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Abstract
Retrieval-Augmented Generation (RAG) is a001
powerful strategy for improving the factual ac-002
curacy of models by retrieving external knowl-003
edge relevant to queries and incorporating it004
into the generation process. However, existing005
approaches primarily focus on text, with some006
recent advancements considering images, and007
they largely overlook videos, a rich source of008
multimodal knowledge capable of represent-009
ing contextual details more effectively than any010
other modality. While very recent studies ex-011
plore the use of videos in response generation,012
they either predefine query-associated videos013
without retrieval or convert videos into tex-014
tual descriptions losing multimodal richness.015
To tackle these, we introduce VideoRAG, a016
framework that not only dynamically retrieves017
videos based on their relevance with queries but018
also utilizes both visual and textual information.019
The operation of VideoRAG is powered by re-020
cent Large Video Language Models (LVLMs),021
which enable the direct processing of video con-022
tent to represent it for retrieval and the seam-023
less integration of retrieved videos jointly with024
queries for response generation. Also, inspired025
by that the context size of LVLMs may not be026
sufficient to process all frames in extremely027
long videos and not all frames are equally im-028
portant, we introduce a video frame selection029
mechanism to extract the most informative sub-030
set of frames, along with a strategy to extract031
textual information from videos (as it can aid032
the understanding of video content) when their033
subtitles are not available. We experimentally034
validate the effectiveness of VideoRAG, show-035
casing that it is superior to relevant baselines.036

1 Introduction037

Recently, large foundation models, such as large038

language models and their extension to the vision039

modality called large vision-language models, have040

become the standard for addressing diverse tasks041

due to their remarkable capabilities (OpenAI, 2023;042

Li et al., 2024; Yang et al., 2024; Dai et al., 2024).043

(A) Textual RAG   

(B) Conventional Image-Text RAG   

(C) VideoRAG (Ours)  

Query: After crossing the wide end, what’s next in tying a tie? 

        Answer: The necktie spread from Europe traces back to Croatian 

mercenaries serving in France during the Thirty Years' War. 

Query: After crossing the wide end, what’s next in tying a tie? 

        Answer: Neckties are traditionally worn with the top shirt button 

fastened, and the tie knot resting between the collar points. 

Query: After crossing the wide end, what’s next in tying a tie? 

        Answer: Wrap the wide end behind the narrow end, bringing it back 

to the front on the opposite side. 

Retrieve 

Retrieve 

Generate 

Generate 

0:30~1:00 Bring the wide end across the 
narrow end, making sure it lays flat and 
untwisted. 
1:00~1:30 Then, loop the wide end behind 
the narrow end and bring it back to … 

Retrieve 

Generate 

Figure 1: Illustration of existing and the proposed RAG sce-
narios. (A) Textual RAG retrieves documents (relevant to
queries) from a text corpus and incorporates them when gener-
ating answers. (B) Conventional image-text multimodal RAG
extends retrieval to include static images. (C) VIDEORAG
(ours) further extends the external knowledge source to videos.

In particular, these models, trained on extensive tex- 044

tual and multimodal corpora, encode vast amounts 045

of knowledge within their large-scale parameters. 046

However, they are still prone to generating factu- 047

ally incorrect outputs, as their parametric knowl- 048

edge can be inaccurate or outdated (Lewis et al., 049

2020; Ram et al., 2023). This limitation highlights 050

the need for incorporating knowledge from exter- 051

nal knowledge sources, with Retrieval-Augmented 052

Generation (RAG) emerging as an essential miti- 053

gator for it. Specifically, RAG typically operates 054

by retrieving query-relevant information and then 055

generating answers grounded in the retrieved con- 056

tent (Niu et al., 2024; Ayala and Béchard, 2024). 057

However, while existing RAG approaches have 058

been widely adopted for various real-world appli- 059

cations, they have primarily focused on retrieving 060

and incorporating textual content (Ram et al., 2023; 061

Jeong et al., 2024a), with only recent attempts be- 062

ginning to explore images (or text-image pairs) as 063
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the additional source of external knowledge (Yu064

et al., 2024; Riedler and Langer, 2024). On the065

other hand, we argue that there remains a rapidly066

expanding yet underutilized medium, called videos,067

which provides unparalleled multimodal richness068

and might be a compelling resource for augmenting069

the knowledge landscape of current RAG systems.070

Specifically, videos combine temporal dynamics,071

spatial details, and multimodal cues, which collec-072

tively enable them to capture complex processes,073

context-dependent interactions, and non-verbal sig-074

nals that static modalities (e.g., text and images)075

often fail to convey. Moreover, given the increas-076

ing popularity of video-sharing platforms (such as077

YouTube), the availability of diverse, high-quality078

video data has grown, ranging from educational tu-079

torials and scientific demonstrations to personal ex-080

periences and real-time events, all of which may be081

useful when formulating responses to user queries.082

A few recent studies have started considering083

video content to handle user queries; however, they084

have limitations. For instance, some assume that085

videos relevant to queries are already known and086

instead focus on identifying query-relevant frames087

within that specified video (Luo et al., 2024; Ma088

et al., 2024). While effective in scenarios where the089

relevant video is explicitly provided, it is subopti-090

mal for more general-use cases, where users expect091

systems to dynamically identify and retrieve videos092

to provide answers. On the other hand, other stud-093

ies handle videos by converting them into textual094

formats, such as subtitles, and utilizing these tex-095

tual representations under off-the-shelf text-based096

RAG pipelines (Arefeen et al., 2024; Zhang et al.,097

2024b). However, while this text-only strategy may098

offer a convenient workaround, it inherently sac-099

rifices the multimodal richness of video data by100

discarding critical information, such as temporal101

dynamics captured in the visual context, during the102

conversion process. For example, consider a query:103

“How does the expression of the dog change when104

it is angry?”. While textual transcriptions might105

describe the dog’s barking or growling, they fail to106

capture visual cues (baring teeth, raised hackles, or107

narrowed eyes), which are needed for accurately108

interpreting the emotional state of the dog and sub-109

sequently formulating the answer to the query.110

To address the aforementioned limitations, we111

introduce a novel framework, called VideoRAG,112

which aims to offer another fruitful angle to exist-113

ing RAG frameworks by enabling a more compre-114

hensive utilization of video content for its holistic115

retrieval and incorporation (See Figure 1). Specif- 116

ically, in response to queries, the proposed Vide- 117

oRAG retrieves relevant videos from a large video 118

corpus but also integrates both visual and textual 119

elements into the answer-generation process. Also, 120

we operationalize this by harnessing the advanced 121

capabilities of recent Large Video Language Mod- 122

els (LVLMs), which are capable of directly process- 123

ing video content, consisting of visual and textual 124

information, within the unified framework, thereby 125

more effectively capturing its multimodal richness. 126

However, there exist a couple of remaining chal- 127

lenges in integrating videos into RAG frameworks. 128

First, videos are inherently long and redundant, of- 129

tentimes making it infeasible for LVLMs to process 130

all frames due to their limited context capacity as 131

well as unnecessary since not all frames contribute 132

meaningfully for retrieval and generation. To ad- 133

dress this, we introduce a frame selection model 134

that is trained to extract the most informative sub- 135

set of frames to maximize retrieval and generation 136

performance. Also, we observe that, while the joint 137

utilization of visual and textual features is needed 138

for the effective representation of videos and sub- 139

sequently their retrieval, the textual descriptions of 140

videos (e.g., subtitles) are oftentimes not available. 141

To tackle this, we further present a simple yet ef- 142

fective mitigation strategy that utilizes automatic 143

speech recognition techniques to generate textual 144

transcripts from videos, allowing us to leverage 145

both visual and textual modalities for every video. 146

To validate the effectiveness of VideoRAG, we 147

conduct experiments by using overlapping queries 148

from the WikiHowQA dataset (Bolotova-Baranova 149

et al., 2023) (consisting of query-answer pairs) and 150

the HowTo100M dataset (Miech et al., 2019) (in- 151

cluding query-video pairs without answers). Also, 152

based on this, we automatically collect the dataset 153

for RAG over videos and then evaluate models on it. 154

Then, the experimental results show the significant 155

performance improvement of the proposed Vide- 156

oRAG framework over relevant baselines, demon- 157

strating the efficacy of leveraging videos for RAG. 158

2 Method 159

We present VideoRAG that retrieves query-relevant 160

videos and generates responses grounded in them. 161

2.1 Preliminaries 162

We begin with describing RAG and LVLMs. 163

Retrieval-Augmented Generation RAG aims to 164

enhance the capabilities of foundation models by 165
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Query: After mashing ingredients for a homemade prison beer, what is the next step? 

Answer: After mashing the ingredients, the mixture should be sealed in a plastic bag 

and kept in a warm place to allow fermentation to occur over a few days. 

Video Retrieval 

Response Generation 

Frame Selection 

Frame Selection 

Video Corpus 

Figure 2: Illustration of the overall pipeline of our VideoRAG, which selects informative frames for retrieval and generation.

grounding their outputs in external knowledge re-166

trieved from the external knowledge source, such as167

Wikipedia, which consists of two main components:168

retrieval and generation modules. Formally, given169

a query q, RAG retrieves a set of documents (or170

knowledge elements) K = {k1,k2, . . . ,kk} from171

an external corpus C (K ⊆ C) based on their rele-172

vance with q using a retrieval module, which can173

be formalized as follows: K = Retriever(q, C).174

Here, the query q and knowledge k are represented175

as a sequence of tokens q = [q1, q2, . . . , qi] and176

k = [k1, k2, . . . , kj ]. Also, during retrieval, the177

relevance between the query and each knowledge178

element within the corpus is determined by the scor-179

ing function, defined as follows: Sim(q,k), which180

typically measures their representational similarity181

over the embedding space. In the subsequent gen-182

eration step, the retrieved knowledge elements are183

then used as additional input to the generation mod-184

ule, to augment the query to produce an answer y,185

as follows: y = Model(q,K), where Model is typ-186

ically implemented as the foundation model, such187

as LLMs. We note that, unlike existing RAG that188

focuses mainly on retrieving and incorporating tex-189

tual content (or, in some recent cases, extra static190

images), we explore the extension toward videos.191

Large Video Language Models On top of the192

extensive language understanding capabilities of193

LLMs, LVLMs are designed to handle and incorpo-194

rate the features from video content, including tem-195

poral, spatial, and multimodal information, within196

the unified token processing framework. Formally,197

let us denote a video V as a sequence of visual198

frames: V = [v1,v2, . . . ,vn] and its associated199

textual data (such as subtitles, or any other textual200

information such as the video-specific query) t as a201

sequence of tokens: t = [t1, t2, . . . , tm]. Then, the202

typical LVLM, denoted as LVLM, enables the joint203

processing of these multimodal inputs by employ-204

ing two specialized components: a vision encoder205

and a text encoder. Specifically, the vision encoder206

processes the sequence of video frames V (which207

can span multiple videos), resulting in a sequence208

of visual feature embeddings (or visual tokens):209

Fvisual = VisionEncoder(V ). Concurrently, the 210

text encoder processes the given textual informa- 211

tion t to generate corresponding feature embed- 212

dings: Ftext = TextEncoder(t). Then, the overall 213

process to obtain the video representation (with the 214

goal of capturing both visual and textual features) 215

can be denoted as follows: fvideo = LVLM(V , t). 216

Traditionally, fvideo is obtained by the simple inter- 217

polation of the visual and textual representations: 218

fvideo = α · Ftext + (1 − α) · Fvisual (Xu et al., 219

2021), and, more recently, it can be done by further 220

jointly processing the visual and textual embed- 221

dings through several LVLM layers (that sit on top 222

of existing LLMs) (Zhang et al., 2024c), which 223

allows the model to learn a more effective represen- 224

tation and continue generating the next sequence 225

of tokens (for example, an answer to a query). 226

2.2 VideoRAG 227

We now turn to introduce our VideoRAG, which 228

extends the existing RAG paradigm by leveraging 229

the video corpus as the external knowledge source. 230

Video Retrieval The initial step to operationalize 231

RAG over the video corpus is to implement video 232

retrieval, whose goal is to identify query-relevant 233

videos V = {V1,V2, . . . ,Vk} from the corpus C, 234

consisting of a large number of videos, as follows: 235

V = Retriever(q, C). Recall that this retrieval 236

process involves calculating the similarity between 237

the query q and each knowledge element (which is 238

video V in our case) to determine their relevance. 239

To achieve this, we first forward the video V (com- 240

posed of image frames and, if available, subtitles) 241

as well as the query q (without visual information) 242

into LVLM, to obtain their representations fquery and 243

fvideo. After that, the relevance is computed based 244

on their representation-level similarity, for exam- 245

ple, using a cosine similarity, and the top-k videos 246

with the highest similarity scores are retrieved. 247

Video-Augmented Response Generation After 248

the retrieval of query-relevant videos is done, the 249

next step is to incorporate the retrieved videos into 250

the answer generation process, to formulate the an- 251

swer grounded in them. To operationalize this, we 252
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first concatenate frames of each retrieved video253

with its associated textual data (e.g., subtitles),254

then concatenate these multimodal pairs across all255

videos retrieved, and lastly append the user query,256

as follows: [V1, t1, . . . ,Vk, tk, q]. Then, this input257

is forwarded into LVLM, which enables the joint pro-258

cessing of the combined visual, textual, and query-259

specific information, to generate the response while260

capturing their multimodal richness and dynamics.261

2.3 Frame Selection for VideoRAG262

Unlike conventional RAG with text or images, in-263

corporating videos into RAG presents an additional264

challenge: some videos contain a large number of265

visual frames, making it inefficient to process them266

all (and sometimes impractical due to the limited267

context size of LVLMs). As a simple workaround,268

a common approach is to uniformly sample frames;269

however, this method risks discarding key informa-270

tion while retaining redundant or irrelevant frames,271

leading to suboptimal retrieval and response gener-272

ation when augmented with suboptimal frames.273

Adaptive Frame Selection To overcome these274

limitations, we introduce an adaptive frame selec-275

tion strategy, whose objective is to extract the most276

informative and computationally feasible subset of277

frames. Let Comb(·) represent a selection function278

that randomly samples a subset of m frames from279

total n frames within the video based on the combi-280

nation, and let f(·) be a scoring function that evalu-281

ates and assigns a relevance score to these selected282

frames. Then, during retrieval, the frame selection283

operation for the given video V is denoted as fol-284

lows: Ṽ = argmaxV ′∈Comb(V ,m) f(V
′), which is285

extended to Ṽ = argmaxV ′∈Comb(V ,m) f(V
′, q)286

for generation, where Ṽ is the optimal subset. The287

distinction between retrieval and generation arises288

because retrieval operates over a large video corpus289

C, making exhaustive query-based processing in-290

feasible, whereas in generation, the top-k retrieved291

videos allow for query-guided frame selection (i.e.,292

enabling the use of different frames for different293

queries even if the retrieved video is the same).294

Frame Space Reduction with Clustering While295

the adaptive frame selection strategy enables the296

use of the most effective subset of frames for RAG,297

the combinatorial space of possible frame subsets298

(obtained from Comb) remains prohibitively large.299

For instance, selecting 32 frames from a video of300

1000 frames results in more than 1060 possible com-301

binations, making exhaustive search impossible. To302

address this, we reduce the frame selection space by 303

extracting representative samples via k-means++ 304

clustering. Specifically, we cluster all frames into 305

k groups and, from each of the k clusters, we select 306

the frame closest to its centroid. After that, we con- 307

strain the frame selection process to operate within 308

this reduced set; for example, with k = 64, the 309

search space is drastically reduced to 64C32 from 310

1000C32, making it computationally feasible while 311

preserving the diversity of selected frames1. 312

Operationalizing Frame Selection Notably, the 313

design of f to score the selected frame is flexible, 314

allowing us to use any models capable of process- 315

ing visual features (and textual features particularly 316

for generation), such as CLIP (Radford et al., 2021). 317

Also, we collect examples for training f , by per- 318

forming retrieval and generation with randomly 319

selected frames (from possible combinations), and 320

then labeling them as true or false based on their 321

success, from which we use the conventional loss 322

functions (such as cross-entropy) for optimization. 323

We provide more details on it in Appendix A.3. 324

2.4 Auxiliary Text Generation 325

In both the retrieval and generation steps, the inclu- 326

sion of video-associated textual data, such as subti- 327

tles, can play a crucial role in enhancing video rep- 328

resentation since it provides additional context and 329

semantic cues that complement the visual content. 330

However, not every video in the corpus comes with 331

subtitles since they require additional annotations. 332

Therefore, for such videos, we propose generating 333

auxiliary textual data by extracting audio from the 334

video and converting it into text using off-the-shelf 335

automatic speech recognition techniques. Formally, 336

given a video V , this process can be formalized as 337

follows: taux = AudioToText(Audio(v)), where 338

Audio(V ) extracts the audio track from the video, 339

and AudioToText converts the extracted audio sig- 340

nal into textual content. Therefore, for those videos 341

without subtitles, auxiliary text taux can be used in 342

place of t in both the retrieval and generation steps. 343

3 Experiment 344

We now describe experimental setup and results. 345

3.1 Experimental Setup 346

Datasets We evaluate VideoRAG in question an- 347

swering tasks, following the convention for validat- 348

ing RAG approaches (Asai et al., 2024; Jeong et al., 349

1In inference, evaluating all possible combinations from
this reduced set might still be computationally expensive; thus,
we further perform random sampling over them.
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Table 1: Overall RAG results across four metrics. The best results are highlighted in bold, and the second-best results are
highlighted with underline. Note that the ORACLE setting (that uses ideal retrieval results) is not comparable to others.

WikiHowQA with HowTo100M Synthetic QA with HowTo100M
Methods ROUGE-L BLEU-4 BERTScore G-Eval ROUGE-L BLEU-4 BERTScore G-Eval

L
L

aV
A

-V
id

eo
(7

B
) NAÏVE 14.08 1.352 83.43 1.579 10.68 1.574 84.51 1.634

TEXTRAG (BM25) 17.22 2.327 84.66 1.633 14.70 2.382 86.03 1.681
TEXTRAG (DPR) 16.65 2.173 84.61 1.591 14.58 2.397 85.85 1.686
TEXTIMAGERAG 22.43 4.222 86.88 2.022 25.19 6.149 88.56 2.175
TEXTVIDEORAG 22.81 4.388 86.97 1.979 23.41 5.435 88.40 2.278
VIDEORAG-V 24.95 5.080 87.85 2.140 29.38 7.530 89.77 2.479
VIDEORAG-VT 24.93 5.276 87.92 2.142 29.74 8.043 89.72 2.476
ORACLE-V 26.19 5.480 88.41 2.225 32.16 8.769 90.34 2.884
ORACLE-VT 25.37 5.237 87.95 2.166 32.31 8.885 90.46 2.938

In
te

rn
V

L
2.

5
(8

B
) NAÏVE 16.54 1.859 84.30 1.720 12.60 2.381 85.12 1.725

TEXTRAG (BM25) 17.41 2.275 84.89 1.552 26.66 6.760 88.48 1.938
TEXTRAG (DPR) 17.21 2.077 84.84 1.563 26.72 6.579 88.56 1.917
TEXTIMAGERAG 22.39 3.917 86.91 1.904 27.65 7.187 88.99 2.176
TEXTVIDEORAG 19.88 3.199 85.81 1.686 26.36 6.542 88.68 1.983
VIDEORAG-V 25.11 4.243 88.15 1.863 33.68 9.454 90.29 2.452
VIDEORAG-VT 23.75 4.271 87.42 1.906 32.90 9.572 90.14 2.427
ORACLE-V 25.59 4.318 88.29 1.958 35.21 10.57 90.70 2.813
ORACLE-VT 24.60 4.421 8.770 2.002 34.99 10.69 90.68 2.820

Q
w

en
2.

5-
V

L
(3

B
) NAÏVE 17.96 2.077 84.97 1.765 15.05 2.729 86.13 1.843

TEXTRAG (BM25) 19.65 2.989 85.41 1.721 19.70 3.911 86.88 1.877
TEXTRAG (DPR) 19.45 2.863 85.38 1.708 19.04 3.903 86.77 1.831
TEXTIMAGERAG 20.66 3.327 85.80 1.838 20.36 4.298 87.11 1.931
TEXTVIDEORAG 22.18 4.180 86.56 1.821 24.29 5.722 88.37 2.156
VIDEORAG-V 23.24 3.963 87.13 1.899 26.28 5.998 88.97 2.258
VIDEORAG-VT 23.22 4.531 87.00 1.876 27.54 7.279 89.11 2.274
ORACLE-V 21.53 3.156 86.05 1.912 26.82 6.683 88.96 2.515
ORACLE-VT 24.37 4.811 87.43 1.994 29.76 7.721 89.56 2.566

2024a). First of all, we use WikiHowQA (Bolotova-350

Baranova et al., 2023), which offers a wide range351

of instructional questions extracted from the Wiki-352

How webpage2, with human-written, high-quality353

ground truths. Also, for the video corpus, we utilize354

HowTo100M (Miech et al., 2019), a comprehen-355

sive collection of instruction videos sourced from356

YouTube, further associated with queries from Wik-357

iHow based on their search results. In addition, for358

a comprehensive evaluation, we automatically gen-359

erate query-answer pairs over HowTo100M (See360

Appendix A.2) and evaluate performance on them.361

Baselines and Our Model We compare Vide-362

oRAG against four different baselines, as follows:363

1. NAÏVE – which generates answers from queries364

without additional context; 2. TEXTRAG (BM25)365

– which is a text-based RAG model, retrieving366

documents (from Wikipedia) based on their rele-367

vance with queries through BM25 (Robertson et al.,368

1994) and generating answers grounded in them;369

3. TEXTRAG (DPR) – which is a text-based RAG370

similar to TEXTRAG (BM25) but performs re-371

trieval with DPR (Karpukhin et al., 2020); 4. TEX-372

TIMAGERAG – which follows conventional tex-373

t-image multimodal RAG approaches (Chen et al.,374

2022; Yasunaga et al., 2023), retrieving a pair of375

query-relevant textual document and image, and uti-376

lizing them for generation; 5. TEXTVIDEORAG –377

which follows the previous video-based RAG meth-378

ods (Arefeen et al., 2024; Zhang et al., 2024b),379

which first represent videos as their textual de-380

scriptions (e.g., captions or transcripts) and uti-381

lize only those textual information in retrieval and382

generation; 6. VIDEORAG – which is our model383

2https://www.wikihow.com/Main-Page

having two variants: VIDEORAG-V that exclu- 384

sively utilizes video frames as context to provide 385

visual grounding for generation, and VIDEOR- 386

AG-VT that jointly utilizes video frames and tex- 387

tual transcripts. In addition, to estimate the room 388

for performance gains, we include an oracle version 389

of VIDEORAG, which directly uses the ground- 390

truth video pre-associated with the query labeled in 391

HowTo100M, instead of using retrieval outcomes. 392

Evaluation Metrics We use the following met- 393

rics: 1) ROUGE-L measures the longest common 394

subsequence between the generated answer and the 395

ground truth (Lin, 2004); 2) BLEU-4 calculates the 396

overlap of n-grams (up to 4) between the generated 397

and reference answers (Papineni et al., 2002); 3) 398

BERTScore measures the semantic alignment be- 399

tween the generated and reference answers (Zhang 400

et al., 2020) by extracting their embeddings from 401

BERT (Devlin et al., 2019) and calculating their 402

similarity; 4) G-Eval leverages the evaluation ca- 403

pabilities of LLMs (Liu et al., 2023), where we 404

prompt the GPT-4o-mini to rate the generated an- 405

swer in comparison to the reference on a 5-point 406

Likert scale, with a prompt provided in Table 13. 407

Implementation Details We consider multiple 408

LVLMs: LLaVA-Video of 7B, InternVL 2.5 of 8B, 409

and Qwen-2.5-VL of 3B parameters for genera- 410

tion (Zhang et al., 2024c; Chen et al., 2024b; Team, 411

2025), alongside InternVideo2 (Wang et al., 2024c) 412

for retrieval (please see Appendix A.1 for details 413

on model choice). For efficiency, we use 4 frames 414

per video for retrieval, while we use 32 frames (or 415

all frames if the video is shorter than 32 seconds, 416

sampled at 1 fps) for generation. In auxiliary text 417

generation, we use Whisper (Radford et al., 2023). 418
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Features R@1 R@5 R@10

Visual 0.054 0.193 0.288

Textual 0.088 0.302 0.388

Ensemble 0.103 0.311 0.442

Table 2: Retrieval results, where we use vi-
sual features alone, textual features alone,
or an ensemble of their features.

Embedding Space Visualization
Script
Video
Query

Figure 3: Visualization of latent space
of features across modalities with Prin-
cipal Component Analysis (PCA).
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Figure 4: Impact of varying the interpola-
tion ratio between textual and visual fea-
tures on the video retrieval performance.

3.2 Experimental Results and Analyses419

We now present results and various analyses.420

Main Results We provide main results in Table 1,421

showcasing the performance of different models422

with varying types of retrieved knowledge. First,423

we find that all RAG models clearly outperform the424

NAÏVE baseline, reaffirming the critical role of ex-425

ternal knowledge in enhancing the factual accuracy426

of generated responses. Also, among these, our427

VIDEORAG achieves the best performance, signif-428

icantly surpassing conventional textual, text-image,429

or text-video RAG baselines. This improvement430

corroborates our hypothesis that video content is431

a useful resource for RAG since it provides richer432

and more detailed information than other modali-433

ties. Lastly, the smaller performance gap between434

VIDEORAG-V and VIDEORAG-VT suggests that435

much of the necessary information required for an-436

swer generation is effectively encapsulated within437

visual features of videos, which inherently include438

information conveyed through textual descriptions.439

Impact of Video Retrieval We hypothesize that440

the quality of the retrieved videos is a critical factor441

in the success of RAG, as it can directly influence442

the subsequent answer generation process. To con-443

firm this, we compare the performance of our VIDE-444

ORAG with retrieved videos against the one with445

the Oracle setting (which represents an ideal sce-446

nario with perfectly relevant video retrieval). Then,447

Table 1 shows that the Oracle setting achieves the448

highest performance, highlighting the potential for449

further improvements through advancements in450

video retrieval mechanisms within our VideoRAG.451

Efficacy of Textual and Visual Features When452

performing video retrieval, it is questionable how453

much different modalities, such as textual, visual,454

or a combination of both, contribute to video rep-455

resentations, and we report results with varying456

modalities in Table 2. We observe that textual fea-457

tures consistently outperform visual features, likely458

due to their stronger semantic alignment with tex-459

tual user queries. To further examine this, we visu-460

Table 3: Performance comparison of uniform sampling and
our frame selection approach on retrieval and generation tasks.

Retrieval R@1 R@5 R@10

V
is

ua
l Uniform 0.054 0.193 0.288

Adaptive (Ours) 0.079 0.249 0.367

E
ns

. Uniform 0.097 0.305 0.448
Adaptive (Ours) 0.118 0.324 0.453

Generation ROUGE-L BLEU-4 BERTScore

Uniform 21.04 3.249 86.07
Adaptive (Ours) 23.24 3.963 87.13

alize the embeddings of textual and visual features 461

of video content as well as queries over the latent 462

space in Figure 3, and it clearly reveals closer prox- 463

imity between textual query embeddings and tex- 464

tual video representations compared to visual video 465

representations. This is likely due to a modality gap 466

that visual features exhibit relative to text-based 467

queries, resulting in suboptimal retrieval perfor- 468

mance. Nevertheless, combining textual and visual 469

features achieves the highest performance, demon- 470

strating the complementary nature of those two 471

modalities in video representations for retrieval. 472

Analysis on Feature Ensemble To better under- 473

stand the contribution of textual and visual features 474

in video retrieval, we analyze how varying their 475

combination ratio (α) impacts performance across 476

different metrics. As shown in Figure 4, the opti- 477

mal ratio for balancing textual and visual features 478

is around 0.5 to 0.7 (with marginal variations de- 479

pending on metrics). These results further highlight 480

the complementary contributions of textual and vi- 481

sual features in video representations for retrieval, 482

while a slight emphasis on textual features might 483

be preferable due to the modality gap (Figure 3). 484

Effectiveness of Frame Selection We analyze 485

the efficacy of our adaptive frame selection, com- 486

paring it against uniform sampling in retrieval and 487

generation. Table 3 shows that our strategy outper- 488

forms uniform sampling in both tasks, demonstrat- 489

ing its ability to select more useful frames. Quali- 490

tative results in Table 7 for retrieval and Tables 8 491

and 9 for generation further highlight the advantage 492

of frame selection over uniform sampling (whose 493

frames are often redundant or less relevant). 494
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Figure 6: Breakdown performance of different models across 10 categories.

Table 4: Ablation studies with different modalities. For TEX-
TRAG, we use BM25 to retrieve textual documents.

Methods Document Video Subtitle ROUGE-L G-Eval

NAÏVE × × × 14.08 1.579
TEXTRAG (BM25) ⃝ × × 17.22 1.633
TEXTVIDEORAG × × ⃝ 22.44 2.001
VIDEORAG-VT × ⃝ ⃝ 25.23 2.104
VIDEORAG-VT + TEXTRAG ⃝ ⃝ ⃝ 24.35 2.048

Analysis with Varying Model Sizes To see if495

VideoRAG can be instantiated with varying sizes496

of LVLMs, we report its performance with different497

InternVL2.5 sizes in Figure 5. Then, the perfor-498

mance of VIDEORAG improves as the model size499

increases (thanks to the superior capability of video500

understanding in larger models), demonstrating the501

scalability of our VideoRAG and further suggesting502

its potential benefit with even larger LVLMs.503

Category-Wise Performance Analysis To eval-504

uate the robustness of VideoRAG across diverse505

query types, we break down the performance on506

10 categories (annotated in WikiHow). As shown507

in Figure 6, VIDEORAG-VT outperforms all base-508

lines across all categories (except for one), which509

highlights its ability to handle a variety of queries.510

Also, VIDEORAG-VT shows notable performance511

gain in a Food & Entertaining category, and this is512

particularly reasonable given that questions in this513

category often benefit from visual details; for ex-514

ample, the query: “How to make a healthy spinach515

and garlic dish” requires ingredient preparation516

or cooking techniques, which are not effectively517

conveyed through text alone. Thus, the results in518

this category reaffirm the importance of leveraging519

video content as external knowledge for RAG.520

Ablation Studies To analyze how performance521

varies with different knowledge sources, we con-522

duct ablation studies and present results in Table 4.523

From this, we then observe that, while incorporat-524

ing external knowledge (whether from textual ency-525

clopedic sources or video corpus) consistently im-526

proves performance over the NAÏVE baseline, the527

approach that jointly uses videos with general tex-528

tual documents achieves slightly degraded perfor-529

mance. This suggests that textual content (retrieved530

from the encyclopedic knowledge base) may intro-531

Table 5: Human evaluation results. The results are evaluated
with the subset of WikiHowQA over the HowTo100M corpus.

Methods Human G-Eval
NAÏVE 1.833 1.684
TEXTRAG (DPR) 1.867 1.747
TEXTIMAGERAG 2.447 2.203
TEXTVIDEORAG 3.130 2.279
VIDEORAG-VT 4.043 3.689

duce redundant or irrelevant details, which may 532

overlap with or contradict the information provided 533

by video content, leading to diminishing the effec- 534

tiveness of the VideoRAG framework. 535

Human Evaluation To complete automatic met- 536

rics, we conduct a human evaluation. Specifically, 537

we recruit 12 evaluators and split (randomly sam- 538

pled) 50 queries into two sets of 25, assigning each 539

participant to assess one (including responses from 540

four baselines and our model) with a 5-point Likert 541

scale. The results, presented in Table 5, show that 542

our VideoRAG achieves the highest performance in 543

human evaluation. Further, to validate the quality 544

and reliability of human evaluation, we measure an 545

inter-annotator agreement among annotators who 546

evaluate the same subset, by using Spearman’s cor- 547

relation coefficient between the ranked scores of 548

different annotators. Then, we obtain a coefficient 549

of 0.632, confirming the high reliability of our as- 550

sessments. Similarly, we measure the agreement 551

between human- and model-based (G-Eval) evalu- 552

ations and obtain a coefficient of 0.588, indicating 553

that G-Eval is a reasonable proxy for judgment. 554

Case Study Lastly, we provide case-study exam- 555

ples in Table 10 and Table 11 of the Appendix C. 556

4 Related Work 557

Retrieval-Augmented Generation RAG is a 558

strategy that combines retrieval and generation pro- 559

cesses to produce accurate answers by grounding 560

them in relevant external knowledge (Lewis et al., 561

2020; Ram et al., 2023; Zhao et al., 2024). To be 562

specific, during the retrieval step, documents (rel- 563

evant to queries) are selected from a large corpus 564

by calculating their similarity to the query, which 565

can be done with retrievers (Robertson et al., 1994; 566

Jones, 2004; Karpukhin et al., 2020; Izacard et al., 567
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2022). In the next generation step, these retrieved568

documents serve as input for generating answers569

that are rooted in the provided information (Jiang570

et al., 2023; Asai et al., 2024; Hwang et al., 2024;571

Cheng et al., 2024), with some advancements using572

iterative retrieval-generation cycles (Trivedi et al.,573

2023) or adapting different RAG strategies based574

on query complexity (Jeong et al., 2024a). How-575

ever, despite the fact that much of the real-world576

knowledge is inherently multimodal in nature (Lee577

et al., 2024; Jeong et al., 2024b; Faysse et al., 2024),578

the majority of current RAG studies have focused579

preliminary on the textual modality, with little ef-580

fort on incorporating images, leaving a significant581

gap in leveraging the full spectrum of available582

knowledge for the holistic operation of RAG.583

Multimodal RAG Recently, there has been grow-584

ing interest in expanding RAG systems to incorpo-585

rate multimodal information (beyond textual doc-586

uments), such as images (Chen et al., 2022; Lin587

and Byrne, 2022; Riedler and Langer, 2024; Yu588

et al., 2024), code (Guo et al., 2024), tables (Pan589

et al., 2022; Biswal et al., 2024), and audio (Yuan590

et al., 2024). However, unlike them, videos offer591

a unique and orthogonal advantage for RAG, as592

they encapsulate temporal dynamics, spatial de-593

tails, and multimodal cues in ways unmatched by594

other modalities. Inspired by this fact, very recent595

studies have started exploring the usage of video596

content within RAG pipelines; however, existing597

approaches leverage it in a suboptimal way. To be598

specific, some focus on extracting query-relevant599

frames from the preselected video and generating600

answers based on them, which, while useful in601

controlled scenarios, limits their real-world appli-602

cability in open-domain settings (Luo et al., 2024;603

Ma et al., 2024). Also, some other studies attempt604

to sidestep the complexity of handling video data605

by converting it into textual representations (such606

as subtitles or captions); however, while directly607

applicable to existing text-based RAG frameworks,608

they sacrifice the multimodal richness embedded609

within videos (such as temporal dynamics and spa-610

tial patterns) (Arefeen et al., 2024; Zhang et al.,611

2024b; Ma et al., 2024). To address these, we pro-612

pose VideoRAG which is capable of dynamically613

retrieving and holistically utilizing video content614

in RAG, powered by LVLMs discussed next.615

Large Video Language Models Building on the616

remarkable success of LLMs in language under-617

standing and generation as well as their ability to618

encapsulate vast amounts of knowledge (OpenAI, 619

2023; Anil et al., 2023; Dubey et al., 2024), there 620

has been a growing interest in extending them to 621

encompass diverse modalities, such as images (Lin 622

et al., 2024; Bordes et al., 2024; Zhu and Zhang, 623

2025) and code (DeepSeek-AI et al., 2024; Hui 624

et al., 2024). Furthermore, this expansion has re- 625

cently extended to another modality called video, 626

leading to the emergence of LVLMs that are ca- 627

pable of directly processing video content. In par- 628

ticular, these models excel in solving traditionally 629

challenging (yet straightforward) tasks, such as ob- 630

ject or action detection (Tang et al., 2023), and their 631

capabilities have been rapidly advanced, enabling 632

them to tackle more challenging tasks, such as an- 633

alyzing spatio-temporal dynamics to predict the 634

sequence of events, inferring causal relationships 635

across video frames, and generating context-aware 636

descriptions of intricate scenarios (Wang et al., 637

2024a; Maaz et al., 2024; Zhang et al., 2024a; He 638

et al., 2024; Wang et al., 2024b), even in zero-shot 639

settings without additional training (Chen et al., 640

2024a; Kim et al., 2024). However, despite these 641

advancements, their potential has yet to be explored 642

in the context of RAG; thus, in this work, we aim 643

to bridge this gap with the proposal of VideoRAG. 644

5 Conclusion 645

We presented VideoRAG, a framework that ex- 646

pands the current landscape of RAG by leveraging 647

a video corpus as the external knowledge source. 648

Specifically, unlike existing works that use the tex- 649

tual representations of videos or assume the exis- 650

tence of query-relevant videos without retrieval, the 651

proposed VideoRAG retrieves videos based on their 652

relevance to queries but also integrates their mul- 653

timodal richness (including visual and textual ele- 654

ments) into the RAG pipeline, with adaptive frame 655

selection to leverage only the most informative sub- 656

set of full frames for effectiveness and efficiency. 657

Also, through comprehensive analyses, we demon- 658

strated how the inclusion of visual or textual fea- 659

tures, or a combination of both, improves retrieval 660

and generation performance, and, inspired by the 661

critical role of textual features (for retrieval quality) 662

but their absence in some videos, we presented a 663

simple yet effective mitigator that uses automatic 664

speech recognition to generate textual transcripts. 665

Overall, experimental results validated the superior- 666

ity of our VideoRAG over existing RAG methods, 667

and we believe it makes a significant step toward 668

holistic RAG systems that can utilize videos. 669
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Limitations670

It is worth noting that our VideoRAG is one of671

the first works that operationalizes the full pipeline672

of RAG over the video corpus, including dynamic673

retrieval of query-relevant videos and answer gen-674

eration grounded in them, and to evaluate this oper-675

ation, the set of triples for query, relevant videos,676

and ground-truth answers is required. However,677

we discover that such datasets are currently lim-678

ited, and to tackle this issue, we not only construct679

the dataset by associating the WikiHowQA dataset680

(providing pairs of query and answers) with the681

HowTo100M dataset (providing pairs of query and682

videos), but also automatically collect the synthetic683

dataset. While this process enables a comprehen-684

sive evaluation, it would be also valuable as a future685

work to develop and release the benchmark dataset,686

to greatly facilitate research on RAG over videos.687

Additionally, the proposed frame selection strategy688

greatly improves the efficiency of video processing689

for retrieval and generation (as it narrows down the690

entire frames for the given video into their small691

subset) as well as their effectiveness, and it would692

be interesting future work to further improve the693

efficacy of our initial foray (VideoRAG) by maxi-694

mizing its effectiveness and efficiency further.695

Ethics Statement696

Recall that our proposed VideoRAG is designed to697

offer answers to user queries by retrieving query-698

relevant videos from a large video corpus, which699

helps enhance response quality. Yet, the retrieval700

process inherently depends on the corpus, and if701

it includes biased, harmful, or otherwise problem-702

atic examples, it may lead to generating responses703

that reflect those issues. In addition, since the gen-704

eration process is powered by LVLMs, which are705

trained on vast multimodal datasets, their responses706

may inherit and amplify biases present in their train-707

ing data. Therefore, we recommend practitioners to708

carefully evaluate those risks and mitigating them709

with some strategies, for example, bias detection710

and filtering (Shin et al., 2024; Miao et al., 2024).711
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A Additional Implementation Details1225

A.1 Details on Choice of LVLMs1226

for Retrieval and Generation1227

It is worth noting that there exist various LVLMs1228

available for use, each with different merits depend-1229

ing on the task requirements: for retrieval, precise1230

alignment between textual and video features (ob-1231

tained from their specialized encoders) is essential1232

to ensure that the retrieved videos are contextu-1233

ally relevant to the query, meanwhile, generation1234

benefits from LVLMs with advanced capabilities1235

for accurately formulating responses and ground-1236

ing them in the retrieved content. To achieve this,1237

for retrieval, we use InternVideo2 (Wang et al.,1238

2024c) since it is explicitly trained to align seman-1239

tics between videos and their textual descriptions.1240

Specifically, we use its video and text encoders1241

to extract embeddings for videos and text, respec-1242

tively. On the other hand, for video-augmented an-1243

swer generation, we use LLaVA-Video, InternVL1244

2.5, and Qwen-2.5-VL (Zhang et al., 2024c; Chen1245

et al., 2024b; Team, 2025), which are known for1246

achieving state-of-the-art performance on video un-1247

derstanding and relevant tasks. Finally, for genera-1248

tion, we retrieve and use one video, as we observe1249

that there are not many differences in generation1250

performance with different video quantities, while1251

increasing the number of augmented videos sub-1252

stantially increases the computational costs.1253

A.2 Details on Synthetic Data Generation1254

To more thoroughly evaluate the effectiveness of1255

our VideoRAG framework, we further automati-1256

cally generate question-answer pairs grounded in1257

individual videos via prompting of LVLMs (in addi-1258

tion to utilizing the real-world benchmark dataset).1259

Specifically, since our objective is to retrieve query-1260

relevant videos from a large corpus, the generated1261

questions should not be overly specific to a single1262

video; for example, frame-specific questions like1263

“In this video, what is the color of the balloon that1264

the girl popped?”. Instead, they should be for-1265

mulated in a more general manner to facilitate the1266

retrieval of multiple relevant videos, such as “After1267

mashing the ingredients for a homemade prison1268

beer, what is the next crucial step?”. To achieve1269

this, we construct a structured prompt for the LLM,1270

providing context about RAG and outlining key1271

principles for question generation, such as instruct-1272

ing the model to create three diverse, well-formed1273

question-answer pairs that leverage the video con-1274

tent without being overly specific and suitable for 1275

the RAG framework. We provide the prompt used 1276

to elicit the generation of question-answer pairs in 1277

Table 12. Also, we use the state-of-the-art GPT-4o 1278

as the LVLM for the synthetic data creation. 1279

A.3 Additional Details on Frame Selection 1280

We discuss how we instantiate the scoring function 1281

f (whose goal is to assign the score to the subset 1282

of frames) for retrieval and generation, and how 1283

we train it with the dataset automatically collected 1284

from the training dataset, as follows: 1285

Retrieval In retrieval, to efficiently handle a large 1286

number of videos within the corpus, we set the num- 1287

ber of frames extracted from the frame selection 1288

process as four. Specifically, for each video, we 1289

first sample its frames at 1 fps and extract their fea- 1290

tures with CLIP. Also, as discussed in Section 2.3, 1291

to eliminate redundancy and ultimately reduce the 1292

frame sampling space, we apply k-means++ clus- 1293

tering and extract 8 candidate frames, leading to 1294

the smaller sampling space of 8C4. The objective 1295

of f then becomes scoring the set of 4 frames, and 1296

we design this by obtaining the representations for 1297

those frames from CLIP and passing their concate- 1298

nation through 3-layer MLPs. Also, this MLP net- 1299

work is trained with the dataset, which we collect 1300

automatically by labeling the top 3 combinations 1301

with the highest similarity scores as True and the 1302

bottom 3 with the lowest scores as False for each 1303

video, optimized via cross-entropy loss. 1304

Generation Similar to how we select frames for 1305

retrieval, in generation, we aim to select 32 frames 1306

from 64 candidate frames (obtained via k-means++ 1307

clustering). Notably, the number of frames is larger 1308

than retrieval as generation benefits more from a 1309

comprehensive understanding of the video content 1310

to improve response accuracy. Also, among the re- 1311

sulting 64C32 possible combinations, we randomly 1312

sample 40 subsets as the space of 64C32 is still very 1313

large. For the scoring function f , we design this 1314

by obtaining representations of sampled frames as 1315

well as the query (to consider their relevance with 1316

it) from 3-layer MLPs on top of CLIP, and then 1317

computing the dot product between the averaged 1318

frame representation and the query representation. 1319

Also, we automatically collect the training dataset 1320

by labeling the top 3 combinations with the high- 1321

est ROUGE-L scores as True and the bottom 3 1322

with the lowest scores as False, according to their 1323
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Table 6: Generation results using a different set of videos,
such as Random that randomly samples videos, Retrieved that
selects videos according to their relevance with queries, and
Oracle that uses the ground truth videos annotated in data.

Video Set ROUGE-L BLEU-4 BERTScore

Random 24.29 4.996 87.83
Retrieved 25.42 5.375 88.12
Oracle 26.19 5.480 88.41

ROUGE-L score and with the LLaVA-Video (7B)1324

as the LVLM for generation.1325

B Impact of Videos on Answer Quality1326

As an auxiliary analysis, we compare the perfor-1327

mance of our VideoRAG augmented with different1328

videos, including randomly selected videos and re-1329

trieved videos (relevant to queries). As shown in1330

Table 6, incorporating query-relevant videos signif-1331

icantly improves the quality of answers compared1332

to randomly selected videos, demonstrating the1333

importance of retrieval quality. Furthermore, the1334

Oracle setting, which represents an ideal scenario1335

with perfectly relevant video retrieval, achieves1336

the highest performance, highlighting the potential1337

for further improvements through advancements in1338

video retrieval mechanisms within our VideoRAG.1339

C Qualitative Results1340

We now qualitatively analyze the effectiveness of1341

VideoRAG through a case study, with the query:1342

“Explain how to bake cookies on your car dash-1343

board”. As shown in Table 10, the NAÏVE base-1344

line, relying solely on its parametric knowledge,1345

generates a generic response highlighting the im-1346

practicality and safety concerns of such a method,1347

failing to provide the step-by-step instructions nec-1348

essary to address the query. This example indicates1349

the limitation of parametric knowledge that is in-1350

adequate especially when specific and uncommon1351

information is required. In contrast, VIDEORAG-1352

V retrieves the relevant instructional video that il-1353

lustrates the process of baking cookies on a car1354

dashboard, and, by leveraging this, it successfully1355

generates a detailed response similar to the ground1356

truth. This example highlights how the proposed1357

VideoRAG can utilize external video content to1358

produce more precise, contextually rich, and ac-1359

tionable answers than methods that rely solely on1360

parametric knowledge embedded within models.1361

Furthermore, we observe that external textual1362

knowledge alone can sometimes fall short in provid-1363

ing relevant and actionable information for specific1364

procedural queries, such as “Explain how to make a 1365

clay rose”. Specifically, as shown in Table 11, TEX- 1366

TRAG (BM25) retrieves an irrelevant document 1367

about a person named Rose, as Wikipedia does not 1368

contain specific procedural guidance on this topic, 1369

and, consequently, the generated response is mis- 1370

aligned with the query. In contrast, VIDEORAG-V 1371

retrieves the relevant video demonstrating how to 1372

make a clay rose and leverages this visual content 1373

to generate a concise and accurate response that 1374

closely mirrors the ground truth, from which we 1375

clearly confirm the utility of videos for RAG. 1376
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Table 7: Case study comparing uniform sampling and our frame selection on the retrieval task.

Uniform Sampling Adaptive Frame Selection
Make a banana split

Clean a Nespresso machine

Cook Italian sausage

Clean artificial flowers

Table 8: Case study comparing uniform sampling and our frame selection on the generation task.

Uniform Sampling
Question Explain how to cut acorn squash.
Sampled Frames

Generated Answer To cut an acorn squash, first, place it on a cutting board. Use a large knife to make a vertical cut around the middle of the squash, starting from the
top and going down to the bottom. Then, make another vertical cut on the opposite side, creating two halves. Remove the seeds and fibrous material
using a spoon or a small knife. Finally, scoop out the seeds and any remaining fibrous material into a bowl for later use.

ROUGE-L Score 25.50

Adaptive Frame Selection
Question Explain how to cut acorn squash.
Sampled Frames

Generated Answer To cut an acorn squash, first, place it on a cutting board. Use a large knife to cut off the top and bottom ends of the squash. Then, cut the squash in
half lengthwise. Remove the seeds and fibrous material from the inside using a spoon or small knife. Finally, scoop out the flesh and place it into a
bowl for cooking or serving.

ROUGE-L Score 31.11

Ground Truth In order to cut your acorn squash in half, select a sharp, study knife with an 8 to 10 inch blade. Then, place your squash lengthwise on the cutting
board and cut 1/2 an inch off the ends of the squash. Next, place your acorn squash sliced-side down so the squash looks like it’s standing up. Use a
rocking or sawing motion to cut the squash right down the middle.
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Table 9: Case study comparing uniform sampling and our frame selection on the generation task.

Uniform Sampling
Question Explain how to make coconut candy.
Sampled Frames

Generated Answer To make coconut candy, start by grating the coconut and placing it in a pot. Then, add sugar to the pot and stir until the mixture is well combined.
Cook the mixture over medium heat until it reaches a caramel-like consistency. Once cooked, remove from heat and let cool slightly. Shape the
mixture into small balls and place them on a plate. Let them cool completely before serving.

ROUGE-L Score 30.26

Adaptive Frame Selection
Question Explain how to make coconut candy.
Sampled Frames

Generated Answer To make coconut candy, start by grating the coconut using a box grater over a plate. Then, melt sugar in a pot and stir it until it turns into a
caramel-like consistency. Add the grated coconut to the melted sugar mixture and stir well. Once the mixture is well combined, let it cool and
solidify. Finally, shape the solidified mixture into small balls or shapes and enjoy your homemade coconut candy!

ROUGE-L Score 33.55

Ground Truth To make coconut candy squares, you’ll need shredded coconut, white sugar, corn syrup, water, butter, salt, baking soda, and a small cake pan.
Combine the sugar, water, and corn syrup in a saucepan over medium heat, stirring until the mixture boils. Then, add the butter, remove the mixture
from the heat source, and stir in the remaining ingredients. Pour the mixture into the pan and let it set for a few hours. Then, just cut the solid into
small squares and enjoy!
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Table 10: Case study comparing NAÏVE and VIDEORAG-V approaches.

NAÏVE
Question Explain how to bake cookies on your car dashboard.
Generated Answer I’m sorry, but it’s not possible to bake cookies on your car dashboard. The dashboard is not designed for cooking and it’s not safe to use it as a heat

source. Additionally, the fumes from baking could be harmful to you and the car’s interior.

Baking requires a controlled environment with a consistent temperature, which is difficult to achieve in a car. Moreover, the dashboard
is made of materials that can easily catch fire or release toxic fumes when exposed to high temperatures.

If you want to bake cookies, it’s best to do so in a safe and controlled environment, such as a kitchen or an outdoor grill. Just remem-
ber to always follow proper safety precautions and guidelines when cooking.

VIDEORAG-V
Question Explain how to bake cookies on your car dashboard.
Retrieved Video

Generated Answer To bake cookies on your car dashboard, you’ll need a nonstick cooking spray, a cookie sheet, cookie dough, a spatula, and a thermometer. First,
spray the cookie sheet with nonstick cooking spray. Then, place the cookie dough onto the sprayed sheet. Cover it with plastic wrap and let it rest.
Next, place the cookie sheet in the car’s dashboard, ensuring it’s at least 95 degrees Fahrenheit. Set the car in a sunny spot to bake the cookies. After
baking, use a spatula to remove the cookies from the dashboard.

Ground Truth To bake cookies on your car dashboard, you’ll need to be parked in a sunny spot on a day when it’s at least 95 degrees Fahrenheit out. First, spread
cookie dough out on a baking sheet lined with parchment paper. Then, set the baking sheet on your car dashboard, and shut all of the doors. Finally,
check on the cookies every 15-30 minutes until the edges of the cookies are firm and you’re able to slide them off the parchment paper.
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Table 11: Case study comparing TEXTRAG (BM25) and VIDEORAG-V approaches.

TEXTRAG (BM25)
Question Explain how to make a clay rose.
Retrieved Document Vally Wiselthier, an art deco ceramicist who was making pieces for General Ceramics in Keasbey, New Jersey. After seeing her preliminary pieces,

Erni gave Rose a membership at Greenwich House, where she learned how to use a potter’s wheel. Shortly after their first son George was born, he
was found to have intractable asthma. The Cabat’s decided to move to Arizona around 1942 in order to alleviate his condition. During World War II
Rose worked as a riveter at the Davis-Monthan Army Air Field repairing war-damaged aircraft. Rose was able to make primitive ceramics from the
extra clay that Erni

Generated Answer The document does not provide a step-by-step guide on how to make a clay rose. However, based on the information provided, we can infer that
Rose learned how to use a potter’s wheel at Greenwich House after seeing Vally Wiselthier’s preliminary pieces. This suggests that she may have
received some training or instruction in pottery from Vally Wiselthier or other instructors at Greenwich House.

To make a clay rose, you would need to follow these general steps:
1. Gather materials: You will need clay, a potter’s wheel, a wire cutter, a sponge, and any additional materials you want to use for decoration (such as
glaze, paint, or glitter).
2. Prepare the clay: Cut a piece of clay to the desired size and shape for your rose. Use a wire cutter to trim any excess clay and smooth out any
rough edges.
3. Shape the clay: Use your hands or tools to shape the clay into a rose. You can start by creating a small ball of clay for the center of the rose, then
add petals around it. Use a sponge to smooth out any rough areas and refine the shape of the rose.
4. Add details: Use a tool or your fingers to add details to the petals, such as veins or shading. You can also use additional materials like glaze, paint,
or glitter to decorate the rose.
5. Allow the clay to dry: Let the clay dry completely before firing it in a kiln. This will help prevent any cracking or breaking during the firing
process.
6. Fire the clay: Place the dried clay rose in a kiln and fire it according to the manufacturer’s instructions. This will harden the clay and create a
durable piece of pottery.
7. Glaze or finish: Once the clay is fired, you can apply a glaze or finish to give the rose a glossy or matte appearance. Allow the glaze to dry and
cure before handling the finished piece.

It’s important to note that this is a general guide and the specific steps may vary depending on the type of clay you are using and the
techniques you are employing. It’s also important to follow safety guidelines when working with clay and kilns.

VIDEORAG-V
Question Explain how to make a clay rose.
Retrieved Video

Generated Answer To make a clay rose, start by rolling out a piece of clay into a flat sheet. Use a rolling pin to flatten the clay further. Then, use a knife or sculpting tool
to cut the clay into petal shapes. Roll the petals into a spiral shape to form the rose. Use a small tool to create indentations in the petals for texture.
Assemble the petals around a central stem, shaping them to resemble a rose. Add leaves and other details as desired. Finally, use a mold to imprint
patterns onto the petals, adding depth and realism to the rose.

Ground Truth To make a clay rose, start by rolling a chunk of clay into a ball, dividing the ball into seven similarly-sized pieces, and rolling those pieces into balls.
Take the smallest ball and press it into a guitar-pick-shaped “petal” with the pointy part thicker than the rounded part, then fold the sides gently
inward. Repeat with a slightly bigger ball of clay, then fold this second petal around the first. Continue attaching slightly larger petals in a spiral, then
pinch the bottom of your rose to connect all the petals.
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Table 12: The prompt used for generating synthetic question-answer pairs.

Your task is to create 3 diverse, relevant, and realistic question-answer pairs specifically designed to
evaluate a Retrieval-Augmented Generation (RAG) system using the provided video. The questions
should be crafted in a way that answering them requires retrieving the specific video or its information
from a large corpus, without being overly specific or relying on minor details. Focus on crafting
questions that are general enough to apply broadly yet detailed enough to leverage key information
from the video. Avoid direct references such as ’in this video’ or overly specific mentions that limit
the question’s scope to the given video. Instead, structure questions to include contextual cues or
keywords that would aid in retrieving the correct content while maintaining natural language flow.

Consider including questions that cover:
- Generalized step-by-step actions or procedures (e.g., preparation steps, typical tasks)
- Logical connections between steps (e.g., ‘What should be done after breaking apart the ingredi-
ents?’)
- Common tools or objects involved and their general purpose
- Contextual or background details that support retrieval (e.g., setting or process clues)
- Typical outcomes or results of observed actions or procedures

The JSON structure should look like this:
[

{“question”: “<Insert Question 1>”, “answer”: “<Insert Answer 1>”},

{“question”: “<Insert Question 2>”, “answer”: “<Insert Answer 2>”},

{“question”: “<Insert Question 3>”, “answer”: “<Insert Answer 3>”}

]

... up to 3 question-answer pairs

Table 13: The prompt template used for G-Eval, which is further used as a guideline for human evaluation.

You are tasked with evaluating a Generated Response to the given Question based on its overall quality
compared to a provided Ground Truth Answer.

Evaluation Criteria:
1. Carefully read the Ground Truth and the Generated Response.
2. Assess how well the Generated Response matches the Ground Truth. Please penalize the Generated
Response that has the far different content and style and is largely longer than the Ground Truth.
3. Provide an overall score (1-5) based on your evaluation.

Question: {{Question}}
Ground Truth Answer: {{Ground_Truth_Answer}}
Corresponding User Profile: {{Persona}}
Generated Response: {{Generated_Response}}
Generated Response: {{Response}}

Please provide only a single numerical rating (1, 2, 3, 4, or 5), without any additional commentary,
formatting, or chattiness.
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