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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) improves language model
reasoning by using rule-based rewards in verifiable domains such as mathemat-
ics and code. However, RLVR leads to limited generalization for open-ended
tasks—such as writing outline essays or making meal plans—where humans rea-
son routinely. This paper shows that the RLVR paradigm is effective beyond ver-
ifiable domains, and introduces RL with Model-rewarded Thinking (RLMT) for
general-purpose chat capabilities. Using diverse real-world prompts, RLMT re-
quires LMs to generate long CoT reasoning before response, and optimizes them
with online RL against a preference-based reward model used in RLHF. Across
40 training runs on Llama-3.1-8B and Qwen-2.5-7B (both base and instruct) and
multiple optimization algorithms (DPO, PPO, and GRPO), RLMT consistently
outperforms standard RLHF pipelines. This includes substantial gains of 3-7
points on three chat benchmarks (AlpacaEval2, WildBench, and ArenaHardV?2),
along with 1-3 point improvements on other tasks like creative writing and gen-
eral knowledge. Our best 8B model surpasses GPT-40 in chat and creative writ-
ing and rivals Claude-3.7-Sonnet (Thinking). RLMT can also be applied directly
to base models without an SFT stage, akin to R1-Zero training (DeepSeek-Al,
2025)). Remarkably, with only 7K prompts, Llama-3.1-8B base trained with our
RLMT recipe outperforms Llama-3.1-8B-Instruct post-trained with a complex
multi-staged pipeline with 25M+ examples. We close with qualitative and quan-
titative analyses of how trained models plan their responses. Our results rethink
the post-training pipeline and call upon future work to understand and employ
thinking more broadly

1 INTRODUCTION

Thinking through the consequences of one’s actions—and revising them when needed—is a defin-
ing feature of human intelligence (often called “system 2 thinking”, Kahneman| (2011))). It has
also become a central aspiration for large language models (LLMs). Recent progress toward this
goal has been driven by reasoning models trained through reinforcement learning with verifiable
rewards (RLVR; |Lambert et al.| |[2025; |[DeepSeek-AlL [2025). In RLVR, models are optimized with
automatically checkable rewards from domains such as mathematics and code, encouraging them to
reason with a long chain-of-thought (CoT; Nye et al.,[2021; Wei et al., [2022) before answering.

So far, RLVR has been applied to math, coding (DeepSeek-Al, 2025 |Zeng et al., [2025), STEM
problems (Ma et al., [2025), and to a lesser extent other deterministic puzzles and games (Chen
et al., [2025} |Liu et al.| 2025b; |Stojanovski et al., 2025} |Liu et al.,2025c¢). Although humans rely on
reasoning in everyday tasks such as writing emails, drafting essay outline, and making to-do lists, we
find that the skills acquired from RL in verifiable domains do not naturally transfer to these general
tasks. Figure[3|shows that open-source reasoning models trained via math-focused RLVR lag behind
standard instruction-tuned models on WildBench (Lin et al.,2025b), a widely used chat benchmark
with diverse user queries. Complementary studies report limited generalization of RLVR-trained
models to reasoning tasks beyond verifiable domains (Huan et al., [2025} [Zhou et al., [2025)).

This paper pushes the RLVR paradigm well beyond verifiable domains to general-purpose chat,
and introduces Reinforcement Learning with Model-rewarded Thinking (RLMT). As in Figure|l}

"We release our code and models at (redacted for submission). An anonymized version of the code is
zipped with this submission.
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Figure 1: We train LMs with long chain-of-thought on diverse, general user prompts through rein-
forcement learning with a reward model. RLMT allows models to think compared to RLHF, and
extends RLVR to broader, open-ended tasks.

RLMT trains LMs to generate long CoT reasoning before final answers, using online RL algorithms
such as GRPO (Shao et al., 2024). Unlike RLHF (Ziegler et al.,2020; Ouyang et al., 2022), this

design encourages explicit reasoning. Compared to ,

. N If Andy Dufresne wrote a book of philosophy, what
RLVR relying on rule-based rewards tied to ground-truth loh would be his philosophy and why? What would become
answers, RLMT only requires prompts and uses reward @ ﬁff‘;fe“n"cfi‘f”hf;T.‘feyiﬁﬁhoiﬁfo"k that better capture
models trained on human preference data over diverse
prompts, as in RLHF, to evaluate responses. RLMT

<think> Q
The user wants to know Andy's hypothetical philosophy

0

recipe is surprisingly effective across a wide range of book, and some quotes from his book....

tasks, enabling long CoT for open-ended tasks (see Fig- 1. Review the story of Andy Dufresne: He's a survivor,
intelligent, ... His story is a powerful metaphor

ure IZl for an example). 2. Synthesize his experiences into a philosophy:

* Key theme: The Power of Mind, Hope, and ...
* Core principles:

RLMT is effective for both base models and those warm- S Ayuing that true liberty bagins within .

started with a supervised fine-tuning (SFT) stage, likened s E;Pﬁggtjjgyipfhﬁ:z L?f;é;i;’-sme expeciation..
to Rl-zero and R1 (DeepSeek-All [2025). We apply

. . = 5. Structure the response: 1) Introduction: Set the
this recipe to two model families: Llama-3.1-8B and scene ... 2) The Philosophy: Detail the core ideas ...
Qwen-2.5-7B. We begin with models that undergo SFT </think>
on thinking traces and responses generated by Gemini Title of The Hypothetical Book:
25 Flash (Comanici 2025) and then Optimize these Beyond the Walls: A Philosophy of Hope and Resilience"
warm-started models with RL against a reward model, The Philosophy: *Hape as the Architact, Mind asthe Key'

specifically Skywork-v2 (Liu et al., 2024a)). Across both

families and multiple optimization algorithms (on-policy Figure 2: Example reasoning trace gen-
DPO, PPO, and GRPO), RLMT produces consistent and erated by an LM trained with RLMT for
sizable improvements over standard RLHF, with average an open-ended query.

gains of 3—7 points on different chat benchmarks, and 1-3

points on other tasks including creative writing and general knowledge. Our best model—Llama-
3.1-8B-Instruct trained with RLMT (GRPO)—scores 58.7 on AlpacaEval2 and 50.4 on WildBench
(Table([T). It comfortably surpasses models 10x larger (Llama-3.1-70B-Instruct and Qwen2.5-72B-
Instruct), and even beat GPT-40 (OpenAl et al.,2024) and Claude-3.7-Sonnet (Anthropic, [2025) on
WildBench.

Wildbench Score Furthermore, RLMT delivers substantial gains even when

EE our Model applied directly to base models without an SFT stage.

202 In this setting, RLMT achieves average chat scores of

15.6 on Llama-3.1-8B and 29.0 on Qwen-2.5-7B (Ta-

222 ble [T). These numbers are higher than those of Llama-
115 =2 3.1-8B-Instruct and Qwen-2.5-7B-Instruct by more than

o 5 points, despite the latter relying on far more com-

Quen-78  General gvrg}"‘e;i OpenThinker °Xéfg"¢f plex post-training pipelines involving millions of exam-

ples, rejection sampling, and iterative preference opti-
Figure 3: Score on WildBench (Lin| mization (Llama3}2024).

et al., 2025b). Thinking models trained
only on verifiable domains do not gen-
eralize well to general-purpose chat.

We conclude with extensive analyses that surface sev-
eral interesting findings. One is the difference in pre-RL
vs. post-RL performance across model families: while
Llama-3.1 underperforms Qwen-2.5 before RL, the trend reverses afterwards. We hypothesize that
RLMT helps reinforce certain capabilities in models, even if they are not fully optimized during pre-
training or SFT. We then quantify a shift in Llama-3.1-8B’s reasoning style after RL—from linear,
checklist-style outlines to richer behaviors such as constraint enumeration, theme grouping, and iter-
ative refinement. Ablation studies reveal that the choices of both the prompt mixture and the reward
model are critical to the final performance. Our results indicate sufficient promise in the long-CoT
paradigm for future work to undertake more detailed analyses of the models it yields.
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2 REINFORCEMENT LEARNING WITH MODEL-REWARDED THINKING

2.1 BACKGROUND

We first set up the preliminary background on two LM training paradigms, RL from Human Feed-
back (RLHEF, [Ziegler et al.|(2020) and RL with Verifiable Rewards (RLVR, |[Lambert et al.| (2025)).

RLHF. The goal of RLHF is to align LM outputs with human preferences. Let 7y denote
a language model with parameters . Given a prompt  ~ X, the LM generates a response
y ~ 7(- | ). Let r denote a reward function that assigns a scalar score to response y for prompt x,
i.e., r(y,z) € R. In practice, r is instantiated as a reward model trained on human preference data,
so that higher scores correspond to outputs better aligned with human judgments. RLHF optimizes
f to maximize the expected reward of responses generated from 7y:

max B [By vy (1o)7(2,9)] M

RLVR. RLVR has become the de facto method for training LMs in domains where ground-truth
verification is possible, such as mathematics or code. RLVR modifies the RLHF framework by
replacing the model-based reward r with a verification function; for example, the indicator function
1{y = y*} against a ground-truth answer y*. In practice, the verification function may go beyond
simple equality checks (e.g., using unit tests for code generation).

Another distinction of RLVR from RLHF is that the LMs usually first produce a reasoning trace
z ~ mg (- | ) before aresponse y ~ my(- | x, z) (DeepSeek-AlL2025), instead of directly generating
responses. The optimization objective then maximizes the expected correctness of the final response:

max B [By,2)mm (1) 1H{y = y"}] - @

For both RLHF and RLVR, there is a variety of RL or on-policy preference learning algorithms that
can be used. In this work, we focus on three widely adopted methods (DPO, PPO, and GRPO). We
provide more details in Appendix

2.2 RLMT: CoMBINING RLHF AND RLVR

While recent RLVR models achieve strong results in formal domains, they exhibit limited general-
ization to broader reasoning problems (Huan et al., 2025} [Zhou et al) [2025) and chat benchmarks
(see Figure 3|and results in §4). Meanwhile, planning and reasoning do help human perform a wide
range of day-to-day tasks.

We propose reinforcement learning with model-rewarded thinking (RLMT) to employ broad super-
vision for open-ended tasks. RLMT optimizes LMs with the following objective:

mgaxIEINX [IE)@,Z) NW,;('\Z)T(Q,«T)} . G

As in Eq (3), RLMT requires LMs to generate a reasoning trace z before producing the final response
y, which differs from RLHF, and uses a reward model 7 to score responses, rather than rule-based
verification as in RLVR. We study several key design choices for RLMT:

Training algorithm. We experiment with different RL algorithms: on-policy DPO (Rafailov et al.,
2023), PPO (Schulman et al., [2017), and GRPO (Shao et al., 2024)E] The choice of training algo-
rithm leads to different performance outcomes (§3). Our best-performing models are trained with
GRPO, but our models remain better than baselines in all settings.

Reward model. We adopt Skywork-v1-Llama-3.1-8B-v@.2 (Liu et al. 2024a) as our reward
model r, which has shown strong performance on reward benchmarks (Liu et al.,|2024b)) and down-
stream applications (Malik et al., 2025). We find that having a strong reward model is instrumental
for RLMT (ablations in Section 4).

?Unlike standard DPO using a static preference dataset, we sample preference pairs using the policy model.
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Prompt mixture. We construct the prompt distribution from diverse, real-world user requests.
Concretely, we use 7.5k prompts from the WildChat-IF subset of the Tiilu3 SFT mixturef’| This
subset prioritizes conversational prompts sampled from WildChat (Zhao et al., [2024), covering a
wide range of realistic user queries. In contrast to the full Tiilu-3M SFT mixture that contains a high
proportion of math and jailbreak prompts, using WildChat-IF allows us to better capture general
usage. Analysis shows that this choice improves general-purpose chat performance over alternatives
such as UltraChat (Cui et al., [2024); see §[Z_f]for details.

2.3  WARM-START SFT TRAINING AND “ZERO” TRAINING

Since the LMs we use do not naturally adopt the desired thinking format, we try two methods to
elicit this behavior: (1) warm-starting with supervised fine-tuning (SFT), and (2) directly prompting
base models without SFT (the “Zero” approach of DeepSeek-All (2025))).

Warm-start thinking with SFT. We begin by teaching models the desired thinking format via
supervised fine-tuning (SFT). Specifically, we sample 6k prompts from the Tiilu3 SFT mixture (dis-
joint from those prompts used for RLMT) for SFT. We generate responses using Gemini 2.5 Flash
(0417 Preview), a popular teacher model in recent approaches that distill reasoning behavior from
reasoning models (Muennighoff et al., [2025; |Guha et al., 2025)). Since Gemini’s CoT is not acces-
sible, we prompt it to produce a simulated thinking trace before the final response. We additionally
experiment with SFT data generated by GPT-4.1-mini and observe similar results and trends (see
§4.T). We list details of hyper-parameters in Appendix [B]and prompt formats in Appendix

Zero training with base models. We also directly apply RLMT to base models without a warm
start, which we refer to as the Zero setting. Concretely, we experiment with Llama-3.1-8B (Llama3)
2024) and Qwen-2.5-7B (Qwen-2.5, [2025), neither of which has undergone post-training. In this
case, we elicit the desired output structure by prepending a fixed instruction prefix (A conversation
between User and Assistant...”, see Appendix D). The subsequent RL training procedure is
otherwise identical to the setup described for RLMT.

3 THINKING BENEFITS OPEN-ENDED REASONING

3.1 SETTINGS, BENCHMARKS AND EVALUATED MODELS

Setting and models. We evaluate RLMT in two settings: (1) applied to models after SFT warm-
start (Tables[T)and[3), and (2) applied directly to base models (the “zero” setting; Tables[T|and[3). We
apply setting (1) with SFT on top of the Base and Instruct versions of Llama-3.1-8B and Qwen2.5-
7B. Following [DeepSeek-Al| (2025)), we apply the zero training (2) only to base models. In Table[T]
we report GRPO as our main results, since it achieves the best overall performance and serves as the
basis for our analysis. We provide results with DPO and PPO in Table [3| for comparison.

Benchmarks. We evaluate our models on a suite of 7 benchmarks spanning general chat, creative
writing, instruction following, and general knowledge—these are chosen to represent a meaningful
selection of broadly applicable tasks. We list the benchmarks below:

1. Chat. We include the widely used WildBench (WB) (Lin et al., 2025b), AlpacaEval 2
(AE2) (Dubois et al.l [2024), and ArenaHardV2 (AH2) (Li et all [2024aib) for chat evalua-
tion. AE2 and AH2 uses a free-form judgment procedure, whereas the WB relies on carefully
crafted rubrics.

2. Creative writing. We augment these benchmarks with CreativeWritingV3 (CWv3) (Paechl,
2025)) to evaluate the creative writing abilities of our models. The WB score ranges from -100
to 100, while the other three range from 0 to 100.

3. Instruction following. We use the recently published IFBench (IFg.,) benchmark (Pyatkin
et al.| [2025) to produce a score ranging from 0-100.

4. General knowledge. We evaluate our models on MMLU-Redux (MMLUg) (Gema et al.|
2025)) and PopQA (Mallen et al, 2022)) to test general and long-tail knowledge, respectively.
The resulting scores span 0—100.

Shttps://huggingface.co/datasets/allenai/tulu-3-wildchat-if-on-policy-8b
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Table 1: GRPO results for models trained from Llama-3.1-8B and Qwen2.5-7B (base and instruct)
in both warm-started and zero settings. ¥ shows whether thinking was enabled, with v' denoting
RLMT models and x denoting RLHF models. The best numbers are bolded in each category.
Our main focus is on chat benchmarks: WildBench (WB), AlpacaEval2 (AE2), and ArenaHardV2
(AH2). When evaluating un-trained base models, we prompt them with both thinking and non-
thinking template (tpl). Thinking models outperform non-thinking baselines, especially on chat and
creative writing.

Backbone Training Q WB AE2 AH2 Avgchy CWv3 PopQA IFp,, MMLUp  Avg
SFT Warm-Started Models
Llama-3.1-8B + SFT x -10.6 268 5.1 7.1 75.2 264 15.6 59.7 283
v -1.6 297 65 11.5 75.1 305 17.0 61.1 312
+ GRPO x 332 467 16.3 32.1 84.2 245 177 61.2 405
Llama-3.1-8B-RLMT v 381 523 159 354 80.9 303 15.6 61.7 42.1
Qwen2.5-7B + SFT x -09 28.8 8.0 12.0 61.9 21.1  19.0 652 29.0
v 12.0 339 10.6 18.8 69.5 22.0 21.1 62.1  33.0
+ GRPO x 289 51.0 13.1 31.0 60.9 244 19.7 72.8 38.7
QOwen2.5-7B-RLMT v 310 540 19.1 34.7 65.7 22.8 218 67.3  40.2
Llama-3.1-8B-Instruct x =70 321 5.1 10.1 55.0 364 238 70.0  30.8
+ SFT x 12.1 335 99 18.5 78.5 31.1 235 64.8  36.2
v’ 143 345 95 19.4 78.7 325 248 70.6  37.8
+ GRPO x 420 456 199 35.8 83.6 31.8  21.1 71.7 451
Llama-3.1-8B-Instruct-RLMT v 504 58.7 229 44.0 84.3 340 221 70.0 48.9
Qwen2.5-7B-Instruct x 222 37.1 10.0 23.1 49.8 222 282 754 350
+ SFT x 126 28.6 10.0 17.1 65.4 21.1  19.0 67.2  32.0
v' 187 337 109 21.1 71.0 21.8 218 60.5 34.1
+ GRPO x 374 41.6 163 31.8 72.6 219 17.0 73.1  40.0
Owen2.5-7B-Instruct-RLMT v 463 50.5 20. 39.2 75.6 225 20.1 715 439
Zero Training (No SFT)
Llama-3.1-8B Base (nonthink tpl) x -87.6 1.7 0.8 -28.4 30.2 252 170 36.6 34
Base (think tpl) v 882 1.6 06 -287 31.8 20.7 16.7 26.5 1.4
+ GRPO x -48 29.8 45 9.8 47.5 29.5 16.0 552 254
Llama-3.1-8B-RLMT-Zero v 72 340 5.6 15.6 49.0 31.2 18.0 56.2 28.7
Qwen2.5-7B Base (nonthink tpl) x -658 45 2.0 -19.8 39.1 23.1 173 632 119
Base (think tpl) v 684 44 15 -208 36.7 230 173 599 10.6
+ GRPO x 134 484 88 23.5 50.7 252 16.0 719 335
Owen2.5-7B-RLMT-Zero v 222 54.0 108 29.0 54.0 242 18.0 71.8 364

We provide more details on the evaluation process (e.g., judge model, length control) along with
four more benchmarks, including math and logical puzzles, in Appendix [C|

Baselines and algorithms. We pair every RLMT model with an RLHF baseline under the same
training setup, differing only in the absence of thinking. To rigorously isolate the effect of integrating
long CoT in post-training, we construct a matched set of non-thinking baselines trained with RLHF
paradigm. For every thinking model in any setting, we train a corresponding non-thinking model
that follows the same setting without thinking. Concretely, we still take prompt- response pairs
distilled from Gemini thinking for a fair comparison, but we removed the thinking trace in this case.
We evaluate our models and baselines with DPO, PPO, and GRPO (more details in Appendix .

3.2 RESULTS Table 2: Comparison of Llama-3.1-8B-
Instruct-RLMT with strong open-source

Thinking models excel in chat and creative writing. 21d closed models, including GPT-40 and
Table [T] contains results after SFT, and after GRPO Claude-3.7-Sonnet (a thinking model).
for both thinking and non-thinking models. Think-  Model Avg. WB AE2 AH2 CWv3
ing models trained with RLMT consistently outper- our model

form non-thinking counterparts by 1.5-4 points on av-  L3.1-8B-I.lRLMT 54.1 50.4 587 229 3843
erage across all benchmarks (Tables[T]and ). The gap Eg’f_%’gfl&l:truct 321 163 420 106 594
over baselines is maximum on chat (WildBench and  Q2.5-72B-Instruct 452 44.4 502 199 66.3
AlpacaEval2): 3-8 points on average. They are usually T Somnet gg:g g E % ;g:g
also better at creative writing and factuality (PopQA).

To provide a further reference, Table E] compares our best model, Llama-3.1-8B-Instruct-RLMT, to
four strong models. Remarkably, despite being 10x smaller than the two open source models, our
RLMT model outperforms them both by large margins (9-22 points). It also outperforms GPT-40
on chat and creative writing. We also compare it to the frontier thinking model Claude-3.7-Sonnet.
(February 2025, rumored to be 150B+ scale and post-trained on millions of examples). Llama-3.1-
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Table 3: DPO/PPO results for warm-start and zero training. € shows whether thinking is enabled,
with v* denoting RLMT models and x denoting RLHF models. The best numbers are bolded and
the second are underlined. Warm-start + RLMT remains effective with DPO/PPO, but they lag
GRPO. The two algorithms are ineffective compared to GRPO for zero training.

Backbone Training Q WB AE2 AH2 Avgchy CWv3 PopQA IFp,, MMLUp  Avg
SFT Warm-Started Models

Llama-3.1-8B + SFT -10.6 26.8 5.1 7.1 75.2 264 156 59.7 283

-1.6 297 6.5 11.5 75.1 305 17.0 61.1 312

+DPO 144 346 9.0 19.3 78.3 282 17.0 60.3 345

17.3 36.8 10.9 21.7 76.6 324 173 625 363

+ PPO 234 402 119 25.2 71.3 29.6 16.7 62.1  36.5

217 433 107 25.2 81.9 33.0 18.0 64.3 39.0

Qwen2.5-7B + SFT -0.9 288 8.0 12.0 61.9 21.1  19.0 652 29.0

12.0 339 10.6 18.8 69.5 220 211 62.1 33.0

+DPO 12.8 325 11.6 19.0 70.5 214 170 70.1 337

249 38.1 14.1 25.7 74.8 22,6 21.1 664 374

+PPO 29.0 355 149 26.5 69.7 219 18.0 68.6 36.8

AXAX AX X | AX AXAX X | aAXAXAX | aXaxax

309 422 152 294 77.2 223 204 67.1 393
Llama-3.1-8B-Instruct -7.0 321 5.1 10.1 55.0 364 238 70.0 30.8
+ SFT 12.1 335 99 18.5 78.5 31.1 235 64.8  36.2
143 345 95 19.4 78.7 325 248 70.6  37.8
+ DPO 279 372 133 26.1 80.2 321 224 67.0 40.0
29.7 45.1 154 30.1 81.6 334 252 70.5 43.0
+ PPO 434 509 17.8 374 83.2 324 21.1 69.5 455
46.8 58.2 23.0 42.7 85.3 332 241 68.7 48.5
Qwen2.5-7B-Instruct 222 37.1 10.0 23.1 49.8 222 282 754 350
+ SFT 12.6 28.6 10.0 17.1 65.4 21.1  19.0 67.2 320
18.7 33.7 109 21.1 71.0 21.8 21.8 60.5 34.1
+DPO 21.1 314 114 21.3 71.3 214 167 68.5 345
28.1 37.6 149 26.9 73.7 220 228 66.0 379
+ PPO 33.1 374 153 28.6 71.1 22.1 19.0 71.5 385
398 453 177 4.3 76.5 224 224 71. 42.2
Zero Training (No SFT)
Llama-3.1-8B Base (nonthink tpl) x -87.6 1.7 08 -284 30.2 252 17.0 36.6 34
Base (think tpl) v 882 16 06 -287 31.8 20.7 16.7 26.5 1.4
+DPO x -746 24 03 -24.0 26.1 325 133 47.3 6.8
v 689 45 1.0 -21.1 30.1 353 136 14.5 43
+PPO x -1.2 19.5 3.5 7.3 529 28.0 153 444 232
v 104 26.1 3.8 134 56.6 319 187 315  25.6
Qwen2.5-7B Base (nonthink tpl) x -65.8 45 2.0 -19.8 39.1 23.1 173 63.2 119
Base (think tpl) v 684 44 15 -20.8 36.7 23.0 173 599 10.6
+ DPO x 245 217 54 0.9 38.3 25.0 16.0 69.3 21.6
v -183 246 49 3.7 40.4 253 146 68.8 229
+PPO x -70.0 29 12 220 36.9 219 163 49.2 8.3
v 658 59 18 -194 35.1 229 16. 54.1 10.0

8B-Instruct-RLMT rivals Claude-3.7-Sonnet (thinking) on AlpacaEval2 and Wildbench, though
it is worse on ArenaHardv2, likely due to the high proportion of math and coding.

GRPO achieves the best performance, but RLMT remains effective with DPO and PPO.
Comparing Tables [I] and [3] certify that GRPO usually weighs in at about 1-3 points better than
PPO, and about Spp better than DPO on average. RLMT models retain (and indeed, extend) their
edge over non-thinking baselines even with DPO and PPO. Not only are they better at Chat and Cre-
ative Writing, but they also show relative gains on instruction following (IFg.,), factuality (PopQA)
and world knowledge (MMLUR). While preference optimization has often turned to DPO and PPO
in recent years, we invite researchers to explore the trade-offs of using GRPO more in future work.

RLMT can elicit chat capabilities even without SFT. The zero training sections of Tables|I|and
[3] summarize the results in the setting that directly applies RLMT to base models. Table 3] finds
that the base models do not perform well, and do not show much improvement with DPO or PPO
(esp. on Qwen2.5-7B). With GRPO (Table , however, the models show large improvements on
all benchmarks. RLMT delivers a further 3-point improvement on average, allowing Qwen-RLMT-
Zero to outperform Qwen2.5-7B-Instruct. Llama-RLMT-Zero performs just under Llama-3.1-8B-
Instruct, but outperforms it on chat benchmarks by 5.5 points.

RLMT models outperform thinking models learned from math data. Figure [3| compares our
RLMT models against “thinking” models trained on math, or distilled from DeepSeek-R1 on math
prompts (more results in Appendix [C)). AIl RLMT models handily outperform them by 10-25 points
on chat and creative writing. The gap remains large even after RL on the math models (Table[9).
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Table 4: Ablation of the GRPO prompt mixture, SFT data source, and reward model. Rows marked
with “—” denote ablations. Best numbers are bold. We highlight the main model in light green.

Ablation Objective 9 WB AE2 AH2 Avgcha CWv3 PopQA IFg., MMLUg Avg
Ablation: using different RL prompt mixture (GRPO prompts)

Prompts: WildchatIF +GRPO v [ 381 523 159 354 80.9 303 15.6 61.7 42.1
< Prompts: UltraFeedback +GRPO v 355 473 13.8 322 78.0 333 16.0 50.7 39.2
< Prompts: Tiilu3 Random +GRPO v 222 427 115 25.5 76.4 31.0 16.3 59.5 37.1
Ablation: SFT warm-start with different data source (GPT-4.1-mini)

< Warm-start: GPT-4.1-mini + SFT X 59 251 53 8.2 67.7 31.3  18.0 59.2 28.7
— Warm-start: GPT-4.1-mini v 70 266 73 13.6 72.9 331 194 68.2 33.5
— Warm-start: GPT-4.1-mini  + GRPO X 38.6 44.8 16.2 332 82.1 28.2 163 60.5 41.0
< Warm-start: GPT-4.1-mini v 40.6 519 175 36.7 82.8 31.0 16.7 56.3 424
Ablation: Reward model (SkyworkV2 & ArmoRM)

— RM: SkyworkV2 +GRPO x 32.6 47.8 18.8 33.1 82.2 326 194 55.6 410
< RM: SkyworkV2 v 409 532 228 39.0 80.4 33.7 19.7 47.7 42.6
< RM: ArmoRM +GRPO x -10.2 309 5.8 8.8 71.2 354 150 58.9 29.6
<— RM: ArmoRM v 59 433 69 14.8 63.3 326 16.7 54.6 30.2

Shifts in relative performance across model families. An interesting observation is that while
Llama-3.1 initially lags behind Qwen-2.5 before going through RL, it surpasses Qwen-2.5 after
applying RLMT. We hypothesize that this arises because Qwen-2.5 undergoes more extensive tuning
targeted at these benchmarks, whereas RLMT is able to reinforce and unlock these capabilities in
models like Llama-3.1 that are less optimized initially.

4 ANALYSIS

In this section, we undertake several analyses and ablation studies to gain a better understanding
what affects the performance of the thinking models, and in what aspects precisely they improve.

4.1 ABLATIONS

Impact of prompt mixture. We vary the prompt mixture used for GRPO to study its impact on
downstream performance. To avoid confounders due to instruction tuning or due to oddities of the
Qwen models (see [Shao et al.| (2025)), we perform this study on the Llama-3.1-8B. We experiment
with two other data sources in Table E} UltraFeedback (Cui et al., |2024), popular for preference
optimization, and a randomly sampled subset of the Tulu3 SFT mixture (Lambert et al.,[2025)).

We see that the Wildchat-IF subset of Tiilu outperforms both of these sources: we attribute this to
the relatively simple prompts in UltraFeedback and the abundance of math and jailbreak (non-chat)
prompts in the unfiltered Tulu SFT mixture. In effect, the prompts used for RL matter: more “chatty”
and harder prompts lead to more improvements.

Impact of warm-start data. Since Gemini 2.5 Flash is a “thinking” model, one might wonder if
our takeaways are an artifact of the specific choice of this model. To this end, we repeat a subset of
our experiments (Llama-3.1-8B — SFT — GRPO) using GPT-4.1-mini to generate the warm-start
data, leaving the prompts and other hyperparameters unchanged. As Table[d]|shows, thinking models
still outperform non-thinking models, especially on chat benchmarks. The final numbers achieved
by the GRPO thinking models are roughly the same as the ones warm-started on Gemini 2.5 Flash.

Impact of reward model. To assess the importance of the reward model, we run RLMT (GRPO)
with (1) Skywork-V2 (Liu et al.} 2025a), a newer version of the Skywork reward model with care-
fully curated training dat‘ (2) ArmoRM (Wang et al., [2024), another popular reward model used in
alignment research (Meng et al.,[2024)). Both are based on Llama-3.1-8B backbones, with Skywork-
V2 generally representing a stronger reward model than our default Skywork-V1, and ArmoRM
representing a weaker one. Table ] summarizes the results with and without thinking. We find:
1) Stronger reward models lead to better performance. The gap between the SkyworkV2 and
ArmoRM results is large. A weaker model leads to drops on the non-chat benchmarks—especially
with thinking. On the other hand, a strong reward model can maintain performance on non-chat
benchmarks while also boosting chat performance. 2) RLMT outperforms standard RLHF on

“Most of our experiments were conducted before the release of Skywork-V2. We believe some of our results
may also be pushed further with this version.
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Figure 4: Left: Traitwise head-to-head win rates for the SFT and GRPO models. Red colors indi-
cate that the trait diminished after GRPO, while green indicates that it increased. Right: Example
reasoning behavior. When asked to write a tweet thread, the model first maps out the requested
constraints and then plans the tweet progression. It also runs everything through the checklist
and notes necessary refinements before producing the final output.

chat across RMs. With both RMs, thinking models continue to outperform their non-thinking
counterparts by a large gap on chat benchmarks.

In Appendix[C.3| we also compare RLMT with concurrent approaches that rely on reference-based
rewards (Chang et al.,[2025) or rubric-based rewards (Viswanathan et al.,[2025). Our RLMT models
outperform these alternatives on chat benchmarks as well.

4.2 How DOES RL TRAINING CHANGE MODEL BEHAVIOR?

Qualitative Analysis We analyze why precisely do the thinking models perform better on chat
benchmarks. To this end, we take the best model from our suite, LLlama-3.1-8B-Instruct-RLMT, and
the warm-started model before RLMT. We employ the following pipeline to automatically extract
the traits that maximally changed between the two versions: (1) We pass all the prompts from
WildBench, and the associated thoughts generated by the two models to GPT-4.1-mini, and ask it
to extract the traits most prevalent in each thought. (2) We then pass trait-sets from both models
in batches of 20 prompts to GPT-4.1-mini to identify the ones consistently more prevalent in one
model than the other. (3) We further summarize the identified differences across 10 random batches
of 20 prompts. (4) At this point, we have a list of traits that were potentially amplified or suppressed
after RLMT. For each, we compute a head-to-head win rate of which model shows the trait more
across all 1024 examples of WildBench.

We plot the results in Figure [] (left). We observe that the SFT model often starts by hierarchically
planning out sections, subsections, and then use a checklist to guide the plan. On the other hand,
Llama-3.1-8B-Instruct-RLMT lists out the relevant constraints and subtopics first, then groups ideas
into common themes, only then does it plan out specific details. We show one (compressed) example
of the thinking process in Figure ] (right) that highlights the identified traits in the model’s thoughts.
We also observe that while the SFT model’s planning is often linear, the RLMT model’s planning
is often iterative: it returns to and refines older parts of the plan, e.g., to cross-reference points
mentioned elsewhere. We believe that the strategies reflected in these differences are often the traits
exhibited by good writers; it is encouraging that they emerge naturally from the training process.

Increased CoT length. We also find that as training progresses, the model learns to think longer
and generate longer responses (Figure[5), reminiscent of DeepSeek-R1-zero (DeepSeek-AlL[2025).

n 8% 0 750
g g

< 400 < 500
= =

3 200 #* 250

0 20 40 60 80 100 120 0 20 40 60 80 100 120
Training Steps Training Steps
(a) Thoughts (b) Responses

Figure 5: Llama-3.1-8B-RLMT-Zero thinks and answers longer as training progresses.
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5 RELATED WORK

Training stages of language models. Modern LMs are typically trained in three stages. First, they
are pre-trained on large corpora to acquire general language abilities (Vaswani et al., [2017; Devlin
et al., 2019; Radford et al., 2019). Second, they undergo supervised fine-tuning (SFT) on curated
prompt-response pairs (Radford et al., 2018} [Taori et al., 2023; Wang et al., 2023}, [Llama3| [2024;
Qwen-2.5, 2025)), which encourages traits like instruction following (Ouyang et al. 2022; Wang
et al., [2022). Finally, models are refined via reinforcement learning to enforce desirable behavior,
either through preference optimization (Ouyang et al., 2022} Rafailov et al.| 2023} |[Ethayarajh et al.,
2024} [Meng et al., 2024 |Ahmadian et al., 2024) or domain-specific objectives, such as math (Chen
et al., 2024; Kazemnejad et al., [2025) and tool use (Luo et al.,[2025)). In this work, we show that our
simple RLMT recipe, when applied directly to base models, can also yield strongly aligned models.

Reinforcement learning from human feedback (RLHF). To capture subjective attributes such
as human preference, RLHF relies on a learned reward model trained on pairwise human judg-
ments (Christiano et al., 2017; [Ziegler et al.| |2020; Ouyang et al., 2022). Building on this founda-
tion, preference optimization methods such as DPO (Rafailov et al., 2023), KTO (Ethayarajh et al.,
2024), and SimPO (Meng et al., [2024) directly optimize models to generate preferred responses.
Most approaches directly generate the response. We instead first generate internal reasoning and
only later the final answer. Closely related to our work are efforts that combine preference optimiza-
tion with chain-of-thought reasoning (Pang et al.,2025; Wu et al.|[2025a). Unlike these approaches,
which elicit long CoT traces by prompting instruct models and typically rely on offline algorithms,
we show the promise of directly applying online RL with long CoT to base models.

Reinforcement learning with verifiable rewards (RLVR). Particularly for domains with ob-
jectively verifiable solution, more suitable algorithms have been proposed, such as GRPO(Shao
et al.} 2024). GRPO and its variants (Zheng et al., [2025} |Yu et al.l 2025) compute advantages by
mean-centering rewards within a group, eliminating the need for a learned critic. Building on this,
DeepSeek-R1 (DeepSeek-AlL 2025) combined GRPO with long CoT reasoning, where models gen-
erate reasoning traces that are stripped before evaluation. This paradigm enables effective test-time
scaling (Snell et al., 2025)), and has also been applied successfully beyond math to other reasoning
domains (Liu et al.l 2025c; |Cheng et al.l 2025; [Huan et al.| 2025; Ma et al.l 2025). Nonetheless,
RLVR remains largely confined to formal settings and has shown limited generalization to open-
ended reasoning, which is the focus of our work.

RLVR beyond rule-based rewards. Recent efforts have extended RLVR beyond strict rule-based
verification by designing alternative reward signals. In verifiable domains, reference-free signals
such as entropy (Agarwal et al.,[2025)) or model confidence (Zhao et al.,|2025) have been shown to be
effective. Some other works also explored using compact models to verify responses against ground-
truth answers (Ma et al.|[2025; [Liu et al.,[2025d)) or designing rewards for a specific domain (Gurung
& Lapatal [2025;|Wu et al.,2025b; J1a et al., 2025;|Li et al., 2025). More closely related to our work,
one line explores rubric-based judges (Viswanathan et al., [2025; |Gunjal et al., 2025)) or reference-
based scores (such as BLUE) (Chang et al.|[2025) for more general chat. These approaches typically
do not integrate long CoT reasoning, whereas our work shows that thinking training, when paired
with a strong reward model, leads to clear benefits in general chat.

6 CONCLUSION

We have introduced RLMT, which integrates two core components of RLVR - long chain-of-thought
and online RL learning, with reward models used in RLHF. For both the base and instruct Llama-
3.1-8B and Qwen-2.5-7B, across DPO, PPO, and GRPO, RLMT outperform standard RLHF by
1.5-3 points on average on a range of benchmarks spanning creative writing and general knowledge.
These gains were fueled by an increase of up to 13 points on chat benchmarks, which rivaled frontier
models orders of magnitude larger that were trained on millions of prompts. Surprisingly, this simple
method also shows promise on the base models when skipping the SFT warm-start entirely. Finally,
we analyzed the resulting models and found that (1) the RL prompt mixture plays a pivotal role
in achieving good performance, and (2) desirable reasoning strategies for open-ended tasks emerge
naturally from the training process. We hope that our results inspire future work to expand the
horizons of current methods into more general domains.
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Reproducibility statement We have taken several steps to ensure the reproducibility of our re-
sults. Detailed descriptions of our models, training setup, and evaluation benchmarks are provided
in Sections 2-3. Hyperparameters and prompt formats used for our experiments are included in
Appendix and Appendix C @ We release our code and models at (redacted for submission).
We have also included an anonymized version of our code in the zip file accompanying this
submission.
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A LIMITATIONS AND FUTURE WORK

While our work finds the effectiveness of training LMs with thinking, it is unclear how much of the
improvement is due to amplification of traits already present in the model, versus the learning of
new traits during the SFT warm-start or RL training (Yue et al., 2025} |Zhu et al., 2025)).

The study of this question is important for the design of better training pipelines. It is also possible
that a set of benchmarks larger than the seven considered here would lead to takeaways that were
missed here—we choose a reasonable and representative set for the purpose of this paper. Since
our aim was to explore how a simple method can aid model performance, we did not extensively
optimize the format used for the internal CoT, the hyperparameters, or the construction of the prompt
mixtures. It is possible that doing so can push our results further, and we invite future work to do so.

B HYPERPARAMETERS

In our warm-start experiments, we used the hyperparameters shown in Table [5|for SFT. We provide
the corresponding hyperparameters for DPO and PPO/GRPO in Table

We train in bf16 and enable the use of Liger-Kernel Hsu et al| (2025) for efficient training.We
use the trl library for SFT and DPO (von Werra et al., |2020), and verl (https://github.com/
volcengine/verl) for PPO and GRPO. All sampling from the actor for DPO/PPO/GRPO is done
at temperature 0.7.

Hyperparameter Value
Number of datapoints 6003
Batch size 16
Num. epochs 2
Learning rate 4e-6
Warmup ratio 0.1
LR scheduler cosine
Weight decay le-4
Adam betas (0.9, 0.95)

Table 5: Supervised fine-tuning (SFT) hyperparameters used in our experiments.

Hyperparameter Value
Hyperparameter Value i;i%ngztz 7220
# Prompts 790 Samples per prompt 8
# Responses g Group size s
Reward model Skywork-Reward-Llama-3.1-8B-v0.2 Max prompt length 1024
I]%Iilltr(r:]h legchs 138 Max response length 4096
Learﬁinp rate 367 Num. steps 120 (1 epoch)
Warmu gratio 0.05 Actor learning rate le—
P o Critic learning rate le-5P
LR scheduler cosine Weight decay 0.01
Weight decay le-4 Scheduler constant
Adam betas 0.9, 0.95) Warmup ratio 0
DPO S 0.1 Advantage estimator ~ GRPO/GAE
. Y KL coefficient 0.001
Table 6: Direct Preference Optimization coeTeten
(DPO). Table 7: PPO / GRPO. Entries marked P or
g -
“Sampled from the initial model before DPO. i arf: only used for PPO or GRPO, respec
ively.

“We used 3e-7 for the warm-started instruct
models.
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C ADDITIONAL RESULTS

We present in this appendix results on benchmarks beyond those used in the main text.

C.1 BENCHMARK DESCRIPTIONS AND ADDITIONAL EVALUATION

We evaluate the models trained in this paper on the following benchmarks:

1.

10.

11.

[WB] WildBench (Lin et al., |2025b) evaluates models on their ability to converse with
users. It has 1,024 user prompts, some of which involve multiple turns. Unlike AlpacaE-
val2, WildBench is evaluated using an instance-wise manually checked rubric which is less
susceptible to reward hacking. Each response is compared against a reference response
from GPT-4, and scored one of -100 (much worse), -50 (worse), O (similar), 50 (better), or
100 (much better). The final score is the mean of the instance-wise scores.

. [AE2] AlpacaEval2 (Dubois et al., [2024) has 805 user prompts paired with reference re-

sponses from GPT-4-1106-preview. It outputs a head-to-head win rate between 0—100% as
generated by a generative judge. We use the length-controlled win-rate as recommended
dby |Dubois et al.|(2024)), but replace the default GPT-4 judge with GPT-4o.

. [AH2] ArenaHardV2 (L1 et al.|[2024aib) has 500 challenging real-world user queries. We

use the setting with a GPT-4.1 judge and style control to mitigate potential bias.

. [CW3] Creative Writing V3 (Paech, 2025) evaluates models on their ability to write 96

story chapters under various constraints. We generate an absolute score betwen 0-100
using GPT-4.1 as the judge.

. PopQA (Mallen et al., 2022)) consists of around 14k factual questions about popular and

less known entities. The result is a percentage score between 0—100%.

. [IFgen] IFBench (Pyatkin et al) [2025) provides models with 294 prompts from varied

domains that each has multiple constraints such as “include three numbers in your 22-nd
sentence.” We average the compliance rate across all examples to produce a score between
0-100.

. [MMLUR] MMLU-Redux (Gema et al.l 2025) is a manually cleaned version of the

MMLU (Hendrycks et al |2021) benchmark, consisting of 5,700 questions that test the
model’s ability to answer general knowledge questions across 57 subjects.

. IFEval, only in Appendix[g (Zhou et al.,2023)) provides models with 541 simple questions

under a set of constraints such as “do not use commas,” and generates a score between 0—
100 that signifies how well the model follows instructions. This is an alternate evaluation
of instruction-following capabilities.

. WildBench v.s. Gemini 2.5 Flash Preview 0520 (WildBench-G, only in Ap-

pendix [g), (Lin et all |2025b) is WildBench, but evaluated against reference responses
from Gemini 2.5 Flash Preview 0520. Our motivation for including this is that beyond a
certain number, being X% better than GPT-4-Turbo’s responses (the default reference) may
be less correlated with actual improvements.

MATH-500, only in Appendix|C] (Lightman et al., 2023)) consists of 500 hard math prob-
lems filtered from the MATH dataset (Hendrycks et al.| [2021) by OpenAl. We report the
exact match accuracy from 0-100%.

Zebral ogic, only in Appendix@ (Lin et al.}|2025a)) tests language models on 1,000 logical
grid puzzles. We report the exact match accuracy from 0-100%.

We list the corresponding results in Table[8] We observe that

1.

Neither the thinking nor non-thinking models perform well on IFEval. Therefore we at-
tribute blame here to the reward model: a preference model finds it difficult to determine
if specific instructions like “do not use commas” are followed. Lacking a reliable reward
model, GRPO is (and other objectives are) not able to optimize for the desired behavior.

. We see large gaps on WildBench-G, consistent with our findings in the main text. In fact,

the gaps here are larger by 0.5-1 points; the difference in quality is more important when
the reference is better.
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3. While prior work optimizing user preferences (Rafailov et al.l 2023} Meng et al., [2024)
found that it tanked scores on MATH-500, we find that our post-training actually improves
mathematical abilities compared to the SFT models. On the other hand, the thinking and
non-thinking models perform similarly (and the latter sometimes even outperforms the
former)—therefore, building a thinking post-training pipeline for all domains constitutes
a useful direction for future work.

4. While the initial models perform poorly on Zebralogic, our thinking post-training shaves
a further 1-3 points off the scores.

Table 8: Additional benchmark results for all model variants. indicates long chain-of-thought. Best
numbers are bold and second best are underlined within each model group.

IFEval WB-G MATH Zebra

505 -633 130 84
560 -613 188 62
514 -51.8 156 7.6
451 505 212 17
420 518 176 72
434 514 204 73
36.8 -344 188 5.9
364 271 194 7.0

46.6 -58.8 60.8 8.7
56.4 -55.0 63.0 7.8
447  -56.2 63.2 9.0
571 475 64.8 7.7
46.0 -454 61.6 8.2
50.3 455 66.0 7.9
384 -464 65.0 7.3
46.8 -33.3 64.4 6.7

Backbone Objective 9
X
v
X
v
X
v
X
v
X
v
X
v
X
v
X
v

Llama-3.1-8B-Instruct X 75.6 -65.8 452 133
X
v
X
v
X
v
X
v
X
X
v
X
v
X
v
X
v

Llama-3.1-8B + SFT

+ DPO

+ PPO

+ GRPO

Qwen2.5-7B + SFT
+ DPO

+ PPO

+ GRPO

+ SFT 70.8 -533 28.8 103
723 -51.4 40.6 11.0
712 -442 362 11.0
69.3 423 43.0 11.6
62.5 -27.1 40.6  10.8
549 -18.6 412 109
612 -275 50.6 8.8
57.1 -15.8 452 108

715 592 746 103
61.6 -562 540 75
664 -524 626 89
62.1 -533 644 8.8
65.1 -468 630 93

+ DPO

+ PPO

+ GRPO

Qwen?2.5-7B-Instruct
+ SFT

+ DPO
+ PPO 63.8 427 64.6 9.2
654 -35.6 63.4 8.7

63.0 -38.9 65.8 8.5
60.1 -31.6 65.0 7.4

+ GRPO

C.2 COMPARISON OF OUR RLMT MODELS AGAINST MODELS TRAINED ON MATH

Several models have tried replicating DeepSeek-R1’s success on math and other reasoning do-
mains via distillation, RL, or a combination of the two. Do they perform as well on chat and
creative writing? We compare the four RLMT models we train with the prominent models in this
space: (1) DeepSeek-R1-Distill (Llama and Qwen) (DeepSeek-AlL [2025), (2) Q2.5-7B-SimpleRL-
Zoo (Qwen) (Zeng et al., 2025), (3) DS-R1-Distill-Q-7B (Qwen) (DeepSeek-All 2025), and (4)
OpenThinker2-7B (Qwen) (Guha et al., |2025). We list these models in Table@} We see that these
models do not perform well on chat or creative writing. All RLMT models outperform all math
models by margins of 10-25 points on average. While training OpenThinker2-7B—the leading
math model—with RLMT yields some improvement, our models remain comfortably better.
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Table 9: Comparison of RLMT models with math-trained (thinking) models.

Model Avg. WB AE2 AH2 CwWv3
(Models sharing similar backbones)

Our models

Llama-3.1-8B-RLMT 468 38.1 523 159 80.9

Qwen2.5-7B-RLMT 424  31.0 540 19.1 65.7

Llama3.1-8B-Inst-RLMT 54.1 504 58.7 229 84.3
Qwen2.5-7B-Inst-RLMT 483 463 505 20.8 75.6
Thinking models trained on math

DS-R1-Distill-L-8B 199 -102 238 6.1 60.0
Q2.5-7B-SimpleRL-Zoo  25.5 49 354 8.5 53.2
DS-R1-Distill-Q-7B 82 -298 16.2 6.3 40.1
OpenThinker2-7B 374 158 477 175 68.4
— + RLMT 405 217 527 187 68.8

Table 10: Comparison of RLMT models with concurrent work using different reward signals for
RLVR

Model Backbone Avg. WB AE2 AH2 CWv3

(Models sharing similar backbones)

Our models

Llama-3.1-8B-RLMT-Zero  Llama-3.1-8B (Base) 24.0 7.2 340 5.6 49.0
Qwen2.5-7B-RLMT-Zero Qwen-2.5-7B (Base) 302 222 540 108 54.0
Llama-3.1-8B-Inst-RLMT  Llama-3.1-8B-Instruct 54.1 504 58.7 229 84.3
Qwen2.5-7B-Inst-RLMT Qwen-2.5-7B-Instruct  48.3 463 50.5 20.8 75.6
Models trained using BLEU-based reward or checklist-based reward
Llama3.1-8B-BLEUBERI  Llama-3.1-8B (Base) 11.6 -185 174 24 45.3
Qwen2.5-7B-BLEUBERI Qwen-2.5-7B (Base) 19.7 -6.5 295 128 42.8
Qwen2.5-7B-RLCF Qwen-2.5-7B-Instruct ~ 32.1 23.6 402 104 54.3

C.3 COMPARISON WITH CONCURRENT RLVR WORK USING ALTERNATIVE REWARDS

Our work extends RLVR to general domains by leveraging a reward model. Concurrent efforts have
also sought to move beyond verifiable domains through alternative reward designs, such as BLEU-
based reward to reference responses (Chang et al.,|2025) and checklist-style rewards where an LM
scores outputs against LM-generated rubrics (Viswanathan et al.||2025)). We compare RLMT against
these open-source models of these concurrent work on open-ended benchmarks (chat and creative
writing). Specifically, we include: (1) Llama-3.1-8B-BLEUBERI, (2) Qwen-2.5-7B-BLEUBERI,
and (3) Qwen-2.5-7B-RLCF. Table[I0]summarizes these models along with their source backbones.

Across the same backbones, RLMT consistently achieves substantially stronger results. For ex-
ample, Llama-3.1-8B-RLMT-Zero outperforms Llama-3.1-8B-BLEUBERI by roughly 13 points on
average across open-ended benchmarks, despite the latter leveraging reference responses. These
findings suggest that a strong reward model provides robust and effective signal for online RL train-
ing in general-purpose domains, surpassing these alternative reward designs.

D PROMPTS

In this Appendix, we provide the prompts used for various aspects of the experiments.

Prompt wused to sample the warm-start data. We used Gemini 2.5 Flash
(gemini-2.5-flash-preview-04-17) with the following instruction appended to each user
prompt:
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FORMAT: First showcase a detailed planning phase where you plan your response
within <think>...</think> tags. Then produce the actual response within
<response>...</response> tags. The content within the <think>...</think> tags
should *not* refer to the fact that a planning phase was prompted - they should
refer to the user prompt only.

Model output formats and corresponding prompts. For the warm-started models, we used the
following format for the thinking models’ outputs:

<think> Some thinking here </think> Response here

The non-thinking models converse as usual.

For the prompted base models, we used the following format to elicit a model response with think-
ing:

A conversation between User and Assistant. Following the User’s query, the
Assistant first plans a response, and then provides the response. The internal
reasoning process is enclosed within <think> </think> tags and the response
is enclosed within <response> </response> tags, i.e., in the format <think>
reasoning process here </think> <response> response here </response>.

User: <query> ...user text... </query> Assistant:

The corresponding prompt for the non-thinking models is:

A conversation between User and Assistant. The user asks a question, and the
assistant provides the user with a response. The response is enclosed within
<response> </response> tags, i.e., <response> response here </response>.
User: <query> ...user text... </query> Assistant:

Prompts used for trait extraction. We use the following prompt for the extraction of the initial
set of traits

You are analyzing the hidden planning part produced by a model before its final
answer. From the planning excerpt below, infer the key characteristics of how
the planning is performed. Focus on the style and intent of the planning, not
the specific content of the question. Return ONLY a compact JSON array (no
extra text), where each element is a short string naming one characteristic.
Aim for 3-8 distinct, non-redundant items.

We then prompt the model to compare batches of traits from the two models as follows.

You will compare planning styles for model A vs model B. You are given multiple
examples. For each, you will see the user prompt and two lists: A_plan and
B_plan. Identify 1-3 concise, consistent differences describing how A’s planning
differs from B’s. Focus on stylistic/strategic patterns that recur across the
provided examples. Return ONLY a JSON array of short difference statements (no
extra text).

To run the identified (and summarized) traits through each prompt and calculate win rates, we prompt
GPT-4.1-mini as thus:

You are given two hidden planning excerpts from two models: A and B. For each
trait, decide which planning shows the trait MORE strongly: ’A’, ’B’, or ’tie’.
Return ONLY a JSON object mapping trait_keys to ’A’, ’B’, or ’tie’ (lowercase
also accepted). Output strictly a JSON object with these keys only, each value
one of ’A’, 'B’, or ’tie’.
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E BRIEF OVERVIEW OF PREFERENCE OPTIMIZATION ALGORITHMS

For the benefit of readers, we provide a short overview of DPO, PPO, and GRPO here; interested
readers should refer to the cited papers for more details.

Setup. Let 7y be a policy LM with parameters ¢ that maps a prompt z to a distribution over re-
sponses y. We write ¢ for a frozen reference policy (often the SFT model), and r(y, x) for a scalar
reward coming from either a reward model (preference-based) or a verifier (verifiable/automatic).
We denote log-probabilities by log 7(- | -) and use a KL penalty weight A and a clipping parameter
€ where applicable.

DPO (Direct Preference Optimization). (Rafailov et al.,[2023)) Objective. Given offline pairwise
preference data D = {(z,y*,y )} with a preferred y™ and a dispreferred y~, DPO optimizes a
logistic preference objective that implicitly constrains the policy to stay close to myef:

Lppo() = —Ey+ y-)~p {loga(ﬂ[(log mo(y" | x) —logmg(y~ | x))

~ (108 et (4| @)~ log meee (5™ | )]

where o is the logistic function and (3 is a temperature. DPO is an offfine preference-optimization
method: no on-policy rollout is required. It reframes RLHF as a calibrated logit-difference clas-
sification against the reference, avoiding a learned value function and making training simple and
stable.

PPO (Proximal Policy Optimization). (Schulman et al., 2017) Objective. At each iteration,
sample responses y ~ my_,, (- | =), compute rewards R = r(y,z) (often with a per-sample KL
penalty to m..¢), estimate token- or sequence-level advantages A, and optimize the clipped surrogate:

Lopo(8) = E[min (pgA, clip(ps,1 — &1+ €)4)] = AKL(mo(- | 2) | rer(- | 7))

where

_ T (v =)
G010 (y | 'r)
PPO is an on-policy algorithm: the model rolls out new samples, gets a reward (e.g., from a re-
ward model), uses generalized advantage estimation (GAE, [Schulman et al.| (2016))) to form A, and

updates with a clipping rule for stability. KL-to-reference regularization maintains alignment and
prevents reward hacking.

GRPO (Group Relative Policy Optimization). (Shao et al.| 2024) Objective. For each prompt
x, GRPO generates a group of K candidates {y; }X , from my_,, obtain rewards r; = r(y;, z), and
compute group-centered advantages A; =r; — % Zle r; instead of employing GAE. Update the
policy with a PPO-style clipped objective using these A; (often without a learned critic), plus an
optional KL penalty:

K
1 . i G
Larpo(0) = Eo | 22 > min (o A, clip(pf’,1 —,1+2)A4;) | = AKL(mo(- | 2) | mees(- | ).
i=1
4)

GRPO is on-policy but avoids a learned value function by using a per-prompt baseline (the group
mean reward). It is especially convenient when rewards are naturally comparable within a prompt
(e.g., verifiable correctness or a shared reward model). In practice it pairs well with reasoning
rollouts (sample multiple candidates per prompt, keep relative scores, and update toward better-
than-average ones).
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