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Learning Disentangled Representation for Multi-Modal
Time-Series Data

Abstract
Multi-modal time series data is common in web technologies like

the Internet of Things (IoT). Existing methods for multi-modal

time series representation learning aim to disentangle the modality-

shared and modality-specific latent variables. Although achieving

notable performances on downstream tasks, they usually assume

an orthogonal latent space. However, the modality-specific and

modality-shared latent variables might be dependent on real-world

scenarios. Therefore, we propose a general generation process,

where the modality-shared and modality-specific latent variables

are dependent, and further develop a Multi-modAl TEmporal Dis-

entanglement (MATE) model. Specifically, our MATE model is

built on a temporally variational inference architecture with the

modality-shared and modality-specific prior networks for the dis-

entanglement of latent variables. Furthermore, we establish identi-

fiability results to show that the extracted representation is disen-

tangled. More specifically, we first achieve the subspace identifia-

bility for modality-shared and modality-specific latent variables by

leveraging the pairing of multi-modal data. Then we establish the

component-wise identifiability of modality-specific latent variables

by employing sufficient changes of historical latent variables. Exten-

sive experimental studies on 12 datasets show a general improve-

ment in different downstream tasks, highlighting the effectiveness

of our method in real-world scenarios.
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1 Introduction
TheWorld Wide Web plays a critical role in generating and process-

ing time series data, from web traffic [60, 69] to IoT device outputs
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[46, 67]. By providing access to real-time data through APIs [2] and

analytics tools, it enables comprehensive analysis and visualization

of trends. Time series forecasting allows the web to power intelli-

gent services such as microservice log analysis [5] and IoT systems

[8], where sensors continuously generate data streams that predict

future behaviors, monitor device performance, and trigger early

warning alerts for emerging issues.

Most of the existing works for time series analysis [52, 58, 68, 95,

109, 114] are devised for homogeneous data, with the assumption

that time series are sampled from the same modality. However, the

heterogeneous time series data [62, 64, 85], which are sampled from

multiple modalities and not compatible with these methods, are also

common in several real-world applications, e.g., Internet of Things

(IoT) [73, 78, 97], health care [33, 70, 107], and finance [6, 113]. To

model the multi-modal time series data, one mainstream solution

is to disentangle the modality-specific and modality-shared latent

variables from the observational time series signal.

Severalmethods are proposed to disentangle themodality-specific

and modality-shared temporally latent variables. One mainstream

approach is based on the contrastive learning method. For exam-

ple, Deldari et.al proposes COCOA [12], which learns modality-

shared representations by aligning the representation from the

same timestamp, and Ouyang et.al propose Cosmo [75], which ex-

tracts modality-shared representations by using a iterative fusion

learning strategy. Considering that the modality-specific repre-

sentations also play an important role in the downstream task,

Liu et.al [64] use an orthogonality restriction and simultaneously

leverage the modality-shared and modality-specific representations.

Considering the multi-view setting as a special case of the multi-

modal setting, Huang et.al [26] develop the identifiability results of

the latent temporal process by minimizing the contrastive objec-

tive function. In summary, these methods usually assume that the

modality-shared and modality-specific latent variables are orthogo-

nal, hence they can be disentangled by using different contrastive-

learning-based constraints.

Although these methods achieve outstanding performance on

several applications, the orthogonality of modality-shared and

modality-specific latent space may be too difficult to satisfy in

real-world scenarios. Figure 1 provides an example of physiologi-

cal indicators of diabetics, where brain-related and heart-related

signals are observed in time series data. Specifically, Figure 1 (a)

denotes the true data generation process, where the causal direc-

tions from insulin concentration to blood pressure and heart rate

denote how diabetes leads to complications of heart disease and

high blood pressure. As shown in Figure 1 (b), existing methods

that apply orthogonal constraints on the estimated latent variables

despite the dependent true latent sources, lead to the entanglement

and further the suboptimal performance of downstream tasks.

To address the aforementioned challenge of dependent latent

sources, we propose amulti-modal temporal disentanglement frame-

work to estimate the ground-truth latent variables with identi-

fiability guarantees. Specifically, we first leverage the pair-wise
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Figure 1: Illustration of physiological indicators of diabetics,
where brain-related and heart-related signals are observa-
tions. (a) In the true generation process, observations are
generated from dependent latent sources. (b) In the estima-
tion process, enforcing orthogonality on estimated sources
can result in the entanglement of latent sources and mean-
ingless noises.

multi-modal data to establish the subspace identifiability of latent

variables. Sequentially, we leverage the independent influence of

historical latent variables to further show the component-wise

identifiability of latent variables. Building on the theoretical results,

we develop the Multi-modAl TEmporal Disentanglement (MATE)
model, which incorporates variational inference neural architecture

with modality-shared and modality-specific prior networks. The

proposed MATE is validated through extensive downstream tasks

for multi-modal time series data. The impressive performance that

outperforms state-of-the-art methods demonstrates its effectiveness

in real-world applications.

2 Related Works
2.1 Multi-modal Representation Learning
Multi-modal representation learning [37, 57, 63, 77, 92] aims to

mean information from different modalities, and has lots of applica-

tions like Visual Question Answering (VQA) [16, 47, 53, 86, 99]. The

mainstream methods include self-supervised learning [35, 65, 106],

masked autoencoders [19, 22, 47], and the generative model-based

methods [39, 59]. Multi-modal time series data is underexplored in

literature, despite being often encountered in practice. One of the

mainstream methods for multi-modal time series representation

learning is to extract the modality-shared representation. Previ-

ously, Deldari et.al [12] extracted the modality-shared represen-

tation by computing the cross-correlation of different modalities

and minimizing the similarity between irrelevant instances. Deng

[13] proposes multi-modality data augmentation to learn inter-

modality and intra-modality representations. Recently, Kara [38]

devised a factorized multi-modal fusion mechanism for leveraging

cross-modal correlations to learn modality-specific representations.

And Liu et.al [64] leverage both the modality-shared and modality-

specific representation for downstream tasks. However, most of

this method implicitly assumes that the latent space is orthogonal,

which may be hard to meet in real-world scenarios. In this paper,

we propose a data generation process with dependent subspace

for mutli-modal time series data and devise a flexible model with

theoretical guarantees.

2.2 Identifiability of Generative Model
To achieve identifiability [71, 80, 93] for causal representation, sev-

eral researchers use the independent component analysis (ICA) to

recover the latent variables with identification guarantees [20, 66,

84, 100]. Conventional methods assume a linear mixing function

from the latent variables to the observed variables [7, 27, 50, 108].

Since the linear mixing process is hard to meet in real-world scenar-

ios, recently, some researchers have established the identifiability

via nonlinear ICA by using different types of assumptions like aux-

iliary variables or sparse generation process [28, 31, 41, 56, 112].

Specifically, Aapo et.al [29, 30, 32, 40] achieve the identifiability by

assuming the latent sources with exponential family and introduc-

ing auxiliary variables e.g., domain indexes, time indexes, and class

labels. And Zhang et.al [43, 45, 96, 98] achieve the component-wise

identification results for nonlinear ICA without using the expo-

nential family assumption. To achieve identifiability without any

supervised signals, several researchers employ sparsity assump-

tions [28, 31, 41, 56, 112]. For example, Lachapelle et al. [48, 49]

introduced mechanism sparsity regularization as an inductive bias

to identify causal latent factors. And Zhang et.al [110] use the

sparse structures of latent variables to achieve identifiability un-

der distribution shift. Researchers also employ nonlinear ICA to

achieve identifiability of time series data [21, 26, 61, 98]. For exam-

ple, Aapo et.al [29]) adopt the independent sources premise and

capitalize on the variability in variance across different data seg-

ments to achieve identifiability on nonstationary time series data.

And Permutation-based contrastive learning is employed to identify

the latent variables on stationary time series data. Recently, LEAP

[103] and TDRL [102] have adopted the properties of independent

noises and variability historical information. Song et.al [88] iden-

tify latent variables without observed domain variables. As for the

identifiability of modality, Imant et.al [10] present the identifiability

results for multimodal contrastive learning. Yao et.al [100] consider

the identifiability of multi-view causal representation under the

partially observed settings. In this paper, we leverage the pairwise

of multi-modality data and variability historical information to

achieve identifiability for multi-modality time series data.

3 Problem Setup
3.1 Data Generation Process of Multi-modal

Time Series
To show how to learn disentangled representation for multi-modal

time series data, we first introduce the data generation process as

shown in Figure 2. Specifically, we assume that the existence of𝑀

modalities S = {𝑆1, 𝑆2, · · · , 𝑆𝑀 }. For each modality 𝑆𝑚 , time series

data with discrete time steps 𝑥
𝑠𝑚
1:𝑇

= {𝑥𝑠𝑚
1

, 𝑥
𝑠𝑚
2

, · · · , 𝑥𝑠𝑚
𝑇

} with the

length of 𝑇 are drawn from a distinct distribution, represented

as 𝑝 (𝑥𝑠𝑚
1:𝑇

). Moreover, 𝑥
𝑠𝑚
𝑡 is generated from the modality-shared

and modality-specific latent variables 𝑧𝑐𝑡 , 𝑧
𝑠𝑚
𝑡 by an invertible and

2024-10-15 12:25. Page 2 of 1–18.
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Figure 2: Data generation process of time series data with two
modalities. The grey and white nodes denote the observed
and latent variables, respectively.

nonlinear mixing function 𝑔𝑚 shown as follows:

𝑥
𝑠𝑚
𝑡 = 𝑔𝑚 (𝑧𝑐𝑡 , 𝑧

𝑠𝑚
𝑡 ). (1)

For convenience, we let 𝑧𝑚𝑡 = {𝑧𝑐𝑡 , 𝑧
𝑠𝑚
𝑡 } be the latent variables

of 𝑚-th modality. And we further let 𝑧𝑐𝑡 = (𝑧𝑐
𝑡,𝑖
)𝑛𝑐
𝑖=1

and 𝑧
𝑠𝑚
𝑡 =

(𝑧𝑠𝑚
𝑡,𝑖

)𝑛
𝑖=𝑛𝑐+1. More specifically, the 𝑖-th dimension modality-shared

latent variables 𝑧𝑐
𝑡,𝑖

are time-delayed and related to the historical

modality-shared latent variables 𝑧𝑐𝑡−𝜏 with the time lag of 𝜏 via a

nonparametric function 𝑓 𝑐
𝑖
. Similarly, the modality-specific latent

variables are generated via another nonparametric function 𝑓𝑚
𝑖
,

which are formalized as follows:

𝑧𝑐𝑡,𝑖 = 𝑓 𝑐𝑖 (PA(𝑧𝑐𝑡,𝑖 ), 𝜖𝑐𝑡,𝑖 ), 𝜖𝑐𝑡,𝑖 ∼ 𝑝𝜖𝑐
𝑡,𝑖

𝑧
𝑠𝑚
𝑡,𝑖

= 𝑓𝑚𝑖 (PA(𝑧𝑠𝑚
𝑡,𝑖

), 𝜖𝑠𝑚
𝑡,𝑖

), 𝜖
𝑠𝑚
𝑡,𝑖

∼ 𝑝𝜖𝑠𝑚
𝑡,𝑖

,
(2)

where PA denote the set of latent variables that directly cause 𝑧𝑐
𝑡,𝑖

or 𝑧
𝑠𝑚
𝑡,𝑖

, and 𝜖
𝑠𝑚
𝑡,𝑖

, 𝜖𝑐
𝑡,𝑖

denote the independent noise. Combining the

example of diabetics in Figure 1, 𝑥
𝑠1
𝑡 and 𝑥

𝑠2
𝑡 can be considered as

brain-related and heart-related signals, respectively. The modality-

shared variables 𝑧𝑐𝑡 denote the insulin concentration and 𝑧
𝑠1
𝑡 , 𝑧

𝑠2
𝑡 de-

note the blood pressure and heart rate, respectively. 𝑧𝑐𝑡 → {𝑧𝑠1𝑡 , 𝑧
𝑠2
𝑡 }

denotes that insulin concentration influences blood pressure and

heart rate.

3.2 Problem Definition
Based on the aforementioned data generation process, we further

provide the problem definition. Specifically, We are first supposed

to have a set of 𝑀 sensory modalities. Then, for each group of

time series from𝑀 modalities, we let 𝑦 be the corresponding label.

Given the labeled multi-modal time series training set with the

size of 𝐷 , i.e., {𝑋𝑖 , 𝑦𝑖 }𝐷𝑖=1, we aim to obtain a model that can ex-

tract disentangled representations for multi-modal time series data,

which can benefit the downstream tasks, i.e. estimate correct label.

More mathematically, our goal is to estimate the distribution of

the modality-specific latent variables 𝑝 (𝑧𝑠1
1:𝑇

), · · · , 𝑝 (𝑧𝑠𝑀
1:𝑇

) and the

modality-shared latent variables 𝑝 (𝑧𝑐
1:𝑇

) by modeling the observed

multi-modal time series data, which are formalized as follows:

ln𝑝 (𝑥𝑠1
1:𝑇

, · · · , 𝑥𝑠𝑀
1:𝑇

)

=

∫
𝑧
𝑠
1

1:𝑇

· · ·
∫
𝑧
𝑠𝑀
1:𝑇

∫
𝑧𝑐
1:𝑇

(
ln𝑝 (𝑥𝑠1

1:𝑇
, · · · , 𝑥𝑠𝑀

1:𝑇
|𝑧𝑠1
1:𝑇

, · · · , 𝑧𝑠𝑀
1:𝑇

, 𝑧𝑐
1:𝑇 )

+
𝑀∑︁

𝑚=1

ln𝑝 (𝑧𝑠𝑚
1:𝑇

|𝑧𝑐
1:𝑇 ) + ln𝑝 (𝑧𝑐

1:𝑇 )
)
𝑑𝑧

𝑠1
1:𝑇

· · ·𝑑𝑧𝑠𝑀
1:𝑇

𝑑𝑧𝑐
1:𝑇 .

(3)

Therefore, to achieve this goal, we first devise a temporal varia-

tional inference architecture with prior networks to reconstruct

the modality-specific and modality-shared latent variables, which

are shown in Section 4. Sequentially, we further propose theoret-

ical analysis to show that these estimated modality-shared and

modality-specific latent variables are identifiable, which are shown

in Section 5.

4 MATE: Multi-modal Temporal
Disentanglement Model

Based on the data generation process in Figure 2, we proposed the

Multi-modal temporal Disentanglement (MATE) model as shown

in Figure 3, which is built upon the variation auto-encoder. More-

over, it includes the shared prior networks and the private prior

networks, which are used to preserve the dependence between

the modality-specific and modality-shared latent variables. Fur-

thermore, we devise a modality-shared constraint to enforce the

invariance of modality-shared latent variables from different modal-

ities.

4.1 Variational-Inference-based Neural
Architecture

We begin with the evidence lower bound (ELBO) based on the

proposed data generation process. Without loss of generality, we

consider two modalities, i.e.,𝑀 = 2, so the ELBO can be formalized

as Equation (4). Please refer to Appendix B for the derivation details.

𝑝 (𝑥𝑠1
1:𝑇

, 𝑥
𝑠2
1:𝑇

) ≥ L𝑟 − 𝐷𝐾𝐿 (𝑞 (𝑧𝑐1:𝑇 |𝑥
𝑠1
1:𝑇

, 𝑥
𝑠2
1:𝑇

) | |𝑝 (𝑧𝑐
1:𝑇 ) )︸                                        ︷︷                                        ︸

L𝑐

− 𝐷𝐾𝐿 (𝑞 (𝑧𝑠1
1:𝑇

|𝑥𝑠1
1:𝑇

, 𝑧𝑐
1:𝑇 ) | |𝑝 (𝑧

𝑠1
1:𝑇

|𝑧𝑐
1:𝑇 ) )︸                                               ︷︷                                               ︸

L𝑠
1

− 𝐷𝐾𝐿 (𝑞 (𝑧𝑠2
1:𝑇

|𝑥𝑠2
1:𝑇

, 𝑧𝑐
1:𝑇 ) | |𝑝 (𝑧

𝑠2
1:𝑇

|𝑧𝑐
1:𝑇 ) )︸                                               ︷︷                                               ︸

L𝑠
2

,

(4)

and L𝑟 denotes the reconstruct loss and it can be formalized as:

L𝑟 =E
𝑞 (𝑧𝑠1

1:𝑇
|𝑥𝑠1
1:𝑇
,𝑧𝑐
1:𝑇

) )E𝑞 (𝑧𝑐
1:𝑇

|𝑥𝑠1
1:𝑇
,𝑥
𝑠
2

1:𝑇
) ln𝑝 (𝑥

𝑠1
1:𝑇

|𝑧𝑠1
1:𝑇

, 𝑧𝑐
1:𝑇 )

+ E
𝑞 (𝑧𝑠2

1:𝑇
|𝑥𝑠2
1:𝑇
,𝑧𝑐
1:𝑇

)E𝑞 (𝑧𝑐
1:𝑇

|𝑥𝑠1
1:𝑇
,𝑥
𝑠
2

1:𝑇
) ln𝑝 (𝑥

𝑠2
1:𝑇

|𝑧𝑠2
1:𝑇

, 𝑧𝑐
1:𝑇 ) ),

(5)

where 𝑞(𝑧𝑠1
1:𝑇

|𝑥𝑠1
1:𝑇

, 𝑧𝑐
1:𝑇

), 𝑞(𝑧𝑠2
1:𝑇

|𝑥𝑠2
1:𝑇

𝑧𝑐
1:𝑇

), and 𝑞(𝑧𝑐
1:𝑇

|𝑥𝑠1
1:𝑇

, 𝑥
𝑠2
1:𝑇

) are
used to approximate the prior distributions of modality-specific

and modality-shared latent variables and are implemented by neu-

ral architecture based on convolution neural networks (CNNs). In

practice, we devise a modality-specific encoder for each modality,

which can be formalized as follows:

𝑧
𝑠1
1:𝑇

, 𝑧
𝑐1
1:𝑇

= 𝜓𝑠1 (𝑥
𝑠1
1:𝑇

), 𝑧
𝑠2
1:𝑇

, 𝑧
𝑐2
1:𝑇

= 𝜓𝑠2 (𝑥
𝑠2
1:𝑇

), (6)
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Figure 3: Illustration of the proposedMATEmodel, we consider twomodalities for a convenient understanding, more modalities
can be easily extended. Modality-specific encoders are used to extract the latent variables of different modalities. The specific
prior networks and the shared prior network are used to estimate the prior distribution for KL divergence.

Moreover, since 𝑧
𝑐1
1:𝑇

and 𝑧
𝑐2
1:𝑇

should be as similar as possible, we

further devise a modality-shared constraint as shown in Equation

(7), which restricts the similarity of modality-shared latent variables

between any two pairs of modalities.

L𝑠 =
∑︁

𝑠𝑖 ,𝑠 𝑗 ,∈S,𝑖≠𝑗
log

𝑧
𝑐𝑠𝑖
1:𝑇

· 𝑧
𝑐𝑠𝑗

1:𝑇

|𝑧𝑐𝑠𝑖
1:𝑇

| |𝑧
𝑐𝑠𝑗

1:𝑇
|

(7)

By using the modality-shared constraint, we can simply let 𝑧𝑐
1:𝑇

=

𝑧
𝑐1
1:𝑇

be the estimated modality-shared latent variables.

As for 𝑝 (𝑥𝑠1
1:𝑇

|𝑧𝑠1
1:𝑇

, 𝑧𝑐
1:𝑇

)) and 𝑝 (𝑥𝑠2
1:𝑇

|𝑧𝑠2
1:𝑇

, 𝑧𝑐
1:𝑇

)), which model

the generation process from latent variables to observations via

Multi-layer Perceptron networks (MLPs) as shown in Equation (8).

𝑥
𝑠1
1:𝑇

= 𝜙𝑠1 (𝑧
𝑠1
1:𝑇

, 𝑧𝑐
1:𝑇 ), 𝑥

𝑠2
1:𝑇

= 𝜙𝑠2 (𝑧
𝑠2
1:𝑇

, 𝑧𝑐
1:𝑇 ) (8)

Finally, the 𝑝 (𝑧𝑠1
1:𝑇

|𝑧𝑐
1:𝑇

), 𝑝 (𝑧𝑠2
1:𝑇

|𝑧𝑐
1:𝑇

) and 𝑝 (𝑧𝑐
1:𝑇

) in Equation (4)

denotes the prior distribution of latent variables, which are intro-

duced in subsection 4.2. Please refer to Appendix D for more details

on the architecture of the proposedMATE model.

4.2 Specific and Shared Prior Networks
Shared Prior Networks for Modality-shared Estimation: To

model the shared prior distribution 𝑝 (𝑧𝑐
1:𝑇

), we first review the

transition function of shared latent variables in Equation (2). With-

out loss of generality, we consider the time-lag as 1, hence we let

{𝑟𝑐
𝑖
} be a set of inverse transition functions that take 𝑧𝑐

𝑡,𝑖
, 𝑧𝑐
𝑡−1 as

input and output the independent noise, i.e., 𝜖𝑐
𝑡,𝑖

= 𝑟𝑐
𝑖
(𝑧𝑐
𝑡,𝑖
, 𝑧𝑐
𝑡−1).

Note that these inverse transition functions can be implemented

by simple MLPs. Sequentially, we devise a transformation 𝜎𝑐 :=

{𝑧𝑐
𝑡−1, 𝑧

𝑐
𝑡 } → {𝑧𝑐

𝑡−1, 𝜖
𝑐
𝑡 } and its corresponding Jacobian can be for-

malized as J𝜎𝑐 =

(
I 0

∗ diag

(
𝜕𝑟𝑐
𝑖

𝜕𝑧𝑐
𝑡,𝑖

))
, where ∗ denotes a matrix. By

applying the change of variables formula, we have the following

equation, we estimated the prior distribution as follows:

log𝑝 (𝑧𝑐𝑡−1, 𝑧𝑐𝑡 ) = log𝑝 (𝑧𝑐𝑡−1, 𝜖𝑐𝑡 ) + log |det(J𝜎𝑐 ) | . (9)

Moreover, we can rewrite Equation (9) to Equation (10) by using

independent noise assumption.

log𝑝 (𝑧𝑐𝑡 |𝑧𝑐𝑡−1 ) = log𝑝 (𝜖𝑐𝑡 ) +
𝑛𝑐∑︁
𝑖=1

log |
𝜕𝑟𝑐
𝑖

𝜕𝑧𝑐
𝑡,𝑖

| . (10)

As a result, the prior distribution shared latent variables can be

estimated as follows:

𝑝 (𝑧𝑐
1:𝑇 ) = 𝑝 (𝑧𝑐

1
)
𝑇∏
𝜏=2

(
𝑛𝑐∑︁
𝑖=1

log𝑝 (𝜖𝑐𝜏,𝑖 ) +
𝑛𝑐∑︁
𝑖=1

log |
𝜕𝑟𝑐
𝑖

𝜕𝑧𝑐
𝜏,𝑖

|
)
, (11)

where 𝑝 (𝜖𝑐
𝜏,𝑖
) is assumed to follow a standard Gaussian distribution.

Private Prior Networks for Modality-private Prior Estima-
tion: We assign each modality an individual prior network and

take modality 𝑠1 as an example. Similar to the derivation of the

shared prior networks, we let {𝑟𝑠1
𝑖
} be a set of inverse transition

functions that take 𝑧
𝑠1
𝑡,𝑖
, 𝑧

𝑠1
𝑡−1 and 𝑧

𝑐
𝑡 as input and output the indepen-

dent noise, i.e., 𝜖
𝑠1
𝑡,𝑖

= 𝑟
𝑠1
𝑖
(𝑧𝑠1
𝑡,𝑖
, 𝑧

𝑠1
𝑡−1, 𝑧

𝑐
𝑡 ). Therefore, we can estimate

the prior distribution of specific latent variables in a similar manner

as shown in Equation (12).

𝑝 (𝑧𝑠1
1:𝑇

|𝑧𝑐
1:𝑇 )

= 𝑝 (𝑧𝑠1
1
|𝑧𝑐
1:𝑇 )

𝑇∏
𝜏=2

(
𝑛∑︁

𝑖=𝑛𝑐+1
log𝑝 (𝜖𝑠1

𝜏,𝑖
|𝑧𝑐
1:𝑇 ) +

𝑛∑︁
𝑖=𝑛𝑐+1

log |
𝜕𝑟
𝑠1
𝑖

𝜕𝑧
𝑠1
𝜏,𝑖

| ) .
(12)

4.3 Model Summary
By using the estimating private and shared priors to calculate the KL

divergence in Equation (4), we can reconstruct the latent variables

by modeling the observations from different modalities. Note that

our method can be considered a flexible backbone architecture for

multi-modal time series data, the learned latent variables can be

applied to any downstream tasks. Therefore, by letting L𝑦 be the

objective function of a downstream task and combining Equation

2024-10-15 12:25. Page 4 of 1–18.
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(4) with the modality-shared constrain in Equation (7), the total

loss of the proposed MATE model can be formalized as follows:

L𝑡𝑜𝑡𝑎𝑙 = −𝛼L𝑟 + 𝛽 (L𝑐 + L𝑠1 + L𝑠2 ) + 𝛾L𝑠 + L𝑦, (13)

where 𝛼, 𝛽 and 𝛾 are hyper-parameters.

5 Theoretical Analysis
To show the proposed method can learn the disentangled represen-

tation, we first provide the definition of subspace and component-

wise identifiability. We further provide theoretical analysis regard-

ing identifiability. Specifically, we leverage nonlinear ICA to show

the subspace-identifiability (Theorem 1) and component-wise iden-

tifiability (Corollary 1.1) of the proposed method.

5.1 Subspace Identifiability and
Component-wise Identifiability

Before introducing the theoretical results about identifiability, we

first provide a brief introduction to subspace identification and

component-wise identification. As for subspace identification [55],

the subspace identification of latent variables 𝑧𝑡 means that for

each ground-truth 𝑧𝑡,𝑖 , there exits 𝑧𝑡 and an invertible function

ℎ𝑖 : R𝑛 → R, such that 𝑧𝑡,𝑖 = ℎ𝑖 (𝑧𝑡 ). As for component-wise identi-

fiability [45], the component-wise identifiability of 𝑧𝑡,𝑖 means that

for each ground-truth 𝑧𝑡,𝑖 , there exits 𝑧𝑡, 𝑗 and an invertible func-

tion ℎ𝑖 : R → R, such that 𝑧𝑡,𝑖 = ℎ𝑖 (𝑧𝑡, 𝑗 ). Note that the subspace
identifiability provides a coarse-grained theoretical guarantee for

representation learning, ensuring that all the information is pre-

served. While the component-wise identifiability provides a coarse

fine theoretical guarantee, ensuring that the estimated and ground-

truth latent variables are one-to-one corresponding.

5.2 Subspace Identifiability of Latent Variables
Based on the definition of latent causal process, we first show

that the modality-shared and modality-specific latent variables

are subspace identifiable, i.e., the estimated modality-shared latent

variables 𝑧𝑐𝑡 (modality-specific latent variables 𝑧
𝑠𝑚
𝑡 ) contains all and

only information in the true modality-shared latent variables 𝑧𝑐𝑡
(modality-specific latent variables 𝑧

𝑠𝑚
𝑡 ). Since the multi-modal time

series data are pair-wise, without loss of generality, we consider

modality 𝑠𝑚 as the example.

Theorem 1. (Subspace Identification of the Modality-shared
and Modality-specific Latent Variables) Suppose that the ob-
served data from different modalities is generated following the data
generation process in Figure 2, and we further make the following
assumptions:

• A1 (Smooth and Positive Density:) The probability density of latent
variables is smooth and positive, i.e., 𝑝 (𝑧𝑡 |𝑧𝑡−1) > 0 overZ𝑡 and
Z𝑡−1.

• A2 (Conditional Independence:) Conditioned on 𝑧𝑡−1, each 𝑧𝑐
𝑡,𝑖

is
independent of 𝑧𝑐

𝑡, 𝑗
for 𝑖, 𝑗 ∈ {1, · · · , 𝑛𝑐 }, 𝑖 ≠ 𝑗 . And conditioned

on 𝑧𝑡−1 and 𝑧𝑐𝑡 , each 𝑧
𝑠𝑚
𝑡,𝑖

is independent of 𝑧𝑠𝑚
𝑡, 𝑗

, for 𝑖, 𝑗 ∈ {𝑛𝑐 +
1, · · · , 𝑛}, 𝑖 ≠ 𝑗 .

• A3 (non-singular Jacobian): Each 𝑔𝑚 has non-singular Jacobian
matrices almost anywhere and 𝑔𝑚 is invertible.

• A4 (Linear Independence:) For any 𝑧
𝑠∗
𝑡 ∈ Z𝑠∗

𝑡 , there exist 𝑛𝑐 + 1

values of 𝑧𝑠𝑚
𝑡−1,𝑘 , 𝑘 = 𝑛𝑐 + 1, · · · , 𝑛, such that these vectors 𝒗𝑡, 𝑗 are

linearly independent, where 𝒗𝑡, 𝑗,𝑘 are defined as follows:

𝒗𝑡,𝑗 =
( 𝜕2 log𝑝 (𝑧𝑠𝑚

𝑡,𝑗
|𝑧𝑚
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠𝑚
𝑡,𝑗

𝜕𝑧
𝑠𝑚
𝑡−1,𝑛𝑐+1

, · · · ,
𝜕2 log𝑝 (𝑧𝑠𝑚

𝑡,𝑗
|𝑧𝑚
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠𝑚
𝑡,𝑗

𝜕𝑧
𝑠𝑚
𝑡−1,𝑛

)
(14)

Then if 𝑔1 : Z𝑐
𝑡 × Z𝑠1

𝑡 → X𝑠1
𝑡 and 𝑔2 : Z𝑐

𝑡 × Z𝑠2
𝑡 → X𝑠2

𝑡 assume
the generating process of the true model (𝑔1, 𝑔2) and match the joint
distribution 𝑝 (𝑥𝑠1𝑡 , 𝑥

𝑠2
𝑡 ) of each time step then 𝑧𝑐𝑡 and 𝑧

𝑠𝑚
𝑡 are subspace

identifiable.

Proof Sketch: The proof can be found in Appendix A.1. First,

we construct an invertible transformation ℎ𝑚 between the ground-

truth latent variables and estimated ones. Sequentially, we prove

that the ground truth modality-shared latent variables are not the

function of modality-specific latent variables by leveraging the

pairing time series from different modalities. Sequentially, we lever-

age sufficient variability of historical information to show that the

modality-specific latent variables are not the function of the esti-

mated modality-shared latent variables. Moreover, by leveraging

the invertibility of transformation ℎ𝑚 , we can obtain the Jacobian

of ℎ𝑚 as shown in Equation (15),

Jℎ𝑚 =


A :=

𝜕𝑧𝑐𝑡
𝜕𝑧𝑐𝑡

B :=
𝜕𝑧𝑐𝑡
𝜕𝑧
𝑠𝑚
𝑡

= 0

C :=
𝜕𝑧
𝑠𝑚
𝑡

𝜕𝑧𝑐𝑡
= 0 D :=

𝜕𝑧
𝑠𝑚
𝑡

𝜕𝑧
𝑠𝑚
𝑡

,

 (15)

where 𝐵 = 0 and 𝐶 = 0, since the ground truth modality-shared

latent variables are not the function of modality-specific latent vari-

ables and the modality-specific latent variables are not the function

of the estimated modality-shared latent variables, respectively.

Discussion of the Assumptions: The proof can be found in

Appendix A.1. The first and the second assumptions are common in

the existing identification results [102, 103]. The third assumption

is also common in [44], meaning that the influence from each latent

source to observation is independence. The final assumption means

that the historical information changes sufficiently, which can be

easily satisfied with sufficient time series data.

5.3 Component-wise Identifiability of Latent
Variables

Based on Theorem 1, we further establish the component-wise

identifiability result as follows.

Corollary 1.1. (Component-wise Identification of the
Modality-shared and Modality-specific Latent Variables) Sup-
pose that the observed data from different modalities is generated
following the data generation process in Figure 2, and we further
make the assumptions A1, A2 and the following assumptions:

• A5 (Linear Independence:) For any 𝑧𝑡 ∈ Z𝑡 , there exist 2𝑛+1 values
of 𝑧𝑚

𝑡−1,𝑘 , 𝑘 = 1, · · · , 𝑛, such that these vectors 𝒗𝑡,𝑙 are linearly
2024-10-15 12:25. Page 5 of 1–18.
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Table 1: Time series classification for Motion, D1NAMO, WIFI, and KETI datasets.

Motion DINAMO WIFI KETI
Model Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

ResNet 89.96(0.234) 91.41(0.139) 88.64(0.262) 88.58(0.273) 90.29(0.519) 88.14(0.648) 96.05(0.387) 84.59(1.181)

MaCNN 85.57(2.117) 86.93(2.429) 90.17(0.172) 48.56(1.666) 88.81(3.821) 87.80(3.353) 93.05(1.411) 71.93(2.178)

SenenHAR 88.95(0.369) 88.66(0.276) 89.56(0.620) 47.23(0.182) 94.63(0.614) 92.75(0.686) 96.43(0.143) 84.74(0.379)

STFNets 89.07(0.098) 88.84(0.229) 90.51(0.450) 47.50(0.132) 80.52(0.245) 75.93(1.262) 89.21(0.808) 69.55(0.476)

RFNet-base 89.93(0.281) 91.70(0.408) 90.76(0.252) 58.79(4.911) 86.31(1.765) 82.56(2.313) 95.12(0.478) 81.45(1.077)

THAT 89.66(0.488) 91.38(0.521) 92.76(0.292) 71.64(2.229) 95.59(1.027) 94.86(1.126) 96.33(0.283) 85.12(1.143)

LaxCat 60.25(3.678) 41.01(4.381) 90.64(0.362) 54.56(2.013) 76.36(1.492) 73.85(2.155) 93.33(1.449) 70.67(0.335)

UniTS 91.02(0.399) 92.73(0.432) 90.88(0.362) 58.39(4.048) 95.83(0.812) 94.49(1.383) 96.04(0.613) 84.08(1.601)

COCOA 88.31(0.254) 89.27(0.702) 90.69(0.189) 55.00(1.495) 87.76(0.531) 84.51(0.728) 92.68(1.062) 74.72(1.987)

FOCAL 89.37(0.083) 90.91(0.191) 90.52(0.220) 52.00(2.104) 94.15(0.208) 92.68(0.377) 94.88(0.371) 78.47(1.043)

CroSSL 91.32(0.992) 89.94(1.353) 91.05(0.438) 53.13(0.781) 76.80(2.206) 68.45(3.054) 93.63(0.504) 76.25(1.538)

MATE 92.44(0.160) 93.75(0.154) 93.31(0.170) 73.72(1.148) 96.95(0.231) 96.20(0.431) 97.00(0.097) 86.93(0.924)

Table 2: Time series classification for human motion prediction and healthcare datasets.

HumanEVA H36M UCIHAR MIT-BIH
Model Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

ResNet 86.68(0.327) 86.51(0.247) 92.44(0.278) 92.27(0.289) 93.12(0.630) 93.01(0.637) 98.52(0.066) 97.62(0.083)

MaCNN 86.27(0.047) 86.12(0.041) 78.54(0.430) 77.73(0.647) 84.57(0.851) 84.06(0.936) 97.26(0.186) 96.07(0.194)

SenenHAR 85.77(1.078) 86.00(1.185) 67.69(0.525) 67.44(0.490) 87.77(1.228) 87.47(1.252) 95.82(0.036) 94.79(0.735)

STFNets 86.07(0.368) 85.76(0.291) 61.67(1.481) 57.20(1.112) 81.64(0.521) 81.64(0.339) 91.63(0.369) 88.97(0.217)

RFNet-base 97.15(0.616) 96.18(0.457) 94.14(0.674) 93.14(0.710) 95.63(0.952) 95.16(1.414) 98.64(0.139) 97.85(0.108)

THAT 85.95(0.226) 85.90(0.207) 81.28(0.351) 81.27(0.182) 93.06(0.364) 93.06(0.422) 98.49(0.159) 97.56(0.237)

LaxCat 86.28(0.023) 86.20(0.045) 86.09(2.516) 85.84(2.495) 89.00(0.476) 88.78(0.429) 97.77(0.113) 96.77(0.131)

UniTS 97.90(0.561) 97.52(0.879) 94.96(0.461) 94.81(0.152) 94.75(0.526) 94.72(0.528) 98.75(0.078) 97.95(0.099)

COCOA 93.46(0.293) 91.63(1.469) 84.12(1.670) 83.85(1.820) 94.11(0.425) 93.96(0.616) 97.76(0.241) 96.64(0.979)

FOCAL 92.15(1.428) 91.83(1.214) 89.73(0.270) 89.30(0.282) 94.36(0.098) 94.36(0.190) 98.67(0.053) 97.84(0.103)

CroSSL 86.29(0.045) 86.06(0.273) 87.35(1.447) 83.62(1.546) 94.45(0.170) 93.83(0.530) 97.96(0.167) 95.06(0.071)

MATE 98.90(0.108) 98.82(0.094) 96.12(0.036) 95.99(0.037) 95.97(0.258) 95.93(0.273) 98.97(0.065) 98.34(0.147)

independent, where 𝒗𝑡,𝑙 are defined as follows:

𝒗𝑡,𝑙 =
( 𝜕3 log𝑝 (𝑧𝑐

𝑡,𝑙
|𝑧𝑚
𝑡−1 )

𝜕2𝑧𝑐
𝑡,𝑙
𝜕𝑧𝑚
𝑡−1,1

, · · · ,
𝜕3 log𝑝 (𝑧𝑐

𝑡,𝑙
|𝑧𝑚
𝑡−1 )

𝜕2𝑧𝑐
𝑡,𝑙
𝜕𝑧𝑚
𝑡−1,𝑛

,

𝜕2 log𝑝 (𝑧𝑐
𝑡,𝑙

|𝑧𝑚
𝑡−1 )

𝜕𝑧𝑐
𝑡,𝑙
𝜕𝑧𝑚
𝑡−1,1

, · · · ,
𝜕2 log𝑝 (𝑧𝑐

𝑡,𝑙
|𝑧𝑚
𝑡−1 )

𝜕𝑧𝑐
𝑡,𝑙
𝜕𝑧𝑚
𝑡−1,𝑛

,

𝜕3 log𝑝 (𝑧𝑠𝑚
𝑡,𝑙

|𝑧𝑚
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕2𝑧
𝑠𝑚
𝑡,𝑙

𝜕𝑧𝑚
𝑡−1,1

, · · · ,
𝜕3 log𝑝 (𝑧𝑠𝑚

𝑡,𝑙
|𝑧𝑚
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕2𝑧
𝑠𝑚
𝑡,𝑙

𝜕𝑧𝑚
𝑡−1,𝑛

,

𝜕2 log𝑝 (𝑧𝑠𝑚
𝑡,𝑙

|𝑧𝑚
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠𝑚
𝑡,𝑙

𝜕𝑧𝑚
𝑡−1,1

, · · · ,
𝜕2 log𝑝 (𝑧𝑠𝑚

𝑡,𝑙
|𝑧𝑚
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠𝑚
𝑡,𝑙

𝜕𝑧𝑚
𝑡−1,𝑛

)
(16)

Then if 𝑔1 : Z𝑐
𝑡 × Z𝑠1

𝑡 → X𝑠1
𝑡 and 𝑔2 : Z𝑐

𝑡 × Z𝑠2
𝑡 → X𝑠2

𝑡 assume
the generating process of the true model (𝑔1, 𝑔2) and match the joint
distribution 𝑝 (𝑥𝑠1𝑡 , 𝑥

𝑠2
𝑡 ) of each time step then 𝑧𝑐𝑡 is component-wise

identifiable.

Proof Sketch and Discussion: The proof can be found in Ap-

pendix A.2. Based on Theorem 1, we employ similar assumptions

like [102, 103] to construct a full-rank linear system with only zero

solution, which ensures the component-wise identifiability of latent

variables, i.e., the estimated and ground truth latent variables are

one-to-one corresponding.

5.4 Relationships between Identifiability and
Representation Learning

Intuitively, the proposed method is more general since existing

methods with orthogonal latent space are a special case of the data

generation process shown in Figure 2. We further discuss how these

identifiability results benefit the representation learning for multi-

modal time-series sensing signals. First, the subspace identifiability

results show that the modality-shared and modality-specific latent

variables are disentangled under the dependent latent process, nat-

urally boosting the downstream tasks that require modality-shared

representations. Second, the component-wise identifiability result

uncovers the latent causal mechanisms of multi-modal time series

data, which potentially provides the interpretability formulti-modal

representation learning, i.e., finding the unobserved confounders.

Third, by identifying the latent variables, we can further model

the data generation process, which enhances the robustness of the

representation of multi-modal time series sensing signals.

Table 3: Time series classification for audio and video dataset.
HAC EPIC-Kitchens

Human Cartoon D2

Model Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

ResNet 93.93(0.462) 93.90(0.475) 88.22(0.574) 88.04(0.938) 76.75(0.066) 76.35(0.456)

RFNet-base 93.47(0.886) 93.51(0.862) 86.54(0.941) 86.09(1.081) 76.67(0.998) 78.36(0.890)

THAT 92.99(0.339) 93.01(0.333) 89.30(0.434) 88.62(0.583) 76.93(0.429) 77.06(1.551)

LaxCat 93.35(0.453) 93.34(0.471) 87.76(0.574) 86.51(0.517) 73.99(0.662) 74.07(1.457)

UniTS 93.36(0.170) 93.28(0.191) 85.16(1.143) 83.65(1.121) 74.80(0.392) 75.91(0.615)

FOCAL 93.96(0.906) 93.94(0.923) 87.01(0.574) 85.27(0.213) 71.42(0.308) 73.84(0.847)

SimMMDG 93.59(0.453) 93.16(0.382) 88.99(0.372) 88.03(0.184) 81.42(0.924) 82.03(0.497)

MATE 94.68(1.037) 94.72(1.004) 89.60(0.217) 88.88(0.355) 83.02(0.804) 83.96(0.209)

6 Experiments
6.1 Experiment Setup
Datasets: To evaluate the effectiveness of our method, we consider

the different downstream tasks: classification, KNN evaluation, and

linear probing on several multi-modal time series classification

datasets. Specifically, we consider the WIFI [104], and KETI [24]

datasets. Moreover, we further consider the human motion pre-

diction datasets like Motion [82], HumanEva-I [87], H36M [34],

UCIHAR [1], PAMAP2 [81], and RealWorld-HAR [89], which con-

sider different positions of the human body as different modalities.

Moreover, we also consider two healthcare datasets such as MIT-

BIH [72] and D1NAMO [17], which are related to arrhythmia and

2024-10-15 12:25. Page 6 of 1–18.
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Table 4: KNN evaluation results.

D1NAMO KETI MIT-BIH UCIHAR
Model Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

CPC 88.81(0.721) 52.83(0.453) 93.89(0.121) 79.17(0.255) 94.91(0.306) 93.89(0.323) 71.54(0.959) 71.80(0.937)

SimCLR 89.76(1.360) 56.39(1.038) 93.81(0.512) 79.82(0.564) 94.48(0.221) 93.40(0.257) 86.33(0.550) 86.64(0.360)

TS-TCC 91.51(0.324) 64.06(0.610) 94.21(0.225) 80.64(0.357) 94.76(0.495) 94.37(0.477) 89.62(0.392) 89.69(0.256)

COCOA 87.42(0.535) 47.42(0.552) 88.79(0.669) 67.35(0.900) 93.72(0.523) 91.57(0.303) 87.41(0.586) 87.63(0.377)

TS2Vec 88.10(0.677) 49.34(0.565) 90.22(0.406) 69.19(0.845) 61.19(1.165) 55.33(1.183) 68.30(1.211) 66.37(1.155)

Mixing-up 89.62(0.607) 55.30(1.084) 91.96(0.639) 74.75(0.450) 96.20(0.520) 94.02(0.274) 91.19(0.450) 91.24(0.474)

TFC 89.30(0.283) 52.48(0.631) 87.30(0.901) 66.41(1.076) 78.13(0.386) 74.43(0.488) 65.91(0.421) 65.65(0.340)

FOCAL 92.02(0.130) 67.72(0.789) 93.93(0.448) 79.40(0.408) 97.96(0.066) 97.02(0.091) 92.49(0.386) 92.36()0.282

CroSSL 90.53(0.322) 53.87(0.560) 90.85(0.407) 68.79(0.545) 96.14(0.273) 95.47(0.287) 91.11(0.335) 91.09(0.338)

MATE 92.61(0.336) 69.17(0.401) 94.79(0.555) 81.19(0.287) 98.22(0.210) 97.26(0.169) 93.48(0.388) 93.34(0.258)

noninvasive type 1 diabetes. Moreover, we have extended our con-

sideration to encompass audio and video datasets, incorporating

three multi-modality datasets—Human, Cartoon, and D2 as out-

lined in [9, 15], which comprise three modalities: video, audio, and

pre-computed optical flow. Please refer to Appendix E for more

details on the dataset descriptions.

Evaluation Metric. We use ADAM optimizer [42] in all exper-

iments and report the accuracy and the Macro-F1 as evaluation

metrics. Please refer to Appendix D for the implementation details.

Baselines. To evaluate the performance of the proposed MATE,

we consider the different types of baselines. We first consider the

convention ResNet [23]. Sequentially, we consider several baselines

for multi-modal sensing data like STFNets [101], SenseHAR[36],

THAT [51], MaCNN [79], LaxCat [25], UniTS [54], and RFNet [14].

Moreover, we also consider methods based on contrastive learning

like CPC[74], SimCLR[3], MoCo[4], MTSS[83], MAE[22] CMC[90],

GMC[76], TS-TCC[18], Cocoa[12], TS2Vec[105], Mixing-up[94],

TFC [111], Cosmo[75], TNC[91], and CroSSL [11]. Moreover, we

also consider methods that performwell in audio and video datasets,

such as SimMMDG [15]. Finally, we consider the recently proposed

FOCAL [64] which considers an orthogonal latent space between

domain-shared and domain-specific latent variables.

6.2 Results and Discussion
Time Series Classification: Experimental results for time series

classification are shown in Table 1 , 2 and 3. According to the exper-

iment results, we can find that the proposedMATEmodel achieves

the best accuracy and Macro-F1 score across different datasets.

Compared with the methods based on contrastive learning and

the conventional supervised learning methods, the contrastive-

learning-based methods achieve better performance since they can

disentangle the modality-shared and modality-specific latent vari-

ables to some extent. Moreover, since our method explicitly con-

siders the dependence between the modality-shared and modality-

specific latent variables, it outperforms the other methods like Focal

and CroSSL. More interestingly, as for the experiment results of

the DINAMO datasets, our method achieves a clear improvement

compared with the methods with the assumption of an orthogonal

latent space, which indirectly evaluates the guess mentioned in

Figure 1.

KNN Evaluation: Following the setting of [64], we consider

both the modality-shared/modality-specific latent variables and use

a KNN classifier with all available labels. Experiment results are

shown in Table 4 and 5. According to the experiment results, we can

Table 5: KNN evaluation results for Realworld-HAR, and
PAMAP2 datasets.

PAMAP2 Realworld-HAR
Model Accuracy Macro-F1 Accuracy Macro-F1

SimCLR 64.51(0.454) 61.14(0.435) 65.84(0.160) 62.34(0.607)

MoCo 69.24 67.66 74.96 71.34

CMC 80.32 79.38 52.16 58.68

MAE 68.57 64.27 87.94 88.17

Cosmo 80.05 77.43 81.02 78.17

Cocoa 71.29(0.289) 69.74(0.244) 77.78(0.684) 74.59(0.573)

MTSS 39.31 33.79 51.01 43.84

TS2Vec 56.39(1.419) 51.80(1.695) 64.80(0.666) 58.32(0.590)

GMC 78.43 75.43 74.15 75.60

TNC 79.93 76.53 78.82 75.65

TS-TCC 80.32(0.246) 78.96(0.086) 76.86(0.332) 76.58(0.290)

FOCAL 84.82(0.740) 83.78(0.447) 82.05(0.931) 82.54(0.502)

MATE 85.94(0.377) 84.66(0.386) 88.74(0.152) 88.92(0.090)

find that the proposed MATE still outperforms the other baselines

like CroSSL. This is because the representation from ourmethod pre-

serves the dependencies of modality-shared and modality-specific

latent variables, hence the representation contains richer semantic

information and finally leads to better alignment results.

Linear Probing: We consider the linear probing task with four

different label ratios (100%, 10%, 5%, and 1%) as shown in Table

6. The proposed MATE still consistently outperforms the state-of-

the-art baselines in different label rates. Specifically, our method

achieves 0.8% improvement with 100% labels, 1.9% improvement

with 10% labels, 6% improvement with 5% labels, and 11% improve-

ment with 1% labels, indirectly reflecting that MATE captures suffi-

cient semantic information with limited labels.

6.3 Visualization Results
We further provide the visualization results as shown in Figure 4 to

evaluate whether the proposed method can capture the semantic

information effectively.We can find that ourmethod can form better

clusters with distinguished margins, meaning that the proposed

method can well disentangle the latent variables. In the meanwhile,

since the other methods assume the orthogonal latent space, they

can not well extract the disentangled representation, and hence

results in confusing clusters with unclear margins, for example, the

entanglement among the ”Walking“, ”Walking Up“, and ”Walking

Down“ in Figure 4 (b) and (e).

6.4 Ablation Studies
To evaluate the effectiveness of each loss term, we further devise

four model variants as follows. a) MATE-p: we remove the KL

2024-10-15 12:25. Page 7 of 1–18.
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Table 6: Linear probing results under different label ratios on UCIHAR.

Label Ratio 100% 10% 5% 1%

Model Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

CPC 72.33(0.491) 71.17(0.840) 70.94(1.139) 69.39(0.638) 60.91(0.450) 60.08(0.573) 34.72(0.473) 30.74(0.556)

SimCLR 86.28(0.318) 86.02(0.326) 79.29(0.274) 78.90(0.409) 69.37(1.171) 67.99(0.601) 45.95(0.478) 38.55(1.042)

TS-TCC 91.40(0.220) 91.36(0.225) 85.50(0.434) 84.90(0.223) 76.62(0.307) 74.93(0.366) 60.52(0.591) 58.37(0.193)

COCOA 91.76(0.465) 91.91(0.508) 67.31(0.451) 66.90(0.613) 54.30(0.575) 54.10(0.757) 33.57(0.340) 32.94(0.209)

TS2Vec 70.78(0.212) 68.70(0.247) 63.88(1.280) 61.97(1.399 62.46(0.087) 60.36(0.133) 49.31(0.148) 42.44(0.229)

Mixing-up 90.29(0.253) 90.17(0.283) 85.52(0.663) 85.16(0.655) 78.00(0.573) 77.03(0.821) 33.51(0.338) 20.51(0.700)

TFC 66.01(0.338) 65.38(0.079) 53.86(0.430) 46.14(0.711) 45.23(0.556) 44.15(0.230) 40.94(0.222) 39.00(0.274)

FOCAL 93.01(0.057) 92.87(0.040) 89.30(0.307) 89.03(0.347) 80.55(0.401) 79.62(0.405) 67.48(0.405) 63.30(0.126)

CroSSL 92.80(0.057) 92.86(0.050) 87.38(0.421) 86.57(1.109) 77.50(0.524) 76.72(0.319) 48.58(1.004) 47.57(0.415)

MATE 93.76(0.057) 93.66(0.025) 91.02(0.166) 90.95(0.136) 84.49(0.216) 84.54(0.323) 74.68(0.639) 69.61(0.972)

Walking Walking Up Walking Down Sitting Standing Laying

(a) MATE (b) UNITS (c) COCOA (e) FOCAL(d) CROSSL

Figure 4: The t-SNE visualization of the extracted domain-shared latent variables.
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Figure 5: Ablation study on the DINAMO and the Motion datasets.
divergence terms for domain-specific latent variables. b) MATE-
s: we remove the KL divergence terms for domain-shared latent

variables. c)MATE-r: We remove the reconstruction loss. d)MATE-
c: We remove the modality-shared constraint. Experiment results

of the ablation studies on the D1NAMO and Motion datasets are

shown in Figure 5. We can draw the following conclusions 1) all

the loss terms play an important role in the representation learn-

ing. 2) In the D1NAMO dataset, by removing the KL divergence

terms for domain-shared and domain-specific latent variables, the

model performance drops, showing that these loss terms benefit

the identifiability of latent variables under dependence latent space.

3) Moreover, the drop in the performance of MATE-r andMATE-c
reflects that the reconstruction loss and the modality-shared con-

straint are conducive to preserving the semantic information.

6.5 Sensitivity Analysis
We also perform a sensitivity test on the loss weight values on the

Motion dataset, as shown in Figure 6. We try different values of

hyperparameters of 𝛼, 𝛽, and𝛾 . According to the experiment results,

we find that 1) 𝐿𝑟 plays an important role when the values of 𝛼

are 1 ad 1𝑒 − 4 for D1NAMO and Motion datasets, respectively. 2)

our method achieves the best results when the values of 𝛽 are from

1𝑒 − 3 to 1𝑒 − 2, showing that the KL divergence terms have stable

influences. 3) we also find that our method can achieve good results

when the value of 𝛾 is around 1𝑒 − 2.

7 Conclusion
We propose a representation learning framework for multi-modal

time series data with theoretical guarantees, which breakthroughs

the conventional orthogonal latent space assumption. Based on

the data generation process for multi-modal time series data with

dependent latent subspace, we devise a general disentangled repre-

sentation learning framework with identifiability guarantees. Com-

pared with the existing methods, the proposedMATE model can

learn the disentangled time series representations even in the depen-

dent latent subspace, hence our method is closer to the real-world

scenarios. Evaluation on the time series classification, KNN evalua-

tion, and linear probing on several multi-modal time series datasets

illustrate the effectiveness of our method.
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A Proof of Modality-shared Latent Variables 𝑧𝑐𝑡
A.1 Proof of Subspace Identification

Theorem 1. (Subspace Identification of the Modality-shared
and Modality-specific Latent Variables) Suppose that the ob-
served data from different modalities is generated following the data
generation process in Figure 2, and we further make the following
assumptions:

• A1 (Smooth and Positive Density:) The probability density of latent
variables is smooth and positive, i.e., 𝑝 (𝑧𝑡 |𝑧𝑡−1) > 0 overZ𝑡 and
Z𝑡−1.

• A2 (Conditional Independence:) Conditioned on 𝑧𝑡−1, each 𝑧𝑐
𝑡,𝑖

is
independent of 𝑧𝑐

𝑡, 𝑗
for 𝑖, 𝑗 ∈ {1, · · · , 𝑛𝑐 }, 𝑖 ≠ 𝑗 . And conditioned

on 𝑧𝑡−1 and 𝑧𝑐𝑡 , each 𝑧
𝑠𝑚
𝑡,𝑖

is independent of 𝑧𝑠𝑚
𝑡, 𝑗

, for 𝑖, 𝑗 ∈ {𝑛𝑐 +
1, · · · , 𝑛}, 𝑖 ≠ 𝑗 .

• A3 (non-singular Jacobian): Each 𝑔𝑚 has non-singular Jacobian
matrices almost anywhere and 𝑔𝑚 is invertible.

• A4 (Linear Independence:) For any 𝑧
𝑠∗
𝑡 ∈ Z𝑠∗

𝑡 , there exist 𝑛𝑐 + 1

values of 𝑧𝑠𝑚
𝑡−1,𝑘 , 𝑘 = 𝑛𝑐 + 1, · · · , 𝑛, such that these vectors 𝒗𝑡, 𝑗 are

linearly independent, where 𝒗𝑡, 𝑗 are defined as follows:

𝒗𝑡,𝑗 =
( 𝜕2 log𝑝 (𝑧𝑠𝑚

𝑡,𝑗
|𝑧𝑚
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠𝑚
𝑡,𝑗

𝜕𝑧
𝑠𝑚
𝑡−1,𝑛𝑐+1

, · · · ,
𝜕2 log𝑝 (𝑧𝑠𝑚

𝑡,𝑗
|𝑧𝑚
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠𝑚
𝑡,𝑗

𝜕𝑧
𝑠𝑚
𝑡−1,𝑛

)
(17)

Then if 𝑔1 : Z𝑐
𝑡 × Z𝑠1

𝑡 → X𝑠1
𝑡 and 𝑔2 : Z𝑐

𝑡 × Z𝑠2
𝑡 → X𝑠2

𝑡 as-
sume the generating process of the true model (𝑔1, 𝑔2) and match
the joint distribution 𝑝 (𝑥𝑠1𝑡 , 𝑥

𝑠2
𝑡 ) of each time step then 𝑧𝑐𝑡 is subspace

identifiable.

Proof. For (𝑥1𝑡 , 𝑥2𝑡 ) ∼ 𝑝 (𝑥1𝑡 , 𝑥2𝑡 ), because of the matched joint

distribution, we have the following relations between the true vari-

ables 𝑧𝑐𝑡 , 𝑧
𝑠1
𝑡 , 𝑧

𝑠2
𝑡 and the estimated ones 𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 , 𝑧

𝑠2
𝑡 :

𝑥
𝑠1
𝑡 = 𝑔1 (𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 ) = 𝑔1 (𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 ) (18)

𝑥
𝑠2
𝑡 = 𝑔2 (𝑧𝑐𝑡 , 𝑧

𝑠2
𝑡 ) = 𝑔2 (𝑧𝑐𝑡 , 𝑧

𝑠2
𝑡 ) (19)

(𝑧𝑐𝑡 , 𝑧
𝑠1
𝑡 , 𝑧

𝑠2
𝑡 ) = 𝑔−1 (𝑥𝑠1𝑡 , 𝑥

𝑠2
𝑡 ) = 𝑔−1 (𝑔(𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 , 𝑧

𝑠2
𝑡 )) := ℎ(𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 , 𝑧

𝑠2
𝑡 ),
(20)

where 𝑔1, 𝑔2 are the estimated invertible generating function and

ℎ := 𝑔−1 ◦ 𝑔 denotes a smooth and invertible function that trans-

forms the true variables 𝑧𝑐𝑡 , 𝑧
𝑠1
𝑡 , 𝑧

𝑠2
𝑡 to the estimated ones 𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 , 𝑧

𝑠2
𝑡 .

By combining Equation (20) and (18), we have

𝑔1 (𝑧𝑐𝑡 , 𝑧
𝑠1
𝑡 ) = 𝑔1 (ℎ𝑐,𝑠1 (𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 , 𝑧

𝑠2
𝑡 )). (21)

For 𝑖 ∈ {1, · · · , 𝑛𝑥𝑠1 } and 𝑗 ∈ {1, · · · , 𝑛𝑠2 }, we take a partial deriva-
tive of the 𝑖-th dimension of 𝑥

𝑠1
𝑡 on both sides of Equation (21) w.r.t.

𝑧
𝑠2
𝑡, 𝑗

and have:

0 =
𝜕𝑔1,𝑖 (𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 )

𝜕𝑧
𝑠2
𝑡, 𝑗

=
𝜕𝑔1,𝑖 (ℎ𝑐,𝑠1 (𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 ))

𝜕𝑧
𝑠2
𝑡, 𝑗

. (22)

The aforementioned equation equals 0 because there is no 𝑧
𝑠2
𝑡, 𝑗

in

the left-hand side of the equation. By expanding the derivative on

the right-hand side, we further have:∑︁
𝑘∈{1,· · · ,𝑛𝑐+𝑛𝑠

1
}

𝜕𝑔1,𝑖 (𝑧𝑐𝑡 , 𝑧
𝑠1
𝑡 )

𝜕ℎ (𝑐,𝑠1 ),𝑘
·
𝜕ℎ (𝑐,𝑠1 ),𝑘 (𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 , 𝑧

𝑠2
𝑡 )

𝜕𝑧
𝑠2
𝑡, 𝑗

= 0. (23)

Since 𝑔1 is invertible, the determinant of J𝑔1 does not equal to

0, meaning that for 𝑛𝑐 + 𝑛𝑠1 different values of 𝑔1,𝑖 , each vector

[ 𝜕𝑔1,𝑖 (𝑧
𝑐
𝑡 ,𝑧

𝑠
1

𝑡 )
𝜕ℎ (𝑐,𝑠

1
),1

, · · · , 𝜕𝑔1,𝑖 (𝑧𝑐𝑡 ,𝑧
𝑠
1

𝑡 )
𝜕ℎ (𝑐,𝑠

1
),𝑛𝑐 +𝑛𝑠

1

] are linearly independent. There-

fore, the (𝑛𝑐 + 𝑛𝑠1 ) × (𝑛𝑐 + 𝑛𝑠1 ) linear system is invertible and has

the unique solution as follows:

𝜕ℎ (𝑐,𝑠1 ),𝑘 (𝑧𝑐𝑡 , 𝑧
𝑠1
𝑡 , 𝑧

𝑠2
𝑡 )

𝜕𝑧
𝑠2
𝑡, 𝑗

= 0. (24)

According to Equation (24), for any 𝑘 ∈ {1, · · · , 𝑛𝑐 + 𝑛𝑠1 } and 𝑗 ∈
{1, · · · , 𝑛𝑠2 }, ℎ (𝑐,𝑠1 ),𝑘 (𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 , 𝑧

𝑠2
𝑡 ) does not depend on 𝑧

𝑠2
𝑡 . In other

word, {𝑧𝑐𝑡 , 𝑧
𝑠1
𝑡 } does not depend on 𝑧

𝑠2
𝑡 .

Similarly, by combining Equation (20) and (19), we have

𝑔2 (𝑧𝑐𝑡 , 𝑧
𝑠2
𝑡 ) = 𝑔2 (ℎ𝑐,𝑠2 (𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 , 𝑧

𝑠2
𝑡 )). (25)

For 𝑖 ∈ {1, · · · , 𝑛𝑥𝑠2 } and 𝑗 ∈ {1, · · · , 𝑛𝑠1 }, we take a partial deriva-
tive of the 𝑖-th dimension of 𝑥

𝑠2
𝑡 on both sides of Equation (25) w.r.t

𝑧
𝑠1
𝑡, 𝑗

and have:

0 =
𝜕𝑔2,𝑖 (𝑧𝑐𝑡 , 𝑧

𝑠2
𝑡 )

𝜕𝑧
𝑠1
𝑡, 𝑗

=
𝜕𝑔2,𝑖 (ℎ𝑐,𝑠2 (𝑧𝑐𝑡 , 𝑧

𝑠2
𝑡 )

𝜕𝑧
𝑠1
𝑡, 𝑗

=
∑︁

𝑘∈{1· · · ,𝑛𝑐+𝑛𝑠
2
}

𝜕𝑔2,𝑖 (𝑧𝑐𝑡 , 𝑧
𝑠2
𝑡 )

𝜕ℎ (𝑐,𝑠2 ),𝑘
·
𝜕ℎ (𝑐,𝑠2 ),𝑘 (𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 , 𝑧

𝑠2
𝑡 )

𝜕𝑧
𝑠1
𝑡, 𝑗

(26)

Since 𝑔2 is invertible, for 𝑛𝑐 +𝑛𝑠2 different values of 𝑔2,𝑖 , each vector

[ 𝜕𝑔2,𝑖 (𝑧
𝑐
𝑡 ,𝑧

𝑠
2

𝑡 )
𝜕ℎ (𝑐,𝑠

2
),1

, · · · , 𝜕𝑔2,𝑖 (𝑧𝑐𝑡 ,𝑧
𝑠
2

𝑡 )
𝜕ℎ (𝑐,𝑠

2
),𝑛𝑐 +𝑛𝑠

2

] are linearly independent. There-

fore, the (𝑛𝑐 + 𝑛𝑠2 ) × (𝑛𝑐 + 𝑛𝑠2 ) linear system is invertible and has

the unique solution as follows:

𝜕ℎ (𝑐,𝑠2 ),𝑘 (𝑧𝑐𝑡 , 𝑧
𝑠1
𝑡 , 𝑧

𝑠2
𝑡 )

𝜕𝑧
𝑠1
𝑡, 𝑗

= 0, (27)

meaning that {𝑧𝑐𝑡 , 𝑧
𝑠2
𝑡 } does not depend on 𝑧

𝑠1
𝑡 .

According to Equation (20), we have 𝑧𝑐𝑡 = ℎ𝑐 (𝑧𝑐𝑡 , 𝑧
𝑠1
𝑡 , 𝑧

𝑠2
𝑡 ). By

using the fact that {𝑧𝑐𝑡 , 𝑧
𝑠2
𝑡 } does not depend on 𝑧

𝑠1
𝑡 and {𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 }

does not depend on 𝑧
𝑠2
𝑡 , we have 𝑧𝑐𝑡 = ℎ𝑐 (𝑧𝑐𝑡 ), i.e., the modality-

shared latent variables are subspace identifiable.

Since the matched marginal distribution of 𝑝 (𝑥𝑠1𝑡 |𝑥𝑠1
𝑡−1), we have:

∀𝑥𝑠1
𝑡−1 ∈ X𝑠1

𝑡−1,

𝑝 (𝑥𝑠1𝑡 |𝑥𝑠1
𝑡−1) = 𝑝 (𝑥𝑠1𝑡 |𝑥𝑠1

𝑡−1)
⇐⇒ 𝑝 (𝑔1 (𝑧1𝑡 ) |𝑥

𝑠1
𝑡−1) = 𝑝 (𝑔1 (𝑧1𝑡 ) |𝑥

𝑠1
𝑡−1),

(28)

where 𝑧1𝑡 = {𝑧𝑐𝑡 , 𝑧
𝑠1
𝑡 } and 𝑧1𝑡 = {𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 }. Sequentially, by using the

change of variables formula, we can further obtain Equation (29)

𝑝 (𝑔1 (𝑧1𝑡 ) |𝑥
𝑠1
𝑡−1) = 𝑝 (𝑔1 (𝑧1𝑡 ) |𝑥

𝑠1
𝑡−1)

⇐⇒ 𝑝 (𝑔−1
1

◦ 𝑔1 (𝑧1𝑡 ) |𝑥
𝑠1
𝑡−1) |J𝑔−1

1

| = 𝑝 (𝑧1𝑡 |𝑥
𝑠1
𝑡−1) |J𝑔−1

1

|

⇐⇒ 𝑝 (ℎ1 (𝑧1𝑡 ) |𝑥
𝑠1
𝑡−1) = 𝑝 (𝑧1𝑡 |𝑥

𝑠1
𝑡−1)

⇐⇒ 𝑝 (ℎ1 (𝑧1𝑡 ) |𝑧1𝑡−1) = 𝑝 (𝑧1𝑡 |𝑧1𝑡−1),
(29)

where ℎ1 := 𝑔−1
1

◦𝑔1 is the transformation between the ground-true

and the estimated latent variables. J𝑔−1
1

denotes the absolute value

of Jacobian matrix determinant of 𝑔−1
1

. Since we assume that 𝑔1
and 𝑔1 are invertible, |J𝑔−1 | ≠ 0 and ℎ1 is also invertible.
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According to the A2 (conditional independent assumption), we

can have Equation (30)

𝑝 (𝑧1𝑡 |𝑧1𝑡−1) =
𝑛∏
𝑖=1

𝑝 (𝑧1𝑡,𝑖 |𝑧
1

𝑡−1); 𝑝 (𝑧1𝑡 |𝑧1𝑡−1) =
𝑛∏
𝑖=1

𝑝 (𝑧1𝑡,𝑖 |𝑧
1

𝑡−1).

(30)

For convenience, we take logarithm on both sides of Equation (30)

and have:

log 𝑝 (𝑧1𝑡 |𝑧1𝑡−1) =
𝑛∑︁
𝑖=1

log 𝑝 (𝑧1𝑡,𝑖 |𝑧
1

𝑡−1);

log𝑝 (𝑧1𝑡 |𝑧1𝑡−1) =
𝑛∑︁
𝑖=1

log𝑝 (𝑧1𝑡,𝑖 |𝑧
1

𝑡−1).
(31)

By combining Equation (31) and Equation (29), we have:

𝑝 (ℎ1 (𝑧1𝑡 ) |𝑧1𝑡−1) = 𝑝 (𝑧1𝑡 |𝑧1𝑡−1) ⇐⇒ 𝑝 (𝑧1𝑡 |𝑧1𝑡−1) |Jℎ−1 | = 𝑝 (𝑧1𝑡 |𝑧1𝑡−1)

⇐⇒
𝑛∑︁
𝑖=1

log𝑝 (𝑧1𝑡,𝑖 |𝑧
1

𝑡−1)

=

𝑛∑︁
𝑖=1

log 𝑝 (𝑧1𝑡,𝑖 |𝑧
1

𝑡−1) − log |Jℎ−1 |,

(32)

where Jℎ−1 are the Jacobian matrix of ℎ−1.
Sequentially, we take the first-order derivative with 𝑧𝑐

𝑡,𝑖
, where

𝑖 ∈ {1, · · · , 𝑛𝑐 } and have:

𝜕 log 𝑝 (𝑧1𝑡 |𝑧1𝑡−1)
𝜕𝑧𝑐

𝑡,𝑖

=

𝑛𝑐∑︁
𝑗=1

𝜕 log𝑝 (𝑧𝑐
𝑡,𝑗

|𝑧1
𝑡−1)

𝜕𝑧𝑐
𝑡,𝑖

+
𝑛∑︁

𝑗=𝑛𝑐+1

𝜕 log𝑝 (𝑧𝑠1
𝑡, 𝑗

|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧𝑐
𝑡,𝑖

=

𝑛𝑐∑︁
𝑗=1

𝜕 log𝑝 (𝑧𝑐
𝑡,𝑗

|𝑧1
𝑡−1)

𝜕𝑧𝑐
𝑡, 𝑗

·
𝜕𝑧𝑐

𝑡, 𝑗

𝜕𝑧𝑐
𝑡,𝑖

+
𝑛∑︁

𝑗=𝑛𝑐+1

𝜕 log 𝑝 (𝑧𝑠1
𝑡, 𝑗

|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠1
𝑡, 𝑗

·
𝜕𝑧

𝑠1
𝑡, 𝑗

𝜕𝑧𝑐
𝑡,𝑖

−
𝜕 |Jℎ−1 |
𝜕𝑧𝑐

𝑡,𝑖

.

(33)

Then we further take the second-order derivative w.r.t 𝑧
𝑠1
𝑡−1,𝑘 , where

𝑘 ∈ {𝑛𝑐 + 1, · · · , 𝑛} and we have:

𝑛𝑐∑︁
𝑗=1

𝜕2 log 𝑝 (𝑧𝑐
𝑡, 𝑗

|𝑧1
𝑡−1)

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧

𝑠1
𝑡−1,𝑘

+
𝑛∑︁

𝑗=𝑛𝑐+1

𝜕2 log 𝑝 (𝑧𝑠1
𝑡, 𝑗

|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧

𝑠1
𝑡−1,𝑘

=

𝑛𝑐∑︁
𝑗=1

𝜕2 log 𝑝 (𝑧𝑐
𝑡, 𝑗

|𝑧1
𝑡−1)

𝜕𝑧𝑐
𝑡,𝑗
𝜕𝑧

𝑠1
𝑡−1,𝑘

·
𝜕𝑧𝑐

𝑡,𝑗

𝜕𝑧𝑐
𝑡,𝑖

+
𝑛∑︁

𝑗=𝑛𝑐+1

𝜕2 log𝑝 (𝑧𝑠1
𝑡, 𝑗

|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠1
𝑡, 𝑗
𝜕𝑧

𝑠1
𝑡−1,𝑘

·
𝜕𝑧

𝑠1
𝑡, 𝑗

𝜕𝑧𝑐
𝑡,𝑖

−
𝜕2 |Jℎ−1 |

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧

𝑠1
𝑡−1,𝑘

.

(34)

Since 𝑧𝑐
𝑡, 𝑗

does not change across different values of 𝑧
𝑠1
𝑡−1,𝑘 , then

𝜕2 log𝑝 (𝑧𝑐
𝑡,𝑗

|𝑧1𝑡−1 )
𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧
𝑠
1

𝑡−1,𝑘
= 0. Since

𝜕2 log𝑝 (𝑧𝑠1
𝑡,𝑗

|𝑧1𝑡−1,𝑧𝑐𝑡 )
𝜕𝑧𝑐
𝑡,𝑖

does not change

across different values of 𝑧
𝑠1
𝑡−1,𝑘 , then

𝜕2 log𝑝 (𝑧𝑠1
𝑡,𝑗

|𝑧1𝑡−1,𝑧𝑐𝑡 )
𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧
𝑠
1

𝑡−1,𝑘
= 0. More-

over, since

𝜕2 log𝑝 (𝑧𝑐
𝑡,𝑗

|𝑧1𝑡−1 )
𝜕𝑧𝑐
𝑡,𝑗

𝜕𝑧
𝑠
1

𝑡−1,𝑘
and

𝜕2 |J
ℎ−1 |

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧
𝑠
1

𝑡−1,𝑘
= 0, Equation (34) can

be further rewritten as:

𝑛∑︁
𝑗=𝑛𝑐+1

𝜕2 log𝑝 (𝑧𝑠1
𝑡, 𝑗

|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠1
𝑡, 𝑗
𝜕𝑧

𝑠1
𝑡−1,𝑘

·
𝜕𝑧

𝑠1
𝑡, 𝑗

𝜕𝑧𝑐
𝑡,𝑖

= 0. (35)

By leveraging the linear independence assumption, the linear sys-

tem denoted by Equation (35) has the only solution

𝜕𝑧
𝑠
1

𝑡,𝑗

𝜕𝑧𝑐
𝑡,𝑖

= 0. As ℎ1

is smooth, its Jacobian can written as:

Jℎ1

=


A :=

𝜕𝑧𝑐𝑡
𝜕𝑧𝑐𝑡

B :=
𝜕𝑧𝑐𝑡

𝜕𝑧
𝑠
1

𝑡

= 0

C :=
𝜕𝑧
𝑠
1

𝑡

𝜕𝑧𝑐𝑡
= 0 D :=

𝜕𝑧
𝑠
1

𝑡

𝜕𝑧
𝑠
1

𝑡

.

 (36)

Therefore, 𝑧
𝑠1
𝑡 is subspace identifiable. Similarly,we can prove that

𝑧
𝑠𝑚
𝑡 is subspace identifiable. □

A.2 Proof of Component-wise Identification
Corollary 1.1. (Component-wise Identification of the

Modality-shared and Modality-specific Latent Variables) Sup-
pose that the observed data from different modalities is generated
following the data generation process in Figure 2, and we further
make the following assumptions:
• A1 (Smooth and Positive Density:) The probability density of latent
variables is smooth and positive, i.e., 𝑝 (𝑧𝑡 |𝑧𝑡−1) > 0 overZ𝑡 and
Z𝑡−1.

• A2 (Conditional Independence:) Conditioned on 𝑧𝑡−1, each 𝑧𝑐
𝑡,𝑖

is
independent of 𝑧𝑐

𝑡, 𝑗
for 𝑖, 𝑗 ∈ {1, · · · , 𝑛𝑐 }, 𝑖 ≠ 𝑗 . And conditioned

on 𝑧𝑡−1 and 𝑧𝑐𝑡 , each 𝑧
𝑠𝑚
𝑡,𝑖

is independent of 𝑧𝑠𝑚
𝑡, 𝑗

, for 𝑖, 𝑗 ∈ {𝑛𝑐 +
1, · · · , 𝑛}, 𝑖 ≠ 𝑗 .

• A3 (Linear Independence:) For any 𝑧𝑡 ∈ Z𝑡 , there exist 2𝑛+1 values
of 𝑧𝑚

𝑡−1,𝑘 , 𝑘 = 1, · · · , 𝑛, such that these vectors 𝒗𝑡,𝑙 are linearly
independent, where 𝒗𝑡,𝑙 are defined as follows:

𝒗𝑡,𝑙 =
( 𝜕3 log𝑝 (𝑧𝑐

𝑡,𝑙
|𝑧𝑚
𝑡−1 )

𝜕2𝑧𝑐
𝑡,𝑙
𝜕𝑧𝑚
𝑡−1,1

, · · · ,
𝜕3 log𝑝 (𝑧𝑐

𝑡,𝑙
|𝑧𝑚
𝑡−1 )

𝜕2𝑧𝑐
𝑡,𝑙
𝜕𝑧𝑚
𝑡−1,𝑛

,

𝜕2 log𝑝 (𝑧𝑐
𝑡,𝑙

|𝑧𝑚
𝑡−1 )

𝜕𝑧𝑐
𝑡,𝑙
𝜕𝑧𝑚
𝑡−1,1

, · · · ,
𝜕2 log𝑝 (𝑧𝑐

𝑡,𝑙
|𝑧𝑚
𝑡−1 )

𝜕𝑧𝑐
𝑡,𝑙
𝜕𝑧𝑚
𝑡−1,𝑛

,

𝜕3 log𝑝 (𝑧𝑠𝑚
𝑡,𝑙

|𝑧𝑚
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕2𝑧
𝑠𝑚
𝑡,𝑙

𝜕𝑧𝑚
𝑡−1,1

, · · · ,
𝜕3 log𝑝 (𝑧𝑠𝑚

𝑡,𝑙
|𝑧𝑚
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕2𝑧
𝑠𝑚
𝑡,𝑙

𝜕𝑧𝑚
𝑡−1,𝑛

,

𝜕2 log𝑝 (𝑧𝑠𝑚
𝑡,𝑙

|𝑧𝑚
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠𝑚
𝑡,𝑙

𝜕𝑧𝑚
𝑡−1,1

, · · · ,
𝜕2 log𝑝 (𝑧𝑠𝑚

𝑡,𝑙
|𝑧𝑚
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠𝑚
𝑡,𝑙

𝜕𝑧𝑚
𝑡−1,𝑛

)
(37)

Then if 𝑔1 : Z𝑐
𝑡 × Z𝑠1

𝑡 → X𝑠1
𝑡 and 𝑔2 : Z𝑐

𝑡 × Z𝑠2
𝑡 → X𝑠2

𝑡 assume
the generating process of the true model (𝑔1, 𝑔2) and match the joint
distribution 𝑝 (𝑥𝑠1𝑡 , 𝑥

𝑠2
𝑡 ) of each time step then 𝑧𝑐𝑡 is component-wise

identifiable.

Proof. Then we let 𝑧1𝑡 = {𝑧𝑐𝑡 , 𝑧
𝑠1
𝑡 } and 𝑧1𝑡 = {𝑧𝑐𝑡 , 𝑧

𝑠1
𝑡 }. According

to Equation (2), we have 𝑧𝑡 = ℎ1 (𝑧𝑡 ), where ℎ1 := 𝑔1
−1 ◦ 𝑔1 is

an invertible function. Sequentially, it is straightforward to see

that if the components of 𝑧
𝑠1
𝑡 are mutually independent conditional

on 𝑧
𝑠1
𝑡−1 and 𝑧𝑐𝑡 , the components of 𝑧𝑐𝑡 are mutually independent

conditional on 𝑧𝑐
𝑡−1, then for any 𝑖 ≠ 𝑗 , we have:

𝜕2 log 𝑝 (𝑧𝑠1𝑡 |𝑧𝑠1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠1
𝑡,𝑖
𝜕𝑧

𝑠1
𝑡, 𝑗

= 0,
𝜕2 log 𝑝 (𝑧𝑐𝑡 |𝑧𝑐𝑡−1)

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐

𝑡, 𝑗

= 0, (38)
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by assuming that the second-order derivative exists. The Jacobian

matrix of the mapping from (𝑥𝑠1
𝑡−1, 𝑧

1

𝑡 ) to (𝑥𝑠1
𝑡−1, 𝑧

1

𝑡 ) is
[
I 0

∗ 𝐻
𝑠1
𝑡

]
,

where 𝐻
𝑠1
𝑡 denotes the absolute value of the determinant of this

Jacobian matrix is |𝐻𝑠1
𝑡 |. Therefore, 𝑝 (𝑧1𝑡 , 𝑥

𝑠1
𝑡−1) · |𝐻

𝑠1
𝑡 | = 𝑝 (𝑧1𝑡 , 𝑥

𝑠1
𝑡−1).

Dividing both sides of this equation by 𝑝 (𝑥𝑠1
𝑡−1) gives

𝑝 (𝑧1𝑡 |𝑥
𝑠1
𝑡−1) · |𝐻

𝑠1
𝑡 | = 𝑝 (𝑧1𝑡 |𝑥

𝑠1
𝑡−1). (39)

Since 𝑝 (𝑧1𝑡 |𝑧1𝑡−1) = 𝑝 (𝑧1𝑡 |𝑔1 (𝑧1𝑡−1)) = 𝑝 (𝑧1𝑡 |𝑥
𝑠1
𝑡−1) and similarly

𝑝 (𝑧1𝑡 |𝑧1𝑡−1) = 𝑝 (𝑧1𝑡 |𝑥
𝑠1
𝑡−1), so we further have:

log𝑝 (𝑧1𝑡 |𝑧1𝑡−1) = log𝑝 (𝑧1𝑡 |𝑧1𝑡−1) − log |𝐻𝑠1
𝑡 |. (40)

According to Equation (40) , we take the first-order derivative with

𝑧𝑐
𝑡,𝑖
, where 𝑖 ∈ {1, · · · , 𝑛𝑐 } and have:

𝜕 log𝑝 (𝑧1𝑡 |𝑧1𝑡−1)
𝜕𝑧𝑐

𝑡,𝑖

=

𝑛𝑐∑︁
𝑙=1

𝜕 log 𝑝 (𝑧𝑐
𝑡,𝑙
|𝑧1
𝑡−1)

𝜕𝑧𝑐
𝑡,𝑖

+
𝑛∑︁

𝑙=𝑛𝑐+1

𝜕 log 𝑝 (𝑧𝑠1
𝑡,𝑙
|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧𝑐
𝑡,𝑖

=

𝑛𝑐∑︁
𝑙=1

𝜕 log 𝑝 (𝑧𝑐
𝑡,𝑙
|𝑧1
𝑡−1)

𝜕𝑧𝑐
𝑡,𝑙

·
𝜕𝑧𝑐

𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖

+
𝑛∑︁

𝑙=𝑛𝑐+1

𝜕 log𝑝 (𝑧𝑠1
𝑡,𝑙
|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠1
𝑡,𝑙

·
𝜕𝑧

𝑠1
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖

−
𝜕 log |𝐻𝑠1

𝑡 |
𝜕𝑧𝑐

𝑡,𝑖

.

(41)

Then we further take the second-order derivative w.r.t 𝑧𝑐
𝑡,𝑗
, where

𝑗 ∈ {1, · · · , 𝑛𝑐 } and we have:

𝑛𝑐∑︁
𝑙=1

𝜕2 log 𝑝 (𝑧𝑐
𝑡,𝑙
|𝑧1
𝑡−1)

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐

𝑡,𝑗

+
𝑛∑︁

𝑙=𝑛𝑐+1

𝜕2 log 𝑝 (𝑧𝑠1
𝑡,𝑙
|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐

𝑡,𝑗

=

𝑛𝑐∑︁
𝑙=1

𝜕2 log 𝑝 (𝑧𝑐
𝑡,𝑙
|𝑧1
𝑡−1)

𝜕2𝑧𝑐
𝑡,𝑙

·
𝜕𝑧𝑐

𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑗

·
𝜕𝑧𝑐

𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖

+
𝑛𝑐∑︁
𝑙=1

𝜕 log𝑝 (𝑧𝑐
𝑡,𝑙
|𝑧1
𝑡−1)

𝜕𝑧𝑐
𝑡,𝑙

·
𝜕2𝑧𝑐

𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐

𝑡, 𝑗

+
𝑛∑︁

𝑙=𝑛𝑐+1

𝜕2 log𝑝 (𝑧𝑠1
𝑡,𝑙
|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕2𝑧
𝑠1
𝑡,𝑙

·
𝜕𝑧

𝑠1
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑗

·
𝜕𝑧

𝑠1
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖

+
𝑛∑︁

𝑙=𝑛𝑐+1

𝜕 log𝑝 (𝑧𝑠1
𝑡,𝑙
|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠1
𝑡,𝑙

·
𝜕2𝑧

𝑠1
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐

𝑡,𝑗

−
𝜕2 log |𝐻𝑠1

𝑡 |
𝜕𝑧𝑐

𝑡,𝑖
𝜕𝑧𝑐

𝑡, 𝑗

.

(42)

Sequentially, for 𝑘 = 1, · · · , 𝑛𝑐 , and each value 𝑧𝑐
𝑡−1,𝑘 , the third-

order derivative w.r.t. 𝑣𝑐
𝑡−1,𝑘 , and we have:

𝑛𝑐∑︁
𝑙=1

𝜕3 log 𝑝 (𝑧𝑐
𝑡,𝑙
|𝑧1
𝑡−1)

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐

𝑡, 𝑗
𝜕𝑧𝑐

𝑡−1,𝑘
+

𝑛∑︁
𝑙=𝑛𝑐+1

𝜕3 log 𝑝 (𝑧𝑠1
𝑡,𝑙
|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐

𝑡, 𝑗
𝜕𝑧𝑐

𝑡−1,𝑘

=

𝑛𝑐∑︁
𝑙=1

𝜕3 log 𝑝 (𝑧𝑐
𝑡,𝑙
|𝑧1
𝑡−1)

𝜕2𝑧𝑐
𝑡,𝑙
𝜕𝑧𝑐

𝑡−1,𝑘
·
𝜕𝑧𝑐

𝑡,𝑙

𝜕𝑧𝑐
𝑡, 𝑗

·
𝜕𝑧𝑐

𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖

+
𝑛𝑐∑︁
𝑙=1

𝜕2 log 𝑝 (𝑧𝑐
𝑡,𝑙
|𝑧1
𝑡−1)

𝜕𝑧𝑐
𝑡,𝑙
𝜕𝑧𝑐

𝑡−1,𝑘
·

𝜕2𝑧𝑐
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐

𝑡,𝑗

+
𝑛∑︁

𝑙=𝑛𝑐+1

𝜕3 log 𝑝 (𝑧𝑠1
𝑡,𝑙
|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕2𝑧
𝑠1
𝑡,𝑙
𝜕𝑧𝑐

𝑡−1,𝑘
·
𝜕𝑧

𝑠1
𝑡,𝑙

𝜕𝑧𝑐
𝑡, 𝑗

·
𝜕𝑧

𝑠1
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖

+
𝑛∑︁

𝑙=𝑛𝑐+1

𝜕2 log 𝑝 (𝑧𝑠1
𝑡,𝑙
|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠1
𝑡,𝑙
𝜕𝑧𝑐

𝑡−1,𝑘
·

𝜕2𝑧
𝑠1
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐

𝑡, 𝑗

−
𝜕3 log |𝐻𝑠1

𝑡 |
𝜕𝑧𝑐

𝑡,𝑖
𝜕𝑧𝑐

𝑡,𝑗
𝜕𝑧𝑐

𝑡−1,𝑘
.

(43)

Since according to Equation(38),then

𝜕3 log𝑝 (𝑧𝑐
𝑡,𝑙
|𝑧1𝑡−1 )

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐
𝑡,𝑗

𝜕𝑧𝑐
𝑡−1,𝑘

= 0. Since

𝑧
𝑠1
𝑡,𝑙

does not change across different values of 𝑧𝑐
𝑡−1,𝑘 ,

then

𝜕3 log𝑝 (𝑧𝑠1
𝑡,𝑙
|𝑧1𝑡−1,𝑧𝑐𝑡 )

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐
𝑡,𝑗

𝜕𝑧𝑐
𝑡−1,𝑘

= 0. Equation (43) can be further rewritten

as:

𝑛𝑐∑︁
𝑙=1

𝜕3 log 𝑝 (𝑧𝑐
𝑡,𝑙
|𝑧1
𝑡−1)

𝜕2𝑧𝑐
𝑡,𝑙
𝜕𝑧𝑐

𝑡−1,𝑘
·
𝜕𝑧𝑐

𝑡,𝑙

𝜕𝑧𝑐
𝑡, 𝑗

·
𝜕𝑧𝑐

𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖

+
𝑛𝑐∑︁
𝑙=1

𝜕2 log𝑝 (𝑧𝑐
𝑡,𝑙
|𝑧1
𝑡−1)

𝜕𝑧𝑐
𝑡,𝑙
𝜕𝑧𝑐

𝑡−1,𝑘
·

𝜕2𝑧𝑐
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐

𝑡,𝑗

+
𝑛∑︁

𝑙=𝑛𝑐+1

𝜕3 log 𝑝 (𝑧𝑠1
𝑡,𝑙
|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕2𝑧
𝑠1
𝑡,𝑙
𝜕𝑧𝑐

𝑡−1,𝑘
·
𝜕𝑧

𝑠1
𝑡,𝑙

𝜕𝑧𝑐
𝑡, 𝑗

·
𝜕𝑧

𝑠1
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖

+
𝑛∑︁

𝑙=𝑛𝑐+1

𝜕2 log 𝑝 (𝑧𝑠1
𝑡,𝑙
|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠1
𝑡,𝑙
𝜕𝑧𝑐

𝑡−1,𝑘
·

𝜕2𝑧
𝑠1
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐

𝑡, 𝑗

= 0.

(44)

wherewe havemade use of the fact that entries of𝐻
𝑠1
𝑡 do not depend

on 𝑧𝑐
𝑡−1,𝑙 . Then by leveraging the linear independence assumption,

the linear system denoted by Equation (44) has the only solution

𝜕𝑧𝑐
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖
·
𝜕𝑧𝑐
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑗

= 0 and

𝜕2𝑧𝑐
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐
𝑡,𝑗

= 0 and

𝜕𝑧
𝑠
1

𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖
·
𝜕𝑧
𝑠
1

𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑗

= 0 and

𝜕2𝑧
𝑠
1

𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖
𝜕𝑧𝑐
𝑡,𝑗

= 0.

According to Equation (36),we have:

Jℎ1

=


A :=

𝜕𝑧𝑐𝑡
𝜕𝑧𝑐𝑡

B :=
𝜕𝑧𝑐𝑡

𝜕𝑧
𝑠
1

𝑡

= 0

C :=
𝜕𝑧
𝑠
1

𝑡

𝜕𝑧𝑐𝑡
= 0 D :=

𝜕𝑧
𝑠
1

𝑡

𝜕𝑧
𝑠
1

𝑡

 . (45)

Since ℎ1 is invertible and for 𝑖, 𝑗 ∈ {1, · · · , 𝑛𝑐 },
𝜕𝑧𝑐
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖

·
𝜕𝑧𝑐
𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑗

= 0 and

𝜕𝑧
𝑠
1

𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑖

·
𝜕𝑧
𝑠
1

𝑡,𝑙

𝜕𝑧𝑐
𝑡,𝑗

= 0 implies that for each 𝑘 = 1, · · · , 𝑛𝑐 , there is exactly
one non-zero component in each column of matricesA andC. Since
we have proved that 𝑧𝑐𝑡 = ℎ𝑐 (𝑧𝑐𝑡 ) and C = 0, there is exactly one

non-zero component in each column of matrices A. Therefore, 𝑧𝑐𝑡
is component-wise identifiable.
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1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682
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1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Based on Equation(40), we further let 𝑖, 𝑗, 𝑘 ∈ {𝑛𝑐 + 1, · · · , 𝑛},
and its three-order derivation w.r.t. 𝑧

𝑠1
𝑡,𝑖
, 𝑧

𝑠1
𝑡, 𝑗
, 𝑧

𝑠1
𝑡−1,𝑙 can be written as

𝑛𝑐∑︁
𝑙=1

𝜕3 log 𝑝 (𝑧𝑐
𝑡,𝑙
|𝑧1
𝑡−1)

𝜕2𝑧𝑐
𝑡,𝑙
𝜕𝑧

𝑠1
𝑡−1,𝑘

·
𝜕𝑧𝑐

𝑡,𝑙

𝜕𝑧
𝑠1
𝑡, 𝑗

·
𝜕𝑧𝑐

𝑡,𝑙

𝜕𝑧
𝑠1
𝑡,𝑖

+
𝑛𝑐∑︁
𝑙=1

𝜕2 log 𝑝 (𝑧𝑐
𝑡,𝑙
|𝑧1
𝑡−1)

𝜕𝑧𝑐
𝑡,𝑙
𝜕𝑧

𝑠1
𝑡−1,𝑘

·
𝜕2𝑧𝑐

𝑡,𝑙

𝜕𝑧
𝑠1
𝑡,𝑖
𝜕𝑧

𝑠1
𝑡, 𝑗

+
𝑛∑︁

𝑙=𝑛𝑐+1

𝜕3 log 𝑝 (𝑧𝑠1
𝑡,𝑙
|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕2𝑧
𝑠1
𝑡,𝑙
𝜕𝑧

𝑠1
𝑡−1,𝑘

·
𝜕𝑧

𝑠1
𝑡,𝑙

𝜕𝑧
𝑠1
𝑡, 𝑗

·
𝜕𝑧

𝑠1
𝑡,𝑙

𝜕𝑧
𝑠1
𝑡,𝑖

+
𝑛∑︁

𝑙=𝑛𝑐+1

𝜕2 log 𝑝 (𝑧𝑠1
𝑡,𝑙
|𝑧1
𝑡−1, 𝑧

𝑐
𝑡 )

𝜕𝑧
𝑠1
𝑡,𝑙
𝜕𝑧

𝑠1
𝑡−1,𝑘

·
𝜕2𝑧

𝑠1
𝑡,𝑙

𝜕𝑧
𝑠1
𝑡,𝑖
𝜕𝑧

𝑠1
𝑡, 𝑗

= 0.

(46)

By using the linear independence assumption, the linear system

denoted by Equation (44) has the only solution

𝜕𝑧𝑐
𝑡,𝑙

𝜕𝑧
𝑠
1

𝑡,𝑖

·
𝜕𝑧𝑐
𝑡,𝑙

𝜕𝑧
𝑠
1

𝑡,𝑗

= 0 and

𝜕2𝑧𝑐
𝑡,𝑙

𝜕𝑧
𝑠
1

𝑡,𝑖
𝜕𝑧
𝑠
1

𝑡,𝑗

= 0 and

𝜕𝑧
𝑠
1

𝑡,𝑙

𝜕𝑧
𝑠
1

𝑡,𝑖

·
𝜕𝑧
𝑠
1

𝑡,𝑙

𝜕𝑧
𝑠
1

𝑡,𝑗

= 0 and

𝜕2𝑧
𝑠
1

𝑡,𝑙

𝜕𝑧
𝑠
1

𝑡,𝑖
𝜕𝑧
𝑠
1

𝑡,𝑗

= 0, meaning that

there is exactly one non-zero component in each row of B and D.
Since B = 0 ,then 𝑧

𝑠1
𝑡 is component-wise identifiable. Similarly, we

can prove that 𝑧
𝑠𝑚
𝑡 is component-wise identifiable.

□

B Evidence Lower Bound
In this subsection, we show the evidence lower bound. We first fac-

torize the conditional distribution according to the Bayes theorem.

ln𝑝 (𝑥𝑠1
1:𝑇
,𝑥
𝑠
2

1:𝑇
) = ln

𝑝 (𝑥𝑠1
1:𝑇
,𝑥
𝑠
2

1:𝑇
,𝑧
𝑠
1

1:𝑇
,𝑧
𝑠
2

1:𝑇
,𝑧𝑐
1:𝑇

)

𝑝 (𝑧𝑠1
1:𝑇
,𝑧
𝑠
2

1:𝑇
,𝑧𝑐
1:𝑇

|𝑥𝑠1
1:𝑇
,𝑥
𝑠
2

1:𝑇
)

= ln

𝑝 (𝑥𝑠1
1:𝑇

|𝑧𝑠1
1:𝑇
,𝑧𝑐
1:𝑇

)𝑝 (𝑥𝑠2
1:𝑇

|𝑧𝑠2
1:𝑇
,𝑧𝑐
1:𝑇

)𝑝 (𝑧𝑠1
1:𝑇

|𝑧𝑐
1:𝑇

)𝑝 (𝑧𝑠2
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C Prior Estimation
Shared Prior Estimation:We first consider the prior of ln𝑝 (𝑧𝑐

1:𝑇
).

We consider the time lag as 𝐿 = 1,we devise a transformation

𝜎𝑐 := {𝑧𝑐
𝑡−1, 𝑧

𝑐
𝑡 } → {𝑧𝑐

𝑡−1, 𝜖
𝑐
𝑡 }. Then we write this latent process as

a transformation map 𝜎 (note that we overload the notation 𝜎 for

transition functions and for the transformation map):[
𝑧𝑐
𝑡−1
𝑧𝑐𝑡

]
= 𝜎

( [
𝑧𝑐
𝑡−1
𝜖𝑐𝑡

] )
.

By applying the change of variables formula to the map f , we can
evaluate the joint distribution of the latent variables 𝑝 (𝑧𝑐

𝑡−1𝑧
𝑐
𝑡 ) as

𝑝 (𝑧𝑐𝑡−1, 𝑧𝑐𝑡 ) =
𝑝 (𝑧𝑐

𝑡−1𝜖
𝑐
𝑡 )

|det J𝜎 |
, (48)

where 𝜎𝜎 is the Jacobian matrix of the map f , which is naturally a

low-triangular matrix:

J𝜎 =

[
1 0

𝜕�̂�𝑐𝑡
𝜕�̂�𝑐
𝑡−1

�̂�𝑐𝑡
𝜖𝑐𝑡

]
.

Let {𝑟𝑐
𝑖
}𝑖=1,2,3,· · · be a set of learned inverse transition functions

that take the estimated latent causal variables, and output the noise

terms, i.e., 𝜖𝑡,𝑖 = 𝑟𝑐
𝑖
(𝑧𝑐
𝑡,𝑖
, 𝑧𝑐
𝑡−1). Then we design a transformation

A → B with low-triangular Jacobian as follows:

[𝑧𝑐𝑡−1, 𝑧𝑐𝑡 ]⊤︸        ︷︷        ︸
A

mapped to [𝑧𝑐𝑡−1, 𝜖𝑐𝑡 ]⊤︸        ︷︷        ︸
B

, with JA→B =


I 0

∗ diag

(
𝜕𝑟𝑐
𝑖

𝜕�̂�𝑐
𝑡−1,𝑖

) .
(49)

Similar to Equation (49), we can obtain the joint distribution of the

estimated dynamics subspace as:

log𝑝 (A) = log𝑝 (B) + log( |det(JA→B ) | ) . (50)

Finally, we have:

log𝑝 (𝑧𝑐𝑡 |𝑧𝑐𝑡−1 ) = log𝑝 (𝜖𝑐𝑡 ) +
𝑛∑︁

𝑖=𝑛𝑑+1
log |

𝜕𝑟𝑐
𝑖

𝜕𝑧𝑐
𝑡−1,𝑖

| . (51)

As a result, the prior distribution shared latent variables can be

estimated as follows:

𝑝 (𝑧𝑐
1:𝑇 ) = 𝑝 (𝑧𝑐

1
)
𝑇∏
𝜏=2

©«
𝑛∑︁

𝑖=𝑛𝑑+1
log𝑝 (𝜖𝑐𝜏,𝑖 ) +

𝑛∑︁
𝑖=𝑛𝑑+1

log |
𝜕𝑟𝑐
𝑖

𝜕𝑧𝑐
𝜏−1,𝑖

|ª®¬ , (52)

where we assume 𝑝 (𝜖𝑐
𝜏,𝑖
) follows a standard Gaussian distribution.

As for the modality-specific prior estimation, we can obtain a

similar derivation, by considering the modality-shared prior as a

condition.

D Implementation Details
We summarize our network architecture below and describe it in

detail in Table 7. We also provide the training details in Table 8

and 9. Moreover, we provide a statistical summary of the evaluated

dataset in Table10.

E Experiment Details
E.1 Dataset Descriptions
In this paper, we consider the WIFI [104], and KETI [24] datasets.

Moreover, we further consider the humanmotion prediction datasets

likeMotion [82], HumanEva-I [87], H36M [34], UCIHAR [1], PAMAP2
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Table 7: Architecture details. BS: batch size, T: length of time series, LeakyReLU: Leaky Rectified Linear Unit, |𝑥𝑡 |: the dimension
of 𝑥𝑡 .

Configuration Description Output
1.𝜓𝑐 Modality-shared Encoder

Input:𝑥1:𝑇 Observed time series BS ×𝑡 × |𝑥𝑇 |
Augmentations Time-Domain Transpose BS ×2 ×𝑡 × |𝑥𝑇 |
CNN Block 150 neurons BS × 𝑡 ×150
CNN Block 150 neurons BS × 𝑡 ×150
Permute Matrix Transpose BS × 150 ×𝑡
GRU 300 neurons BS ×300
Split Transpose BS × 𝑡×𝑛𝑐
2.𝜓𝑠 Modality-private Encoder

Input:𝑥1:𝑇 Observed time series BS ×𝑡 × |𝑥𝑇 |
Augmentations Time-Domain Transpose BS ×2 ×𝑡 × |𝑥𝑇 |
CNN Block 150 neurons BS × 𝑡 ×150
CNN Block 150 neurons BS × 𝑡 ×150
Permute Matrix Transpose BS × 150 ×𝑡
GRU 300 neurons BS ×300
Split Transpose BS × 𝑡×𝑛𝑐
Dense 𝑛𝑠 neurons BS × 𝑡×𝑛𝑠
3.𝐹𝑥 Reconstruction Decoder

Input:𝑧𝑐
1:𝑇

, 𝑧𝑠
1:𝑇

Modality-share and Modality-privte Latent Variable BS× t ×𝑛𝑐 , BS× t×𝑛𝑠
Concat concatenation BS × t × (𝑛𝑐 + 𝑛𝑠 )
Dense x dimension neurons BS × t ×|𝑥𝑇 |
4.𝐹𝑦 Downstream task Predictor

Input:𝑧𝑐
1:𝑇

, 𝑧𝑠
1:𝑇

Modality-share and Modality-private Latent Variable BS ×𝑡 ×𝑛𝑐 ,BS×𝑡 ×𝑛𝑠
Concat concatenation BS ×𝑡 × (𝑛𝑠 + 𝑛𝑐 )
Dense x neurons,GELU BS ×𝑡 ×𝑥
Dense n neurons BS ×𝑡 ×𝑛
5.𝑟𝑐 Modality-share Prior Networks

Input:𝑧𝑐
1:𝑇

Latent Variables BS × (𝑛𝑐 + 1)
Dense 128 neurons,LeakyReLU (𝑛𝑐 + 1) × 128

Dense 128 neurons,LeakyReLU 128×128
Dense 128 neurons,LeakyReLU 128×128
Dense 1 neuron BS ×1

JacobianCompute Compute log ( abs(det (J))) BS

6.𝑟𝑠 Modality-private Prior Networks

Input:𝑧𝑠
1:𝑇

and 𝑧𝑐
1:𝑇

Latent Variables BS × (𝑛𝑐 + 𝑛𝑠 + 1)
Dense 128 neurons,LeakyReLU (𝑛𝑐 + 𝑛𝑠 + 1) × 128

Dense 128 neurons,LeakyReLU 128×128
Dense 128 neurons,LeakyReLU 128×128
Dense 1 neuron BS ×1

JacobianCompute Compute log (abs( det (J))) BS

Table 8: Supervised Training Congfigurations(We use LR for Learning Rate).

Dataset Motion DINAMO WIFI KETI HumanEVA H36M MIT-BIH UCIHAR HAC EPIC-Kitchens

Temperature 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Batch Size 32 64 32 64 64 64 64 64 64 64

Window Length 256 256 256 256 75 125 64 128 256 256

Supervised Optimizer AdawW AdawW AdawW AdawW AdawW AdawW AdawW AdawW AdawW AdawW

Supervised Max LR 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

Supervised Min LR 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6

Supervised Scheduler cosine cosine cosine cosine cosine cosine cosine cosine cosine cosine

[81], and RealWorld-HAR [89]which consider different positions of

the human body as different modalities. Moreover, we also consider

two healthcare datasets such as MIT-BIH [72] and D1NAMO [17],

which are related to arrhythmia and noninvasive type 1 diabetes.

Moreover, we have further considered audio and video datasets,

such as HAC[15] and EPIC-Kitchens[9], which include three modal-

ities: video, audio, and pre-computed optical flow.

Motion [82] dataset is a subset of the OPPORTUNITY Activity

Recognition Dataset [82]. Following the experimental setting of a

recent device-based HAR study [36], we consider 5 sensors worn at

5 different locations on the human body: left lower arm, left upper

arm, right lower arm, right upper arm and the back. Each device

contains an accelerometer, a gyroscope, and a magnetometer, and

all three sensors generate three-axis readings. We focus on a 4-class
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Table 9: Self-Supervised Training Congfigurations(We use LR for Learning Rate).

Dataset UCIHAR RealWorld-HAR PAMAP2 MIT-BIH D1NAMO KETI

Temperature 0.5 0.5 0.5 0.5 0.5 0.5

Batch Size 64 64 64 64 64 64

Window Length 128 150 512 64 256 256

Supervised Optimizer AdawW – – AdawW AdawW AdawW

Supervised Max LR 1e-4 – – 1e-4 1e-4 1e-4

Supervised Min LR 1e-6 – – 1e-6 1e-6 1e-6

Supervised Scheduler cosine – – cosine cosine cosine

Pretrain Optimizer AdawW AdawW AdawW AdawW AdawW AdawW

Pretrain Max LR 1e-3 1e-3 1e-3 1e-4 1e-4 1e-4

Pretrain Min LR 1e-7 1e-7 1e-7 1e-7 1e-7 1e-7

Pretrain Scheduler cosine cosine cosine cosine cosine cosine

Pretrain Weight Decay 0.5 0.5 0.5 0.5 0.5 0.5

Finetune Optimizer AdawW – – – – –

Finetune Start LR 1e-3 – – – – –

Finetune Scheduler cosine – – – – –

Finetune LR Decay 0.2 – – – – –

Finetune LR Period 50 – – – – –

Finetune Epochs 200 – – – – –

Table 10: Statistical Summaries of Evaluated Datasets.

Dataset Modalities Windows Classes

Motion 5x(Acc,Gyro,Mag) (back, left L-arm, right U-arm, left/right shoe) 256 4

D1NAMO ECG(lead II, lead V1) 256 2

WIFI Wireless x3 256 7

KETI 4 sensors (monitoring CO2, temperature, humidity and light intensity) 256 2

HumanEVA Skeleton x15 75 5

H36M Skeleton x17 125 15

UCIHAR Body ACC,Total ACC, Total Gyro 128 6

MIT-BIH Heart Rate, Breathing Rate, Avg Acceleration, Peak Acceleration 64 5

Relative-World acc, gyro, mag 150 8

PAMAP2 acc, gyro 512 18

EPIC-Kitchens video, audio, flow 256 8

HAC video, audio, flow 256 7

� � �

Figure 6: Experiments results of different values of 𝛼 ,𝛽 , 𝛾 on Motion dataset.

prediction consisting of high-level locomotion activities (sit, stand,

walk and lie).

D1NAMO [17] is acquired on 20 healthy subjects and 9 patients

with type-1 diabetes. The acquisition has been made in real-life

conditions with the Zephyr BioHarness 3 wearable device. The

dataset consists of ECG, breathing, and accelerometer signals, as

well as glucose measurements and annotated food pictures.

WIFI [104] dataset contains the amplitude and phase of wireless

signals sent by three antennas. Each antenna transmits at 30 sub-

carriers, and the receiver base sampling frequency is 1000 Hz. The

dataset contains 7 classes of activity, including lying down, falling,

picking up, running, sitting down, standing up and walking. We

also use a sliding window of 256 timestamps to get the segmented

examples.

KETI [24]dataset was collected from 51 rooms in a large uni-

versity office building. Each room is instrumented with 4 sensors

monitoring CO2, temperature, humidity and light intensity, with

occupancy monitored by an additional PIR sensor in the room.

Readings are recorded every 10 seconds, and the dataset contains
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one week worth of data. In this experiment, we target at human

occupation prediction using the readings of these sensors.

HumanEVA-I [87] comprises 3 subjects each performing 5 ac-

tions. We apply the original frame rate (60 Hz) and a 15-joint skele-

ton removing the root joint to build human motions.

H36M [34] consists of 7 subjects (S1, S5, S6, S7, S8 ,S9 and S11)

performing 15 different motions. We apply the original frame rate

(50 Hz) and a 17-joint skeleton removing the root joint to build

human motions.

UCIHAR [1] dataset contains recordings from 30 volunteers

who carried out 6 classes of activities, including walking, walking

upstairs, walking downstairs, sitting, standing, and lying. Activities

are recorded by a smartphone device mounted on the volunteer’s

waist.

MIT-BIH [72] contains 48 records obtained from 47 subjects.

Each subject is represented by one ECG recording using two leads:

lead II (MLII) and lead V1. The sampling frequency of the signal

is 360 Hz. The upper signal is lead II (MLII) and the lower signal

is lead V1, obtained by placing the electrodes on the chest. In the

upper signal, the normal QRS complexes are usually prominent.

RealWorld-HAR [89] is a public dataset using an accelerometer,

gyroscope, magnetometer, and light signals from the forearm, thigh,

head, upper arm, waist, chest, and shin to recognize eight common

human activities performed by 15 subjects, including climbing stairs

down and up, jumping, lying, standing, sitting, running/jogging,

and walking.In our experiments, we only used the data collected

from the "waist" sensor, including the accelerometer (ACC) and

gyroscope. The sampling rate for all selected sensors was set at

100Hz.

PAMAP2 [81] contains data on 18 different classes of physical

activities performed by 9 subjects wearing 3 inertial measurement

units and a heart rate monitor. In this set of experiments, we only

used 3 accelerometer sensor data and 18 activities. Only data col-

lected from the "wrist" is used in our experiment

HAC [15] contains two multi-modality datasets named Human

and Cartoon, which contain three modalities: video, audio, and

pre-computed optical flow. The human and cartoon datasets con-

tain seven actions (’sleeping’, ’watching TV’, ’eating’, ’drinking’,

’swimming’, ’running’, and ’opening door’), which are a subset of

the HAC dataset.

EPIC-Kitchens [9] contain multi-modality datasets D2, which

contain three modalities: video, audio, and pre-computed optical

flow. The D2 dataset contains eight actions (’put ’,’ take ’,’ open ’,’

close ’,’ wash ’,’ cut ’,’ mix ’, and’ pour ’) recorded in three different

kitchens, and is a subset of the EPIC Kitchens dataset.

E.2 More Experiment Results
E.2.1 Sensitivity Analysis. Figure 6 provides the results of sensitiv-
ity analysis.

F Limitation
Although our method can learn disentangled representation for

multi-modal time series data with identifiability guarantees, it re-

quires the assumption that the mixing function is invertible. How-

ever, this assumption might be hard to meet in real-world scenarios.

Therefore, how to leverage the temporal context information to

address this challenge will be an interesting direction.
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