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Abstract

Advancements in Large Language Models001
(LLMs) have extended their input context002
length, yet they still struggle with retrieval003
and reasoning in long-context inputs. Exist-004
ing methods propose to utilize the prompt005
strategy and Retrieval-Augmented Generation006
(RAG) to alleviate this limitation. However,007
they still face challenges in balancing retrieval008
precision and recall, impacting their efficacy009
in answering questions. To address this, we010
introduce CAFE, a two-stage coarse-to-fine011
method to enhance multi-document question-012
answering capacities. By gradually eliminating013
the negative impacts of background and dis-014
tracting documents, CAFE makes the responses015
more reliant on the evidence documents. Ini-016
tially, a coarse-grained filtering method lever-017
ages retrieval heads to identify and rank rele-018
vant documents. Then, a fine-grained steering019
method guides attention to the most relevant020
content. Experiments across benchmarks show021
that CAFE outperforms baselines, achieving an022
average SubEM improvement of up to 22.1%023
and 13.7% over SFT and RAG methods, re-024
spectively, across three different models.025

1 Introduction026

Researchers have undertaken various efforts to ex-027

tend the context length of Large Language Models028

(LLMs), ranging from advancements in model ar-029

chitectures (Yen et al., 2024; Munkhdalai et al.,030

2024) to optimizations in training methods (Fu031

et al., 2024b; An et al., 2024; Xiong et al., 2024).032

These developments have enabled some recently033

introduced LLMs to support relatively long con-034

text inputs (i.e., 128K context length for LLaMA-035

3.1 (Dubey et al., 2024) and Qwen-2.5 (Yang et al.,036

2024), and even 10M context length for Gem-037

ini (Reid et al., 2024)). However, recent studies038

indicate that LLMs exhibit limitations in retrieval039

and reasoning capability when processing the long040

context input (Liu et al., 2024; Lee et al., 2024;041
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Figure 1: LLMs’ performance on HotpotQA varies with
the number of input documents. Solid lines represent
performance with the gold document, while dashed lines
show performance as more documents are added.

Wang et al., 2024; Li et al., 2024c), which poses 042

significant challenges for their effective application 043

in downstream tasks, including book summariza- 044

tion (Bai et al., 2024a), multi-document question 045

answering (Zhang et al., 2024c), and code reposi- 046

tory understanding (Bai et al., 2024b). 047

In long-context reasoning scenarios, particularly 048

multi-document question answering tasks (Zhu 049

et al., 2024), the performance of LLMs degrades 050

significantly as context length increases, especially 051

when compared to using only the gold evidence 052

documents, as illustrated in Figure 1. To mitigate 053

this issue, existing studies often adopt identify-then- 054

reason approaches. One line of work leverages ex- 055

ternal retrieval models or prompts LLMs to extract 056

relevant information from long inputs (Agrawal 057

et al., 2024; Zhang et al., 2024b; Jiang et al., 2024). 058

However, these methods are typically constrained 059

by the limited capabilities of external retrievers 060

or the instruction-following capacity of LLMs, of- 061

ten resulting in low recall. Another line of work 062

enhances the retrieval capacity of specific atten- 063

tion heads (typically retrieval heads) through fine- 064

tuning, using them to locate gold evidence within 065
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long contexts. However, this approach often de-066

mands substantial training data and exhibits limited067

generalization to out-of-domain contexts.068

To better tackle multi-document question an-069

swering tasks, we draw inspiration from the human070

problem-solving process, which typically unfolds071

in three phases. (1) Identification: selecting a sub-072

set of relevant documents from the entire collection073

to form a manageable candidate set; (2) Focusing:074

further selecting and paying more attention to the075

information most helpful for answering the ques-076

tion from the candidate set; and (3) Reasoning:077

leveraging the hierarchical information gathered078

in the previous two phases to perform reasoning079

and derive the final answer. Inspired by this, we080

propose a three-phase framework that follows the081

identification–focusing–reasoning paradigm. We082

begin by empirically analyzing the effectiveness083

of different identification methods and the infor-084

mation flow across various segments within atten-085

tion modules. Our key observations are as follows.086

First, leveraging attention scores from specific re-087

trieval heads provides a strong and effective signal088

for identifying relevant documents. Second, mod-089

ifying the attention between the question and the090

evidence documents influences the model’s utiliza-091

tion of evidence documents in answering.092

According to the above motivation and obser-093

vations, we propose CAFE, a novel coarse-to-094

fine information-seeking method to enhance the095

multi-document question-answering capabilities of096

LLMs. Its core idea is to leverage the LLM’s inter-097

nal attention mechanisms to progressively identify098

and focus on question-relevant content in long con-099

texts. Specifically, before information-seeking, we100

pre-locate the retrieval heads for the two stages,101

respectively, on the validation set. Then, in the102

first stage, we implement a coarse-grained filtering103

approach to filter out background documents. We104

identify relevant documents assigned with high at-105

tention scores in each pre-detected retrieval head106

and further rerank these documents according to107

the summed scores from all retrieval heads. In108

the second stage, we guide the model using a fine-109

grained steering approach. We utilize another set of110

retrieval heads to further select relevant documents111

from these reranked documents, and employ atten-112

tion steering on the most relevant content to answer113

the final questions. In this way, we can guide the114

LLMs to gradually search for evidence documents115

in the long context input and utilize them to bet-116

ter answer the questions. Additionally, the whole117

method is training-free and applicable to a wide 118

range of downstream tasks. 119

We conduct extensive experiments to evaluate 120

the proposed CAFE method using various LLMs. 121

The results demonstrate that our method consis- 122

tently outperforms existing strong baselines across 123

five benchmarks and three LLMs (e.g., achieving 124

an 11.4% relative performance improvement com- 125

pared to the supervised fine-tuning method). 126

2 Related Work 127

Long-Context Utilization in Language Models. 128

Although extended the context length of LLMs suc- 129

cessfully (Dubey et al., 2024; Yang et al., 2024; 130

Dong et al., 2024), they still face significant chal- 131

lenges (e.g., long-term decay (Chen et al., 2024) 132

and lost-in-the-middle (Liu et al., 2024)) in uti- 133

lizing long contexts effectively for complex tasks. 134

To enhance the long-context utilization capacities, 135

attention-based methods leverage the property of 136

attention heads and positional encodings, enlarging 137

the attention scores of the key tokens over the long 138

inputs (Wu et al., 2024; Gema et al., 2024). Dif- 139

ferent from previous methods, our work employs 140

a training-free two-stage framework, which iden- 141

tifies relevant documents and guild the response 142

more dependent on these documents. 143

Retrieval Head in Attention Mechanisms. Re- 144

cent studies have revealed specialized attention 145

heads in LLMs that exhibit retrieval capabilities 146

for locating critical information within long con- 147

texts, namely, retrieval heads (Wu et al., 2024). In 148

these heads, high attention values will be assigned 149

to the tokens most relevant to the current token in 150

the long inputs, achieving in-context retrieval of 151

previous information. Recently, some work retains 152

the full attention on the retrieval heads and employs 153

KV Cache compression on other heads to acceler- 154

ate the calculation (Fu et al., 2024a; Tang et al., 155

2024; Xiao et al., 2024). Different from them, our 156

method utilizes retrieval heads as a retrieval system 157

to identify evidence documents. 158

Retrieval-Augmented Generation. Retrieval- 159

Augmented Generation (RAG) has been widely 160

adopted to address various NLP tasks. For multi- 161

document question-answering tasks, traditional 162

RAG methods utilize external dense or sparse re- 163

trieval models to compute the similarity of docu- 164

ments with the question (Robertson and Zaragoza, 165

2009; Karpukhin et al., 2020). Then, relevant docu- 166
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ments are retrieved as the input for models. Beyond167

leveraging external models to retrieve documents,168

several in-context retrieval methods have been pro-169

posed (Agrawal et al., 2024; Li et al., 2024a). These170

methods prompt the models to select the indices171

of relevant documents. Unlike existing RAG ap-172

proaches, our work leverages the model’s inherent173

retrieval capabilities to perform a coarse-to-fine lo-174

cation of evidence documents, effectively enhanc-175

ing its retrieval and reasoning abilities.176

3 Empirical Study177

When dealing with multiple documents, humans178

often follow an identification–focusing–reasoning179

paradigm. Inspired by this, we conduct empiri-180

cal studies to investigate an LLM-centric frame-181

work following this paradigm. Specifically, we182

analyze the effectiveness of various evidence selec-183

tion strategies for identifying relevant documents,184

as well as the impact of information flow across185

different segments within attention modules.186

3.1 Evidence Selection187

As shown in Figure 1, the golden evidence is188

essential for multi-document question answering189

tasks. Thus, we first evaluate the effectiveness190

of evidence selection approaches in this scenario.191

We consider four primary methods: (1) external192

retrieval models: employing retrieval models to193

select documents; (2) in-context retrieval(ICR):194

prompts LLMs to directly select documents most195

relevant to the question; (3) attention-based re-196

trieval: employing the averaged attention scores197

of all heads over each document for selection; and198

(4) retrieval head-based retrieval: only employing199

the attention scores of retrieval heads for selec-200

tion (Wu et al., 2024). Table 1 summarizes their201

recall across various datasets. Compared to exter-202

nal retrieval models and ICR, the attention-based203

approach significantly improves performance over204

ICR. Additionally, the retrieval head-based method205

further improves retrieval recall across all datasets206

evaluated. These results demonstrate that leverag-207

ing attention scores from specific retrieval heads208

provides a powerful and highly effective signal for209

relevant documents. More experimental results can210

be found in Appendix C.211

3.2 Attention Intervention212

To further explore the model’s reasoning mecha-213

nism over multiple retrieved documents, we em-214

ploy attention intervention techniques to adjust215

Method HQA-8k HQA-32k SQuAD Musique

Retrieval Model 0.90 0.84 0.93 0.83
ICR 0.64 0.38 0.91 0.58
Attention 0.80 0.77 0.94 0.79
Retrieval Head 0.97 0.93 0.97 0.9

Table 1: Recall for different evidence selection strate-
gies across four datasets using Llama-3.1-8B-Instruct.

the information flow across different parts of the 216

prompts. Specifically, we select test samples from 217

HotpotQA-8K. Subsequently, we mask the atten- 218

tion between the two gold documents, as well as 219

the attention from the question to the two gold 220

documents and to the two irrelevant documents. 221

We show the results in Table 2. First, masking 222

the attention between the two gold documents has 223

a negligible impact on performance compared to 224

the unmasked condition. This suggests that during 225

multi-hop question answering, the LLM does not 226

engage in implicit reasoning1 while encoding long 227

inputs. Moreover, when applying attention mask 228

between the question and irrelevant documents, we 229

observe minimal performance impact. Conversely, 230

masking the attention from the question to any gold 231

document results in a significant performance drop. 232

When all gold documents are masked simultane- 233

ously, the SubEM score even decreases to a level 234

similar to that observed when no document is pro- 235

vided. This indicates that the information flow from 236

the gold evidence to the question plays a crucial 237

role in long-context QA performance. This mo- 238

tivates us to further explore ways to enhance the 239

model’s reasoning ability by selectively modifying 240

this attention pathway. 241

Mask Mode SubEM

No Mask 60.5
Evidence2 → Evidence1 60.0
Question → Evidence1 48.0
Question → Evidence2 42.0
Question → Evidence1, Evidence2 29.5
Question → One Irrelevant Document 60.0
Question → Two Irrelevant Documents 59.5

Table 2: SubEM scores on HotpotQA-8K with various
masking strategies using Llama-3.1-8B-Instruct, where
Evidence1 and Evidence2 refer to the first and second
gold documents in the context.

Building on the prior experiments, we observe 242

1Implicit reasoning in our work refers to the model’s ability
to link information across documents before the final question
is given. It encodes content from earlier documents into later
ones through attention, enabling the question to be answered
using only the later one.

3



Retrieval Head Score : 0.5For Current Head

Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Doc7 Doc8 Doc9

0.2

0.3SUM

Question

Total Heads: Num of Layers * Num of Heads
Layer 15, Head 30

Question: Were Scott Derrickson and
Ed Wood of the same nationality?

Retrieval Document Score

Doc1 Doc2Doc3 Doci

Sorted by Retrieval
Document Scores

Retrieval Document Score

Question: Were Scott Derrickson and
Ed Wood of the same nationality?

Attention Steering

Final Response: Yes

Coarse-Grained Filtering Fine-Grained Steering

Doc1 Doc3Doc2 Doc4

Layer

Head
Retrieval Heads (Stage-2)

Layer

Head

Retrieval Heads (Stage-1)

Layer 15, Head 30
Layer 14, Head 13
Layer 13, Head 18
Layer 16, Head 21

Layer 15, Head 30
Layer 10, Head 30
Layer 13, Head 18
Layer 10, Head 29

Question: Onika Tanya Maraj is a
judge on a television show hosted
by whom?
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Figure 2: Overall framework of our proposed CAFE approach. The red, blue, and yellow bar charts represent the
gold, distracting, and background documents, respectively.

that employing retrieval heads effectively extracts243

evidence documents from long inputs. Moreover,244

modifying the attention between the question and245

the evidence documents impacts the model’s utiliza-246

tion of evidence documents for answering. These247

observations inform the design of our method.248

4 Method249

4.1 Overall Framework250

In multi-document question-answering tasks, there251

are three categories of documents, i.e., gold evi-252

dence documents that contain information support-253

ing answering the questions, distracting documents254

that impede the model’s ability to generate faith-255

ful answers, and background documents that con-256

tain irrelevant information. Among them, the latter257

two categories of documents can hardly be distin-258

guished by simple retrieval. Inspired by human259

behaviors and observations in Section 3, we pro-260

pose CAFE, a coarse-to-fine two-stage framework261

to enhance the long-context question-answering262

capacities by gradually eliminating the negative im-263

pacts of background and distracting documents. In264

our framework, we first apply coarse-grained fil-265

tering to identify relevant documents, and then use266

fine-grained attention steering to guide the LLMs to267

focus on documents with a higher likelihood of be-268

ing gold evidence and perform reasoning on them. 269

Specifically, we employ retrieval heads to locate 270

relevant documents and identify these heads with 271

different calibration datasets during the two stages. 272

The overall illustration is shown in Figure 2. 273

4.2 Retrieval Head Detection 274

In Section 3, we observe that leveraging attention 275

scores of retrieval heads can effectively identify 276

evidence documents. Thus, we first locate retrieval 277

heads that can be further employed to seek the 278

relevant documents during the two stages. 279

Retrieval Document Scores. Based on the analy- 280

sis in Section 3.2, we focus on the attention scores 281

from the question to the contextual documents. 282

Therefore, we first compute the retrieval docu- 283

ment score βh(di) by analyzing attention weight 284

scores between the question q and each document 285

di: 286

βh(di) =
αh(q, di)∑n
j=1 αh(q, dj)

, (1) 287

where αh(q, di) represents the attention weight be- 288

tween the query q and document di for attention 289

head h, and n is the total number of documents in 290

the current sample. 291

Top-K Retrieval Heads Selection. To effectively 292

identify retrieval heads, we select N samples from 293
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the validation set and calculate a retrieval head294

score for each attention head h based on the ev-295

idence documents’ retrieval document scores on296

these validation samples:297

η(h) =
N∑
i=1

∑
e∈Ei

βh(e), (2)298

where Ei is the set of evidence documents for the299

i-th sample. We then select the Top-K attention300

heads Hret with the highest retrieval head scores301

from all attention heads H as the retrieval heads.302

Hret = Top-K(η(h)), h ∈ H. (3)303

Notably, during the coarse-grained filtering and304

fine-grained steering stages, we employ different305

validation sets and select different retrieval heads306

according to the properties of the two stages. The307

distinction between the two types of retrieval heads308

is detailed in Appendix D.309

4.3 Coarse-Grained Filtering310

In Figure 1, we observe that a large number of doc-311

uments leads to significant performance degrada-312

tion. Thus, we introduce a coarse-grained filtering313

stage to filter background documents and obtain a314

condensed input. Specifically, this stage consists315

of two steps: background document filtering and316

locality-based re-ranking.317

Background Documents Filtering. To identify318

background documents, we first compute the re-319

trieval document scores of each document on se-320

lected retrieval heads Hret. For each head h, we321

select Top-M1 documents based on the retrieval322

document scores βh(d) from all documents D and323

consider them as relevant documents. Then, we324

perform a union operation on these documents to325

obtain the relevant document set D∗ and drop the326

other documents.327

D∗ =
⋃

h∈Hret

Top-M1(βh(d)), d ∈ D. (4)328

Locality-Based Re-Ranking. When processing329

long context, LLMs usually demonstrate the prop-330

erty of locality and lost-in-the-middle (Liu et al.,331

2024; Su et al., 2024). This means when critical332

information for answering the question is located333

at the end of the long document, the model often334

performs better. Thus, after obtaining the filtered335

set of documents D∗, we apply a locality-based re-336

ranking mechanism to rank these documents. For337

the filtered candidate document set D∗, we com- 338

pute the document relevance score γh(d) for each 339

document as the sum of retrieval document scores 340

of all retrieval heads: 341

γh(d) =
∑

h∈Hret

βh(d), d ∈ D∗. (5) 342

Subsequently, documents with higher document rel- 343

evance scores are positioned later in the sequence, 344

ensuring that more attention will be focused on the 345

documents that are more likely to contain critical 346

evidence during the generation of responses. Fi- 347

nally, we obtain the filtered and reranked document 348

sequence D′ as the input of next stage: 349

D′ = {d′1, . . . , d′|D∗|},∀i < j, γh(di) ≤ γh(dj).

(6)
350

4.4 Fine-Grained Steering 351

After the first stage of filtering irrelevant docu- 352

ments, most remaining documents are relevant to 353

the question. However, there may still exist distract- 354

ing documents. Thus, in the fine-grained steering 355

stage, we further identify documents with a high 356

likelihood of being golden evidence and steer the 357

attention scores to guide the LLMs’ attention to- 358

wards these documents for better reasoning. 359

Iterative Distracting Document Identification. 360

Similar to the coarse-grained filtering stage, to ef- 361

fectively identify and weaken the impact of these 362

distracting documents, we perform document iden- 363

tification by computing retrieval document scores 364

using another set of retrieval heads H′
ret: 365

Dcand =
⋃

h∈H′
ret

Top-M2(βh(d)), d ∈ D′ (7) 366

By identifying documents with high retrieval docu- 367

ment scores, we ultimately derive a candidate set 368

of evidence documents Dcand. Each document in 369

the candidate set is considered the golden evidence 370

while other documents are considered as distracting 371

documents during the following process of atten- 372

tion steering. 373

Inference-Time Attention Steering. After the 374

initial filtering stage, the number of remaining 375

documents is significantly reduced. In this stage, 376

directly removing detected distractors may result 377

in lower recall of evidence documents. Thus, in- 378

stead of only keeping the candidate set, we adopt 379
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post-hoc attention steering (Zhang et al., 2024a),380

an inference-only technique that reweights atten-381

tion scores to guide the model’s focus toward user-382

specified input spans. Specifically, given the can-383

didate gold evidence set Dcand, our method empha-384

sizes specific tokens by adding a constant attention385

bias Bh to the attention scores on tokens within386

these documents across all attention heads.387

Ãh = Softmax((Qh⊺Kh +Bh)/
√
d), (8)388

Bh
ij =

{
δ if i ∈ q and j ∈ Ccand

0 otherwise
, (9)389

where δ is a positive constant that controls the390

degree of attention adjustment. After applying391

Softmax(·), the attention scores of tokens in Dcand392

are enlarged while the attention scores of other to-393

kens are reduced. This dynamic reweighting mech-394

anism effectively enhances the model’s attention395

toward tokens in Dcand, ensuring the responses are396

more dependent on the critical evidence.397

5 Experiments398

5.1 Experimental Setup399

Datasets. We evaluate the long-context perfor-400

mance of our approach and baseline methods using401

three question-answering datasets: SQuAD (Ra-402

jpurkar et al., 2016), HotpotQA (Yang et al., 2018),403

and MusiQue (Trivedi et al., 2022). These datasets404

are collected from the RULER (Hsieh et al., 2024)405

and LongBench (Bai et al., 2024a) benchmarks.406

Additionally, we experiment with three versions of407

HotpotQA that vary in context length to analyze408

how model performance changes with text length.409

To ensure consistency across all baselines and our410

approach, we randomly select 200 samples from411

each dataset to form the final test set. All experi-412

ments are conducted using the same test sets.413

Baselines and Metrics. For evaluation, we use414

Substring Exact Match (SubEM) and F1 scores fol-415

lowing existing work (Li et al., 2024b). SubEM416

measures whether the gold answer appears as a417

substring in the predictions, while the F1 score418

evaluates the token-level overlap between predic-419

tions and references. For compared baselines, we420

select five types of methods, including Directly An-421

swering, In-Context Retrieval, Oracle RAG, Vanilla422

RAG, and Supervised Fine-tuning. We present the423

detailed description in Appendix B.424

Implementation Details. We conduct our experi- 425

ments on three open-source models: Llama-3.1-8B- 426

Instruct, Mistral-3-7B-Instruct, and Phi-3.5-Mini- 427

Instruct. For coarse-grained filtering for back- 428

ground documents, we set the Top-M1 to 4 and 429

Top-K1 to 4. For fine-grained steering for distract- 430

ing text, we set the Top-M2 to 2 and Top-K2 to 2 431

and we set δ = log 10. As for the SFT configura- 432

tion, training is conducted with a batch size of 64 433

and a learning rate of 1× 10−5 for 1 epoch. 434

5.2 Main Results 435

Table 3 shows the results of our methods and other 436

baselines across three representative long context 437

question-answering datasets. 438

Firstly, our method achieves significantly better 439

multi-document question-answering performances 440

than other baselines. Across all three datasets, 441

our method consistently outperforms training-free 442

approaches and even surpasses the SFT method 443

in most settings. On single-hop SQuAD, our 444

method can achieve performances nearly the per- 445

formance ceiling introduced by Oracle RAG. On 446

more complex multi-hop question-answering tasks, 447

our method can still achieve a significant perfor- 448

mance improvement (e.g., approximately 19.9% of 449

SubEM scores on the HotpotQA dataset compared 450

to the naive directly answering method). 451

Secondly, the two stages of our method work to- 452

gether to prompt performance improvements. Com- 453

pared with in-context retrieval and vanilla RAG 454

which retrieve relevant documents via prompting 455

techniques or external models, only employing the 456

coarse-grained filtering stage can greatly boost the 457

performance, indicating that leveraging the inner re- 458

trieval heads can more effectively identify relevant 459

documents. Additionally, introducing fine-grained 460

attention steering can further boost long-context 461

question-answering capacities, which demonstrates 462

the necessity of introducing a fine-grained elimi- 463

nation of the negative impacts of distracting docu- 464

ments on multi-document question answering. 465

Finally, our method exhibits less performance 466

drop with longer input lengths. On the HotpotQA 467

dataset, we assess the performances across differ- 468

ent input lengths. Our method can preserve perfor- 469

mance to a greater extent when dealing with longer 470

texts (e.g., decreases 1.4% and 2.1% SubEM scores 471

for Llama-3.1-8B on 16K and 32K). Instead, the 472

performances drop sharply with the length increas- 473

ing with other methods, especially in-context re- 474

trieval (e.g., decreases 12.7% and 28.0% SubEM 475
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LCLM Baseline SQuAD MuSiQue HotpotQA HotpotQA-16K HotpotQA-32K

SubEM F1 SubEM F1 SubEM F1 SubEM F1 SubEM F1

Llama-3.1-8B

Oracle RAG 92.5 86.4 39.0 39.3 76.5 76.8 76.5 76.8 76.5 76.8

Directly Answering 71.0 66.6 30.5 33.2 60.5 62.5 53.0 60.1 53.5 58.1
In-Context Retrieval 73.5 65.1 28.0 29.2 59.0 58.6 51.5 51.8 42.5 42.2
Vanilla RAG 84.5 76.6 28.0 29.7 64.0 64.8 63.0 63.6 61.5 62.4
SFT 69.0 70.1 33.5 38.9 63.0 69.8 62.5 68.0 61.5 67.4

CAFE (w/o FGS) 89.5 80.7 36.0 35.5 68.5 69.0 66.0 68.3 66.0 65.2
CAFE (ours) 89.5 82.6 36.5 36.5 70.0 70.4 69.0 69.0 68.5 68.1

Mistral-3-7B

Oracle RAG 84.0 80.1 40.5 38.9 67.0 71.3 67.0 71.3 67.0 71.3

Directly Answering 59.0 55.9 27.5 26.8 50.0 53.7 45.0 47.5 39.0 46.6
In-Context Retrieval 59.5 58.7 24.0 24.2 49.0 47.6 37.5 38.2 29.5 30.3
Vanilla RAG 69.5 69.2 27.5 26.2 53.5 55.9 53.5 55.4 51.0 54.7
SFT 60.0 60.1 30.5 33.1 57.5 61.9 52.5 56.7 47.5 53.6

CAFE (w/o FGS) 78.0 73.6 30.0 27.9 60.0 64.0 60.5 60.0 53.0 56.5
CAFE (ours) 78.5 75.2 31.0 29.9 61.5 65.2 60.5 61.7 58.0 61.7

Phi-3.5-Mini

Oracle RAG 85.0 80.0 35.0 38.1 73.0 75.8 73.0 75.8 73.0 75.8

Directly Answering 63.5 58.8 24.5 27.5 55.0 55.5 51.5 52.5 48.0 48.3
In-Context Retrieval 65.5 66.4 22.5 23.7 49.5 49.5 38.0 39.5 31.0 34.4
Vanilla RAG 76.0 72.5 25.5 26.1 58.5 60.2 56.0 58.8 55.0 58.7
SFT 64.5 65.1 34.5 40.9 60.5 71.8 61.0 71.8 58.0 67.3

CAFE (w/o FGS) 82.0 74.9 28.5 28.8 65.0 67.8 64.5 62.6 60.0 58.9
CAFE (ours) 84.5 75.8 30.0 31.9 66.5 68.0 66.5 64.8 61.5 60.1

Table 3: Evaluation results on three long-document question answering tasks. They are representative of single-hop
and multi-hop question-answering tasks. “CAFE (w/o FGS)” means that we only perform the first stage without the
fine-grained steering for the distracting text stage. The bold and underline fonts denote the best and second-best
results in each dataset. Notably, all models in the table are the instructed versions.

scores for Llama-3.1-8B on 16K and 32K). This476

indicates that our method can effectively identify477

the critical documents in the long input, scarcely478

affected by the increased number of documents.479

5.3 Further Analysis480

Ablation Study. To assess the effectiveness of481

our framework, we conduct ablation experiments482

focusing on key steps within the pipeline. (1)483

w/o Coarse-Grained Filtering (CGF) eliminates484

the initial coarse-grained filtering of background485

documents; (2) w/o Fine-Grained Steering (FGS)486

omits the fine-grained steering of distracting text,487

relying solely on documents D′ for inference; (3)488

w/o Locality-Based Re-Ranking bypasses locality-489

based re-ranking in the first stage, resulting in the490

use of filtered documents in a random order.

Method Llama Mistral Phi

CAFE 70.0 61.5 66.5

w/o CGF 62.5 52.0 55.0
w/o FGS 68.5 60.0 65.0
w/o Re-Ranking 68.0 59.5 65.5

Table 4: Ablation study on HotpotQA.
491

The results are presented in Table 4. All variants 492

show inferior performance compared to the origi- 493

nal method, underscoring the effectiveness of each 494

component in our framework. Notably, the absence 495

of Coarse-Grained Filtering (w/o CGF) results in a 496

substantial performance decline, highlighting the 497

critical role of first-stage filtering in excluding ir- 498

relevant background documents and preventing the 499

dilution of the model’s attention. Similarly, the re- 500

moval of Fine-Grained Steering (w/o FGS) leads to 501

decreased performance, indicating that the second 502

stage’s attention steering effectively mitigates the 503

impact of distracting documents. Furthermore, the 504

exclusion of Re-Ranking (w/o Re-Ranking) results 505

in significant performance degradation, demonstrat- 506

ing the effectiveness of putting the essential infor- 507

mation at the end of the input to facilitate the re- 508

trieval and reasoning of models. 509

Lost-in-the-Middle Performance. We investigate 510

the Lost-in-the-Middle phenomenon and the effec- 511

tiveness of our method in mitigating it. Experi- 512

ments are conducted on the SQuAD dataset using 513

LLaMA and Mistral, evaluating how the position 514

of the answer within a set of 50 documents af- 515
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Model Method 1 10 20 30 40 50 Rand

LLaMA-3.1-8B-Instruct DA 77.5/70.9 74.5/67.4 73.0/67.6 70.5/64.6 69.5/64.4 73.0/67.6 71.0/66.6
Ours 90.5/82.1 91.0/80.3 89.5/80.9 89.0/80.5 88.5/79.9 89.5/79.2 89.5/82.6

Mistral-3-7B-Instruct DA 70.0/58.7 59.0/50.6 56.5/48.3 59.5/51.6 58.0/52.9 62.0/59.5 59.0/55.9
Ours 79.5/76.0 80.0/74.8 79.0/71.9 78.5/71.1 78.5/71.2 78.0/72.6 78.5/75.2

Table 5: Position-wise SubEM/F1 scores on two models. The column headers (1, 10, 20, etc) indicate the document
index where the gold document is inserted. DA denotes Directly Answering.

fects model performance. As shown in Table 5,516

the Lost-in-the-Middle phenomenon significantly517

degrades the baseline method’s performance, par-518

ticularly when answers are in middle positions (e.g.,519

Mistral’s SubEM score drops from 70% to 58%).520

Our method effectively mitigates the issue, achiev-521

ing stable and significantly improved performance522

across all answer positions, consistently outper-523

forming the baseline. This approach demonstrates524

strong robustness and generalizability, requiring no525

position-specific adjustments.526

Granularity of Attention Steering. In the fine-527

grained steering stage, we also evaluate the impact528

of the granularity of attention steering. Instead of529

document-level, we identify relevant contexts at530

the sentence level and steer the attention scores on531

these sentences. As shown in Table 6, the recall532

at the sentence level is lower compared to the doc-533

ument level. Additionally, the final performances534

degrade significantly, even inferior to those before535

attention steering. This indicates the importance of536

covering the golden evidence information as much537

as possible during the attention steering stages.538

Granularity Recall SubEM F1

w/o Steering - 68.5 69.0

Sentence-Level 0.89 65.5 67.8
Document-Level 0.93 70.0 70.4

Table 6: Results with different steering granularities.

Impact of Hyperparameters.The choice of hyper-539

parameters M (documents per head) and K (num-540

ber of heads) during retrieval head selection has a541

strong influence on both recall and overall perfor-542

mance. As shown in Figure 3, increasing M1 or543

K1 boosts recall by adding more candidates, but544

can also introduce noise that limits final accuracy.545

We therefore fix M1 = 4 and K1 = 4 for consis-546

tency. A similar trade-off holds in the second stage,547

though performance remains stable after attention548

steering. The remaining hyperparameter details are549

provided in Appendix E.550

K1 = 4 K1 = 8

M
1

=
2

M
1

=
4

0.89 0.92

0.97 0.99

Recall(stage-1)

K1 = 4 K1 = 8

M
1

=
2

M
1

=
4

67.00 69.00

66.50 68.50

SubEM(stage-1)

K2 = 1 K2 = 2

M
2

=
2

M
2

=
4

0.86 0.90

0.92 0.93

Recall(stage-2)

K2 = 1 K2 = 2

M
2

=
2

M
2

=
4

69.50 70.00

69.50 70.50

SubEM(stage-2)

Figure 3: The impact of hyperparameters M (docu-
ments per retrieval head) and K (retrieval heads) on
Llama-3.1-8B-Instruct. The top row shows recall and
performance for coarse-grained filtering, while the bot-
tom row illustrates changes for fine-grained steering.

6 Conclusion 551

In this paper, we explored the challenges faced 552

by LLMs in handling long-context inputs, particu- 553

larly in multi-document question answering tasks. 554

Our findings revealed that the inclusion of irrele- 555

vant documents significantly hampers the retrieval 556

and reasoning capabilities of LLMs, motivating 557

the need for more effective long-context process- 558

ing strategies. To address this, we introduced 559

CAFE, a two-stage coarse-to-fine information- 560

seeking method that leverages retrieval head-based 561

filtering, document reranking, and fine-grained at- 562

tention steering to guide LLMs in processing long- 563

context inputs. Extensive experiments across mul- 564

tiple benchmarks and LLMs validate its effective- 565

ness, demonstrating its superiority over strong base- 566

lines, including supervised fine-tuning techniques. 567

Beyond its performance benefits, CAFE’s training- 568

free nature and broad applicability make it a practi- 569

cal solution for a wide range of downstream tasks. 570
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Limitations571

In this paper, we present a coarse-to-fine two-stage572

framework to enhance the retrieval and reason-573

ing capacities of LLMs. Beyond multi-document574

question answering tasks, we believe our frame-575

work can be employed in broader tasks, e.g., long-576

document reasoning, which have not been explored577

owing to the computational costs. Additionally,578

our method mainly focuses on how to better iden-579

tify evidence documents to enhance performance.580

However, though given the golden evidence, the581

LLMs can still hardly answer each question cor-582

rectly. Approaches to improving the context-aware583

reasoning capacities can be employed to further584

improve the upper limit of our method.585
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A Performance Gap857

We study how distracting documents affects model858

performance in long-context settings. Starting with859

only gold evidence, we gradually insert irrelevant860

documents and observe a performance drop as861

shown in Figure 1. This suggests that longer inputs862

with more irrelevant content weaken the model’s863

retrieval and reasoning. This motivates our design864

of a retrieval strategy to filter out such noise.865

B Baselines866

We compare CAFE with the following baselines:867

• Directly Answering. Asking LLMs to directly868

answer the question by using the context.869

• In-Context Retrieval. LLMs are initially870

prompted to generate the key documents that sup-871

port answering the question. Then, models are872

prompted to answer the question with the key doc-873

uments appended to the context.874

• Oracle RAG. Asking LLMs to answer the875

question only based on the ground-truth documents876

to estimate an upper limit performance.877

• Supervised Fine-tuning. The LLM is trained878

on training sets of these datasets. We randomly879

sample 2000, 5000, and 5000 training instances for880

SQuAD, HotpotQA, and MusiQue, respectively.881

C Evidence Selection Results882

We conduct additional validations on more models,883

and the results are shown in Table 8.884

D Differences Between Coarse and Fine885

Retrieval Heads886

To better understand the behavior of retrieval heads887

used in the two stages, we visualize their accumu-888

lated attention scores over documents in Figure 4889

and Figure 5. We observe that coarse-stage re-890

trieval heads focus on a few documents to filter891

background information, while fine-stage heads892

attend more broadly to distinguish gold evidence893

from distractors.894

E Impact of Hyperparameters895

We perform an ablation study on the fine-grained896

retrieval parameter δ. As shown in Table 7, val-897

ues around log 10 yield stable performance, and898

we use log 13 as the default setting in our main899

experiments.900

Figure 4: Attention distribution of retrieval heads used
in the coarse-grained filtering stage.

Figure 5: Attention distribution of retrieval heads used
in the fine-grained steering stage.

F Inference Latency Evaluation 901

Our method requires multiple inferences (at least 902

two prefilling operations), which indeed increases 903

inference latency. In the first round, the prefill 904

length is the same as that of direct answer. As a 905

result, our method is slightly slower than the native 906

flash-attention used in direct answer. We report the 907

difference in prefill efficiency between our method 908

and the Directly Answering baseline in Table 9. 909

δ log 5 log 10 log 13 log 20

EM score 69.0 70.5 70.0 69.5

Table 7: Ablation study on the parameter δ.
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Model Method HotpotQA-8k HotpotQA-16k HotpotQA-32k SQuAD Musique

Llama-3.1-70B-Instruct ICR 0.82 0.72 0.54 0.92 0.67
Attention-Based 0.85 0.81 0.77 0.95 0.81

Mistral-3-7B-Instruct ICR 0.65 0.49 0.33 0.78 0.46
Attention-Based 0.75 0.71 0.64 0.82 0.60

Phi-3.5-Mini-Instruct ICR 0.39 0.27 0.21 0.72 0.33
Attention-Based 0.54 0.52 0.43 0.73 0.36

Table 8: SubEM scores comparing In-Context Retrieval (ICR) and Attention-Based Retrieval methods across
different context lengths and datasets. The second column indicates the retrieval method; performance declines for
ICR as context length grows, while the attention-based approach remains more robust.

Method HotpotQA-8k HotpotQA-16k HotpotQA-32k SQuAD Musique

Directly Answering 637.02 1482.25 2867.17 592.65 1493.73
Ours (prefill) 840.95 1799.92 3880.35 719.55 1791.15

Table 9: TTFT (ms/token) comparison across datasets. “Ours (prefill)” refers to the inference time including the
prefill enhancement.
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