is then
passed through the graph-transformer layer.

Table 13: Hyperparameters for the coarse-to-fine autoencoder.

Name Value
Model architecture

Number of paramters 6, 648, 793
Backbone type Sparse MPNN (Gilmer et al., 2017)
Encoder/decoder layers 4
Node embedding dimension 256
Edge embedding dimension 128
Hidden dimension 256
Latent dimension 32
Activation function SiLU
Layer normalization Yes
Initialization Xavier

Training setup
Batch size 256
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Learning rate 1.0× 10−4

Learning rate warm-up Linear, 2000 iterations
Weight decay 1.0× 10−12

Gradient clipping 1.0
KL divergence coefficient 1.0× 10−4
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Table 14: Hyperparameters for the fragment-to-vector encoder and coarse graph propagation
module.

Name Value
Fragment-to-vector encoder

Number of parameters 4, 257, 290
Backbone type Sparse MPNN (Gilmer et al., 2017)
Number of layers 5
Node embedding dimension 256
Edge embedding dimension 128
Hidden dimension 256
Activation function SiLU
Dropout 0.1
Layer normalization Yes
Initialization Xavier

Coarse graph propagation module
Number of parameters 17, 418, 274
Backbone type Graph Transformer (Vignac et al., 2022)
Number of layers 5
Attention heads 8
Node embedding dimension 256
Edge embedding dimension 128
RRWP walk length 6
Droptout 0.1
Layer normalization Yes
Initialization Xavier

Training setup
Batch size 256
Negative fragments (per step) 384
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Learning rate 5.0× 10−4

Learning rate warm-up Linear, 10,000 iterations
Weight decay 0.0
Gradient clipping 4.0
Exponential moving average (EMA) Yes (0.999)
Loss coefficients Fragment edge (1.0), Fragment type (5.0), Latent (1.0)
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Table 15: Hyperparameters for the property discriminator module.

Name Value
Fragment-to-vector encoder

Number of parameters 923, 402
Backbone type Sparse MPNN (Gilmer et al., 2017)
Number of layers 4
Node embedding dimension 128
Edge embedding dimension 64
Hidden dimension 128
Number of property readout layers 3
Activation function SiLU
Dropout 0.1
Layer normalization Yes
Initialization Xavier

Coarse graph propagation module
Number of parameters 5, 649, 572
Backbone type Graph Transformer (Vignac et al., 2022)
Number of layers 4
Attention heads 8
Node embedding dimension 128
Edge embedding dimension 64
Number of property readout layers 3
Droptout 0.1
Layer normalization Yes
Initialization Xavier

Training setup
Batch size 256
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Learning rate 5.0× 10−4

Learning rate warm-up Linear, 10,000 iterations
Weight decay 0.0
Gradient clipping 4.0
Exponential moving average (EMA) Yes (0.999)
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F VISUALIZATION

F.1 VISUALIZATION OF FRAGMENTS

We visualize the top-50 frequent fragments from each dataset (MOSES, GucaMol, and NPGen).

Figure 20: Top 50 most common fragments extracted from the MOSES dataset. More frequently
occurring fragments are positioned toward the top left.

Figure 21: Top 50 most common fragments extracted from the GuacaMol dataset. More fre-
quently occurring fragments are positioned toward the top left.
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Figure 22: Top 50 most common fragments extracted from the NPGen dataset. More frequently
occurring fragments are positioned toward the top left.

F.2 VISUALIZATION OF GENERATED MOLECULES FROM MOSES AND GUACAMOL

We visualize samples generated by FragFM on the MOSES and GuacaMol datasets in figs. 23 and 24.

Figure 23: Molecules generated by FragFM on the MOSES benchmark. Molecules were randomly
selected for visualization.

Figure 24: Molecules generated by FragFM on the GuacaMol benchmark. We randomly select
molecules for visualization.
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F.3 VISUALIZATION AND ANALYSIS OF GENERATED MOLECULES ON NPGEN

For the NPGen task, we show generated molecules from FragFM alongside baseline models
(GraphAF, JT-VAE, HierVAE, and Digress) in figs. 25 to 29. Although all visualized molecules are
formally valid in terms of valency (which rdkit can process), atom-based generative models often
introduce chemically implausible motifs-such as aziridine or epoxide rings fused directly to aromatic
systems, inducing severe angle strain Sweeney (2002); anti-aromatic rings with 4n π-electrons
(violating Hückel’s rule), resulting in high electronic instability Carpenter (1983); and bonds between
nonadjacent atoms in a ring system, causing extreme geometric distortion Nishiyama et al. (1980).
Fragment-based autoregressive models largely avoid these issues, yet they, too, exhibit limitations:
JT-VAE tends to generate only small, homogeneous ring systems, while HierVAE is strongly biased
toward long aliphatic chains and simple linear moieties. Consequently, these approaches show a
distinct distribution of molecules from the trained dataset, matching the benchmark results in table 2.

Figure 25: Valid molecules generated by FragFM on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.
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Figure 26: Valid molecules generated by GraphAF on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.
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Figure 27: Valid molecules generated by JT-VAE on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.
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Figure 28: Valid molecules generated by HierVAE on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.
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Figure 29: Valid molecules generated by Digress on NPGen. The top two rows show molecules
with up to 30 heavy atoms, while the bottom two rows show molecules with 31-60 heavy atoms.
Molecules were randomly selected for visualization.
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