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ABSTRACT

Neural Ordinary Differential Equations (Neural ODEs or NODEs) excel at mod-
eling continuous dynamical systems from observational data, especially when
the data is irregularly sampled. However, existing training methods predomi-
nantly rely on numerical ODE solvers, which are time-consuming and prone to
accumulating numerical errors over time due to autoregression. In this work,
we propose VF-NODE, a novel approach based on the variational formulation
(VF) to accelerate the training of NODEs. Unlike existing training methods,
the proposed VF-NODEs implement a series of global integrals, thus evaluat-
ing Deep Neural Network (DNN)–based vector fields only at specific observed
data points. This strategy drastically reduces the number of function evaluations
(NFEs). Moreover, our method eliminates the use of autoregression, thereby re-
ducing error accumulations for modeling dynamical systems. Nevertheless, the
VF loss introduces oscillatory terms into the integrals when using the Fourier
basis. We incorporate Filon’s method to address this issue. To further enhance
the performance for noisy and incomplete data, we employ the natural cubic
spline regression to estimate a closed-form approximation. We provide a fun-
damental analysis of how our approach minimizes computational costs. Exten-
sive experiments demonstrate that our approach accelerates NODE training by
10 to 1000 times compared to existing NODE-based methods, while achieving
higher or comparable accuracy in dynamical systems. The code is available at
https://github.com/ZhaoHongjue/VF-NODE-ICLR2025.

1 INTRODUCTION

Neural ordinary differential equations (NODEs) (Chen et al., 2018) represent a family of continuous-
depth machine learning models. Drawing inspiration from ResNets (He et al., 2016), NODEs aim
to parameterize vector fields of ODEs using deep neural networks (DNNs),

ẋ = fθ(t,x), (1)

where fθ : [0, T ]×Rd → Rd is a DNN and θ denotes the model parameters. The continuous nature
and specific inductive bias of NODEs render them particularly well-suited for modeling dynamical
systems from irregularly sampled time series data (Rubanova et al., 2019; Kidger et al., 2020).
Thus, NODEs have been widely applied to various dynamical system applications, such as multi-
agent trajectory forecasting (Wen et al., 2022), model-based reinforcement learning (Alvarez et al.,
2020), optimal control (Chi, 2024) and chemical reaction process modeling (Yin et al., 2023).

In existing training frameworks of NODEs, numerical ODE solvers play a crucial role. The forward
pass outcomes are directly calculated using numerical ODE solvers. For the backward pass, there
are two methods commonly employed to backpropagate through ODE solvers (Kidger, 2022; Onken
& Ruthotto, 2020): (1) discretize-then-optimize, which involves directly backpropagating through
operations of ODE solvers, and (2) optimize-then-discretize, also known as the adjoint sensitivity
method, as utilized in (Chen et al., 2018), which introduces additional adjoint ODEs. In this method,
gradients of the scalar loss function with respect to parameters of NODEs are computed by solving
these adjoint ODEs. More details can be found in Appendix B.1.
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Figure 1: Comparison of VF-NODEs and ODE-solver-based methods. (a) ODE-solver-based train-
ing methods: ODE solvers compute solutions of the NODEs, necessitating evaluations of the DNN-
based vector fields at additional data points. (b) VF-NODEs: implement global integrals numeri-
cally using Filon’s method and spline regression in the VF loss, evaluating the DNN-based vector
fields only at specific data points.

Nonetheless, these ODE-solver-based training methods face two significant limitations. First, they
are inherently time-consuming. The internal mechanisms within numerical ODE solvers can incur
significant computational costs in solving NODEs (Lipman et al., 2022). This is attributed to the
numerous evaluations of DNN-based vector fields beyond given sampled data points, as shown in
Fig. 1. For the optimize-then-discretize approach, this issue may be exacerbated by the introduction
of additional adjoint ODEs. Second, existing approaches may suffer from low accuracy. On the
one hand, the autoregressive nature of most numerical ODE solvers can lead to error accumulation,
as discussed in Appendix B.2. On the other hand, the optimize-then-discretize approach incurs
additional numerical discretization error, resulting in inaccurate gradients, and potentially causing
the training process to fail entirely (Gholami et al., 2019). In short, these limitations stem from the
use of numerical ODE solvers.

To date, various approaches have been proposed to address the aforementioned limitations of
NODEs. For example, to alleviate the computational bottleneck of NODEs, some works attempt
to constrain the complexity of learned dynamics (Finlay et al., 2020; Kelly et al., 2020; Pal et al.,
2021), while others seek to directly modify the ODE-solver-based training process (Kidger et al.,
2021; Djeumou et al., 2022; Norcliffe & Deisenroth, 2023; Matei et al., 2023). In the domain of
irregularly sampled time series tasks, several models built upon neural differential equations have
been proposed (Rubanova et al., 2019; Kidger et al., 2020). Nevertheless, these approaches remain
heavily reliant on ODE solvers, preventing them from effectively addressing the computational bot-
tleneck.

To address the challenges associated with the reliance on numerical ODE solvers during the training
of NODEs, we propose the VF-NODE, a novel approach that employs the variational formulation
(VF) (Brunel et al., 2014; Hackbusch, 2017) to accelerate training. The proposed approach integrates
a VF-based loss function within the standard NODE architecture. Our motivation is that the VF loss
can implement a series of global integrals, thus evaluating the DNN-based vector field only at spe-
cific data points in the observations. In contrast, existing ODE-solver-based training methods have
to evaluate the DNN-based vector fields at extra data points due to step size settings. Consequently,
our method significantly reduces the number of function evaluations (NFEs). On the other hand,
these global integrals mitigate autoregression compared with ODE-solver-based training methods,
eliminating error accumulation and improving prediction accuracy. However, the utilization of the
VF loss poses two challenges for NODEs. (i) It could result in additional oscillatory integrals due to
the introduction of Fourier basis functions like sine and cosine. (ii) It does not perform well when
data is missing and noisy. To address the first challenge, we incorporate Filon’s method (Deaño
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et al., 2017) for oscillatory integrals. For the second challenge, we adopt the natural cubic spline
regression (De Boor, 1978) to obtain a closed-form approximation for Filon’s method. We also
provide a fundamental analysis of the acceleration benefits of our approach in Section 4.3. Exten-
sive experiments demonstrate that the VF-NODE achieves a 10 to 1000 times speed increase over
existing baselines while maintaining higher or comparable accuracy.

Our contributions are three-fold: (1) We introduce a novel approach that employs the variational
formulation (VF) to significantly accelerate the training of NODEs. This method significantly re-
duces the number of function evaluations (NFEs) and improves the prediction accuracy. (2) We
integrate Filon’s method with natural cubic spline regression to effectively compute oscillatory in-
tegrals from noisy and partially observed data within the VF loss. (3) Evaluation results on multiple
dynamical systems including one real-world application demonstrate that our approach achieves 10
to 1000 times acceleration in training speed compared to the baselines while achieving higher or
competitive accuracy.

2 RELATED WORK

NODEs for Dynamical Systems. NODEs have been introduced to model continuous dynamical
systems. Latent ODEs based on VAEs were first proposed in (Chen et al., 2018), with RNNs as
encoders and NODEs as decoders. Rubanova et al. (2019) proposed ODE-RNNs, which use NODEs
to simulate continuous dynamics of hidden states in RNNs, and incorporated them into Latent ODEs
as encoders. Kidger et al. (2020) introduced Neural Controlled Differential Equations (NCDEs),
which can be viewed as the deep limit of RNNs. However, complex mechanisms involved in these
methods exacerbate the computational burden during training. In contrast, our approach is built on
common NODEs, requiring only simple multi-layer perceptrons (MLPs) and the VF loss. It can
significantly speed up NODE training and improve the robustness against noisy data. Biloš et al.
(2021) introduced Neural Flows as an alternative to NODEs, which directly use DNNs to model the
solution of ODEs. However, they have difficulty modeling autonomous systems.

Acceleration Techniques of NODEs. Existing works on accelerating the NODEs training can be di-
vided into three categories. (i) Regularization-based methods. Some approaches try to constrain the
complexity of learned dynamics using regularization techniques, including high-order derivatives
regularization (Kelly et al., 2020), kinetic regularization (Finlay et al., 2020), temporal regulariza-
tion (Ghosh et al., 2020) and others. Unfortunately, these methods may only accelerate inference,
and the training time may not be reduced. (ii) Design new architectures. Some works directly restrict
the dynamics by designing special architectures of NODEs, for example, Heavy Ball NODEs (Xia
et al., 2021) and Nesterov NODEs (Nguyen et al., 2022). In addition, model order reduction tech-
niques have been utilized to directly compress DNNs in NODEs (Lehtimäki et al., 2022). However,
these methods limit the expressivity of learned dynamics, making them unsuitable for dynamical sys-
tems. (iii) Modify training process. Other approaches try to modify the training process of NODEs
to implement acceleration, such as the IRDM (Daulbaev et al., 2020), seminorm approach (Kidger
et al., 2021), the Taylor theorem (Djeumou et al., 2022), the Gauß–Legendre quadrature (Norcliffe
& Deisenroth, 2023), and the sensitivity-free gradient descent (Matei et al., 2023). Nevertheless, all
existing modifications still rely on ODE solvers. Thus, the existing computational bottleneck is not
tackled effectively, leading to poor acceleration performance. In contrast, our method only performs
global numerical integrals, which is much more efficient than existing approaches.

Variation Formulation of ODEs. The VF method, as employed in our work, was initially intro-
duced for parameter estimation of known ODEs (Brunel et al., 2014). Subsequent research, such as
D-CODE (Qian et al., 2022), extended the use of VF for symbolic regression to facilitate the dis-
covery of equations. This approach was primarily adopted to circumvent the need for numerically
estimating derivatives from noisy data. However, it was not utilized to expedite the training of mod-
els, unlike in our work. Furthermore, the evaluation of D-CODE was limited to dynamical systems
sampled at regular intervals, employing the basic compound trapezoidal rule (Press, 2007) for com-
puting numerical integrals in the loss function. Notably, D-CODE did not address the challenges
posed by oscillatory integrals, which arise with the Fourier basis function (Deaño et al., 2017). In
contrast, our application of VF to NODEs serves distinct purposes. Firstly, we leverage VF to accel-
erate NODEs training. Secondly, we utilize it to avoid autoregression, thereby enhancing prediction
accuracy. From an application perspective, our focus is on modeling dynamical systems based on
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irregularly sampled data. On the technical front, we integrate Filon’s method to effectively handle
oscillatory integrals, a significant advancement over the D-CODE approach.

3 PRELIMINARIES

Problem Setup. Consider a time-series dataset in which each trajectory is represented as
{(t0,x(t0)), (t1,x(t1)), . . . , (tK ,x(tK))}, where 0 = t0 < t1 < · · · < tK = T , and x(tk) =
[x1(tk), x2(tk), . . . , xd(tk)]

⊤ ∈ (R ∪ {∗})d are noisy observations, with ∗ denoting possible miss-
ing values. Our goal is to speed up the training of NODEs for dynamical systems.

3.1 VARIATIONAL FORMULATION OF ODES

In this subsection, we formally introduce the variational formulation (VF) of ODEs we utilized in
Theorem 1. Through this formulation, we can establish a direct connection between the trajectory
x and the vector field f through a numerical integral.

Theorem 1 (Variational Formulation of ODEs (Brunel et al., 2014; Hackbusch, 2017)). Consider
d ∈ N+, T ∈ R+, continuous functions x : [0, T ] → Rd, f : [0, T ]× Rd → Rd, and ϕ ∈ C1[0, T ],
where C1 is the set of continuously differentiable functions. Here we define the functionals

c(x,f , ϕ) :=

∫ T

0

x(t)ϕ̇(t) dt+

∫ T

0

f(t,x(t))ϕ(t) dt . (2)

Then x is the solution to the ODEs ẋ = f(t,x) if and only if

c(x,f , ϕ) = 0, ∀ϕ ∈ C1[0, T ] s.t. ϕ(0) = ϕ(T ) = 0. (3)

The proof of Theorem 1 can be found in (Qian et al., 2022). This theorem establishes the necessary
and sufficient conditions under which x is the solution of the ODEs ẋ = f(t,x). Moreover, in
contrast to existing training frameworks for NODEs, this connection does not rely on solving the
ODE numerically.

Intuitively, for a NODE expressed as Eq. (1), we can attempt to find the optimal parameters θ by
minimizing ∥c(x,f , ϕ)∥22 =

∑d
j=1 c

2
j (x,f , ϕ) to zero to satisfy Eq. (3). To operationalize this

concept in NODE training, we introduce Theorem 2 (Qian et al., 2022), which is outlined below.

Theorem 2. Let x : [0, T ] → Rd be a continuously differentiable function which satisfies ẋ =
f(t,x). Then for the Lipschitz continuous neural network fθ : [0, T ] × Rd → Rd, where θ are
parameters, the following limit holds.

lim
L→∞

L∑
ℓ=1

c2j (x,fθ, ϕℓ) = ∥(fθ,j − fj) ◦ (t,x)∥22, (4)

where {ϕ1, ϕ2, . . . , ϕL} are a series of Hilbert orthonormal basis for L2[0, T ] such that ϕℓ(0) =

ϕℓ(T ) = 0, ℓ = 1, . . . , L and ∥(fθ,j − fj) ◦ (t,x)∥22 =
∫ T

0
[fθ,j(t,x(t))− fj(t,x(t))]

2
dt.

The proof of Theorem 2 can be found in Appendix C. In general, Theorem 2 enables the appli-
cation of the VF to the training of NODEs. By leveraging this theorem, we convert an infinite
number of constraints into a series of constraints using a set of orthogonal basis functions. Addi-
tionally, we establish a connection between the VF and distances between functions, implying that
as ∥c(x,fθ, ϕ)∥22 converges to zero, the parameters θ in NODEs also converge to their optimal
values.

3.2 FILON’S METHOD

Filon’s method is designed for oscillatory integrals. Consider the integral
∫ T

0
h(t) sin(ωt) dt. We

aim to compute this integral numerically using the available data points {h(tk)}Kk=0 with 0 = t0 <
t1 < · · · < tK = T .
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For general numerical integration techniques, such as the Newton-Cotes formula (Press, 2007), they
utilize polynomials pk(t) to approximate the entire integrand h(t) sin(ωt) within each time inter-
val [tk, tk+1]. Consequently, these methods struggle to handle high-frequency oscillations as ω
increases, because polynomials cannot effectively match the high-order derivatives of the integrand.
Further analysis on this issue is provided in Appendix D. To address this limitation, we introduce
Filon’s method (Deaño et al., 2017), which employs polynomials solely to approximate the non-
oscillatory component h(t) in the original integrand. This approach enables the estimation of the
original integral as follows:∫ T

0

h(t) sin(ωt) dt =

K−1∑
k=0

∫ tk+1

tk

h(t) sin(ωt) dt ≈
K−1∑
k=0

∫ tk+1

tk

qk(t) sin(ωt) dt , (5)

where qk(t) is the approximate n-th-order polynomial of h(t) over the time interval [tk, tk+1]. It is
important to note that the integral

∫ tk+1

tk
qk(t) sin(ωt) dt can always be computed analytically. This

approach ensures that the accuracy of numerical integrals is not affected by ω, effectively addressing
the challenge of oscillatory integrals.

4 PROPOSED METHOD

In this section, we begin by introducing the VF loss for NODEs based on Theorem 2 and addressing
the computational challenges in the VF loss using Filon’s method and natural cubic spline regression.
Then, we elaborate on the steps of VF-NODEs. Finally, we provide a fundamental analysis of the
acceleration benefits of our approach.

4.1 COMPUTING THE VF LOSS

In Section 3.1, we systematically introduced the VF utilized in this work, and demonstrated the
connection between this formulation and the distance between the vector field fθ of the NODE and
the ground truth vector field f . Based on Theorem 1 and Theorem 2, the optimal parameters θ of a
NODE, as expressed in Eq. (1), can be obtained by solving the following optimization problem:

θ⋆ = argmin
θ

N∑
i=1

L∑
ℓ=1

∥∥∥c(x[i],fθ, ϕℓ)
∥∥∥2
2
,

c(x[i],fθ, ϕℓ) =

∫ T

0

x[i](t)ϕ̇ℓ(t) dt+

∫ T

0

fθ(t,x
[i](t))ϕℓ(t) dt ,

(6)

where {x[i]}Ni=1 are trajectories in the dataset, and ϕℓ(t) =
√

2/T sin(πℓt/T ), which can be consid-
ered as the sine Fourier basis. However, computing the VF loss poses two computational challenges.
(i) The use of the sine Fourier basis introduces oscillatory terms into the integrals. (ii) It is challeng-
ing to compute integrals numerically from noisy and incomplete data.

To address the first challenge, we introduce the Filon’s method, which is designed for oscillatory
integrals. Integrals in Eq. (6) are one-dimensional oscillatory integrals, and these integrals can be
concluded as

∫ T

0
h(t) sin(ωt) dt, without loss of generality. As discussed in Section 3.2, polynomi-

als struggle to capture the nature of the oscillatory integrand h(t) sin(ωt) as ω increases. To tackle
this issue, we leverage Filon’s method, which uses polynomials to approximate the non-oscillatory
part h(t) in each interval. By focusing on h(t) alone, we eliminate the influence of ω on the precision
of the closed-form approximation.

To deal with the second challenge, we introduce the natural cubic spline regression (De Boor, 1978),
which is used to build up a precise closed-form polynomial approximation for h(t) in Filon’s method
from noisy data. For {h(tk)}Kk=0 with 0 = t0 < t1 < · · · < tK = T , we aim to construct a cubic
polynomial qk(t) in each interval [tk, tk+1] in Eq. (5):

qk(t) = ak,0 +

3∑
m=1

ak,m(t− tk)
m = ak,0 + ak,1(t− tk) + ak,2(t− tk)

2 + ak,3(t− tk)
3. (7)

By meeting the requirements for continuity, differentiability, natural boundary conditions, and
smoothness, we can calculate the coefficients ak,m (k = 0, . . . ,K − 1,m = 0, 1, 2, 3) in Eq. (7). In
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general, spline regression allows us to create sufficiently precise closed-form approximations while
maintaining smoothness. We provide a detailed process for this calculation in Appendix E.

In summary, to compute the integral
∫ T

0
h(t) sin(ωt) dt, we first construct the natural cubic

spline approximation of h(t), denoted as qk(t), within each time interval using sampled data
{(tk, h(tk))}Kk=0. By substituting Eq. (7) into Eq. (5), we can estimate the integral accurately by
computing

∑K−1
k=0

∫ tk+1

tk
qk(t) sin(ωt) dt.

4.2 VF-NODES

The proposed VF-NODE uses the same neural architecture as the vanilla NODE, but it is trained
based on the VF loss. Given a trajectory {(tk,x(tk))}Kk=0, where 0 = t0 < t1 < · · · < tK = T , we
present the detailed steps of our method.

Step 1: Perform natural cubic spline regression on x(tk) to get the spline coefficients ak,m.

Step 2: Estimate the trajectory based on the spline to remove noise: x̂(tk) = ak,0 +∑3
m=1 ak,m(tk − tk)

m = ak,0 (k = 0, . . . ,K − 1) and x̂(tK) =
∑3

m=0 aK−1,m(tK − tK−1)
m.

Step 3: Evaluate the vector fields fθ(tk, x̂(tk)), k = 0, . . . ,K.

Step 4: Perform natural cubic spline interpolation on fθ(tk, x̂(tk)) to get the spline coefficients
bk,m.

Step 5: Compute the VF loss ∥c(x̂,fθ, ϕℓ)∥22 based on ak,m and bk,m:

L∑
ℓ=1

∥c(x̂,fθ, ϕℓ)∥22 =

L∑
ℓ=1

∥∥∥∥∥
∫ T

0

x̂(t)ϕ̇ℓ(t) dt+

∫ T

0

fθ(t, x̂(t))ϕℓ(t) dt

∥∥∥∥∥
2

2

(8)

where ∫ T

0

x̂(t)ϕ̇ℓ(t) dt =

√
2

T

πℓ

T

K−1∑
k=0

3∑
m=0

ak,m

∫ tk+1

tk

(t− tk)
m cos

πℓt

T
dt ,

∫ T

0

fθ(t, x̂(t))ϕℓ(t) dt ≈
√

2

T

K−1∑
k=0

3∑
m=0

bk,m

∫ tk+1

tk

(t− tk)
m sin

πℓt

T
dt .

(9)

These steps are summarized as Algorithm 1 in Appendix F. In this process, the natural cubic spline
serves two key roles in our method. (i) It builds up precise closed-form approximations of the trajec-
tory x(t), denoted as x̂(t), and vector fields fθ(t, x̂(t)) from noisy observations, which is essential
for estimating the oscillatory integral accurately. (ii) It fills in missing values in the trajectory x(t),
which is necessary for evaluating the vector fields fθ(t, x̂(t)).
Remark 1. It is important to emphasize that our primary use of natural cubic spline is for construct-
ing the closed-form approximation, which is essential for computing numerical integrals, rather than
for transforming the original irregularly sampled data into regularly spaced data. While we do uti-
lize this technique to fill in missing values, it is a natural byproduct of constructing the closed-form
approximation.
Remark 2. Because we have removed noise in observations by performing spline regression on x(t),
we only need to perform spline interpolation on fθ(t, x̂(t)) for obtaining a closed-form approxima-
tion.

4.3 FUNDAMENTAL ANALYSIS FOR THE ACCELERATION OF VF-NODES

Now we demonstrate how our method accelerates the training of NODEs in two ways: (1) reduce the
number of function evaluations (NFEs) and (2) improve parallelizability. Consider a trajectory with
M observed data points. As shown in Fig. 1 (a), ODE-solver-based training methods require evalu-
ating vector fields fθ many more than M times. For example, common adaptive-step-size explicit
Runge-Kutta methods (Butcher, 2016) use an autoregressive formula xn+1 = xn + h

∑J
j=1 zjgj

to estimate the solution of a NODE expressed as in Eq. (1). Here, h is the step size, J is the order

6



Published as a conference paper at ICLR 2025

of the ODE solver, zj are coefficients and gj are evaluations of the DNN-based vector field fθ. In
this case, to make one-step-forward prediction, the DNN-based vector field must be be evaluated
for J times. Moreover, to ensure accuracy, these ODE solvers often require evaluating the DNN-
based vector field at additional data points beyond those provided in the observations. As a result,
the vector field fθ will be evaluated ≫ M × J times using ODE-solver-based training methods.
Additionally, due to the autoregressive nature of ODE solvers, these vector fields must be evaluated
step by step.

However, VF-NODEs only evaluate the DNN-based vector fields for exactly M times, as shown
in Fig. 1 (b). As discussed in Section 4.2, to compute global integrals in the VF loss numerically,
we evaluate the vector fields fθ only at the specific sampled data points in Step 3, in order to
construct a closed-form spline approximation in Step 4. In addition, these vector fields can be
evaluated simultaneously in Step 3. Although L integrals need to be computed in c(x,fθ, ϕℓ) for
ℓ = 1, . . . , L, these integrals share the same vector fields, allowing for efficient computation.

Summary of the Proposed VF-NODEs. Our method enables the learning of parameters in NODEs
without relying on numerical ODE solvers. Regarding computational efficiency, our approach re-
quires only a series of global integrals for each trajectory. In these numerical integrals, the vector
fields of NODEs are only evaluated at observed data points in parallel, significantly reducing the
number of function evaluations and achieving better parallelizability. Additionally, our approach
effectively mitigates error accumulation from autoregression, thus improving prediction accuracy.

5 EXPERIMENTS

In this section, we conduct a series of experiments to evaluate the performance of VF-NODEs. We
begin by applying the method to four dynamical systems of various dimensions. Subsequently, we
assess its performance on the real-world COVID-19 dataset. Lastly, we perform ablation studies to
examine the model’s key components.

Baselines. To evaluate acceleration performance, we compare our method against the following
training approaches for NODE-based models: (1) the discretize-then-optimize approach (Dis-Opt),
(2) the optimize-then-discretize approach (Opt-Dis) (Chen et al., 2018), and (3) the seminorm ap-
proach (Kidger et al., 2021). Additionally, we compare the accuracy of our proposed method
against two categories of SOTA methods. The first category includes NODE-based models: (1)
Vanilla NODE (Chen et al., 2018), (2) TayNODE (Kelly et al., 2020), (3) Latent ODE with RNN
encoder (Chen et al., 2018), (4) ODE-RNN (Rubanova et al., 2019), (5) Latent ODE with ODE-
RNN encoder (Rubanova et al., 2019), and (6) NCDE (Kidger et al., 2020). The second category
consists of Neural Flows (Biloš et al., 2021), where neural networks gθ are used to directly model
the solution of ODEs as x = gθ(t,x0). This category includes models such as ResNet Flows and
GRU Flows. Detailed hyperparameter settings of these models are provided in Appendix I.1. We
also discuss other training methods for NODEs based on spline mtehods, as shown in Appendix H.

5.1 SIMULATION OF LOW-DIMENSIONAL DYNAMICAL SYSTEMS

Dynamical Systems. We select four dynamical systems from fields such as biology, biochem-
istry, genetics and epidemiology: the glycolytic oscillator (Sel’Kov, 1968), the genetic toggle
switch (Gardner et al., 2000), the repressilator (Elowitz & Leibler, 2000), and the age-structured
SIR model (Ram & Schaposnik, 2021). These systems vary in dimensionality: the repressilator is
six-dimensional, and the age-structured SIR model is 27-dimensional, while the remaining systems
are two-dimensional. Further dataset details are provided in Appendix I.2.

Datasets. For each system, except the age-structured SIR model, we generate 125 trajectories with
randomly sampled initial conditions, of which 100 are used for training and 25 for validation. Each
trajectory is uniformly sampled with 100 data points from U [0, T ], with values randomly dropped
at a rate of 1 − r via masking. Following (Qian et al., 2022), Gaussian noise ϵ = σR · std(x(t))
is added to each observation. For baselines, each trajectory is segmented into 5 short segments to
enhance the performance of baselines, while for VF-NODEs, the whole trajectory is used to improve
the precision of spline regression. Additionally, we generate 25 test trajectories, each containing 200
randomly sampled points. The first 100 points are sampled from U [0, T ] for interpolation tasks, and
the remaining 100 from U [T, 2T ] for extrapolation tasks. In our experiments, T is set to 10, σR to
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0.01, and the retention ratio to r = 0.8. All settings remain the same for the age-structured SIR
model except for the number of trajectories: 500 are generated for training and validation (400 for
training and 100 for validation), and an additional 100 trajectories are generated for testing.

Evaluation on Acceleration. We compare the acceleration performance of our method against
NODE-based baselines in terms of average training time per epoch using the glycolytic oscillator.
As shown in Fig. 2, our method significantly accelerates the training of NODE-based baselines by
a factor of 10 to 1000. This improvement is attributed to our approach, which relies solely on
global numerical integration over the time domain, thereby reducing NFEs during training. Average
training time per epoch on other dynamical systems are provided in Appendix G.1.

VF-NODEs Vanilla NODE TayNODE Latent ODE 1 ODE-RNN Latent ODE 2 NCDE
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Figure 2: Average training time per epoch (second) for each method on the glycolytic model. Our
method can achieve 10 to 1000 times faster than the baselines. Due to the high stability of the
training speed for some methods, the uncertainty is negligible and not clearly visible in the figure.

Evaluation on Prediction Error. We evaluate the prediction error of different methods on in-
terpolation and extrapolation tasks using mean squared error (MSE), as shown in Tables 1 and 2
respectively. The results demonstrate that our method consistently achieves higher or comparable
performance compared wth the baselines. This superior performance can be attributed to two key
factors: (1) the standard NODE architecture in VF-NODEs aligns well with dynamical systems
represented by ODEs, and (2) the use of global integrals in the VF loss mitigates autoregression, ef-
fectively reducing error accumulation. Although Vanilla NODEs share the same neural architecture,
they rely on ODE solvers for training, which leads to error accumulation and significantly slower
training speeds compared to VF-NODEs. In the case of TayNODEs, the regularization term restricts
the complexity of the learned dynamics, limiting the expressivity of the model and leading to even
worse performance than Vanilla NODEs. Neural Flows also perform worse than VF-NODEs, as
they must explicitly model the time dependencies of solutions. In contrast, VF-NODEs can leverage
ODE solvers to handle time evolution during inference. Additionally, other baselines are designed
for more general irregular time series data. They do not align with the form of these dynamical
systems. Detailed training settings can be found in Appendix I.3.

Additionally, we test our method on the Gompertz model (Gompertz, 1825) and the Lotka-Volterra
equations (Kingsland, 1995). Related experimental results can be found in Appendix G.2.

Table 1: Testing MSE (mean±standard deviation) for interpolation tasks on 4 dynamical systems
with 80% observed data (r = 0.8). Lower values indicate better performance. Here e±n refers to
×10±n. Latent ODE 1 refers to Latent ODE with an RNN encoder. Latent ODE 2 refers to Latent
ODE with an ODE-RNN encoder. The best results are highlighted in bold black, and the second-
best results are highlighted in bold purple.

Glycolytic Toggle Repressilator AgeSIR
Vanilla NODE (1.51e-03)±(1.40e-03) (8.00e-04)±(8.69e-04) (2.25e-02)±(5.04e-03) (7.54e-03)±(6.58e-04)

TayNODE (3.20e-03)±(1.32e-03) (1.37e-02)±(9.96e-03) (1.43e-01)±(1.72e-02) (3.18e-01)±(7.36e-02)
Latent ODE 1 (2.21e-01)±(3.35e-02) (6.57e-01)±(1.48e-01) (2.33e+01)±(9.23e-01) (4.18e+01)±(6.56e+00)

ODE-RNN (8.80e-05)±(2.30e-05) (1.63e-03)±(5.56e-04) (1.41e-01)±(7.97e-03) (6.75e+00)±(3.43e-01)
Latent ODE 2 (1.00e-01)±(1.87e-02) (6.31e-01)±(4.69e-01) (7.47e-01)±(8.77e-02) (1.36e+09)±(1.93e+09)

NCDE (3.49e-02)±(1.36e-02) (3.96e-02)±(3.43e-02) (1.51e+00)±(1.22e+00) (1.22e+01)±(3.75e+00)
ResNet Flow (2.84e-01)±(5.69e-02) (7.09e-01)±(2.21e-01) (1.03e+01)±(8.14e-01) (2.50e+00)±(1.96e-01)
GRU Flow (3.80e-01)±(5.34e-02) (2.45e+00)±(1.88e-01) (7.45e+00)±(4.68e-02) (4.19e+01)±(1.22e-01)

VF-NODE (Ours) (6.35e-05)±(2.68e-06) (1.69e-04)±(6.09e-05) (1.92e-02)±(2.62e-04) (7.39e-03)±(6.71e-04)
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Table 2: Testing MSE (mean±standard deviation) for extrapolation task on 4 dynamical systems
with 80% observed data (r = 0.8). Lower values indicate better performance. Here e±n refers to
×10±n. Latent ODE 1 refers to Latent ODE with an RNN encoder. Latent ODE 2 refers to Latent
ODE with an ODE-RNN encoder. The best results are highlighted in bold black, and the second-
best results are highlighted in bold purple.

Glycolytic Toggle Repressilator AgeSIR
Vanilla NODE (8.79e-04)±(7.64e-04) (8.14e-07)±(6.72e-07) (1.25e-01)±(3.11e-02) (1.99e-02)±(1.69e-03)

TayNODE (4.71e-03)±(3.60e-03) (5.09e-02)±(5.09e-02) (8.73e-01)±(1.35e-01) (4.52e-01)±(1.31e-01)
Latent ODE 1 (2.39e-01)±(7.29e-02) (1.48e+00)±(1.28e+00) (9.14e+00)±(1.19e+00) (2.30e+02)±(4.85e+01)

ODE-RNN (4.68e-05)±(1.15e-05) (2.04e-04)±(1.42e-04) (2.02e-01)±(7.51e-03) (7.48e+00)±(9.12e-02)
Latent ODE 2 (1.82e-01)±(1.61e-01) (4.96e+00)±(5.70e+00) (3.09e+00)±(2.99e-01) (1.36e+09)±(1.93e+09)

NCDE (8.00e-01)±(4.48e-01) (1.03e+00)±(7.38e-01) (6.73e+00)±(4.85e+00) (2.13e+01)±(8.27e+00)
ResNet Flow (3.47e+00)±(2.82e+00) (5.32e+00)±(1.97e+00) (6.56e+01)±(2.23e+01) (1.95e+01)±(3.29e-01)
GRU Flow (7.39e-01)±(2.23e-01) (5.03e+00)±(5.22e-01) (1.84e+01)±(5.74e-01) (6.02e+01)±(1.89e-01)

VF NODE (Ours) (1.63e-04)±(3.05e-05) (4.79e-07)±(5.24e-08) (1.23e-01)±(1.48e-02) (2.37e-02)±(1.61e-03)

5.2 REAL-WORLD APPLICATION: COVID-19 DATASET

We also evaluate the performance of VF-NODEs on the real-world COVID-19 dataset. Us-
ing covsirphy (Takaya & Team, 2020–2024), we leverage data from the COVID-19 Data
Hub (Guidotti & Ardia, 2020). This data can be modeled using a four-dimensional phase-dependent
SIR-F framework (Takaya & Team, 2020–2024), where the ODE parameters vary over time. VF-
NODEs, however, are not designed to handle these time-varying dynamics due to the limitations of
the standard NODE architecture. To address this, we apply S-R analysis (Balkew, 2010) to segment
the data, allowing the ODE parameters to remain constant within each segment. In this study, we
evaluate our method and the baselines using data from four countries: Japan, Italy, Norway, and
India. For each country, we extract 100 data points from the longest segment in a single trajectory,
allocating 80 for training, 10 for validation, and 10 for testing. Each data point consists of four
variables: Susceptible, Infected, Recovered, and Fatal. We standardize the data for consistency and
employ spline regression to smooth it. The experimental results, presented in Table 3, demonstrate
that our method achieves significantly better performance compared to the baselines. This superior
performance can be attributed to the fact that the COVID-19 dataset conforms to the SIR-F ODE
system, which aligns with the inductive bias of VF-NODEs. Vanilla NODEs outperform most other
baselines because they share the same neural architecture as VF-NODEs. However, Vanilla NODEs
have lower accuracy than our method due to the error accumulation caused by autoregression in
ODE-solver-based training methods. Detailed training settings are provided in Appendix I.3.

Table 3: Testing MSE (mean±standard deviation) on the real-world COVID-19 dataset. Lower
values indicate better performance. Here e±n refers to ×10±n. Latent ODE 1 refers to Latent ODE
with an RNN encoder. Latent ODE 2 refers to Latent ODE with an ODE-RNN encoder. The best
results are highlighted in bold black.

Japan Italy Norway India
Vanilla NODE (1.42e+00)±(7.44e-01) (1.35e-02)±(1.39e-02) (1.03e-03)±(6.30e-05) (8.86e-04)±(3.76e-04)

TayNODE (2.02e+00)±(8.00e-01) (3.88e-02)±(5.70e-03) (5.57e-04)±(1.13e-04) (1.18e-02)±(1.08e-02)
Latent ODE 1 (1.02e+01)±(4.42e-01) (6.56e-01)±(2.87e-01) (1.83e-01)±(1.10e-01) (5.69e-01)±(1.59e-01)

ODE-RNN (8.43e+00)±(6.56e-01) (1.10e-01)±(1.12e-02) (5.58e-03)±(1.48e-03) (2.09e-01)±(1.74e-01)
Latent ODE 2 (1.12e+01)±(1.31e+00) (3.36e-01)±(2.70e-01) (4.12e-01)±(2.90e-01) (4.07e-01)±(1.54e-01)

NCDE (1.14e+01)±(1.10e+00) (8.72e-01)±(2.46e-01) (1.27e-02)±(1.20e-02) (3.94e-01)±(8.18e-02)
ResNet Flow (9.33e-01)±(1.69e-01) (3.69e-02)±(3.20e-03) (2.51e-02)±(1.65e-02) (2.04e-02)±(2.01e-03)
GRU Flow (1.39e+00)±(2.96e-02) (8.63e-03)±(1.17e-04) (3.07e-03)±(3.07e-07) (2.52e-03)±(1.84e-04)

VF NODE (Ours) (1.87e-01)±(4.82e-02) (1.64e-03)±(2.19e-04) (3.43e-04)±(1.18e-04) (5.68e-04)±(2.28e-04)

Furthermore, we also apply the proposed VF-NODEs to model the temporal effects of chemotherapy
on tumor volume. The experimental results are presented in Appendix G.3.
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5.3 ABLATION STUDIES

Lastly, we conduct ablation studies to investigate the impact of various components on the perfor-
mance of VF-NODEs. Specifically, we examine: (1) the influence of Filon’s method and spline
regression and (2) the type of basis functions. The experimental settings are consistent with those
described in Section 5.1.

Influence of Filon’s method and spline regression. There are two key components enabling the
accurate computation of the VF loss in VF-NODEs: (1) Filon’s method and (2) natural cubic spline
regression. To evaluate the influence of these components, we assess the performance of VF-NODEs
under the following settings: (1) using only Filon’s method (Filon’s method + natural cubic spline
interpolation), (2) using only natural cubic spline regression (trapezoidal rule (Press, 2007) + natural
cubic spline regression), (3) using neither (trapezoidal rule + natural cubic spline interpolation).
(4) using Filon’s method with Hermite cubic spline. The experimental results, shown in Table 4,
demonstrate that while both components enhance performance, natural cubic spline regression has
a more significant impact. The inferior performance of Hermite cubic spline can be attributed to its
reliance on numerical differentiation, which is ill-posed on noisy, sparse data.

Table 4: Testing MSE (mean±standard deviation) for the ablation study on Filon’s method and spline
regression. Lower values indicate better performance. Here e±n refers to ×10±n.

Glycolytic Toggle
Filon Spline Regression Interpolation Extrapolation Interpolation Extrapolation

✓ Natural ✗ (9.13e+05)±(1.29e+06) (2.50e+30)±(3.53e+30) (9.39e+16)±(1.33e+17) (8.16e+37)±(1.15e+38)
✗ Natural ✓ (2.78e+01)±(2.65e+01) (5.76e+02)±(5.67e+02) (1.40e+09)±(1.40e+09) (4.35e+20)±(4.35e+20)
✗ Natural ✗ (5.59e+01)±(5.48e+01) (6.66e+01)±(6.55e+01) (1.69e+14)±(1.69e+14) (8.29e+29)±(8.29e+29)
✓ Hermite ✗ (1.54e+00)±(2.07e+00) (3.90e+01)±(5.51e+01) (3.74e-01)±(1.14e-01) (9.66e-01)±(4.43e-01)

VF-NODE (Ours) (6.35e-05)±(2.68e-06) (1.63e-04)±(3.05e-05) (1.69e-04)±(6.09e-05) (4.79e-07)±(5.24e-08)

Type of basis functions. To illustrate the rationale behind using Fourier basis and Filon’s method,
we test two alternative types of basis functions: (1) ϕℓ(t) = (t/T )(t/T − 1)(t/T − ℓ/L), and (2)
Hermite cubic spline interpolation at three points: (0, 0), (T/2, ℓ/L), and (T, 0), with derivatives
at these points set to 0. Filon’s method was not applied to these basis functions. The experimental
results, shown in Table 5, indicate that VF-NODEs with Fourier basis significantly outperform those
with other basis functions. This can be attributed to the requirement that ϕℓ should form a Hilbert
orthonormal basis in the function space, as per Theorem 2. However, performing Gram-Schmidt
orthonormalization on these basis functions is computationally expensive. Other Hilbert orthonor-
mal basis functions, such as orthonormal polynomials Chihara (2011), also exist but fail to meet the
boundary conditions ϕℓ(0) = ϕℓ(T ) = 0. While Qian et al. (2022) used B-splines, their recursive
generation (De Boor, 1978) can significantly slow down the training of VF-NODEs.

Table 5: Testing MSE (mean±standard deviation) for the ablation study on the types for basis func-
tions ϕℓ. Lower values indicate better performance. Here e±n refers to ×10±n.

Glycolytic Toggle
Interpolation Extrapolation Interpolation Extrapolation

(t/T )(t/T − 1)(t/T − ℓ/L) (3.89e-02)±(8.37e-03) (1.56e-02)±(8.54e-03) (3.44e-01)±(3.79e-01) (6.23e-01)±(7.38e-01)
Hermite-based basis (7.06e-01)±(5.39e-01) (5.29e-01)±(4.99e-01) (4.16e+00)±(4.55e+00) (1.62e+01)±(2.06e+01)
VF-NODE (Ours) (6.35e-05)±(2.68e-06) (1.63e-04)±(3.05e-05) (1.69e-04)±(6.09e-05) (4.79e-07)±(5.24e-08)

We also conduct some additional ablation studies, including the sensitivity of VF-NODEs to hyper-
parameters, the effect of sampling, and the effect of noise, which can be found in Appendix G.4.

6 CONCLUSION

This work introduced a novel training method based on variational formulation to accelerate the
training of NODEs for dynamical systems. Our approach required only a series of global integrals
in the loss computation, eliminating the need for traditional numerical ODE solvers. To overcome
the challenges posed by oscillatory integrals in the VF loss, we incorporated Filon’s method to en-
hance model performance. Additionally, we developed a natural cubic spline regression to better
handle noisy and incomplete data. Extensive experiments demonstrated that our method signifi-
cantly accelerates NODEs training while maintaining high accuracy. Limitations are discussed in
Appendix A.
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A LIMITATIONS

A limitation of our approach is its reliance on polynomial-based approximation, which may not ef-
fectively approximate complex trajectories in intricate dynamical systems, such as chaotic systems,
or may fail when the sampling is extremely sparse. However, the proposed VF-NODEs can still cap-
ture underlying patterns of chaotic systems, as shown in Appendix J. Additionally, computing the
numerical integrals requires the trajectory points are available, meaning VF-NODEs are currently
applicable only to time series tasks. In future work, we aim to explore new techniques to address
these challenges, such as coordinate gradient descent (Matei et al., 2023).

B BACKGROUND: TRAINING OF NODES

B.1 FOUNDATIONAL TRAINING FRAMEWORKS OF NODES

In current training frameworks of NODEs, the outcomes are directly computed using numerical
ODE solvers for the forward pass. Consider a scalar-value loss function L(·), the input is the result
of an ODE solver:

L(x(t1)) = L
(
x(t0) +

∫ t1

t0

fθ(t,x)dt

)
= L (ODESolve(fθ,x(t0), t0, t1)) , (10)

Then for the backward pass, to compute gradients ∂L/∂θ , there are two major approaches:
discretize-then-optimize and optimize-then-discretize (Kidger, 2022; Onken & Ruthotto, 2020). In
the discretize-then-optimize approach, operations of ODE solvers are directly backpropagated. In
contrast, the optimize-then-discretize approach, also known as the adjoint sensitivity method, intro-
duces additional backward-in-time adjoint ODEs and calculates the gradients with an integral:

da

dt
= −a⊤ ∂fθ(t,x)

∂x
,

∂L
∂θ

=

∫ t0

t1

a⊤ ∂fθ(t,x)

∂θ
dt. (11)

where a = ∂L
∂x is the adjoint state. Other training frameworks are typically modifications of these

two approaches.

B.2 ERROR ACCUMULATION OF NUMERICAL ODE SOLVERS

In this subsection, we discuss the issue of error accumulation in numerical ODE solvers. ODE
solvers widely used in the context of NODEs can be expressed as

xn+1 = xn + hg(tn,xn),

where h is the step size, and g(·, ·) denotes the updating formula. In essence, numerical ODE solvers
use the state at the current time step to predict the state at the next time step, which can be viewed
as a form of autoregression.

To demonstrate error accumulation, let us consider the simple ODE ẋ = x. The analytical solution of
this ODE is x(t) = x(0) exp(t). We compute the mean absolute percentage error (MAPE) between
the analytical solution and the numerical solution obtained using LSODA in scipy (Virtanen et al.,
2020). The MAPE is shown in Fig. 3. As observed in the figure, the error increases over time. For
untrained NODEs, such error accumulation can lead to poor performance during training.

C PROOF OF THEOREM 2

According to (Qian et al., 2022), we present the proof of Theorem 2, which is refined for neural
networks.

Proof of Theorem 2. Given the definition of c:

c(x,fθ, ϕℓ) :=

∫ T

0

x(t)ϕ̇ℓ(t) dt+

∫ T

0

fθ(t,x(t))ϕℓ(t) dt . (12)
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Figure 3: The MAPE between the numerical solution and ground truth (analytic solution) for ẋ = x.

For the first term in Eq. (12), we can express it as:∫ T

0

x(t)ϕ̇ℓ(t) dt =

∫ T

0

x(t) dϕℓ(t) = x(T )ϕℓ(T )− x(0)ϕℓ(0)−
∫ T

0

ẋ(t)ϕℓ(t) dt

= −
∫ T

0

ẋ(t)ϕℓ(t) dt .

(13)

Substituting Eq.(13) into Eq.(12), we obtain:

c(x,fθ, ϕℓ) =

∫ T

0

fθ(t,x(t))ϕℓ(t) dt−
∫ T

0

ẋ(t)ϕℓ(t) dt

=

∫ T

0

(fθ(t,x(t))− ẋ(t))ϕℓ(t) dt

=

∫ T

0

(fθ(t,x(t))− f(t,x(t)))ϕℓ(t) dt .

(14)

Based on Parseval’s identity, for each element in c(x,fθ, ϕℓ), we can obtain:

lim
L→∞

L∑
ℓ=1

c2j (x,fθ, ϕℓ) = lim
L→∞

L∑
ℓ=1

∫ T

0

[(fθ,j(t,x(t))− fj(t,x(t)))ϕℓ(t)]
2
dt

=

∫ T

0

[fθ,j(t,x(t))− fj(t,x(t))]
2
dt

= ∥(fθ,j − fj) ◦ (t,x)∥22

(15)

Thus, we have proven Theorem 2.

D GENERAL NUMERICAL INTEGRATION TECHNIQUES DO NOT WORK FOR
OSCILLATORY INTEGRALS

For integrals over tabular data, Newton-Cotes formula-based methods (Press, 2007), such as the
trapezoidal method and Simpson’s method, are commonly used. These methods estimate the original
integral by: ∫ T

0

h(t) sin(ωt) dt =

K−1∑
k=0

∫ tk+1

tk

h(t) sin(ωt) dt ≈
K−1∑
k=0

∫ tk+1

tk

pk(t) dt , (16)

where pk(t) is the approximate n-th-order polynomial of h(t) sin(ωt) over the time interval
[tk, tk+1]. This approach can compute the integral accurately when the original integrand is an exact
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n-th-order polynomial in [tk, tk+1]. However, based on Taylor expansion, such polynomials only
ensure accurate computation of an integral within an error bound of O(g(n+1)) for any integrand
g(t) (Deaño et al., 2017). For the oscillatory integrand h(t) sin(ωt), as ω increases, the (n + 1)-th
derivative of the integrand also increases rapidly and can be pretty large. In this scenario, polyno-
mials may struggle to accurately approximate h(t) sin(ωt), causing general numerical integration
techniques to fail in calculating such integrals.

E SPLINE-BASED APPROXIMATION

In this section, we delve into the application of natural cubic splines for constructing closed-form
approximations from sampled data. Generally, two techniques are employed for this purpose: (1)
natural cubic spline interpolation, and (2) natural cubic spline regression.

Let’s begin with natural cubic splines. Given sampled data {h(tk)}Kk=0, our objective is to construct
a cubic polynomial qk(t) within each interval [tk, tk+1]:

qk(t) =

3∑
m=0

ak,m(t− tk)
m = ak,0 + ak,1(t− tk) + ak,2(t− tk)

2 + ak,3(t− tk)
3, (17)

where ak,m (k = 0, . . . ,K, m = 0, 1, 2, 3) are the coefficients of this polynomial. To ensure a
smooth approximation in each interval, the following conditions must be met:

1. Continuity: The spline must be continuous at each point: qk(tk+1) = qk+1(tk+1).
2. Smoothness: The first and second derivatives of the spline must be continuous at each point:

q′k(tk+1) = q′k+1(tk+1), and q′′k (tk+1) = q′′k+1(tk+1).
3. Natural boundary condition: The second derivative at the endpoints should be zero:

q′′0 (t0) = q′′K−1(tK) = 0.

Now, let’s examine the difference between spline interpolation and spline regression. The crucial
distinction lies in their treatment of the sampled data points. Spline interpolation constructs a piece-
wise cubic polynomial that exactly passes through all the given data points:

qk(tk) = h(tk) =⇒ ak,0 = h(tk).

However, it is not adept at handling noisy data as it strictly adheres to the given points. In contrast,
spline regression constructs a piecewise cubic polynomial that best fits the data points in a least-
squares sense while maintaining smoothness. This is achieved by solving the following optimization
problem:

min
ak,m

{
λ

K∑
k=0

[h(tk)− q(tk)]
2
+ (1− λ)

∫ T

0

(q(2)(t))2 dt

}
, (18)

where q(t) = qk(t), t ∈ [tk, tk+1], and λ ∈ [0, 1] is a hyperparameter used to control smoothness.
When λ = 1, this formulation reduces to spline interpolation. Spline regression is better suited for
handling noisy data. The process of solving these coefficients ak,m can be found in (De Boor, 1978).

In our method, we initially employ spline regression to construct precise closed-form approxima-
tions of trajectories from noisy data, thereby obtaining estimated trajectories x̂(t). Subsequently,
we utilize spline interpolation to construct accurate closed-form approximations of vector fields
f(t, x̂(t)).

F ALGORITHM OF VF-NODE

The detailed algorithm is presented in Algorithm 1. First, we employ natural cubic spline regression
to construct an analytical approximation of trajectories from noisy and partially observed data x,
represented as the coefficients of the spline. Next, we estimate the values in trajectories based
on the spline to remove noise and fill in missing values. Then, we compute the vector fields f
based on estimated trajectories and utilize natural cubic spline regression again to build an analytical
approximation of f . Finally, using Filon’s method, we compute oscillatory integrals based on the
analytical approximations of x and f .
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Algorithm 1: VF Loss

Data: A trajectory {(tk,x(tk))}Kk=0, where 0 = t0 < t1 < · · · < tK = T , and
x(tk) = [x1(tk), x2(tk), . . . , xd(tk)]

⊤ ∈ (R ∪ {∗})d
Input: Smoothing coefficient λ ∈ [0, 1], the number of basis functions L, and neural network

fθ(·,x(·))
Output: The VF loss
/*Perform spline regression on x to get spline coefficients */
ak,m = SplineRegression(λ, {(tk,x(tk))}Kk=0) ∈ Rd, k = 0, . . . ,K − 1, m = 0, 1, 2, 3
/*Make estimations of the trajectory x */
for k = 0 : K do

if k < K then
x̂(tk) = ak,0 +

∑3
m=1 ak,m(tk − tk)

m = ak,0

else
x̂(tK) =

∑3
m=0 aK−1,m(tK − tK−1)

m

/*Evaluate the vector fields f */
f(tk) = fθ(tk, x̂(tk)), k = 0, . . . ,K
/*Perform spline interpolation on f to get spline coefficients
*/

bk,m = SplineInterp({(tk,f(tk))}Kk=0) ∈ Rd, k = 0, . . . ,K − 1, m = 0, 1, 2, 3
/*Compute oscillatory integrals */
for ℓ = 1 : L do∫ T

0
x̂(t)ϕ̇ℓ(t) dt =

√
2
T

πℓ
T

∑K−1
k=0

∑3
m=0 ak,m

∫ tk+1

tk
(t− tk)

m cos πℓt
T dt∫ T

0
fθ(t, x̂(t))ϕℓ(t) dt ≈

√
2
T

∑K−1
k=0

∑3
m=0 bk,m

∫ tk+1

tk
(t− tk)

m sin πℓt
T dt

c(x,f , ϕℓ) =
∫ T

0
fθ(t, x̂(t))ϕℓ(t) dt+

∫ T

0
x̂(t)ϕ̇ℓ(t) dt

return
∑L

ℓ=1 ∥c(x,f , ϕℓ)∥22
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G ADDITIONAL EXPERIMENTS

G.1 ADDITIONAL RESULTS: AVERAGE TRAINING TIME ON OTHER DYNAMICAL SYSTEMS

In addition to the average training time per epoch on the glycolytic model presented in Fig. 2, we
also provide additional timing results for the repressilator model and the age-structured SIR model,
as shown in Fig. 4 and Fig. 5, respectively. For some methods, the uncertainty may not be visible
due to their stability. Across different cases, the proposed VF-NODEs achieve acceleration factors
ranging from 10 to 1000 times compared to the baselines.
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Figure 4: Average training time per epoch (second) for each method on the repressilator model.
Our method can achieve 10 to 1000 times faster than the baselines. Due to the high stability of the
training speed for some methods, the uncertainty is negligible and not clearly visible in the figure.
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Figure 5: Average training time per epoch (second) for each method on the age-structured SIR
model. Our method can achieve 10 to 1000 times faster than the baselines. Due to the high stability
of the training speed for some methods, the uncertainty is negligible and not clearly visible in the
figure.

G.2 ADDITIONAL EXPERIMENTS ON SIMULATION FOR DYNAMICAL SYSTEMS

Besides four dynamical systems mentioned in Section 5.1, we also test two additional dynamical
systems: (1) the Gompertz model (Gompertz, 1825) and (2) Lotka-Volterra equations (Kingsland,
1995). The Testing MSE for our method and other baselines are presented in Table 6. These ad-
ditional experimental results also demonstrate the outstanding performance of the proposed VF-
NODEs. Detailed training settings are presented in Appendix I.3.

G.3 TEMPORAL EFFECT OF CHEMOTHERAPY ON TUMOR VOLUME

We also use VF-NODEs to model the temporal effect of chemotherapy on tumor volume. Using the
same data preprocessing as (Qian et al., 2022), the results are shown in Table 7. NCDEs failed due to
the setting in diffrax (Kidger, 2022). Note that our method does not outperform all baselines due
to the inherent limitations of the standard NODE architecture, which assumes that time series data
must be the solution of an ODE system. In contrast, ODE-RNNs, which combine ODEs with RNNs,
are not bound by this constraint. However, it is important to note that the training of VF-NODEs
can be almost 180 times faster than that of ODE-RNNs. Detailed training settings are provided in
Appendix I.3.
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Table 6: Testing MSE (mean±standard deviation) on two additional dynamical systems with 80%
observed data (r = 0.8). Lower values indicate better performance. Here e±n refers to ×10±n.
Latent ODE 1 refers to Latent ODE with an RNN encoder. Latent ODE 2 refers to Latent ODE with
an ODE-RNN encoder. The best results are highlighted in bold black, and the second-best results
are highlighted in bold purple.

Gompertz Lotka-Volterra
Interpolation Extrapolation Interpolation Extrapolation

Vanilla NODE (3.18e-07)±(9.26e-08) (1.76e-07)±(8.74e-10) (1.21e+00)±(5.99e-01) (2.11e+01)±(5.89e+00)
TayNODE (5.15e-05)±(1.02e-05) (4.12e-06)±(2.64e-06) (1.50e+02)±(8.24e+00) (1.64e+02)±(2.85e+00)

Latent ODE 1 (4.54e-03)±(3.56e-04) (2.91e-03)±(3.87e-03) (4.62e+02)±(9.22e+01) (1.69e+03)±(7.16e+02)
ODE-RNN (1.52e-05)±(1.42e-05) (2.04e-06)±(1.82e-06) (1.97e+01)±(2.50e+01) (1.32e+02)±(1.84e+02)

Latent ODE 2 (4.37e-03)±(4.78e-05) (2.26e-03)±(2.18e-04) (2.39e+03)±(1.85e+03) (1.35e+03)±(1.34e+02)
NCDE (5.37e-04)±(2.92e-04) (3.50e-02)±(4.10e-02) (3.94e+00)±(2.52e+00) (3.14e+01)±(2.47e+01)

ResNet Flow (1.81e-02)±(1.86e-02) (5.63e+00)±(7.79e+00) (2.57e+02)±(9.53e+01) (2.98e+02)±(3.68e+01)
GRU Flow (2.27e-03)±(1.63e-03) (4.95e-02)±(3.62e-02) (3.69e+02)±(1.15e-01) (4.83e+02)±(9.83e+00)

VF-NODE (Ours) (2.76e-07)±(1.70e-07) (1.78e-07)±(4.49e-09) (1.00e+00)±(3.01e-03) (1.36e+01)±(4.66e+00)

Table 7: Testing RMSE (mean±standard deviation) of modeling the temporal effect of chemotherapy
on tumor volume. Lower values indicate better performance. Here e±n refers to ×10±n. The best
results are highlighted in bold black, and the second-best results are highlighted in bold purple.

RMSE
Vanilla NODE (1.89e-03)±(9.76e-06)

TayNODE (2.31e-03)±(1.43e-05)
Latent ODE (RNN Enc.) (3.88e-03)±(1.27e-04)

ODE-RNN (1.59e-03)±(3.43e-04)
Latent ODE (ODE-RNN Enc.) (9.02e-03)±(4.42e-03)

NCDE (nan)±(nan)
ResNet Flow (1.88e-03)±(3.46e-06)
GRU Flow (3.14e-03)±(3.66e-06)

VF-NODE (Ours) (1.87e-03)±(3.71e-05)
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G.4 ADDITIONAL EXPERIMENTS ON ABLATION STUDIES

In this subsection, we first evaluate the sensitivity of the proposed VF-NODEs to two hyper-
parameters: the number of basis functions L and spline regression hyper-parameter λ mentioned
in Appendix E. Subsequently, we assess the performance of VF-NODEs under varying sampling
and noise conditions.

The number of basis functions L. We set the number of basis function L to test the impact of L
on the performance and training speed of VF-NODEs by setting L = 50, 60, 70, 80, 90, 100, 110,
as shown in Fig. 6 and Fig. 7, respectively. We can see that when L increases, the testing MSE
decreases generally. This can be attributed to Filon’s method and spline regression, which enable
us to compute oscillatory integrals precisely from noisy and partially observed data. Additionally,
Fig. 7 demonstrate that the training speed of VF-NODEs is not sensitive to L. Considering the
computational cost, we set L = 80 in all experiments.

50 60 70 80 90 100 110
# Basis Functions

0.0001

0.0002

0.0003

M
SE

Glycolytic
Interp
Extrap

50 60 70 80 90 100 110
# Basis Functions

0.0000

0.0001

0.0002

M
SE

Toggle

Interp
Extrap

Figure 6: The impact of the number of basis functions L in the VF loss on model performance
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Figure 7: The impact of the number of basis functions L in the VF loss on training speed of VF-
NODEs.

Spline Regression Hyper-parameter λ. As discussed in Appendix E, λ controls the smoothness of
the splines. Typically, λ values greater than 0.9 are suitable for most cases. To evaluate the sensitiv-
ity of the proposed VF-NODEs to λ, we test VF-NODEs with λ = 0.9, 0.99, 0.9999, and 0.99999.
The experimental results are presented in Table 8. These results indicate that our method is robust
to variations in λ. In practice, λ can be selected based on the noise level of the sampled trajecto-
ries, with higher noise levels generally requiring smaller values of λ, making it a straightforward
parameter to adjust.

Table 8: Testing MSE (mean±standard deviation) from the ablation study on the sensitivity of VF-
NODEs to λ. Lower values indicate better performance. Here e±n refers to ×10±n.

Glycolytic Toggle
λ Interpolation Extrapolation Interpolation Extrapolation

0.9 (4.20e-03)±(3.44e-04) (4.81e-03)±(6.03e-04) (5.40e-03)±(2.46e-04) (7.57e-06)±(5.49e-06)
0.99 (1.14e-03)±(2.00e-04) (1.78e-03)±(7.26e-04) (2.16e-03)±(7.42e-04) (8.29e-06)±(9.32e-06)

0.999 (7.27e-04)±(6.59e-04) (7.80e-04)±(5.77e-04) (1.79e-03)±(9.64e-04) (1.52e-05)±(9.32e-06)
0.9999 (5.32e-04)±(4.47e-04) (1.41e-03)±(1.59e-03) (8.94e-03)±(1.09e-02) (3.40e-02)±(4.80e-02)
0.99999 (6.35e-05)±(2.68e-06) (1.63e-04)±(3.05e-05) (1.69e-04)±(6.09e-05) (4.79e-07)±(5.24e-08)

Effect of sampling. There are three key settings related to sampling: (1) the number of data points
per trajectory, (2) the random dropping rate, 1−r, and (3) sampling interval T . First, we fix r = 0.8,
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T = 10 and sample 50, 100, 300, 500, 700, and 1000 points for each trajectory, respectively. The
experimental results are presented in Table 9. Next, we fix the number of points at 100 and test
with r = 0.4, 0.6, and 0.8, as presented in Table 10. Finally, we vary the sampling interval, setting
T = 10, 20, and 50, while considering 100, 200, 500 sampled points respectively, as reported
in Table 11. These experiments demonstrate that our method is robust across different sampling
settings, particularly on sparsely sampled data. This can be attributed to spline regression’s ability
to perform effectively on sparse datasets (Knowles & Renka, 2014).

Table 9: Testing MSE (mean±standard deviation) from the ablation study on the number of sampling
points for each trajectory. Lower values indicate better performance. Here e±n refers to ×10±n.

Glycolytic Toggle
# Point Interpolation Extrapolation Interpolation Extrapolation

50 (5.28e-04)±(3.23e-04) (7.08e-04)±(3.36e-04) (1.56e-03)±(8.33e-04) (4.56e-06)±(8.45e-07)
100 (6.35e-05)±(2.68e-06) (1.63e-04)±(3.05e-05) (1.69e-04)±(6.09e-05) (4.79e-07)±(5.24e-08)
300 (4.90e-05)±(1.74e-05) (1.20e-04)±(3.72e-05) (2.09e-04)±(7.24e-05) (1.73e-07)±(4.65e-08)
500 (4.97e-05)±(1.39e-05) (1.01e-04)±(3.11e-05) (2.02e-04)±(1.00e-04) (2.21e-07)±(7.07e-08)
700 (4.46e-05)±(1.39e-05) (8.39e-05)±(1.17e-05) (1.28e-04)±(5.15e-05) (1.05e-07)±(5.15e-08)

Table 10: Testing MSE (mean±standard deviation) from the ablation study for the random dropping
rate 1− r. Lower values indicate better performance. Here e±n refers to ×10±n.

Glycolytic Toggle
r Interpolation Extrapolation Interpolation Extrapolation

0.4 (1.05e-04)±(2.27e-05) (2.46e-04)±(1.42e-04) (5.84e-04)±(1.19e-04) (1.51e-06)±(4.24e-07)
0.6 (8.09e-05)±(4.52e-05) (1.72e-04)±(8.13e-05) (3.75e-04)±(6.26e-05) (7.23e-07)±(2.31e-07)
0.8 (6.35e-05)±(2.68e-06) (1.63e-04)±(3.05e-05) (1.69e-04)±(6.09e-05) (4.79e-07)±(5.24e-08)

Table 11: Testing MSE (mean±standard deviation) from the ablation study on the sampling interval
T for each trajectory. Lower values indicate better performance. Here e±n refers to ×10±n.

Glycolytic Toggle
T Interpolation Extrapolation Interpolation Extrapolation
10 (6.35e-05)±(2.68e-06) (1.63e-04)±(3.05e-05) (1.69e-04)±(6.09e-05) (4.79e-07)±(5.24e-08)
20 (4.11e-04)±(4.60e-04) (9.27e-04)±(8.23e-04) (1.24e-04)±(6.65e-05) (2.28e-07)±(4.25e-08)
50 (3.22e-04)±(1.21e-05) (2.34e-03)±(9.19e-04) (3.86e-04)±(3.18e-04) (1.90e-07)±(8.22e-08)

Effect of noise. We set the relative noise level σR = 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, and 0.5
respectively. The experimental results are shown in Fig. 8. By setting the smoothing hyperparameter
λ = 0.99 in spline regression (as discussed in Appendix E), VF-NODEs demonstrate robustness to
different noise settings.
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Figure 8: Testing MSE on the effect of relative noise level σR.
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H DISCUSSION: TRAINING NODES BASED ON NATURAL CUBIC SPLINES

The proposed VF-NODEs utilize natural cubic splines to numerically compute integrals in the VF
loss. Beyond this, some other training methods for NODEs also leverage splines. One such method
is gradient matching (Varah, 1982; Li et al., 2024), where the derivatives of sampled trajectories
are estimated numerically using splines or other spectral methods. The DNN-based vector fields
are then trained to match these estimated derivatives. In the second method, given the sampled
trajectories {x(tk)}Kk=0, the DNN-based vector fields can be approximated as

fθ(t, x̂(t)) ≈ bk,0 +

3∑
m=1

bk,m(t− tk)
m, t ∈ [tk, tk+1]. (19)

Using this approximation, the solution of NODEs at the sampled time points can be computed as

x̂(tk+1) = x̂(tk) +

∫ tk+1

tk

fθ(τ, x̂(τ)) dτ

≈ x̂(tk) +

∫ tk+1

tk

[
bk,0 +

3∑
m=1

bk,m(τ − tk)
m

]
dτ

= x̂(tk) +

3∑
m=0

bk,m
(tk+1 − tk)

m+1

m+ 1
.

(20)

The NODE can then be trained by minimizing the MSE between x(tk) and x̂(tk). All these methods
are ODE-solver-free, similar to the proposed VF-NODEs.

We refer to these methods as Grad-Matching NODEs and Spline-Integ NODEs, respectively. We
compared the proposed VF-NODEs with these methods, with experimental results presented in Ta-
bles 12 and 13. While the training speed of these methods is similar (approximately 10−2 second
per epoch), we observe that their performance is significantly worse than that of VF-NODEs.

For Grad-Matching NODEs, this performance gap can be attributed to their sensitivity to noisy
and sparse sampling. In contrast, VF-NODEs rely solely on numerical integrals, representing an
improvement and generalization of gradient matching methods Brunel et al. (2014).

For Spline-Integ NODEs, the discrepancy arises due to the autoregressive nature as described in
Eq. (20). Errors accumulate across iterations because each step depends on the approximation from
the previous one. VF-NODEs, by relying on global numerical integrals, avoid this issue of error
accumulation, resulting in more robust and accurate training.

Table 12: Testing MSE (mean±standard deviation) for interpolation task of NODEs trained with
splines on 4 dynamical systems with 80% observed data (r = 0.8). Lower values indicate better
performance. Here e±n refers to ×10±n. The best results are highlighted in bold black.

Glycolytic Toggle Repressilator AgeSIR
Grad-Matching NODE (7.91e-04)±(6.52e-04) (1.19e-03)±(8.55e-04) (5.48e-02)±(9.20e-03) (9.50e-03)±(2.08e-04)

Spline-Integ NODE (1.34e-03)±(1.44e-03) (9.58e-03)±(7.76e-03) (9.64e-02)±(1.01e-02) (3.48e-02)±(2.34e-03)
VF NODE (Ours) (6.35e-05)±(2.68e-06) (1.69e-04)±(6.09e-05) (1.92e-02)±(2.62e-04) (7.39e-03)±(6.71e-04)

Table 13: Testing MSE (mean±standard deviation) for extrapolation task of NODEs trained with
splines on 4 dynamical systems with 80% observed data (r = 0.8). Lower values indicate better
performance. Here e±n refers to ×10±n. The best results are highlighted in bold black.

Glycolytic Toggle Repressilator AgeSIR
Grad-Matching NODE (6.32e-04)±(1.86e-04) (4.43e-06)±(4.22e-06) (3.87e-01)±(4.90e-02) (3.16e-02)±(1.38e-03)

Spline-Integ NODE (5.44e-03)±(6.45e-03) (5.22e-05)±(3.55e-05) (6.05e-01)±(7.54e-02) (1.68e-01)±(8.96e-03)
VF NODE (Ours) (1.63e-04)±(3.05e-05) (4.79e-07)±(5.24e-08) (1.23e-01)±(1.48e-02) (2.37e-02)±(1.61e-03)
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I EXPERIMENTAL SETTINGS

All experiments in this work are implemented using jax (Bradbury et al., 2018). Specifically, the
implementation of neural differential equation models is based on equinox (Kidger & Garcia,
2021) and diffrax (Kidger, 2022). To optimize models, we use the optax (DeepMind et al.,
2020). All the experiments are implemented on the same server, equipped with 4 A5000 GPUs with
24GB graphics memory.

I.1 HYPERPARAMETERS FOR MODELS

To evaluate the performance of VF-NODEs, we compare them with two categories of baseline mod-
els: NODE-based models and Neural Flows. To maintain consistent parameters across all models,
we employed the following hyperparameters:

• VF-NODEs: the vector field is parameterized as a 4-layer MLP with 128 hidden units per
layer. For the VF loss:

– The number of basis functions L is set to 80 for all tasks.
– the smoothing hyperparameter λ is set to 0.99999 for most tasks, while for the simu-

lation of the age-structured SIR model, λ is set to 0.9999.

• Vanilla NODEs (Chen et al., 2018): the vector field is parameterized as a 4-layer MLP with
128 hidden units per layer.

• TayNODEs (Kelly et al., 2020):

– The neural architecture of TayNODEs is the same as that of Vanilla NODEs.
– The 5-th order derivative regularization is used to match the order of Dopri5 solver.
λ is set to 0.001.

• Latent ODEs with RNN encoders (Chen et al., 2018):

– RNN encoder: a 1-layer GRU with 25 hidden units.
– NODE Decoder: the vector field is parameterized as a 4-layer MLP with 124 hidden

units per layer.
– The latent size is set to 4.

• ODE-RNNs Rubanova et al. (2019): 1-layer GRU with 4 hidden units + 4-layer MLP with
127 hidden units per layer for NODE.

• Latent ODEs with ODE-RNN encoders (Rubanova et al., 2019):

– ODE-RNN Encoder: 1-layer GRU with 4 hidden units and a 4-layer MLP with 84
hidden units per layer for NODE.

– NODE Decoder: A 4-layer MLP with 84 hidden units per layer for NODE.
– Latent size is set to 4.

• NCDEs (Kidger et al., 2020): The hidden size is set to 4. A 4-layer MLP with 89 hidden
units per layer is used for the vector field.

• ResNet Flow (Biloš et al., 2021): 4-layer MLP with 128 hidden units per layer.

• GRU Flow (Biloš et al., 2021): Three 4-layer MLP with 74 hidden units per layer.

In most experiments, we used the Dopri5 solver for NODE-based models. However, because
training ODE-RNNs is computationally intensive, we employed the Midpoint solver for these
models to reduce computational complexity.

I.2 SETTINGS FOR DYNAMICAL SYSTEMS

In this subsection, we provide detailed information on the dynamical systems used in this work,
including their trajectories and the simulation results of VF-NODEs compared to the best baseline,
as reported in Tables 1 and 2. For this study, we selected six dynamical systems. The specific
parameters and trajectories for each system are detailed below.
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Glycolytic oscillator (Sel’Kov, 1968). The glycolytic oscillator is a fundamental system in bio-
chemistry that models the glycolysis process. It can be expressed as

ẋ1 = θ1 − θ2x1 − x1x
2
2,

ẋ2 = −x2 + θ3x1 + x1x
2
2,

(21)

where θ1 = 0.75, θ2 = θ3 = 0.1, and x1(0), x2(0) ∈ [0.1, 1.1].
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Figure 9: The trajectory plots of the glycolytic model with simulation results of VF-NODEs and the
best baseline (ODE-RNN).

Genetic toggle switch (Gardner et al., 2000). The genetic toggle switch is a key mechanism in
genetic engineering and synthetic biology for controlling genes. It can be expressed as

ẋ1 =
a1

1 + xn1
2

− x1,

ẋ2 =
a2

1 + xn2
1

− x2,
(22)

where a1 = a2 = 4, n1 = n2 = 3, and x1(0), x2(0) ∈ [0.1, 4.0].
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Figure 10: The trajectory plots of the toggle switch model with simulation results of VF-NODEs
and the best baseline (Vanilla NODE).

Repressilator (Elowitz & Leibler, 2000). The repressilator is a genetic regulatory network. It can
be expressed as

ṁi = −mi +
α

1 + ρnj
+ α0, i = lacI, tetR, cI,

ρ̇i = −β(ρi −mi), j = cI, lacI, tetR,

(23)

where ρi are three repressor-protein concentrations, and mi are corresponding mRNA concentra-
tions. We set α = 10, α0 = 10−5, β = 1, n = 3, and mi(0), ρi(0) ∈ [0, 5].

25



Published as a conference paper at ICLR 2025

0 5 10 15 20
t

5

10

15

m
la

cI

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

2.5

5.0

7.5

10.0

12.5

m
te

tR

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

5

10

15

m
cI

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

2.5

5.0

7.5

10.0

12.5

p c
I

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

2.5

5.0

7.5

10.0

12.5

p l
ac

I

Ground Truth
VF-NODE
Best Baseline

0 5 10 15 20
t

2.5

5.0

7.5

10.0

12.5

p t
et

R

Ground Truth
VF-NODE
Best Baseline

Figure 11: The trajectory plots of the repressilator model with simulation results of VF-NODEs and
the best baseline (Vanilla NODE).

Age-structured SIR model (Ram & Schaposnik, 2021). The age-structured SIR model is a variant
of the standard SIR model that considers the effects of different age groups. It can be expressed as

Ṡi = −β
Si

N

n∑
j=1

MijIj ,

İi = β
Si

N

n∑
j=1

MijIj − γIi,

Ṙi = γIi,

(24)

where Si, Ii, and Ri (i = 1, . . . , 9) denote the numbers of susceptible, infected, and removed
individuals, respectively, for the age groups 0–9, 10–19, ..., 70–79, and 80+. The age-contact matrix
M is parameterized as

M =



19.2 4.8 3.0 7.1 3.7 3.1 2.3 1.4 1.4
4.8 42.4 6.4 5.4 7.5 5.0 1.8 1.7 1.7
3.0 6.4 20.7 9.2 7.1 6.3 2.0 0.9 0.9
7.1 5.4 9.2 16.9 10.1 6.8 3.4 1.5 1.5
7 7.5 7.1 10.1 13.1 7.4 2.6 2.1 2.1
3.1 5.0 6.3 6.8 7.4 10.4 3.5 1.8 1.8
2.3 1.8 2.0 3.4 2.6 3.5 7.5 3.2 3.2
1.4 1.7 0.9 1.5 2.1 1.8 3.2 7.2 7.2
1.4 1.7 0.9 1.5 2.1 1.8 3.2 7.2 7.2


.

In addition, we set β = 0.8, γ = 0.5, and Si(0), Ii(0), Ri(0) ∈ [0.1, 10.1] (i = 1, . . . , 9).

Gompertz model (Gompertz, 1825). The Gompertz model is widely applied in medical research
and tumor growth analysis as a kind of growth model. It can be expressed as

ẋ = −θ1x · log(θ2x), (25)

where θ1 = θ2 = 1.5, and x(0) ∈ [0.1, 1.1].

Lotka-Volterra equations (Kingsland, 1995). The Lotka–Volterra equations are used to model the
interactions between the predator and prey populations over time, capturing how the population sizes
of each species affect the other. This system can be expressed as

ẋ1 = αx1 − βx1x2,

ẋ2 = δx1x2 − γx2,
(26)
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Figure 12: The trajectory plots of the age-structured SIR model with simulation results of VF-
NODEs and the best baseline (Vanilla NODE).
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Figure 13: The trajectory plots of the gompertz model with simulation results of VF-NODEs and
the best baseline (Vanilla NODE).
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Figure 14: The trajectory plots of the Lotka-Volterra equations with simulation results of VF-
NODEs and the best baseline (Vanilla NODE).
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where α = 1.0, β = 0.3, δ = 0.1, γ = 3.0, and x1(0) ∈ [10.0, 20.0], x2(0) ∈ [5.0, 10.0].

To generate datasets from these dynamical systems, the Dopri5 solver in diffrax is used.

I.3 TRAINING SETTINGS

For all tasks, we employed the Adam optimizer (Kingma & Ba, 2014), loading all training data in a
single epoch. The testing MSE losses of NODE-based baselines reported in all tables were evaluated
based on models trained using the optimize-then-discretize approach, following (Kidger, 2022).

For all tasks except modeling the temporal effect of chemotherapy on tumor volume, we set the
number of training epochs to 5,000; for the tumor volume modeling task, we used 300 epochs.

For all tasks except the simulation of the age-structured SIR model, we utilized the
cosine onecycle schedule from optax as the learning rate scheduler, with an initial learn-
ing rate of 0.001. The scheduler parameters were set as follows: transition steps equal
to the number of epochs, peak value at 0.01, pct start at 0.2, div factor at 100, and
final div factor at 1,000. For the simulation of the age-structured SIR model, we employed
the cosine decay schedule as the learning rate scheduler, also with an initial learning rate of
0.001. The parameters were set as follows: decay steps equal to the number of epochs, alpha
at 0.01, and exponent at 1.0.

J DISCUSSION: APPLYING VF-NODES TO CHAOTIC SYSTEMS

In this section, we discuss the capability of VF-NODEs to model chaotic systems. Since making
long-term precise predictions for chaotic systems is nearly impossible, we employ the unstable
periodic orbit (UPO) detection using adaptive delayed feedback (ADF) technique (Zhu et al., 2023)
to evaluate whether VF-NODEs can capture the underlying patterns of chaotic systems. Consider
the Lorenz system, defined as:

ẋ = σ(y − x),

ẏ = x(ρ− z)− y,

ż = xy − βz,

(27)

where we set σ = 10, β = 8/3, and ρ = 20, and initial conditions x(0), y(0), z(0) ∈ [−10, 10].
Then, following (Zhu et al., 2023), we apply a control term c(t) = γ(t)e(t) to y, where e(t) =
y(t− p(t))− y(t). The variables x, y, z, p, and γ are determined following controlled system:

ẋ = σ(y − x),

ẏ = x(ρ− z)− y + c(t),

ż = xy − βz,

ṗ = r1[y(t)− y(t− p(t))],

γ̇ = r2[y(t)− y(t− p(t))]2,

(28)

where we set p(0) = γ(0) = 0.1, r1 = 0.2 and r2 = 20. In this setup, p(t) reflects the underlying
pattern of the chaotic system. The mean value of p(t) on an interval with the minimum variance can
be viewed a UPO for Eq. (27).

These results demonstrate that VF-NODEs can effectively capture the underlying patterns of chaotic
systems, significantly outperforming Vanilla NODEs in these challenging scenarios. This improve-
ment is largely due to VF-NODEs mitigating autoregression during the training process, thereby
avoiding error accumulation. In contrast, Vanilla NODEs rely heavily on ODE solvers, where error
accumulation during training can significantly impact the results.
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Figure 15: The comparison of p(t) between the VF-NODE and ground truth system in Eq. (28).
The detected UPO for the ground truth is 0.6108, for VF-NODE (0.5963± 0.0029), and for Vanilla
NODE (0.5010± 0.0150).
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Figure 16: The trajectory plots of the Lorenz system with simulation results of VF-NODEs and
Vanilla NODEs. The testing MSE error is (49.7407± 18.5300) for VF-NODEs and for (54.4111±
2.5761) Vanilla NODEs.
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