
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYNAMIC SIMILARITY GRAPH CONSTRUCTION
WITH KERNEL DENSITY ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In the kernel density estimation (KDE) problem, we are given a set X of data
points in Rd, a kernel function k : Rd × Rd → R, and a query point q ∈ Rd, and
the objective is to quickly output an estimate of

∑
x∈X k(q,x). In this paper, we

consider KDE in the dynamic setting, and introduce a data structure that efficiently
maintains the estimates for a set of query points as data points are added to X over
time. Based on this, we design a dynamic data structure that maintains a sparse
approximation of the fully connected similarity graph on X , and develop a fast
dynamic spectral clustering algorithm. We further evaluate the effectiveness of our
algorithms on both synthetic and real-world datasets.

1 INTRODUCTION

Given a set X = {x1, . . . ,xn} of data points, a set Q = {q1, . . . ,qm} of query points, and a kernel
function k : Rd × Rd → R⩾0, the KDE problem is to quickly approximate µq ≜

∑
xi∈X k(q,xi)

for every q ∈ Q. As a basic question in computer science, this problem has been actively studied
since the 1990s (Greengard & Strain, 1991) and has comprehensive applications in machine learning
and statistics (Bakshi et al., 2023; Genovese et al., 2014; Scholkopf & Smola, 2018; Schubert et al.,
2014).

In this paper we first study the KDE problem in the dynamic setting, where both the sets of data and
query points change over time. The objective is to dynamically update the KDE estimates of µq as
data points are added to X . Building on the framework for static KDE developed by Charikar et al.
(2020), our algorithm processes: (i) insertions and deletions of query points, and (ii) insertions of
data points in ε−2 · n0.25+o(1) time for the Gaussian kernel1. In particular, our algorithm maintains
(1 ± ε)-approximate estimates of the kernel densities for every query point q ∈ Q throughout the
sequence of data point insertions; see Theorem 3.1 for the formal statement. To the best of our
knowledge, this represents the first dynamic algorithm for the KDE problem that efficiently maintains
query estimates under data point insertions.

Among its many applications, an efficient algorithm for the KDE problem on X = Q ⊂ Rd can be
used to speed up the construction of a similarity graph for X , one of the key components used in many
graph-based clustering algorithms (e.g., spectral clustering). These clustering algorithms usually
have superior performance over traditional geometric clustering techniques (e.g., k-means) (Ng et al.,
2001; von Luxburg, 2007), but in general lack a dynamic implementation. Our second contribution
addresses this challenge, and designs a dynamic algorithm that maintains a similarity graph for the
dataset X with expected amortised update time n0.25+o(1) when new data points are added; see
Theorem 4.1 for the formal statement. Our algorithm guarantees that, when the set Xt of data points
present at any time t has a cluster structure, our dynamically maintained graph will have the same
cluster structure as the fully connected graph on Xt; hence a downstream graph clustering algorithm
will perform well.

Our designed algorithms are experimentally compared against several baseline algorithms on 8
datasets from different domains, and these experiments confirm the sub-linear update time proven in
theory. These experiments further demonstrate that

1Our algorithm generalises to arbitrary kernel functions, with different powers of n in the update time.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• our dynamic KDE algorithm scales better to large datasets than several baseline algorithms,
including the fast static KDE algorithm in Charikar et al. (2020), and

• our dynamic similarity graph construction algorithm runs faster than the fully-connected
and k-nearest neighbour similarity graph baselines, and produces comparable clustering
results when applying spectral clustering.

Related Work. Efficient algorithms for the kernel density estimation problem in low dimensions
have been known for over two decades (Gray & Moore, 2003; Greengard & Strain, 1991; Yang
et al., 2003). For the regime of d = Ω(log n), there has been some recent progress to develop
sub-linear query time algorithms (Charikar et al., 2020; Charikar & Siminelakis, 2017; 2019) based
on locality-sensitive hashing (Andoni & Indyk, 2008; Datar et al., 2004) and importance sampling
using algorithms for computing approximate nearest neighbors (Backurs et al., 2018; Karppa et al.,
2022). There has also been recent work studying the approximation of kernel similarity graphs in the
static setting (Macgregor & Sun, 2023; Quanrud, 2021).

Dynamic kernel density estimation has been studied in some restricted settings. Huang et al. (2024)
give a dynamic variant of the fast Gauss transform (Greengard & Strain, 1991) for low-dimensional
data. Given an initial dataset X , Liang et al. (2022) give an efficient algorithm for maintaining a
KDE data structure in which some data point xi is replaced with a new point z. In the same setting,
Deng et al. (2022) present a dynamic data structure that maintains a spectral sparsifier of the kernel
similarity graph, for smooth kernels.

Our work also relates to a number of works on incremental spectral clustering (Dhanjal et al., 2014;
Laenen & Sun, 2024; Martin et al., 2018; Ning et al., 2007). However, these works either assume a
fixed vertex set (Dhanjal et al., 2014; Martin et al., 2018; Ning et al., 2007), or are limited to handling
only single edge updates (Laenen & Sun, 2024).

2 PRELIMINARIES

This section lists several facts we use in the analysis, and is organised as follows: Section 2.1 gives
a brief introduction to Locality Sensitive Hashing, which we apply in Section 2.2 to discuss fast
algorithms for Kernel Density Estimation. We informally define an approximate similarity graph in
Section 2.3.

2.1 LOCALITY SENSITIVE HASHING

Given data x1, . . . ,xn ∈ Rd, the goal of Euclidean locality sensitive hashing (LSH) is to preprocess
the data in a way such that, given a query point y ∈ Rd, we are able to quickly recover the data points
close to y. Informally speaking, a family H of hash functions H : Rd → Z is locality sensitive if
there are values r ∈ R, c > 1, and p1 > p2, such that it holds for H drawn at random from H that
P[H(u) = H(v)] ⩾ p1 when ∥u − v∥ ⩽ r, and P[H(u) = H(v)] ⩽ p2 when ∥u − v∥ ⩾ c · r.
That is, the collision probability of close points is higher than that of far points. Datar et al. (2004)
propose a locality sensitive hash family based on random projections, and their technique is further
analysed by Andoni & Indyk (2008):
Lemma 2.1 (Andoni & Indyk (2008)). Let p and q be any pair of points in Rd. Then, for any fixed
r > 0, there exists a hash familyH such that, if

pnear ≜ p1(r) ≜ PH∼H[H(p) = H(q) | ||p− q|| ⩽ r]

and
pfar ≜ p2(r, c) ≜ PH∼H[H(p) = H(q) | ||p− q|| ⩾ cr]

for any c ⩾ 1, then

ρ ≜
log 1/pnear
log 1/pfar

⩽
1

c2
+O

(
log t

t1/2

)
,

for some t, where pnear ⩾ e−O(
√
t) and each evaluation takes dtO(t) time.

We follow the work of Charikar et al. (2020) and use t = log2/3 n, which results in no(1) evaluation
time and ρ = 1

c2 + o(1). In this case, if c = O
(
log1/7 n

)
, then ρ−1 = c2(1− β), for β = o(1).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Definition 2.2 (bucket). For any hash function H : Rd → Z and x ∈ Rd, let BH(x) be the set
defined by BH(x) ≜ {x′ | H(x) = H(x′)}; we call BH(x) a bucket.

2.2 KERNEL DENSITY ESTIMATION

Given a set X = {x1, . . . ,xn} of data points, a set Q = {q1, . . . ,qm} of query points, and a kernel
function k : Rd × Rd → R⩾0, the KDE problem is to compute

µq ≜ k(q, X) ≜
∑
xi∈X

k(q,xi)

for every q ∈ Q. We assume that2 1 ⩽ µq ⩽ n. While a direct computation of the m values for
every q ∈ Q requires mnd operations, there are a number of works that develop faster algorithms for
approximating these m quantities.

Our designed algorithms are based on the work of Charikar, Kapralov, Nouri, and
Siminelakis (Charikar et al., 2020). We refer to their algorithm as CKNS, and provide a brief
overview. At a high level, the CKNS algorithm is based on importance sampling and, for any query
point q, their objective is to sample a data point xi ∈ X with probability approximately proportional
to k(q,xi). To achieve this, they introduce the notion of geometric weight levels {Lq

j }j defined as
follows:

Definition 2.3 (Charikar et al. (2020)). For any query point q, let Jµq ≜
⌈
log 2n

µq

⌉
, and for j ∈ [Jµq],

let Lq
j ≜

{
xi ∈ X : k(q,xi) ∈

(
2−j , 2−j+1

]}
. We define the corresponding distance levels as

rj = max
x,x′:

k(x,x′)∈(2−j ,2−j+1]

∥x− x′∥

for any j ∈ [Jµq], and define Lq
Jµq+1 ≜ X \

(⋃
j∈[Jµq]

Lq
j

)
.

By definition, these Lq
j ’s for any query point q partition the data points into groups based on the

kernel distances k(q,xi), progressing geometrically away from q. Their key insight is that the
number of data points in each level Lq

j is bounded:

Lemma 2.4 (Charikar et al. (2020)). It holds for any query point q and j ∈ [Jµq] that
∣∣Lq

j

∣∣ ⩽ 2j ·µq.

Hence, one can sub-sample the data points with probability 1/(2j ·µq) for every j ∈ [O(log(n/µq))],
and the sampled data points are stored in hash buckets using LSH. This data structure will allow for
fast and good estimation of µq for any query point q. We further follow Charikar et al. (2020), and
introduce the cost of a kernel k.
Lemma 2.5 (Charikar et al. (2020)). Assume that kernel k induces weight level sets Lq

j ’s and
corresponding distance levels rj’s. Also, for any query q, integer i ∈ [Jµq + 1], and j ∈ [Jµq]
satisfying i > j, let p ∈ Lq

j and p′ ∈ Lq
i . Assuming thatH is an Andoni-Indyk LSH family designed

for near distance rj (see Lemma 2.1), the following holds for any integer k ⩾ 1:

1. PH∗∼Hk [H∗(p) = H∗(q)] ⩾ pknear,j ,

2. PH∗∼Hk [H∗(p′) = H∗(q)] ⩽ p
kc2(1−β)
near,j ,

where c ≜ ci,j ≜ min
{

ri−1

rj
, log1/7 n

}
, pnear,j ≜ p1(rj), and β = o(1) from Lemma 2.1.

Definition 2.6 (Cost of a Kernel). Suppose that a kernel k induces distance levels rj’s based on the
kernel value µq (see Definition 2.3). For any j ∈ [Jµq] we define the cost of kernel k for weight level
Lq
j as

costµq(k, j) ≜ exp2

(
max

i=j+1,...,Jµq+1

⌈
i− j

c2i,j(1− β)

⌉)
,

2We make this assumption simply for the ease of our presentation, and setting µq ⩾ ζ for any constant ζ
instead will not influence the asymptotic results of our work.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where ci,j ≜ min
{

ri−1

rj
, log1/7 n

}
and β = o(1) from Lemma 2.1. We define the general cost of a

kernel k as cost(k) ≜ maxµq,j∈[Jµq]
costµq(k, j). For any j ∈ [Jµq] we further define

kj ≜ −
1

log pnear,j
· max
i=j+1,...,Jµq+1

⌈
i− j

c2i,j(1− β)

⌉
. (2.1)

By the assumption that 1 ⩽ µq ⩽ n, the cost of some popular kernels such as the Gaussian kernel kg,
the t-student kernel kt, and the exponential kernel ke are cost(kg) = n(1+o(1)) 1

4 , cost(kt) = no(1),
and cost(ke) = n(1+o(1)) 4

27 , respectively (Charikar et al., 2020).

2.3 APPROXIMATE SIMILARITY GRAPHS

Constructing a similarity graph from a set of data points is the first step of most modern clustering
algorithms. For any set X = {x1, . . . ,xn} of data points in Rd and kernel function k : Rd × Rd →
R⩾0, a similarity graph F = (V,E,w) from X can be constructed as follows: each xi ∈ X is a vertex
in F , and every pair of vertices xi and xj is connected by an edge with weight w(xi,xj) = k(xi,xj).
While this graph F has Θ(n2) edges by definition, we can construct in Õ(n) time a sparse graph G

with Õ(n) edges such that (i) every cluster in F has low conductance in G, and (ii) the eigenvalue
gaps of the normalised Laplacian matrices of F and G are approximately the same (Macgregor
& Sun, 2023); these two conditions ensure that a typical clustering algorithm on F and G returns
approximately the same result. We call such a sparse graph G an approximate similarity graph, and
refer the reader to Section A in the appendix for its formal definition.

2.4 CONVENTION & ASSUMPTION

For ease of presentation, for any set X ⊂ Rd and z ∈ Rd, we always use X ∪z and X \z to represent
X ∪{z} and X \ {z}. For a similarity graph G constructed for any set X = {x1, . . . ,xn} ⊂ Rd, we
use xi to represent both the point in Rd and the corresponding vertex in G, as long as the underlying
meaning of xi is clear from context. We use (xi,xj) to represent an edge with xi and xj as the
endpoints, and the graphs studied in our paper are always undirected. We use Õ(n) to represent
O(n · logc n) for some constant c. The log operator takes the base 2.
Assumption 2.1. Let n1 = |X| denote the number of data points at initialisation. We assume that, if
Xt ⊂ Rd represents the set of data points present after t updates, then |Xt| ⩽ nγ

1 for constant γ > 0.
Moreover, based on the JL Lemma (Johnson, 1984), we always assume that d = O(log |Xt|), and
hence our work ignores the dependency on d in the algorithms’ runtime.

3 DYNAMIC KERNEL DENSITY ESTIMATION

In this section we design a data structure to dynamically maintain KDE estimates as new data and
query points are added or removed over time. Our data structure supports INITIALISE(X,Q, ε),
which creates a hash data structure for the KDE estimates based on X , and it supports operations for
dynamically maintaining the data and query point sets as well as the corresponding estimates. The
main components used in updating the data structure and their performance are as follows:
Theorem 3.1 (Main Result 1). Let k be a kernel function with cost(k) as defined in Definition 2.6,
and X ⊂ Rd a set of n data points updated through data point insertions. Assuming Q = ∅ initially3,
the performance of the procedures in Algorithm 1 is as follows:

• Initialisation: INITIALISE(X, ∅, ε) creates a hash data structure for the KDE, and runs in
time ε−2 · n1+o(1)

1 · cost(k), where n1 is the number of data points at initialisation.

• Query Point Updates: For every query point insertion Q← Q ∪ q or deletion Q← Q \ q,
ADDQUERYPOINT(q) and DELETEQUERYPOINT(q) update the corresponding sets and

3When Q ̸= ∅ with |Q| ≜ m1, we have an additional additive factor of m1 · ε−2 · no(1)
1 · cost(k) and

m1 · ε−2 · no(1) · cost(k) in the running time of the initialisation and data point update steps respectively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

data structures. Moreover, ADDQUERYPOINT(q) returns µ̂q that achieves a (1 ± ε)-
multiplicative factor approximation of µq with high probability.

• Data Point Updates: For every data point insertion X ← X ∪ z, ADDDATAPOINT(z)
updates the corresponding sets and data structures, and returns the updated estimates µ̂q

that achieve (1± ε)-multiplicative factor approximations of µq for every maintained query
point q ∈ Q.

With high probability, the amortised running time for each update procedure is ε−2 · no(1) · cost(k),
where n = |X| is the current number of data points.

To examine the significance of Theorem 3.1, notice that the amortised update time ε−2 ·no(1) ·cost(k)
for the data point insertions is independent of the number of query points |Q|. This makes our
algorithm significantly more efficient than re-estimating the query points after every update. While
previous work (Liang et al., 2022) has shown that the CKNS KDE estimator can extended to the
dynamic setting, our result shows that the estimates of a set of query points can be efficiently updated.

3.1 ANALYSIS FOR THE INITIALISATION

The initialisation step prepares all the data structures used for subsequent data and query point
updates. The main component used in INITIALISE(X,Q, ε) is the PREPROCESS(X, ε) procedure,
which preprocesses the data points in X to ensure that the value µq for any query point q can be fast
approximated. To achieve this, PREPROCESS(X, ε) defines

M ≜
{
2k | k ∈ Z, 0 ⩽ k ⩽ log (2n1)

}
,

and indexes every µi ∈ M such that µ0 ⩽ . . . ⩽ µlog(2n1); note that µi = 2i. Then
for µi ∈ M and j ∈ [log(2 · n1/µi)] it samples every data point in X with probability
min

{
1/(2j+1µi), 1

}
, and employs a hash function Hµi,a,j,ℓ chosen uniformly at random fromHkj

with kj = Õ(1) (cf. Lemma 2.5) to add every sampled x ∈ X to the buckets {BHµi,a,j,ℓ
(x)}µi,a,j,ℓ

indexed by all the possible a ∈ [K1] with K1 = O(log n1 · ε−2), and ℓ ∈ [K2] with K2 =
O(log(n1) · cost(k)). In addition, PREPROCESS(X, ε) samples every data point in X with probabil-
ity 1/(2n1) for all the possible values of µi and a, and adds the sampled point to set {X̃µi,a}µi,a. We
remark that our described PREPROCESS(X, ε) is almost the same as the one presented in Charikar
et al. (2020) and, although this data structure is sufficient to quickly output KDE estimates, we need
to store additional query-hash buckets to update estimates when new data points arrive.

3.2 ANALYSIS FOR UPDATES

When a new query point q arrives, ADDQUERYPOINT(q) performs the following operations:

1. It computes the KDE estimate µ̂q of µq using the hash-based data structure from
INITIALISE(X,Q, ε).

2. It adds q to the sets Qµi for every µi ∈M that satisfies µ̂q ⩽ µi, and adds q to the buckets
B∗

Hµi,a,j,ℓ
(q) for a ∈ [K1], j ∈ [Jµi] and ℓ ∈ [K2], which we call the query-hash.

When a new data point z arrives, ADDDATAPOINT(z) first checks whether the number of data points
has doubled since the last (re-)construction of the data structure, and re-initialises the data structure if
it is the case. Otherwise, ADDDATAPOINT(z) performs the following operations:

1. It samples z with probability min
{
1/(2j+1µi), 1

}
for all possible µi ∈ M , and adds

the sampled z to the buckets BHµi,a,j,ℓ
(z) for all a ∈ K1, j ∈ [Jµi], and ℓ ∈ [K2];

it also samples z with probability 1/(2n1) for all the possible values of µi and a, and
adds the sampled point to the set {X̃µi,a}µi,a. Notice that the way that z is added in
the buckets is exactly the same as the one when executing INITIALISE(X ∪ z, Q, ε), and
hence ADDDATAPOINT(z) correctly updates all the buckets. We remark that this method
of updating the buckets is similar to that of Liang et al. (2022), the difference being that for
their dynamic setting instead of adding z to buckets, z replaces some xi.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

x6x4x3 q1

BHµi,a,j,ℓ
(z) B∗

Hµi,a,j,ℓ
(z)

x6x4x3

z

q3

q2 q4

q1

q3

q2 q4
q3 z

Query hashData hash

t

t′

x6

x4
x3

q1

q2

q4

x5

x2

x1

(a) (b) (c)

q3

x6

x4
x3

q1

q2

q4

x5

x2

x1

Rd

Rd

Figure 1: Illustration of ADDDATAPOINT(z) for a single iteration µi ∈M , a ∈ K1, j ∈ [Jµi
], and

ℓ ∈ [K2]. The first row illustrates (a) the subsampled data points Z ≜ {x3,x4,x6} and query points
Qµi

≜ {qi}4i=1, (b) the bucketing of Z by the hash function Hµi,a,j,ℓ, as well as (c) the bucketing of
Q by the same hash function. The second row illustrates (a) the relative location of a new arriving
data point z ∈ Rd, with shaded red region indicating Lz

j , (b) z’s inclusion in the bucket BHµi,a,j,ℓ
(z),

as well as (c) the recovery of q3 ∈ B∗
Hµi,a,j,ℓ

(z) because z ∈ Lq3

j .

2. If z is sampled, ADDDATAPOINT(z) recovers all the points q ∈ B∗
Hµi,a,j,ℓ

(z) in the query

hash that satisfies q ∈ Qµi
\
(⋃

j′<i Qµj′

)
and z ∈ Lq

j . Every such q is exactly the
point whose KDE estimate µ̂q would have included z if ADDQUERYPOINT(q) would have
been called after running INITIALISE(X ∪ z, Q, ε). Hence, the KDE estimates µ̂q for the
recovered q are updated appropriately.

See Figure 1 for illustration. The correctness and running time analysis of ADDDATAPOINT(z) and
ADDQUERYPOINT(q) can be found in Section B of the appendix.

Finally, the DELETEQUERYPOINT(q) procedure simply removes any stored information about the
query point q throughout all the maintained data, and its running time follows from the running time
of ADDQUERYPOINT(q).

4 DYNAMIC SIMILARITY GRAPH CONSTRUCTION

In this section we design an approximate dynamic algorithm that constructs a similarity graph under
a sequence of data point insertions, and analyse its performance. Given a set X of n1 points in Rd

with d = O(log n1), and a sequence of points {z} that will be added to X over time, our designed
algorithm consists of the CONSTRUCTGRAPH and UPDATEGRAPH procedures, whose performance
is summarised as follows:

Theorem 4.1 (Main Result 2). Let k be a kernel function with cost(k) as defined in Definition 2.6,
and X ⊂ Rd a set of data points updated through point insertions. Then, the following statements
hold:

1. The Initialisation Step: with probability at least 9/10, the CONSTRUCTGRAPH procedure
constructs an approximate similarity graph G = (X,E,wG) with |E| = Õ(n1) edges,
where n1 = |X| is the number of data points at initialisation. The running time of the
initialisation step is n1+o(1)

1 · cost(k).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2. The Dynamic Update Step: for every new arriving data point z, the UPDATEGRAPH pro-
cedure updates the approximate similarity graph G, and with probability at least 9/10
G is an approximate similarity graph for X ∪ z. The expected amortised update time is
no(1) · cost(k), where n is the number of currently considered data points.

On the significance of Theorem 4.1, first notice that the algorithm achieves an update time of
no(1) · cost(k). For the Gaussian kernel, this corresponds to an update time of n(1+o(1)) 1

4 , which is
much faster than the Õ(n) time needed to update the fully connected similarity graph. Secondly, our
result demonstrates that, as long as the dynamically changing set X ⊂ Rd of points presents a clear
cluster structure, an approximate similarity graph G for X can be dynamically maintained, and the
conductance of every cluster in G can be theoretically analysed, due to the formal definition of an
approximate similarity graph (Definition A.3). This is another difference between our work and many
heuristic clustering algorithms that lack a theoretical guarantee on their performance.

4.1 ANALYSIS FOR THE INITIALISATION

The main component of the initialisation step is our designed CONSTRUCTGRAPH(X) procedure,
which builds a (complete) binary tree T for X , such that each leaf corresponds to a data point
xi ∈ X , and each internal node of T corresponds to a dynamic KDE data structure (described in
Section 3) on the descendant leaves/data points. At a high level, CONSTRUCTGRAPH(X) applies
the SAMPLE(X, T , ℓ) procedure to recursively traverse T and sample L = O(log |X|) neighbours
for every vertex based on the KDEs maintained by the internal nodes. It also stores the paths
Pxi,ℓ (xi ∈ X, ℓ ⩽ L), each of which records the internal nodes that xi visits when sampling its ℓth
neighbour; with these stored paths the algorithm can adaptively resample the tree as new data points
arrive. In addition, the query points whose KDE estimates are dynamically maintained at any internal
node T ′ are the data points xi whose sample path Pxi,ℓ visit T ′.

Our proof follows Macgregor & Sun (2023) at a high level. However, one crucial difference between
our analysis and theirs is that the weight of every edge (xi,xj) added by our algorithm is set to
be k(xi,xj)/ŵ(i, j). Here, ŵ(i, j) depends on min{T .kde.µ̂xi

, T .kde.µ̂xj
}, where T .kde is the

dynamic KDE data structure maintained at the root of T . In particular, every sampled edge (xi,xj)
is added with this weight independent of the edge being sampled from xi or xj . This modification
allows for correct reweighting and resampling after a sequence of data point insertions.

4.2 ANALYSIS FOR DYNAMIC UPDATES

We design the UPDATEGRAPH(G, T , z) procedure to dynamically update our constructed graph
such that the updated graph is an approximate similarity graph for X ∪ z. At a high level,
UPDATEGRAPH(G, T , z) works as follows (see Figure 2 for illustration):

1. for every arriving data point z, UPDATEGRAPH(G, T , z) creates a new leaf node for z, and
places it appropriately in T ensuring that the new tree is a complete binary tree;

2. UPDATEGRAPH(G, T , z) inspects the internal nodes from the new leaf z to the root of the
tree, and for every such internal node it adds z as a new data point in the corresponding
dynamic KDE estimators;

3. UPDATEGRAPH(G, T , z) further checks in every internal node along the sample path
Pxi,ℓ whether the KDE estimate of any xi has changed due to the insertion of z. If
so, Pxi,ℓ is added to the set A of paths that need to be updated. For every Pxi,ℓ ∈ A,
UPDATEGRAPH(G, T , z) finds the highest internal node T ′ where the KDE estimate of
xi has changed, removes the path from all nodes below T ′, and resamples the corre-
sponding edges; this is achieved through RESAMPLE(T ,Pxi,ℓ). Additionally, it employs
SAMPLE({z}, T , ℓ) to sample L new edges adjacent to z.

From this description, it is easy to see that the total time complexity of UPDATEGRAPH(G, T , z) is
dominated by (i) the time complexity of SAMPLE({z}, T , ℓ) and RESAMPLE(T ,Px,ℓ), and (ii) the
total number of paths A that need to be reconstructed. First, we study the time complexity of these
two procedures, and our result is as follows:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

x7 x8 x9 x10

TPx1,ℓ

Px1,ℓ′

T ′
Resampled Px1,ℓ′

Unchanged Px1,ℓ

µ̂xi change

x1 x2 x3 x4 x5 x6

x11 x8 x9 x10

x1 x2 x3 x4 x5 x6

x11

x7 z

(a) (b)

Figure 2: Illustration of updating T after performing UPDATEGRAPH(z). In (a), Px1,ℓ and Px1,ℓ′ are
generated by SAMPLE({x1}, T , ℓ) and SAMPLE({x1}, T , ℓ′), and correspond to edges (x1,x9) and
(x1,x3). (b) Illustrates that, after adding z, part of Px1,ℓ′ is updated due to RESAMPLE(T ′,Px1,ℓ′),
and (x1,x3) is replaced by (x1,x6); however, the update on z doesn’t change Px1,ℓ.

Lemma 4.2. For any x ∈ Rd and ℓ ∈ N, the running time of SAMPLE({x}, T , ℓ) (Algorithm 8) and
RESAMPLE(T ,Px,ℓ) (Algorithm 10) is no(1) · cost(k).

Given that SAMPLE(z, T , ℓ) is called L = Õ(1) times by UPDATEGRAPH(G, T , z), and RESAM-
PLE(T ,Px,ℓ) is called |A| times, Lemma 4.2 implies that the running time of UPDATEGRAPH
depends on the number of re-sampled paths |A|. Therefore, to prove the time complexity of UPDATE-
GRAPH, it remains to show that E[|A|] is sufficiently small.

Bounding the expected number of re-sampled paths corresponds to bounding the number of query
points whose KDE estimates are updated at each affected internal node T ′. However, applying
Theorem 3.1 directly is insufficient because, in our approximate similarity graph, the dynamic KDE
data structures start with Q = X rather than Q = ∅. As such, more careful analysis is needed, for
which the following notation for the query points Q will be used.

Definition 4.3. Let T be the KDE tree constructed from CONSTRUCTGRAPH(X), and T ′ an internal
node of T . Then, for 0 ⩽ j ⩽ i ⩽ ⌈log(2 · T .kde.n)⌉, we define the set

Qµi→µj
(T ′) ≜ {q ∈ T .kde.Q | µi ⩽ k(q, T .kde.X) < 2µi and k(q, T ′.kde.X) ⩽ µj} ,

where T ′.kde is the dynamic KDE data structure maintained at T ′.

The set Qµi→µj
(T ′) represents the set of query points q ∈ X whose KDE estimates are bounded

by µi when computed with respect to the data points X at the root of the tree, and bounded by µj

for j ⩽ i when computed with respect to the data points X ′ represented at the internal node T ′.
Intuitively, this set captures the query points whose KDE estimates decrease when moving from the
root of the tree to the internal node T ′. These sets exhibit the following useful property.

Lemma 4.4. It holds for any q ∈ Qµi→µj
(T ′) that P[q ∈ T ′.kde.Q] = Õ

(
µj

µi

)
.

To bound the number of maintained query points whose estimate is updated, we look at the expected
number of collisions caused by hashing z in the dynamic KDE data structure T ′.kde at every
affected internal node T ′. Crucially, by separately analysing the contributions from query points in
Qµi′→µi(T ′) for i′ ⩾ i and applying Lemma 4.4, we can bound the expected number of colliding
points in the buckets T ′.kde.BHµi,a,j,ℓ

(z) sufficiently tightly at each affected internal node T ′.

Lemma 4.5 (Informal version of Lemma C.2). Let z be the data point that is added to T through
our designed update procedures, and T ′ be any internal node that lies on the path from the new leaf
LEAF(z) to the root of T . Then it holds for any i, a, j, and ℓ that that

EHµi,a,j,ℓ
[|{q ∈ T ′.kde.Qµi | T ′.kde.Hµi,a,j,ℓ(z) = T ′.kde.Hµi,a,j,ℓ(q)}|] = Õ

(
µi · 2j+1

)
.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Combining Lemma 4.5 with the fact that z is sampled with probability min
{
1/(2j+1µi), 1

}
for all

possible i ∈ [⌈log(2 · T .kde.n)⌉] and j ∈ Jµi
along every affected internal node T ′, and noting that

there are Õ(1) such nodes, we obtain the following result.

Lemma 4.6. For every added z, the expected number of paths A that needs to be resampled by
UPDATEGRAPH(G, T , z) satisfies E[|A|] = Õ(1).

Combining Lemmas 4.2 and 4.6 with the running time analysis of other involved procedures proves
the time complexity in the second part of Theorem 4.1. To show that our dynamically maintained G
is an approximate similarity graph, we prove in Lemma C.6 that running CONSTRUCTGRAPH(X)
followed by UPDATEGRAPH(G, T , z) is equivalent to running CONSTRUCTGRAPH(X ∪ z); hence
the correctness of our constructed G follows from the one for CONSTRUCTGRAPH(X).

5 EXPERIMENTS

Table 1: Dataset size information

Dataset n d

blobs 20,000 10
mnist 70,000 728
cifar10 50,000 2,048
aloi 108,000 128
msd 515,345 90
covtype 581,012 54
glove 1,193,514 100
census 2,458,285 68

In this section, we experimentally evaluate our proposed
dynamic algorithms for KDE and approximate similarity
graph construction on the Gaussian kernel. All experiments
are performed on a compute server with 64 AMD EPYC
7302 16-Core Processors and 500 Gb of RAM. We report
the 2-sigma errors for all numerical results based on 3 rep-
etitions of each experiment, and Section D gives additional
experimental details and results. The code to reproduce the
results is included as part of the supplementary material.

We evaluate the algorithms on a variety of real-world
and synthetic data, and we summarise their properties
in Table 1. The datasets cover a variety of domains, in-
cluding synthetic data (blobs (Pedregosa et al., 2011)),
images (mnist (Lecun et al., 1998), aloi (Geusebroek
et al., 2005)), image embeddings (cifar10 (He et al., 2016;
Krizhevsky, 2009)), word embeddings (glove (Pennington et al., 2014)), and mixed numerical datasets
(msd (Bertin-Mahieux et al., 2011), covtype (Blackard & Dean, 1999), census (Meek et al., 1990)).

5.1 DYNAMIC KDE

0 500 1000 1500 2000 2500

n ×103

0

25

50

75

100

125

150

175

U
p

d
at

e
ti

m
e

(s
)

Exact

CKNS

DynamicRS

Our Algorithm

Figure 3: Dynamic KDE update times on
the census dataset

To our knowledge, our proposed algorithm is the first
which solves the dynamic kernel density estimation
problem. For this reason, we compare against the fol-
lowing baseline approaches:

• EXACT: the exact kernel density estimate,
computed incrementally as data points are
added.

• DYNAMICRS: a dynamic KDE estimator
based on uniform random sampling of the data.
For all experiments, we uniformly subsample
the data with sampling probability 0.1.

• CKNS: we use the fast kernel density esti-
mation algorithm proposed by Charikar et al.
(2020), and fully re-compute the estimates ev-
ery time the data is updated.

For each dataset, we set the parameter σ of the Gaussian
kernel such that the average kernel density µq · n−1 ≈ 0.01 (Karppa et al., 2022). We split the data
points into chunks of size 1,000 for aloi, msd, and covtype, and size 10,000 for glove and census.
Then, we add one chunk at a time to the set of data points X and the set of query points Q. At each
iteration, we evaluate the kernel density estimates µ̂q produced by each algorithm with the relative

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: The experimental results for the dynamic KDE algorithms. For each dataset, we shade the
cells corresponding to the algorithm with the lowest running time. The running times of the exact
algorithm are 164.5, 2715.6, 2179.9, 5251.7, and 16279.9.

CKNS DYNAMICRS OUR ALGORITHM

dataset Time (s) Err Time (s) Err Time (s) Err

aloi 619.0±10.7 0.050±0.006 19.7±0.3 0.010±0.003 46.9±0.7 0.060±0.021

msd 14, 360.0±0.0 0.385±0.000 1, 887.8±0.0 5.430±0.000 306.4±0.0 0.388±0.000

covtype 5, 650.3±109.0 0.159±0.002 309.2±2.4 0.018±0.003 151.7±4.5 0.196±0.017

glove 2, 640.8±1677.7 0.221±0.229 1, 038.6±26.5 0.004±0.005 445.6±214.6 0.296±0.469

census 10, 471.5±160.6 0.080±0.000 3, 424.8±5.2 0.005±0.001 836.5±44.6 0.102±0.021

Table 3: Running time and NMI results for the dynamic similarity graph algorithms. For each dataset,
the shaded cells correspond to the algorithm with the lowest running time.

FULLYCONNECTED KNN OUR ALGORITHM

dataset Time (s) NMI Time (s) NMI Time (s) NMI

blobs 72.8±2.2 1.000±0.000 383.6±3.9 0.933±0.095 21.2±0.8 1.000±0.000

cifar10 19, 158.2±231.6 0.001±0.000 3, 503.0±490.6 0.227±0.002 1, 403.5±152.4 0.339±0.021

mnist 1, 328.3±159.5 0.460±0.000 5, 796.3±234.3 0.812±0.003 1, 470.3±77.9 0.523±0.011

error (Karppa et al., 2022)

err =
1

|Q|
∑
q∈Q

∣∣∣∣ µ̂q − µq

µq

∣∣∣∣ .
Table 2 gives the total running time and final relative error for each algorithm, and Figure 3 shows the
time taken to update the data structure for the census dataset at each iteration. From these results,
we observe that our algorithm scales better to large datasets than the baseline algorithms, while
maintaining low relative errors. Figure 3 further shows that the update time of our algorithm is
sub-linear in the number of data points, as shown theoretically in Theorem 3.1. The update time of
the other algorithms is linear in n and their total running time is quadratic.

5.2 DYNAMIC CLUSTERING

For the dynamic similarity graph algorithm, we compare against the two baseline algorithms:

• FULLYCONNECTED: the fully-connected similarity graph with the Gaussian kernel;
• KNN: the k-nearest neighbour graph, for k = 20.

We split the datasets into chunks of 1, 000 and add each chunk to the dynamically constructed
similarity graph, adding one complete ground-truth cluster at a time. At each iteration, we apply the
spectral clustering algorithm to the constructed similarity graph and report the normalised mutual
information (NMI) (Lancichinetti et al., 2009) with respect to the ground truth clusters. Table 3
shows the total running times and final NMI values for each algorithm on each dataset. From these
results, we see that our algorithm achieves a competitive NMI value with faster running time than the
baseline algorithms.

REFERENCES

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. Communications of the ACM, 51(1):117–122, 2008.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation for
smooth kernels. In 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS’18),
pp. 615–626, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ainesh Bakshi, Piotr Indyk, Praneeth Kacham, Sandeep Silwal, and Samson Zhou. Subquadratic
algorithms for kernel matrices via kernel density estimation. In 11th International Conference on
Learning Representations (ICLR’23), 2023.

Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million song
dataset. In 12th International Conference on Music Information Retrieval (ISMIR’11), 2011.

Jock A Blackard and Denis J Dean. Comparative accuracies of artificial neural networks and
discriminant analysis in predicting forest cover types from cartographic variables. Computers and
Electronics in Agriculture, 24(3):131–151, 1999.

Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimen-
sions. In 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS’17), pp.
1032–1043, 2017.

Moses Charikar and Paris Siminelakis. Multi-resolution hashing for fast pairwise summations. In
60th Annual IEEE Symposium on Foundations of Computer Science (FOCS’19), pp. 769–792,
2019.

Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation
through density constrained near neighbor search. In 61st Annual IEEE Symposium on Foundations
of Computer Science (FOCS’20), pp. 172–183, 2020.

Fan R.K. Chung. Spectral Graph Theory. 1997.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In 20th Annual symposium on Computational Geome-
try (SoCG’04), pp. 253–262, 2004.

Yichuan Deng, Wenyu Jin, Zhao Song, Xiaorui Sun, and Omri Weinstein. Dynamic kernel sparsifiers.
arXiv:2211.14825, 2022.

Charanpal Dhanjal, Romaric Gaudel, and Stéphan Clémençon. Efficient eigen-updating for spectral
graph clustering. Neurocomputing, 131:440–452, 2014.

Christopher R. Genovese, Marco Perone-Pacifico, Isabella Verdinelli, and Larry Wasserman.
Nonparametric ridge estimation. The Annals of Statistics, 42(4):1511 – 1545, 2014. doi:
10.1214/14-AOS1218. URL https://doi.org/10.1214/14-AOS1218.

Jan-Mark Geusebroek, Gertjan J Burghouts, and Arnold WM Smeulders. The Amsterdam library of
object images. International Journal of Computer Vision, 61:103–112, 2005.

Alexander G Gray and Andrew W Moore. Nonparametric density estimation: Toward computational
tractability. In 2003 SIAM International Conference on Data Mining, pp. 203–211, 2003.

Leslie Greengard and John Strain. The Fast Gauss Transform. SIAM Journal on Scientific &
Statistical Computing, 12(1):79–94, 1991.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), pp.
770–778, 2016.

Baihe Huang, Zhao Song, Omri Weinstein, Junze Yin, Hengjie Zhang, and Ruizhe Zhang. A dynamic
low-rank fast gaussian transform. arXiv:2202.12329, 2024.

William B Johnson. Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathe-
matics, 26:189–206, 1984.

Matti Karppa, Martin Aumüller, and Rasmus Pagh. Deann: Speeding up kernel-density estima-
tion using approximate nearest neighbor search. In 25th International Conference on Artificial
Intelligence and Statistics (AISTATS’22), pp. 3108–3137, 2022.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University
of Toronto, 2009.

11

https://doi.org/10.1214/14-AOS1218

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Steinar Laenen and He Sun. Dynamic spectral clustering with provable approximation guarantee. In
41st International Conference on Machine Learning (ICML’24), 2024.

Andrea Lancichinetti, Santo Fortunato, and János Kertész. Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics, 11(3):033015, 2009.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and higher-
order cheeger inequalities. Journal of the ACM, 61(6):1–30, 2014.

Jiehao Liang, Zhao Song, Zhaozhuo Xu, and Danyang Zhuo. Dynamic maintenance of kernel density
estimation data structure: From practice to theory. arXiv:2208.03915, 2022.

Peter Macgregor and He Sun. Fast approximation of similarity graphs with kernel density estimation.
In Advances in Neural Information Processing Systems 37 (NeurIPS’23), 2023.

Lionel Martin, Andreas Loukas, and Pierre Vandergheynst. Fast approximate spectral clustering
for dynamic networks. In 35th International Conference on Machine Learning (ICML’18), pp.
3420–3429, 2018.

Chris Meek, Bo Thiesson, and David Heckerman. US Census Data (1990). UCI Machine Learning
Repository, 1990.

NASA. Statlog (Shuttle). UCI Machine Learning Repository, 2002.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Systems 15 (NeurIPS’01), pp. 849–856, 2001.

Huazhong Ning, Wei Xu, Yun Chi, Yihong Gong, and Thomas Huang. Incremental spectral clustering
with application to monitoring of evolving blog communities. In the 2007 SIAM International
Conference on Data Mining (SDM’07), pp. 261–272, 2007.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Richard Peng, He Sun, and Luca Zanetti. Partitioning Well-Clustered Graphs: Spectral Clustering
Works! SIAM Journal on Computing, 46(2):710–743, 2017.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Kent Quanrud. Spectral sparsification of metrics and kernels. In 32nd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’21), pp. 1445–1464, 2021. doi: 10.1137/1.9781611976465.87.

William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the American
Statistical Association, 66(336):846–850, 1971.

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT Press, 2018.

Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel. Generalized outlier detection with flexible
kernel density estimates. In 2014 SIAM International Conference on Data Mining, pp. 542–550,
2014.

He Sun and Luca Zanetti. Distributed graph clustering and sparsification. ACM Transactions on
Parallel Computing, 6(3):17:1–17:23, 2019.

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing volume, 17(4):
395–416, 2007.

Changjiang Yang, Ramani Duraiswami, Nail A. Gumerov, and Larry Davis. Improved fast Gauss
transform and efficient kernel density estimation. In 9th International Conference on Computer
Vision (ICCV’03), pp. 664–671, 2003.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ADDITIONAL BACKGROUND KNOWLEDGE

This section presents additional background knowledge used in our analysis, and is organised as
follows: Section A.1 lists further notation for graphs and useful facts in spectral graph theory;
Section A.2 formally defines the concept of an approximate similarity graph.

A.1 NOTATION

Let G = (V,E,w) be an undirected graph of n vertices and weight function w : V × V → R⩾0. For
any edge e = (u, v) ∈ E, we write wG(u, v) or wG(e) to express the weight of e. For a vertex u ∈ V ,
we denote its degree by degG(u) ≜

∑
v∈V wG(u, v), and the volume for any S ⊆ V is defined as

volG(S) ≜
∑

u∈S degG(u). For any two subsets S, T ⊂ V , we define the cut value between S and
T by wG(S, T) ≜

∑
e∈EG(S,T) we, where EG(S, T) is the set of edges between S and T . Moreover,

for any S ⊂ V , the conductance of S is defined as

ΦG(S) ≜
wG(S, V \ S)

min{volG(S), volG(V \ S)}
if S ̸= ∅, and ΦG(S) = 1 if S = ∅. For any integer k ⩾ 2, we call subsets of vertices A1, . . . , Ak a
k-way partition of G if

⋃k
i=1 Ai = V and Ai ∩ Aj = ∅ for different i and j. We define the k-way

expansion of G by
ρG(k) ≜ min

partitions A1,...,Ak

max
1⩽i⩽k

ΦG(Ai).

Part of our analysis is based on algebraic properties of graphs, hence we define graph Laplacian
matrices. For a graph G = (V,E,w), let DG ∈ Rn×n be the diagonal matrix defined by DG(u, u) =
degG(u) for all u ∈ V . We denote by AG ∈ Rn×n the adjacency matrix of G, where AG(u, v) =
wG(u, v) for all u, v ∈ V . The normalised Laplacian matrix of G is defined as

LG ≜ I −D
−1/2
G AGD

−1/2
G ,

where I is the n× n identity matrix. The normalised Laplacian LG is symmetric and real-valued,
and has n real eigenvalues which we write as λ1(LG) ⩽ . . . ⩽ λn(LG). We sometimes refer to
the ith eigenvalue of LG as λi if it is clear from the context. It is known that λ1(LG) = 0 and
λn(LG) ⩽ 2 (Chung, 1997). The following result will be used in our analysis.
Lemma A.1 (higher-order Cheeger inequality, Lee et al. (2014)). It holds for any graph G and k ⩾ 2
that

λk(LG)

2
⩽ ρG(k) = O

(
k3
)√

λk(LG). (A.1)

A.2 APPROXIMATE SIMILARITY GRAPH

We first introduce the notion of cluster-preserving sparsifiers.
Definition A.2 (Cluster-preserving sparsifier, Sun & Zanetti (2019)). Let F = (V,E,w) be any graph
with k clusters, and {Si}ki=1 a k-way partition of F corresponding to ρF (k). We call a re-weighted
subgraph G = (V,E′ ⊂ E,wG) a cluster-preserving sparsifier of F if (i) ΦG(Si) = O(k · ΦF (Si))
for 1 ⩽ i ⩽ k, and (ii) λk+1(LG) = Ω(λk+1(LF)).

Notice that graph F = (V,E,w) has exactly k clusters if (i) F has k disjoint subsets S1, . . . , Sk

of low conductance, and (ii) any (k + 1)-way partition of F would include some A ⊂ V of high
conductance, which would be implied by a lower bound on λk+1(LF) due to (A.1). Together
with the well-known eigen-gap heuristic (von Luxburg, 2007) and theoretical analysis on spectral
clustering (Peng et al., 2017), these two conditions ensure that the k optimal clusters in F have low
conductance in G as well. Based on this, we define approximate similarity graphs as follows:
Definition A.3 (Approximate Similarity Graph). For any set X ⊂ Rd of n data points and the fully
connected similarity graph F on X , we call a sparse graph G with Õ(n) edges an approximate
similarity graph on X if G is a cluster-preserving sparsifier of F .

We call G an approximate similarity graph in the extended abstract if G satisfies the properties of
Definition A.3.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B OMITTED DETAIL FROM SECTION 3

This section provides the detailed explanations omitted from Section 3, and is organised as follows:
Section B.1 analyses the initialisation and querying procedures. Section B.2 analyses the dynamic
update step for adding data points. Finally, Section B.3 proves Theorem 3.1.

Algorithm 1 describes all the used procedures and corresponding subprocedures, whose performance
is summarised in Theorem 3.1.

Algorithm 1 DYNAMICKDE(X,Q, ε)

1: Members
2: µ̂q ▷ Query estimates for every point q ∈ Q
3: ε ▷ Precision parameter for KDE estimate
4: For µi ∈M , create set Qµi

▷ Set of data points with query estimate less than µi

5: procedure INITIALISE(X , Q, ε)
6: n′, n← |X|, m̄←

⌈
C
ε2

⌉
, N̄ ← ⌈log(2n′)⌉ ▷ C is a universal constant

7: K1 ← m̄ · N̄ ▷ Number of independent estimators used
8: Jµi

←
⌈
log 2n′

µi

⌉
for µi ∈M ▷ See Definition 2.3

9:
10: PREPROCESS(X, ε) ▷ Initialise the Charikar et al. (2020) data structure (Algorithm 2)
11: PREPROCESSQUERYPOINTS(X,Q, ε) ▷ (Algorithm 4)
12: procedure ADDQUERYPOINT(q)
13: µ̂q ← QUERYPOINT(X,q, ε) ▷ (Algorithm 3)
14: Store µ̂q

15: Add q to all sets Qµi
such that µ̂q ⩽ µi

16: ADDFULLHASH(q) ▷ (Algorithm 4)
17: procedure ADDDATAPOINT(z)
18: n← n+ 1
19: if n− n′ > n′ then
20: INITIALISE(X ∪ z, Q, ε) ▷ We reconstruct the data structure
21: else
22: ADDPOINTANDUPDATEQUERIES(z, Q, ε) ▷ (Algorithm 6)
23: procedure DELETEQUERYPOINT(q)
24: DELETEFROMDATA(z) ▷ (Algorithm 5)
25: Delete µ̂q

Algorithm 2 DynamicKDE Preprocessing

1: procedure PREPROCESS(X, ε)
2: Input: the set X of data points, and the precision estimate ε
3: for µi ∈M do
4: for a = 1, 2, . . . ,K1 do ▷ K1 = O(log n′/ε2) independent repetitions
5: for j = 1, 2, . . . , Jµi do ▷ Jµi =

⌈
log 2n′

µi

⌉
geometric weight levels

6: K2,j ← 200 log n′ · p−kj

near,j ▷ See Lemma 2.5 and (2.1) for def. of pnear,j and kj

7: psamp ← min
{

1
2j+1µi

, 1
}

8: Sample every x ∈ X w.p. psamp, and let Zµi,j be the set of sampled elements
9: for ℓ = 1, 2, . . . ,K2,j do

10: Draw a hash function Hµi,a,j,ℓ from hash familyHkj (Lemma 2.5)
11: for x ∈ Zµi,j do
12: Store x in the bucket BHµi,a,j,ℓ

(x)

13: Sample every x ∈ X w.p. 1
2n′ , and let X̃µi,a be the set of sampled elements.

14: Store X̃µi,a ▷ Set X̃µi,a will be used to recover points beyond LJ+1

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 3 DynamicKDE Query Procedures

1: procedure QUERYMUESTIMATE(X,q, ε, µi)
2: Input: set X of data points, query point q, precision estimate ε, and KDE estimate µi.
3: for a = 1, 2, . . . ,K1 do ▷ O(log n′/ε2) independent repetitions
4: for j = 1, 2, . . . , Jµi

do
5: K2,j ← 200 log n′ · p−kj

near,j

6: for ℓ = 1, 2, . . . ,K2,j do
7: Recover points x ∈ BHµi,a,j,ℓ

(q) such that x ∈ Lq
j

8: Recover points x ∈ X̃µi,a such that x ∈ Lq
Jµi

+1.
9: S ← set of all recovered points in this iteration

10: for xi′ ∈ S do
11: wi′ ← k(xi′ ,q)
12: if xi′ ∈ Lq

j for some j ∈ [Jµi
] then

13: pi′ ← min
{

1
2j+1µi

, 1
}

14: else if xi ∈ X \
(⋃

j∈[Jµi
] L

q
j

)
then

15: pi′ ← 1
2n′

16: Zq,a ←
∑

xi′∈S wi′/pi′

17: Store Zq,a

18: for b = 1, 2, . . . , N̄ do ▷ Get median of N̄ = O(log n) means of size O(1/ε2)

19: Z̄q,b ← 1
m̄

∑bm̄
a=(b−1)m̄+1 Zq,a

return Median
(
Z̄q,1, Z̄q,2, . . . , Z̄q,N̄

)
20: procedure QUERYPOINT(X,q, ε)
21: Input: set X of data points, query point q, precision estimate ε.
22: for µi ∈ [µlog(2n′), µlog(2n′)−1, . . . , µ1, µ0] do
23: if QUERYMUESTIMATE(X,q, ε, µi) > µi then
24: return QUERYMUESTIMATE(X,q, ε, µi+1) ▷ If estimate is larger than µi, return

the previous estimate.
25: return 0

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 4 DynamicKDE Full Hash Procedures

1: procedure PREPROCESSQUERYPOINTS(X,Q, ε)
2: Input: the set X of data points, the set of query points Q, and the precision estimate ε.
3: for q ∈ Q do
4: µ̂q ← QUERYPOINT(X,q, ε)
5: Store µ̂q

6: Add q to all sets Qµi
such that µ̂q ⩽ µi

7: for µi ∈M do
8: for a = 1, 2, . . . ,K1 do
9: for j = 1, 2, . . . , Jµi

do
10: K2,j ← 200 log n′ · p−kj

near,j

11: for ℓ = 1, 2, . . . ,K2,j do
12: for q ∈ Qµi do
13: Store q in full bucket B∗

Hµi,a,j,ℓ
(q) corresponding to hash value

Hµi,a,j,ℓ(q)

14: procedure ADDFULLHASH(q)
15: Input: New query point q
16: for µi ⩾ µ̂q do
17: for a = 1, 2, . . . ,K1 do
18: for j = 1, 2, . . . , Jµi

do
19: K2,j ← 200 log n′ · p−kj

near,j

20: for ℓ = 1, 2, . . . ,K2,j do
21: Store q in full bucket B∗

Hµi,a,j,ℓ
(q) corresponding to hash value Hµi,a,j,ℓ(q)

Algorithm 5 DynamicKDE Delete Procedures

1: procedure DELETEFROMDATA(z)
2: Input: Query point q to remove
3: for µi ∈M do
4: Remove q from Qµi

5: for a = 1, 2, . . . ,K1 do
6: for j = 1, 2, . . . , Jµi

do
7: K2,j ← 200 log n′ · p−kj

near,j

8: for ℓ = 1, 2, . . . ,K2,j do
9: Remove q from full bucket B∗

Hµi,a,j,ℓ
(q)

B.1 ANALYSIS OF THE INITIALISE AND ADDQUERYPOINT PROCEDURES

We first analyse the INITIALISE(X,Q, ε) and ADDQUERYPOINT(z) procedures in Algorithm 1,
whose corresponding subprocedures are presented in Algorithms 2, 3, and 4.

We assume that µi is an estimate satisfying µq ⩽ µi; we will justify this assumption in Remark 1.
We first analyse the expected number of data points to be sampled in each bucket BHµi,a,j,ℓ

(q).

Lemma B.1. For any a, µi, j, ℓ, it holds for q ∈ Qµi that

EHµi,a,j,ℓ

[∣∣∣{x ∈ X̃µi,j | Hµi,a,j,ℓ(q) = Hµi,a,j,ℓ(x)
}∣∣∣] = Õ(1),

any for q ∈ Qµi′ that

EHµi,a,j,ℓ
[|{x ∈ X | Hµi,a,j,ℓ(x) = Hµi,a,j,ℓ(q)|}|] = Õ

(
2j+1µi′

)
.

Proof. We compute the expected number of collisions in the bucket BHµi,a,j,ℓ
(q), and our analysis

is by case distinction.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Case 1: j′ ⩽ j. It holds by Lemma 2.4 that
∣∣∣Lq

j′

∣∣∣ ⩽ 2j
′
µq ⩽ 2j

′
µi, which upper bounds the number

of points that could collide from these geometric weight levels. Since every data point is sampled
with probability 1/

(
2j+1µi

)
in this iteration, the expected number of sampled data points is O(1).

Case 2: j < j′ ⩽ Jµi
+ 1. We analyse the effect of the LSH. Note that in the jth iteration, we

choose an LSH function whose corresponding distance level is rj , and use

k ≜ kj = −
1

log pnear,j
· max
i=j+1,...,Jµi

+1

⌈
i− j

c2i,j(1− β)

⌉
.

as the number of concatenations. Then, it holds for p ∈ Lq
j′ that

PH∗∈Hk [H∗(p) = H∗(q)] ⩽ pkc
2(1−β),

where c ≜ ci,j = min
{

ri−1

rj
, O
(
log1/7 n′

)}
and p ≜ pnear,j . Hence, the expected number of

points from weight level Lq
j′ in the query hash bucket is O

(
2j

′−j
)
· pkc2(1−β) = Õ(1), where the

last line holds by the choice of k. Combining the two cases proves the first statement.

The second statement holds for the same analysis, but we have instead that |Lq
j′ | ⩽ 2j

′
µq ⩽ 2j

′
µi′

for q ∈ Qµi′ .

The query time complexity for QUERYMUESTIMATE(X,q, ε, µi) follows from Charikar et al.
(2020).
Lemma B.2 (Query Time Complexity, Charikar et al. (2020)). For any kernel k, the expected running
time of QUERYMUESTIMATE(X,q, ε, µi) (Algorithm 3) is ε−2 · no(1)

1 · cost(k).

Next we show that our returned estimator gives a good approximation with high probability.
Lemma B.3. For any q ∈ Rd, µq ∈ (0, 2n1], µi ⩾ µq, ε ∈

(
1/n5

1, 1
)
, the estimator Zq,a for

a ∈ [K1] constructed in QUERYMUESTIMATE(X,q, ε, µi) (Algorithm 3) satisfies that
(
1− n−9

1

)
·

µq ⩽ E[Zq,a] ⩽ µq.

Proof. We first fix arbitrary j = j∗ and a = a∗, and sample some point p ∈ Lq
j∗ . By Lemma 2.5 we

have

PH∗∼Hkj [H
∗(p) = H∗(q)] ⩾ p

kj

near,j .

Since we repeat this process for K2,j = 200 log n′
1 · p

−kj

near,j times, it holds with high probability that
any sampled point p from band Lq

j∗ is recovered in at least one phase. By applying the union bound,
the probability that all the sampled points are recovered is at least 1− n−9

1 .

We define Z ≜ Zq,a, and have that

E[Z] =

n1∑
i=1

E[χi]

pi
· wi,

where χi = 1 if point xi is sampled and χi = 0 otherwise. Hence, it holds that
(
1− n−9

1

)
pi ⩽

E[χi] ⩽ pi, which implies that
(
1− n−9

1

)
µq ⩽ E[Z] ⩽ µq.

Remark 1. Lemma B.3 shows that the estimator Zq,a is unbiased (up to some small inverse poly-
nomial error) for any choice of µi ⩾ µq. Therefore, when µi ⩾ 4µq, by Markov’s inequality the
probability that the estimator’s returned value is larger than µi is at most 1/4. By taking O(log n1)
independent estimates, one can conclude that µi is higher than µq if the median of the estimated
values is below µi, and this estimate is correct with high probability. This is achieved on Lines 18–19
of Algorithm 3. To ensure that we find a value of µi that satisfies µi/4 < µq ⩽ µi with high
probability, on Lines 18–24 the algorithm starts with µi = 2n1 and repeatedly halves the estimate
until finding an estimate µ̂q > µi; at this point the algorithm returns the previous estimate based on
µi+1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lemma B.4 (Charikar et al. (2020)). For every q ∈ Rd, µq ∈ (0, 2n1], ε ∈
(
1/n5

1, 1
)
, and µi

satisfying µi/4 ⩽ µq ⩽ µi, the procedure QUERYMUESTIMATE(X,q, ε, µi) (Algorithm 3 in the
appendix) outputs a (1± ε)-approximation to µq with high probability.

Proof. Let Z ≜ Zq,a, and we have that

E[Z2] = E


∑

pi∈X

χi ·
wi

pi

2


=
∑
i̸=j

E
[
χiχj ·

wiwj

pipj

]
+
∑

i∈[n1]

E
[
χi ·

w2
i

p2i

]

⩽
∑
i̸=j

wiwj +
∑

i∈[n1]

w2
i

pi
· I[pi = 1] +

∑
i∈[n1]

w2
i

pi
· I[pi ̸= 1]

⩽

 ∑
i∈[n1]

wi

2

+ max
i∈[n1]

{
wi

pi
· I[pi ̸= 1]

} ∑
i∈[n1]

wi

⩽ 2 (µq)
2
+ max

j∈[Jµi
],pi∈Lq

j

{
wi · 2j+1

}
· µi · µq

⩽ 8µ2
i , (B.1)

where the second inequality follows from

w2
i

pi
· I[pi = 1] ⩽ w2

i

and
(
∑
i

wi)
2 =

∑
i ̸=j

wiwj +
∑

i∈[n1]

w2
i ,

and the third inequality follows from (µq)
2 = (

∑
i wi)

2 and pj ⩾ 1/
(
2j+1µi

)
.

Let

Z̄ ≜ Z̄q,b =
1

m̄

bm̄∑
a=(b−1)m̄+1

Zq,a

be the empirical mean of m̄ such estimates, as computed on Line 19 of Algorithm 3. We have that

P
[
|Z̄ − µq| ⩾ εµq

]
⩽ P

[
|Z̄ − E[Z]| ⩾ εµq − |E[Z]− µq|

]
⩽ P

[
|Z̄ − E[Z]| ⩾ (ε− n−9

1)µq

]
⩽

E[Z̄2](
ε− n−9

1

)2
(µq)2

⩽
1

m̄

128(µq)
2(

ε− n−9
1

)2
(µq)2

,

where the first inequality follows from |Z̄ − µq| ⩽ |Z̄ − E[Z]| + |E[Z] − µq|, the second one
follows from E[Z] ⩾ (1− n−9

1)µq (Lemma B.3), the third one follows from Chebyshev’s inequality
and the last one follows from E[Z̄2] ⩽ E[Z2]/m̄ ⩽ 8µ2

i /m̄ and µi ⩽ 4µq. By setting m̄ = C
ε2

for a large enough constant C and taking the median of O(log(1/δ)) of these means we achieve a
(1± ε)-approximation with probability at least 1− δ per query.

B.2 ANALYSIS OF THE ADDDATAPOINT PROCEDURE

We now analyse the ADDDATAPOINT(z) procedure in Algorithm 1. If the number of data
points has doubled, ADDDATAPOINT(z) calls the INITIALISE(X,Q, ε) procedure. Otherwise,
ADDDATAPOINTANDUPDATEQUERIES(z, Q, ε) is called, which we describe in Algorithm 6.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 6 DynamicKDE Update Procedures

1: procedure ADDPOINTANDUPDATEQUERIES(z, Q, ε)
2: Input: New data point z, the set of query points Q, and the precision estimate ε.
3: for µi ∈M do
4: for a = 1, 2, . . . ,K1 do
5: for j = 1, 2, . . . , Jµi

do
6: psampling ← min

{
1

2j+1µi
, 1
}

7: if z is sampled with probability psampling then
8: K2,j ← 200 log n′ · p−kj

near,j

9: for ℓ = 1, 2, . . . ,K2,j do
10: Store z in bucket BHµi,a,j,ℓ

(z)

11: Recover q ∈ B∗
Hµi,a,j,ℓ

(z) such that q ∈ Qµi
\⋃j′<i Qµj′ and q ∈ Lz

j

12: Sample z with probability 1
2n′ .

13: if z is sampled then
14: Add z to X̃µi,a

15: Recover q ∈ Q such that q ∈ Qµi
\⋃j′<i Qµj′ and q ∈ Lz

Jµi+1

16: S ← Set of all recovered points from the full hash in the current iteration
17: for q ∈ S do
18: wq ← k(z,q)
19: if z ∈ Lq

j for some j ∈ [Jµi
] then

20: pq ← min
{

1
2j+1µi

, 1
}

,

21: else if z ∈ X \⋃j∈[Jµi
] L

q
j then

22: pq ← 1
2n′

23: Zq,a += wq/pq
24: Z̄q,⌈a/m̄⌉ += wq/(m̄pq) ▷ Update empirical mean (Line 19, Algorithm 3))
25: µ̂q ← Median

(
Z̄q,1, Z̄q,2, . . . , Z̄q,N̄

)
▷ Update median

26: if µ̂q > µi then
27: Qµi ← Qµi \ {q}
28: Remove q from every B∗

Hµi,a
′,j′,ℓ′

(q) for all a′ ∈ [K1], j
′ ∈ [Jµi], and

ℓ′ ∈ K2,j .
29: µ̂q ← QUERYPOINT(X,q, ε)

We first show that ADDDATAPOINT(z) procedure updates the estimates correctly.

Lemma B.5. After running the ADDDATAPOINT(z) procedure, it holds with high probability for
every q ∈ Q that µ̂q is a (1± ε)-approximation of µq.

Proof. We prove that running the initialisation procedure INITIALISE(X ∪ z, Q, ε) is the same as
running INITIALISE(X,Q, ε), and then running ADDDATAPOINT(z).

• We first examine the ADDPOINTANDUPDATEQUERIES(z, Q, ε) procedure (Algorithm 6).
On Lines 7–10 and Lines 12–14, the algorithm samples the point z with probability
min

{
1

2j+1µi
, 1
}

and 1
2n′ , respectively: If z is sampled in Lines 7–10, the algorithm stores

z in the bucket corresponding to hash value Hµi,a,j,ℓ(z); if z is sampled in Lines 12–14,
the algorithm adds z to the set X̃µi,a. This is the same as sampling and storing z in
the PREPROCESS(X ∪ z, ε) procedure (Algorithm 2) on Lines 8 and 13, which is called
during INITIALISE(X ∪ z, Q, ε). Hence, after running INITIALISE(X,Q, ε) followed by
ADDPOINTANDUPDATEQUERIES(z, Q, ε), the stored points in Hµi,a,j,ℓ and X̃µi,a for all
µi ∈ M , a ∈ [K1], j ∈ [Jµi

], and ℓ ∈ [K2,j] are the same as the ones after running
INITIALISE(X ∪ z, Q, ε).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• Next, we prove that the estimates µ̂q are updated correctly for every q ∈ Q. Without loss of
generality, let q be a query point such that q ∈ Qµi

\⋃j′<i Qµj′ .

– We first note that, when running INITIALISE(X,Q, ε) (Algorithm 1), the KDE es-
timate for q is returned by running QUERYMUESTIMATE(X,q, ε, µi) (Line 24 of
Algorithm 3).

– When running INITIALISE(X ∪ z, Q, ε), if z is sampled on Line 8 during
PREPROCESS(X ∪ z, ε) for any iteration a ∈ [K1], j ∈ [Jµi], then z is stored in the
bucket BHµi,a,j,ℓ

(z) for all ℓ ∈ [K2,j]. Moreover, if z is sampled on Line 13 for any
iteration a ∈ [K1], then z is stored in X̃µi,a. In this case, if Hµi,a,j,ℓ(q) = Hµi,a,j,ℓ(z)
and z ∈ Lq

j for some ℓ ∈ [K2,j], or if z ∈ Lq
Jµi

+1, then z would be included
in the set of recovered points S for the iteration a ∈ [K1], and consequently
in the estimator Zq,a when QUERYMUESTIMATE(X ∪ z,q, ε, µi) is called during
PREPROCESSQUERYPOINTS(X ∪ z, Q, ε) (Algorithm 4).

– On the other hand, we notice that, when running
ADDPOINTANDUPDATEQUERIES(z, Q, ε), q is recovered if (i) Hµi,a,j,ℓ(q) =
Hµi,a,j,ℓ(z) and q ∈ Lz

j (Line 11 of Algorithm 6) or (ii) q ∈ Lz
Jµi

+1 (Line 15 of
Algorithm 6). Furthermore, (i) q ∈ Lz

j′ if and only if z ∈ Lq
j′ for any j′ ∈ [Jµi

+ 1],
and (ii) the buckets B∗

Hµi,a,j,ℓ
(q) and BHµi,a,j,ℓ

(q) are populated using the same hash
function (Line 13 of Algorithm 4). Therefore, q is recovered at iteration a ∈ [K1]
when running ADDPOINTANDUPDATEQUERIES(z, Q, ε) if and only if z is included
in the estimator Zq,a when QUERYMUESTIMATE(X ∪ z,q, ε, µi) is called during
PREPROCESSQUERYPOINTS(X ∪ z, Q, ε). Then, the estimator Zq,a is updated
accordingly by adding z through Lines 17–25 of Algorithm 6 as it would be done
through Lines 10–19 of Algorithm 3.

– Finally, if µ̂q > µi, then we re-estimate the query point on Line 23, to ensure we have
the correct estimate µ̂q. We also update the set Qµi

accordingly, and remove q from
every B∗

Hµi,a
′,j′,ℓ′

(z) for all a′ ∈ [K1], j′ ∈ [Jµi
], and ℓ′ ∈ [K2,j].

Combining everything together, we have shown that performing the initialisation proce-
dure INITIALISE(X ∪ z, Q, ε) is the same as running INITIALISE(X,Q, ε), followed by
ADDDATAPOINT(z).

Next, we prove how many times any individual query point q is updated as the data points are inserted
using the ADDDATAPOINT(z) procedure. Let Xq

1 ≜ {x1, . . . ,xn1
} be the set of points presented at

the time when q is added, and let ZT ≜ {z1, . . . , zT } be the points added up until the query time T .
We use zt to denote the new point added at time t. Note that it holds for the points XT at time T ⩾ 1
that Xq

T = Xq
1 ∪ ZT . Next, we define the event Fq

t that

µ̂q,t ∈ (1± ε) · k(q, Xt), (B.2)

where µ̂q,t is the maintained query estimate for q at time t from Algorithm 1. By Lemma B.4, we
know that Fq

t happens with high probability. Moreover, for a large enough constant C on Line 6 of
Algorithm 1, we can ensure that this happens with high probability at every time step t. Therefore in
the following we assume Fq

t happens. We also introduce the following notation.
Definition B.6. We define Tq

µi
to be the time step such that

k(q, Xq
Tq
µi

) = k(q, Xq
1) +

Tq
µi∑

t=1

k(q, zt) ⩽ µi

and

k(q, Xq
Tq
µi

+1
) = k(q, Xq

1) +

Tq
µi

+1∑
t=1

k(q, zt) > µi.

By definition, Tq
µi

is the last time step at which the KDE value of q is at most µi. The next lemme
analyses the number of times a query point q is updated.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Lemma B.7. Let q be a maintained query point by our algorithm. Then the total number of updates
Uq
T during T insertions is, with high probability, Uq

T = Õ(1).

Proof. Since the KDE data structure can be re-initialised at most log(T) = Õ(1) times (cf. Line 19
of Algorithm 1) through the sequence of T updates, it suffices for us to analyse the number of times
q is updated between different re-initialisations; we assume this in the remaining part of the proof.
To analyse the expected number of times that q (Line 23 of Algorithm 6) is updated throughout the
sequences of updates ZT , we define the random variable Y q

a,t by

Y q
a,t ≜

{
1 if estimate Zq,a is updated at time t
0 otherwise.

Let Eqa,t be the event that estimate Zq,a is updated at time t, and we assume without loss of generality
that Tq

µi′−1
< t ⩽ Tq

µi′
for some µi′ . First note that estimate Zq,a is updated if q ∈ S (Line 16 of

Algorithm 6). Furthermore, because µ̂q,t−1 ∈ (1± ε) · k(q, Xt−1) by (B.2) and Tq
µi′−1

< t ⩽ Tq
µi′

,
one of the following holds:

(i) q ∈ Qµi′ \
(⋃

j′<i′ Qµj′

)
;

(ii) q ∈ Qµi′−1
\
(⋃

j′<i′−1 Qµj′

)
;

(iii) q ∈ Qµi′+1
\
(⋃

j′<i′+1 Qµj′

)
.

Additionally, it holds that q ∈ Lzt

j′ for some j′ ∈ Jµi′ .

By these conditions, q is included in S at time t if and only if zt is sampled at either the iteration
for µi′ ∈ M , µi′−1 ∈ M or µi′+1 ∈ M (Line 3 of Algorithm 6), and the corresponding iteration
j′ ∈ Jµi′+1

on Line 7 of Algorithm 6. Therefore, it holds for t ∈ (Tq
µi′−1

, Tq
µi′

] that

P
[
Eqa,t
]
⩽

1

2j′+1 · µi′−1
⩽

1

2j′ · µi′
⩽

2k(q, zt)

µi′
, (B.3)

where the last inequality uses the fact that q ∈ Lzt

j′ (Definition 2.3). Similarly, we have that

P
[
Eqa,t
]
⩾

k(q, zt)

4µi′
.

Let Uq
T ≜

∑K1

a=1

∑T
t=1 Y

q
a,t be the total number of times that the query point q is updated, and we

have that

E [Uq
T] =

K1∑
a=1

T∑
t=1

E
[
Y q
a,t

]
=

K1∑
a=1

T∑
t=1

P
[
Eqa,t
]

=

K1∑
a=1

∑
µi′∈M

Tq
µ
i′∑

t=Tq
µ
i′−1

P
[
Eqa,t
]

⩽
K1∑
a=1

∑
µi′∈M

Tq
µ
i′∑

t=Tq
µ
i′−1

2k(q, zt)

µi′

⩽
K1∑
a=1

∑
µi′∈M

2µi′

µi′

= 2 ·K1 · |M |
= Õ(1),

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where the first inequality follows by (B.3) and the second one holds by the fact that

Tq
µ
i′∑

t=Tq
µ
i′−1

k(q, zt) ⩽ µi′ .

Similarly, we have that

E [Uq
T] ⩾

1

4
·K1 · |M |.

By the Chernoff bound, it holds that

P [Uq
T ⩾ 10 · E [Uq

T]] ⩽

(
e9

1010

)K1·|M |/4

⩽ exp (−K1 · |M |) = o(n−c)

for some constant c, and we have with high probability that

Uq
T ⩽ 20 ·K1 · |M | = Õ(1),

which proves the statement.

B.3 PROOF OF THEOREM 3.1

Proof. We start with proving the first statement. Notice that PREPROCESS(X, ε) goes through
M ·K1 · Jµi

·K2,j iterations, where M = O(log(n1)), K1 = O(ε−2 · log(n1)), Jµi
= O(log(n1))

and K2,j = O(log(n1) · cost(k)). Since kj = Õ(1) by definition, the algorithm concatenates
Õ(1) LSH functions. By Lemma 2.1, the evaluation time of H∗(x) for any H∗ ∈ Hkj is n

o(1)
1 ,

and hashing all n1 points yields the running time of ε−2 · n1+o(1)
1 · cost(k) for PREPROCESS(X, ε)

in the worst case. Since we start with an empty set of query points Q = ∅, the running time of
PREPROCESSQUERYPOINTS(X,Q, ε) can be omitted. This proves the first statement.

The guarantees for ADDQUERYPOINT(q) in the second statement follow from Lemma B.2 and
Lemma B.4. The running time for DELETEQUERYPOINT(q) follows from the running time guarantee
for ADDQUERYPOINT(q).

Now we prove the third statement. The correctness of the updated estimate of µq follows from
Lemma B.5. To prove the time complexity, we notice that, when running ADDDATAPOINT(z), the
procedure goes through M ·K1 · Jµi

·K2,j iterations, where M = O(log n), K1 = O(log(n)/ε2),
Jµi

= O(log n), and K2,j = O(log(n) · cost(k)). In the worst case, z is sampled in every iteration
on Line 7 of Algorithm 6, and needs to be stored in the bucket BHµi,a,j,ℓ

(z). Therefore, the running
time of updating all the buckets BHµi,a,j,ℓ

(z) for a new z is at most ε−2 · no(1) · cost(k). To analyse
Lines 17–29 of Algorithm 6, we perform an amortised analysis. By Lemma B.7, it holds with high
probability that every q ∈ Q is updated Õ(1) times throughout the sequence of data point updates.
When q ∈ Q is updated, the total running time for Lines 17–29 is

Õ(ε−2 ·K2,j + ε−2 · cost(k)) = Õ(ε−2 · cost(k)),
due to Lines 28 and 29. Let T be the total number of query and data point insertions at any point
throughout the sequence of updates, and m ≜ |Q|. Then the amortised update time is

Õ

(
m · ε−2 · cost(k)

T

)
= Õ

(
m · ε−2 · cost(k)

m

)
= Õ

(
ε−2 · cost(k)

)
,

where the second inequality follows from T ⩾ m, as the algorithm started with an empty query set
Q = ∅. Combining everything together proves the running time.

C OMITTED DETAIL FROM SECTION 4

This section presents all the detail omitted from Section 4, and is organised as follow: Section C.1
presents and analyses the algorithm for the initialisation step; Section C.2 presents and analyses the
algorithm for the dynamic update step.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C.1 THE INITIALISATION STEP

In this subsection we present the algorithms used in the initialisation step, and analyse its correctness
as well as complexity. The following tree data structure will be used in the design of our procedures.

Algorithm 7 Tree Data Structure

1: LEAF(xi)
2: Input: data point xi

3: data← xi ▷ Stores the data point
4: paths← NIL ▷ Stores the sampling paths ending at this leaf
5: NODE(X)
6: Input: set of data points X
7: data← X ▷ Stores the data points in the subtree rooted at this node
8: size← |X| ▷ Number of data points in the subtree rooted at this node
9: kde← NIL ▷ Stores the DynamicKDE structure

10: left← NIL ▷ Left child node
11: right← NIL ▷ Right child node
12: parent← NIL ▷ Parent node
13: paths← NIL ▷ Stores the sampling paths passing through this node

Based on this data structure, the main procedures used for constructing an approximate similarity
graph in the initialisation step are presented in Algorithm 8. We remark that, for any set X of data
points, we always set ε = 1/ log3 |X| when running the DYANMICKDE.INITIALISE procedure.
Choosing a fixed value of ε in this section allows us to simplify the presentation of the analysis
without loss of generality.

To analyse the correctness and time complexity of the algorithm, we first prove that, for any data point
xi ∈ X , the probability that its sampling path Pxi,ℓ passes through any internal node T ′ depends on
the KDE value of xi with respect to T ′.data.
Lemma C.1. For any point xi ∈ X , tree T constructed by CONSTRUCTGRAPH (Algorithm 8), and
sampling path Pxi,ℓ (for any ℓ ∈ [L]), the probability that Pxi,ℓ passes through any internal node T ′

of T is given by

k(xi, T ′.data)
2k(xi, T .data)

⩽ P [Pxi,ℓ ∈ T ′.paths] ⩽
2k(xi, T ′.data)
k(xi, T .data)

.

Proof. Let X = {x1, . . . ,xn1} be the input data points for the CONSTRUCTGRAPH(X, ε) procedure
in Algorithm 8. Then, in each recursive call (at some internal root T ′′) to SAMPLE (Algorithm 8) we
are given the data points XL ≜ T ′′.left.data and XR ≜ T ′′.left.data as input and assign Pxi,ℓ to
either T ′′

L ≜ T ′′.left or T ′′
R ≜ T ′′.right. By Line 31 of Algorithm 8, we have that the probability of

assigning Pxi,ℓ to T ′′
L .paths is

P [Pxi,ℓ ∈ T ′′
L .paths | Pxi,ℓ ∈ T ′′.paths] =

T ′′
L .µ̂xi

T ′′.µ̂xi

.

By the performance guarantee of the KDE algorithm (Theorem 3.1), we have that T ′′.µ̂xi ∈ (1±
ε) · k(T ′′.data,xi). This gives(

1− ε

1 + ε

)
k(xi, T ′′

L .data)
k(xi, T ′′.data)

⩽ P [Pxi,ℓ ∈ T ′′
L .paths | Pxi,ℓ ∈ T ′′.paths]

⩽

(
1 + ε

1− ε

)
k(xi, T ′′

L .data)
k(xi, T ′′.data)

. (C.1)

Next, notice that it holds for a sequence of internal nodes T1, T2, . . . , Tr with Ti.parent = Ti+1 (1 ⩽
i ⩽ r − 1) that

P [Pxi,ℓ ∈ T1.paths] =
∏

1⩽j⩽r−1

P [Pxi,ℓ ∈ Tj .paths|Pxi,ℓ ∈ Tj+1.paths] ,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 8 Initialisation Procedures for Constructing an Approximate Similarity Graph

1: procedure INITIALISETREE(X)
2: Input: set X of data points
3: if |X| = 1 then
4: return LEAF(X) ▷ Leaves store individual data points xi ∈ X
5: else
6: T ← NODE(X)
7: m← 2⌊log(|X|/2)⌋, n̂← |X| ▷ Nearest power of 2 less than or equal to n̂/2
8: XL ← X[1 : n̂−m], XR ← X[n̂−m+ 1 : n̂] ▷ Split the dataset into two
9: TL ← INITIALISETREE(XL), TR ← INITIALISETREE(XR)

10: T .left← TL, T .right← TR
11: TL.kde← DYNAMICKDE.INITIALISE(XL, ∅, 1/ log3 n) ▷ (Algorithm 1)
12: TR.kde← DYNAMICKDE.INITIALISE(XR, ∅, 1/ log3 n)
13: return T
14: procedure SAMPLE(S, T , ℓ)
15: Input: set S of xi, KDE tree T representing data points X , parameter ε, sample index ℓ
16: Output: E = {(xi,xj) for some i and j}
17: for xi ∈ S do
18: Pxi,ℓ ← Pxi,ℓ ∪ T
19: T .paths← T .paths ∪ {Pxi,ℓ} ▷ Update and store sample paths
20: if ISLEAF(T) then
21: return S × T .data
22: else
23: TL = T .left, XL = T .left.data
24: TR = T .right, XR = T .right.data
25: for xi ∈ S do
26: TL.µ̂xi

← TL.kde.ADDQUERYPOINT(xi) ▷ (Algorithm 1)
27: TR.µ̂xi

← TR.kde.ADDQUERYPOINT(xi)

28: SL ← ∅, SR ← ∅
29: for xi ∈ S do
30: r ∼ Unif[0, 1]
31: if r ⩽ TL.µ̂xi/(TL.µ̂xi + TR.µ̂xi) then
32: SL ← SL ∪ xi

33: else
34: SR ← SR ∪ xi

35: return SAMPLE(SL, TL, ℓ) ∪ SAMPLE(SR, TR, ℓ)
36: procedure CONSTRUCTGRAPH(X)
37: Input: set of data points X
38: T ← INITIALISETREE(X)
39: T .kde← DYNAMICKDE.INITIALISE(X,X, 1/ log3 |X|) ▷ (Algorithm 1)
40: E ← ∅
41: for ℓ ∈ [L] do
42: Eℓ = SAMPLE(X, T , ℓ)
43: E ← E ∪ Eℓ

44: for (xi,xj) ∈ Eℓ do
45: ŵ(i, j)← L · k(xi,xj)/min{T .kde.µ̂xi

, T .kde.µ̂xj
}

46: if min{T .kde.µ̂xi
, T .kde.µ̂xj

} = T .kde.µ̂xj
then

47: Bxj
← Bxj

∪ xi ▷ Keep track of the neighbours with higher degree
48: wG(xi,xj) += k(xi,xj)/ŵ(i, j)

49: return T , G ≜ (X,E,wG)

where each term in the right hand side above corresponds to one level of recursion of the SAMPLE
procedure in Algorithm 8 and there are at most ⌈log2(n1)⌉ terms. Then, by setting Tr = T , T1 = T ′,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(C.1), and the fact that the denominator and numerator of adjacent terms cancel out, we have(
1− ε

1 + ε

)⌈log(n1)⌉ k(xi, T ′.data)
k(xi, T .data)

⩽ P [Pxi,ℓ ∈ T ′.paths]

⩽

(
1 + ε

1− ε

)⌈log(n1)⌉ k(xi, T ′.data)
k(xi, T .data)

.

For the lower bound, we have that(
1− ε

1 + ε

)⌈log(n1)⌉

⩾ (1− 2ε)
⌈log(n1)⌉ ⩾ 1− 3ε log(n1) ⩾ 1/2,

where the final inequality follows by the condition of ε that ε ⩽ 1/ log3(n1).

For the upper bound, we similarly have(
1 + ε

1− ε

)⌈log(n1)⌉

⩽ (1 + 3ε)
⌈log(n1)⌉ ⩽ exp (3ε⌈log(n1)⌉) ⩽ e2/3 ⩽ 2,

where the first inequality follows since ε ⩽ 1/ log3(n1).

The remaining part of our analysis is very similar to the proof presented in Macgregor & Sun (2023).
For each added edge, CONSTRUCTGRAPH(X) computes the estimate defined by

ŵ(i, j) ≜ 6C · log n1

λk+1
· k(xi,xj)

min{µ̂xi , µ̂xj}
,

where for the ease of notation we denote T .kde.µ̂xi
≜ µ̂xi

and T .kde.µ̂xj
≜ µ̂xj

. If an edge
(xi,xj) is sampled, then the edge is included with weight k(xi,xj)/ŵ(i, j). The algorithm in
Macgregor & Sun (2023) is almost the same as our algorithm, with the only difference that in their
case the edge is included with weight k(xi,xj)/p̂(i, j), where

p̂(i, j) ≜ 6C · k(xi,xj) · log n1

λk+1
·
(

1

µ̂xi

+
1

µ̂xj

)
−
(
6C · k(xi,xj) · log n1

λk+1

)2

· 1

µ̂xi
· µ̂xj

.

Notice that

p̂(i, j) ⩽ 6C · k(xi,xj) · log n1

λk+1
·
(

1

µ̂xi

+
1

µ̂xj

)
⩽ 2ŵ(i, j).

Assuming without loss of generality that

6C · k(xi,xj) · log n1

λk+1
·
(

1

µ̂xi

+
1

µ̂xj

)
< 1,

we have that

p̂(i, j) ⩾ 3C · k(xi,xj) · log n1

λk+1
·
(

1

µ̂xi

+
1

µ̂xj

)
⩾

ŵ(i, j)

2
.

As such, the scaling factor ŵ(i, j) in our algorithm and p̂(i, j) in the algorithm of Macgregor &
Sun (2023) are within a constant factor of each other. Therefore, to prove the first statement of
Theorem 4.1, one can follow the proof of Theorem 2 of Macgregor & Sun (2023), while replacing
each p̂(i, j) with ŵ(i, j) appropriately.

C.2 THE DYNAMIC UPDATE STEP

In this subsection we present the algorithm used in the dynamic update step, and analyse its correctness
as well as complexity. Our main algorithm for dynamically updating an approximate similarity graph
is described in Algorithm 9, and the RESAMPLE procedure can be found in Algorithm 10.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 9 Dynamic Update Algorithm for Constructing an Approximate Similarity Graph

1: procedure UPDATEGRAPH(G = (X,E,wG), T , z)
2: Input: an approximate similarity graph G, KDE tree T , new data point z
3: A ← ADDDATAPOINTTREE(T , z) ▷ (Algorithm 10)
4: Enew ← ∅
5: for ℓ ∈ [1, . . . , L] do ▷ Sample L neighbours from the new vertex z
6: (z,xj)← SAMPLE({z}, T , ℓ)
7: Enew ← Enew ∪ {(z,xj)}
8: ŵ(i, j)← L · k(z,xj)/min{T .kde.µ̂z, T .kde.µ̂xj}
9: wG(z,xj) += k(z,xj)/ŵ(i, j)

10: if min{T .kde.µ̂z, T .kde.µ̂xj} = T .kde.µ̂xj then
11: Bxj

← Bxj
∪ z

12: E ← E ∪ Enew

13: for xi such that T .kde.µ̂xi has changed do
14: Let degold be the old estimate of T .kde.µ̂xi

15: for xj ∈ Bxi
do

16: wG(xi,xj)← wG(xi,xj) · degold/min{T .kde.µ̂xi
, T .kde.µ̂xj

}
▷ Update scaling factor of adjacent edges

17: if min{T .kde.µ̂xi
, T .kde.µ̂xj

} = T .kde.µ̂xj
then

18: Bxi
← Bxi

\ xj

19: for Pxi,ℓ ∈ A do
20: Let T ′ be the parent of the highest internal node where Pxi,ℓ was fetched
21: for T ∗ below T ′ such that Pxi,ℓ ∈ T ∗.paths do
22: Remove Pxi,ℓ from T ∗.paths
23: Remove xi from the query set of T ∗.left.kde and T ∗.right.kde
24: Remove T ∗ from Pxi,ℓ

25: Let xj be the previous sampled neighbour of xi (i.e., leaf in Pxi,ℓ)
26: wG(xi,xj) −= k(xi,xj)/ŵ(i, j) where ŵ(i, j) is previous used re-scale factor
27: E ← E \ (xi,xj) if wG(xi,xj) = 0
28: (xi,x

∗
j)← RESAMPLE(T ′,Pxi,ℓ, ε) ▷ Resample path (Algorithm 10)

29: E ← E ∪ {(xi,x
∗
j)} if (xi,x

∗
j) /∈ E

30: ŵ∗(i, j)← L · k(xi,x
∗
j)/min{T .kde.µ̂xi , T .kde.µ̂x∗

j
}

31: if min{T .kde.µ̂xi , T .kde.µ̂x∗
j
} = T .kde.µ̂x∗

j
then

32: Bx∗
j
← Bx∗

j
∪ xi ▷ Update neighbours with higher degrees

33: wG(xi,xj) += k(xi,xj)/ŵ
∗(i, j)

C.2.1 RUNTIME ANALYSIS

Now we analyse the performance of the algorithms used in the dynamic update step. We first prove
Lemmas 4.2 and 4.4

Proof of Lemma 4.2. The running time of the two procedures is dominated by the recursive calls
to ADDQUERYPOINT(x). By Theorem 3.1, the running time of adding a query point is ε−2 ·
no(1) · cost(k). Since the depth of the tree T is at most ⌈log n⌉, there are at most ⌈log n⌉ recursive
calls to SAMPLE and RESAMPLE. Hence, the total running time of SAMPLE and RESAMPLE is
ε−2 · no(1) · cost(k).

Proof of Lemma 4.4. By the tree construction, we have that P[q ∈ T ′.kde.Q] =
P[∃ℓ′ such that Pq,ℓ′ ∈ T ′.paths], and

P[∃ℓ′ such that Pq,ℓ′ ∈ T ′.paths] ⩽ L · P[Pq,ℓ ∈ T ′.paths] ⩽ L · 2k(q, T
′.data)

k(q, T .data)

= L · 2k(q, T
′.kde.X)

k(q, T .kde.X)
= Õ

(
µj

µi

)
,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Algorithm 10 Tree Update Procedures for Constructing an Approximate Similarity Graph

1: procedure ADDDATAPOINTTREE(T , z)
2: Input: KDE tree/node T , new data point z
3: if ISLEAF(T) then
4: x← T .data
5: A ← T .parent.paths ▷ Store paths that need to be resampled
6: Tnew ← NODE({x, z})
7: Tnew.left← LEAF(x), Tnew.right← LEAF(z)
8: Tnew.kde← DYNAMICKDE.INITIALISE({x, z}, ∅, ε)

▷ Initialise new KDE data structure
9: Replace the leaf T with node Tnew

10: return A
11: else
12: T .kde.ADDDATAPOINT(z) (Algorithm 1)
13: Let Ã be the set of points xi ∈ T .kde.Q such that T .kde.µ̂xi changes after adding z.
14: A ← {Pxi,ℓ ∈ T .parent.paths | xi ∈ Ã}
15: if T .left.size ⩽ T .right.size then
16: return A ∪ ADDDATAPOINTTREE(T .left, z)
17: else
18: return A ∪ ADDDATAPOINTTREE(T .right, z)
19: procedure RESAMPLE(T ,Pxi,ℓ)
20: Input: KDE tree/node T , and sampling path Pxi,ℓ

21: Pxi,ℓ ← Pxi,ℓ

⋃ T
22: T .paths← T .paths

⋃{Pxi,ℓ} ▷ Update and store sample paths
23: if ISLEAF(T) then
24: return xi × T .data
25: else
26: TL = T .left, XL = T .left.data
27: TR = T .right, XR = T .right.data
28: TL.kde.ADDQUERYPOINT(xi) if xi /∈ TL.kde.Q ▷ (Algorithm 1)
29: TR.kde.ADDQUERYPOINT(xi) if xi /∈ TR.kde.Q
30: r ∼ Unif[0, 1]
31: if r ⩽ TL.µ̂xi

/(TL.µ̂xi
+ TR.µ̂xi

) then
32: RETURN RESAMPLE(TL,Pxi,ℓ)
33: else
34: RETURN RESAMPLE(TR,Pxi,ℓ)

where the first inequality holds by the union bound, the second inequality follows by Lemma C.1,
and the last line holds by the definition of Qµi→µj (T ′) and L = Õ(1).

Next, we state Lemma 4.5 more precisely and provide its proof.
Lemma C.2. Let z be the data point that is added to T through the ADDDATAPOINTTREE(T , z)
procedure in Algorithm 10, and T ′ be any internal node that lies on the path from the new leaf
LEAF(z) to the root of T . Then it holds for any i ∈ [⌈log(2 · T .kde.n′)⌉], a ∈ T ′.kde.K1, j ∈ [Jµi

]
and ℓ that

EHµi,a,j,ℓ
[|{q ∈ T ′.kde.Qµi

| T ′.kde.Hµi,a,j,ℓ(z) = T ′.kde.Hµi,a,j,ℓ(q)}|] = Õ
(
µi · 2j+1

)
.

Proof. We first remark that, except for the dynamic KDE structure stored at the root T .kde, it does
not necessarily hold that T ′.kde.Q = T ′.kde.X; this is because that the query points stored at
internal nodes are the ones whose sample paths passed through this node, and the data points are the
leaves of the subtree T ′. Hence, to analyse the expected number of colliding points in the bucket
T ′.kde.BHµi,a,j,ℓ

(z), we need to separately analyse the contributions from q ∈ Qµi′→µi
(T ′) for

i′ ⩾ i. To achieve this, we apply Lemma B.1 and have for i′ ⩾ i that

EHµi,a,j,ℓ

[∣∣{q ∈ T .kde.Qµi′ | T ′.kde.Hµi,a,j,ℓ(z) = T ′.kde.Hµi,a,j,ℓ(q)
}∣∣] = O(2j+1 · µi′).

(C.2)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Therefore, it holds that

EHµi,a,j,ℓ
[|{q ∈ T ′.kde.Qµi

| T ′.kde.Hµi,a,j,ℓ(z) = T ′.kde.Hµi,a,j,ℓ(q)}|]
= EHµi,a,j,ℓ∑

i′⩾i

∣∣{q ∈ T ′.kde.Qµi | T ′.kde.Hµi,a,j,ℓ(z) = T ′.kde.Hµi,a,j,ℓ(q) and q ∈ Qµi′→µi(T ′)}
∣∣

=
∑
i′⩾i

EHµi,a,j,ℓ[∣∣{q ∈ T ′.kde.Qµi
| T ′.kde.Hµi,a,j,ℓ(z) = T ′.kde.Hµi,a,j,ℓ(q) and q ∈ Qµi′→µi

(T ′)}
∣∣]

⩽
∑
i′⩾i

Õ

(
µi

µi′

)
· EHµi,a,j,ℓ

[∣∣{q ∈ T .kde.Qµi′ | T ′.kde.Hµi,a,j,ℓ(z) = T ′.kde.Hµi,a,j,ℓ(q)}
∣∣]

(C.3)

=
∑
i′⩾i

Õ

(
µi

µi′
· 2j+1µi′

)
(C.4)

= Õ
(
µi · 2j+1

)
, (C.5)

where (C.3) follows by Lemma 4.4, and (C.4) holds by (C.2).

Lemma C.3. The expected total running time for T ′.kde.ADDDATAPOINT(z) (Line 12 of Algo-
rithm 10) over all internal nodes T ′ along the path from the new leaf LEAF(z) to the root of T is
no(1) · cost(k). Moreover, the expected number of paths A (Line 3, Algorithm 9) that need to be
resampled satisfies that E[|A|] = Õ(1).

Proof. We first study the update time and the total number of paths that need to be updated
at a single internal node T ′. Notice that, when T ′.kde.ADDDATAPOINT(z) (Line 12 of Al-
gorithm 10) is called, the procedure ADDPOINTANDUPDATEQUERIES in Algorithm 6 is called
in the dynamic KDE data structure T ′.kde. Hence, we analyse the expected running time of
ADDPOINTANDUPDATEQUERIES in Algorithm 6.

First, we have that executing Lines 7–11 of in Algorithm 6 takes K2,j · |T ′.kde.B∗
Hµi,a,j,ℓ

(z)| ·n′o(1)

time, where n′ = |T ′.data| is the number of data points stored at T ′, and these five lines are executed
with probability at most 1/(2j+1µi). Since we only consider the collisions with points in T ′.kde.Qµi

,
it holds by Lemma C.2 that

EHµi,a,j,ℓ

[
|T ′.kde.B∗

Hµi,a,j,ℓ
(z)|
]
= Õ

(
2j+1µi

)
.

Hence, by our choice of K2,j = O(log(n′) · cost(k)), the expected total running time over all µi, a,
and j of Lines 7–11 of Algorithm 6 is ε−2 · cost(k) · n′o(1). The same analysis can also be applied
for Lines 12–15 of Algorithm 6. Moreover, the expected number of recovered points in S (Line 16 of
Algorithm 6) is Õ(1), as the expected number of collisions we consider is

EHµi,a,j,ℓ

[
|T ′.kde.B∗

Hµi,a,j,ℓ
(z)|
]
= Õ(2j+1µi),

and these points are only considered with probability at most 1/(2j+1µi).

Next, we analyse the running time of Lines 17–29 of Algorithm 6. For every q ∈ S, the total running
time for Lines 17–29 is Õ(ε−2 ·K2,j + ε−2 · cost(k)) = Õ(ε−2 · cost(k)), due to Lines 28 and 29.

Hence, the expected total running time for running T ′.kde.ADDDATAPOINT(z) at a single T ′ is
Õ
(
ε−2 · n′o(1) · cost(k)

)
. As there are at most ⌈log n⌉ nodes T ′ that are updated when z is added

and n′ ⩽ n, the running time guarantee of the lemma follows.

It remains to prove that E[|A|] = Õ(1). Notice that, the number of points q ∈ T ′.kde.Q whose
KDE estimate changes at T ′ is the number of recovered points in S (Line 16 of Algorithm 6). From

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

the ADDPOINTANDUPDATEQUERIES procedure (Algorithm 6), it holds for every µi and a that
E[|S|] = Õ(1); as such for every T ′ the expected number of KDE estimates that change – and
therefore the number of paths that need to be resampled – is Õ(1). As there are at most ⌈log n⌉ trees
T ′ that are updated when z is added, it holds that E[|A|] = Õ(1).

Next we bound the size of the set Bxi that keeps track of the neighbours xj of xi in the approximate
similarity graph G that have higher degree.

Lemma C.4. It holds with high probability for all xi ∈ X that |Bxi
| ⩽ 14 · L.

Proof. We first notice that

Bxi =
{
xj ∈ X | T .kde.µ̂xj > T .kde.µ̂xi and i ∈ Yxj

}
,

where Yxj
≜ {yj,1, . . . yj,L} are the indices corresponding to the sampled neighbours of xj . For

every pair of indices i, j, and every 1 ⩽ ℓ ⩽ L, we define the random variable Zi,j,ℓ to be 1 if j is the
neighbour sampled from i at iteration ℓ, and 0 otherwise, i.e.,

Zi,j,ℓ ≜

{
1 if yi,ℓ = j
0 otherwise.

We fix an arbitrary xi, and notice that

|Bxi
| =

L∑
ℓ=1

n∑
j=1

µ̂xj
>µ̂xi

Zj,i,ℓ, (C.6)

where for ease of notation we set µ̂xi
≜ T .kde.µ̂xi

and µ̂xj
≜ T .kde.µ̂xj

to be the KDE estimates
at the root T . We have that

E

 L∑
ℓ=1

n∑
j=1

µ̂xj
>µ̂xi

Zj,i,ℓ

 =

L∑
ℓ=1

n∑
j=1

µ̂xj
>µ̂xi

E[Zj,i,ℓ]

=

L∑
ℓ=1

n∑
j=1

µ̂xj
>µ̂xi

P[yj,ℓ = i]

⩽
L∑

ℓ=1

n∑
j=1

µ̂xj
>µ̂xi

2k(xi,xj)

degK(xj)

<

L∑
ℓ=1

n∑
j=1

µ̂xj
>µ̂xi

4k(xi,xj)

degK(xi)
.

⩽ 4 · L. (C.7)

Here, the second last inequality holds by the fact that

degK(xj) ⩾
µ̂xj

1 + ε
>

µ̂xi

1 + ε
⩾

(1− ε)degK(xi)

1 + ε
⩾

degK(xi)

2
,

where the last inequality follows by our choice of ε ⩽ 1/6. Employing the same analysis, we have
that

R =

L∑
ℓ=1

n∑
j=1

µ̂xj
>µ̂xi

E
[
Z2
j,i,ℓ

]
=

L∑
ℓ=1

n∑
j=1

µ̂xj
>µ̂xi

P[yj,ℓ = i] ⩽ 4 · L.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

We apply the Bernstein’s inequality, and have that

P


∣∣∣∣∣∣∣∣

L∑
ℓ=1

n∑
j=1

µ̂xj
>µ̂xi

Zj,i,ℓ − E

 L∑
ℓ=1

n∑
j=1

µ̂xj
>µ̂xi

Zj,i,ℓ


∣∣∣∣∣∣∣∣ ⩾ 10L

 ⩽ 2 exp

(
− 100L2/2

4L+ 10 · L/3

)

= 2 exp

(
−75L

22

)
= o(1/n).

Hence, by the union bound, it holds with high probability for all xi ∈ X that∣∣∣∣∣∣∣∣
L∑

ℓ=1

n∑
j=1

µ̂xj
>µ̂xi

Zj,i,ℓ − E

 L∑
ℓ=1

n∑
j=1

µ̂xj
>µ̂xi

Zj,i,ℓ


∣∣∣∣∣∣∣∣ < 10L;

combining this with (C.6) and (C.7), we have with high probability that

||Bxi | − 4L| < 10L,

which implies that |Bxi
| < 14L.

We are now ready to prove the running time guarantee of the update step.

Lemma C.5. The expected running time of UPDATEGRAPH(G, T , z) is no(1) · cost(k).

Proof. We analyse the running time of UPDATEGRAPH(G, T , z) step by step.

• The ADDDATAPOINTTREE procedure is dominated by the call to the ADDDATAPOINT
procedure on Line 12 of Algorithm 10, which takes ε−2 ·no(1) · cost(k) time by Lemma C.3.

• Next, we analyse the running time of sampling L new neighbours of the new data point
z (Lines 5–11). The algorithm samples a neighbour xj using the SAMPLE procedure,
which takes ε−2 · no(1) · cost(k) time (Lemma 4.2). To add the edge (z,xj), the algorithm
computes the KDE estimate T .kde.µ̂z, which takes ε−2 ·no(1) ·cost(k) time, and the weight
value k(z,xj) which takes O(d) = Õ(1) time. Since L = Õ(1), the total running time of
Lines 5–11 is ε−2 · no(1) · cost(k).

• For Lines 13–18, first note that the expected number of paths that need to be resampled is
E[|A|] = Õ(1) (Lemma C.3), and the expected number of points xi such that T .kde.µ̂xi

has changed is Õ(1). Since by Lemma C.4 it holds with high probability that |Bxi
| ⩽

4 · L = Õ(1), the total expected running time of Lines 13–18 is Õ(1).

• Finally, we analyse the running time of Lines 19–33. The running time of removing all
the stored data about the path Pxi,ℓ that needs to be resampled (Lines 21–27) is dominated
by the time needed for removing all the stored information about xi in T ∗.left.kde and
T ∗.right.kde for every T ∗ (Line 21). Doing this for all T ∗ takes ε−2 · no(1) · cost(k)
time, since there are O(log n) such trees T ∗ and in the data structures T ∗.left.kde and
T ∗.right.kde, xi is removed from all buckets B∗

Hµi,a,j,ℓ
(xi), and there are ε−2·no(1)·cost(k)

such buckets. The running time of the rest of the loop (Lines 28–33) is dominated by the
running time for resampling a path Pxi,ℓ, which is ε−2 · no(1) · cost(k) (Lemma 4.2).
Therefore, by the fact that E[|A|] = Õ(1) (Lemma C.3), the total expected running time of
Lines 19–33 is ε−2 · no(1) · cost(k).

Combining everything together proves the lemma.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

C.2.2 PROOF OF CORRECTNESS

Lemma C.6. Let G′ = (X ∪ z, E′, wG′) be the updated graph after running
UPDATEGRAPH(G, T , z) for the new arriving z. Then, it holds with probability at least 9/10
that G′ is an approximate similarity graph on X ∪ z.

Proof. We prove this statement by showing that running CONSTRUCTGRAPH(X) followed by
UPDATEGRAPH(G, T , z) is equivalent to running CONSTRUCTGRAPH(X ∪ z).

• First, we prove that the structure of the tree T is the same in both settings: when running
CONSTRUCTGRAPH(X), we ensure that the tree T is a complete binary tree. Then, when
inserting a data point z using the ADDDATAPOINT(z) procedure on Line 3 of Algorithm 9,
z is inserted appropriately (by the condition on Line 15 of Algorithm 10) such that the
updated tree is also a complete binary tree. Therefore, the structure of the tree T is identical
in both settings.

• Next, on Line 12 of Algorithm 9, z is added to the relevant T ′.kde dynamic KDE data
structures using the ADDDATAPOINT(z) procedure of Algorithm 1. This ensures that the
stored data points T ′.kde.X at every internal node T ′ are identical in both settings and,
by the guarantees of the dynamic KDE data structures (Theorem 3.1), the query estimates
T ′.kde.µ̂q for every internal node T ′ and any q ∈ T ′.kde.Q are the same in both settings.

• For the new data point z, we sample L new neigbours (Lines 5–11 of Algorithm 9). By
the previous points, it holds that the tree T is identical in both settings, and therefore the
sampling procedure on Lines 5–11 in Algorithm 9 for the new data point z is equivalent
to the sampling procedure on Lines 41–48 of Algorithm 8 for the point z when executing
INITIALISE(X ∪ z, ε).

• Then, for any data point xi ∈ X , let (xi,xj) ∈ E be one of its sampled neighbours edge
after running CONSTRUCTGRAPH. It holds that the scaling factor for the edge weight
wG(xi,xj) is

ŵ(i, j) =
L · k(xi,xj)

min{T .kde.µ̂xi
, T .kde.µ̂xj

} .

Notice that after running UPDATEG(z), the scaling factor wG(xi,xj) can change
due to a change in min{T .kde.µ̂xi

, T .kde.µ̂xj
}. Without loss of generality, let

min{T .kde.µ̂xi
, T .kde.µ̂xj

} = T .kde.µ̂xj
. By Line 47 of Algorithm 8, in this case

we have xi ∈ Bxj
. We further distinguish between the two cases:

1. If T .kde.µ̂xi
changes after running UPDATEGRAPH(z), then by the

ADDDATAPOINTTREE(T , z) procedure all the paths Pxi,ℓ for 1 ⩽ ℓ ⩽ L
will be resampled and updated on Lines 21–33.

2. On the other hand, if T .kde.µ̂xj
changes and T .kde.µ̂xi

does not, then the paths
Pxj ,ℓ′ ending at the leaf corresponding to xi are not necessarily resampled. In this case,
the scaling factor is updated on Lines 13–18, and therefore wG(xi,xj) is appropriately
rescaled.

• Let P∗
xi,ℓ
∈ T .paths be any sampling path that is not resampled, i.e., P∗

xi,ℓ
/∈ A. This

implies that the KDE estimate of T ′.kde.µ̂xi does not change at any internal T ′ where
Pxi,ℓ is stored, and therefore the sampling procedure for P∗

xi,ℓ
is identical in both settings.

• Finally, let Pxi,ℓ ∈ A be a sampling path that is resampled, and (xi,xj) be the sampled
edge (contribution) corresponding to Pxi,ℓ. Before resampling the path Pxi,ℓ starting from
T ′, on Lines 21–27 the algorithm removes the stored paths Pxi,ℓ and query points xi from
every internal node T ∗ below T ′, and removes the weight contribution to wG(xi,xj) from
Pxi,ℓ. Then, on Lines 28–33, we resample a new edge (xi,x

∗
j), in an equivalent manner as

sampling a new edge when running Lines 41–48 of Algorithm 8. Therefore, the resampling
procedure for the path Pxi,ℓ is identical to the sampling procedure for Pxi,ℓ when running
INITIALISE(X ∪ z, ε), because the resampling procedure uses the updated KDE estimates
at each internal node T ′, which are identical to the KDE estimates that would be computed
in INITIALISE(X ∪ z, ε).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Combining everything together proves the lemma.

Finally, we are ready to prove the second statement of Theorem 4.1.

Proof of the Second Statement of Theorem 4.1. Lemma C.5 shows the time complexity of
UPDATEGRAPH(G, T , z), and Lemma C.6 shows the correctness of our updated procedures. Com-
bining these two facts together proves the second statement of Theorem 4.1.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide some more details about our experimental setup and give some additional
experimental results. Table 4 provides additional information about all of the datasets used in our
experiments.

D.1 DYNAMIC KDE EXPERIMENTS

Tables 5 and 6 show the experimental evaluation of the dynamic KDE algorithms on several additional
datasets. The results demonstrate that our algorithm scales better to larger datasets than the baseline
algorithms.

Figures 4 and 5 show the relative errors and running times for all iterations, datasets, and algorithms
for the dynamic KDE experiments.

D.2 PLOTS FOR DYNAMIC SIMILARITY GRAPH EXPERIMENTS

Table 7 shows the results of the experiments for the dynamic similarity graph, evaluated with the
Adjusted Rand Index (ARI) (Rand, 1971).

Table 4: Datasets used for experimental evaluation. n is the number of data points, d is the dimension,
and σ is the parameter we use in the Gaussian kernel.

Dataset n d σ License Reference Description

blobs 20,000 10 0.01 BSD (Pedregosa et al., 2011) Synthetic clusters from a mixture
of Gaussian distributions.

cifar10 50,000 2,048 0.0001 - (He et al., 2016; Krizhevsky, 2009) ResNet-50 embeddings of images.

mnist 70,000 728 0.000001 CC BY-SA 3.0 (Lecun et al., 1998) Images of handwritten digits.

shuttle 58,000 9 0.01 CC BY 4.0 (NASA, 2002) Numerical data from NASA
space shuttle sensors.

aloi 108,000 128 0.01 - (Geusebroek et al., 2005) Images of objects under a variety
of lighting conditions.

msd 515,345 90 0.000001 CC BY 4.0 (Bertin-Mahieux et al., 2011) Numerical and categorical
features of songs.

covtype 581,012 54 0.000005 CC BY 4.0 (Blackard & Dean, 1999) Cartographic features used to predict
forest cover type.

glove 1,193,514 100 0.1 PDDL 1.0 (Pennington et al., 2014) Word embedding vectors.

census 2,458,285 68 0.01 CC BY 4.0 (Meek et al., 1990) Categorical and numerical data from
the 1990 US census.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 5: Experimental results for dynamic KDE. For each dataset, the shaded results correspond to
the algorithm with the lowest total running time.

CKNS DYNAMICRS OUR ALGORITHM

dataset Time (s) Err Time (s) Err Time (s) Err

shuttle 32.9±2.1 0.146±0.002 0.8±0.0 0.078±0.005 10.9±0.3 0.159±0.024

aloi 619.0±10.7 0.050±0.006 19.7±0.3 0.010±0.003 46.9±0.7 0.060±0.021

msd 14, 360.0±0.0 0.385±0.000 1, 887.8±0.0 5.430±0.000 306.4±0.0 0.388±0.000

covtype 5, 650.3±109.0 0.159±0.002 309.2±2.4 0.018±0.003 151.7±4.5 0.196±0.017

glove 2, 640.8±1677.7 0.221±0.229 1, 038.6±26.5 0.004±0.005 445.6±214.6 0.296±0.469

census 10, 471.5±160.6 0.080±0.000 3, 424.8±5.2 0.005±0.001 836.5±44.6 0.102±0.021

Table 6: Running times for dynamic KDE with the exact algorithm.

Dataset Running Time

shuttle 4.1±0.1

aloi 164.5±13.6

msd 2, 715.6±0.0

covtype 2, 349.8±101.2

glove 5, 251.7±0.0

census 16, 202.6±154.6

Table 7: ARI values for the dynamic similarity graph experiments.

FULLYCONNECTED KNN OUR ALGORITHM

dataset Time (s) ARI Time (s) ARI Time (s) ARI

blobs 72.8±2.2 1.000±0.000 383.6±3.9 0.797±0.287 21.2±0.8 1.000±0.000

cifar10 19, 158.2±231.6 0.000±0.000 3, 503.0±490.6 0.098±0.001 1, 403.5±152.4 0.221±0.013

mnist 1, 328.3±159.5 0.149±0.000 5, 796.3±234.3 0.673±0.001 1, 470.3±77.9 0.238±0.011

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100

n ×103

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

R
el

at
iv

e
E

rr
or

Exact

CKNS

DynamicRS

Our Algorithm

(a) ALOI Relative Error

0 10 20 30 40 50 60

n ×103

0.0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
E

rr
or

Exact

CKNS

DynamicRS

Our Algorithm

(b) SHUTTLE Relative Error

0 100 200 300 400 500 600

n ×103

0.0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
E

rr
or

Exact

CKNS

DynamicRS

Our Algorithm

(c) COVTYPE Relative Error

0 100 200 300 400 500

n ×103

0

2

4

6

8

10

R
el

at
iv

e
E

rr
or

Exact

CKNS

DynamicRS

Our Algorithm

(d) MSD Relative Error

0 200 400 600 800 1000 1200

n ×103

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
E

rr
or

Exact

CKNS

DynamicRS

Our Algorithm

(e) GLOVE Relative Error

0 500 1000 1500 2000 2500

n ×103

0.00

0.05

0.10

0.15

0.20

R
el

at
iv

e
E

rr
or

Exact

CKNS

DynamicRS

Our Algorithm

(f) CENSUS Relative Error

Figure 4: Relative errors for all datasets.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100

n ×103

0

2

4

6

8

10

12

14

U
p

d
at

e
ti

m
e

(s
)

Exact

CKNS

DynamicRS

Our Algorithm

(a) ALOI Update Time

0 10 20 30 40 50 60

n ×103

0.0

0.5

1.0

1.5

2.0

U
p

d
at

e
ti

m
e

(s
)

Exact

CKNS

DynamicRS

Our Algorithm

(b) SHUTTLE Update Time

0 100 200 300 400 500 600

n ×103

0

5

10

15

20

25

30

U
p

d
at

e
ti

m
e

(s
)

Exact

CKNS

DynamicRS

Our Algorithm

(c) COVTYPE Update Time

0 100 200 300 400 500

n ×103

0

10

20

30

40

50

60

70

U
p

d
at

e
ti

m
e

(s
)

Exact

CKNS

DynamicRS

Our Algorithm

(d) MSD Update Time

0 200 400 600 800 1000 1200

n ×103

0

20

40

60

80

100

U
p

d
at

e
ti

m
e

(s
)

Exact

CKNS

DynamicRS

Our Algorithm

(e) GLOVE Update Time

0 500 1000 1500 2000 2500

n ×103

0

25

50

75

100

125

150

175

U
p

d
at

e
ti

m
e

(s
)

Exact

CKNS

DynamicRS

Our Algorithm

(f) CENSUS Update Time

Figure 5: Running times for all data sets.

35

	Introduction
	Preliminaries
	Locality Sensitive Hashing
	Kernel Density Estimation
	Approximate Similarity Graphs
	Convention & Assumption

	Dynamic Kernel Density Estimation
	Analysis for the Initialisation
	Analysis for Updates

	Dynamic Similarity Graph Construction
	Analysis for the Initialisation
	Analysis for Dynamic Updates

	Experiments
	Dynamic KDE
	Dynamic Clustering

	Additional Background Knowledge
	Notation
	Approximate Similarity Graph

	Omitted Detail from Section 3
	Analysis of the Initialise and AddQueryPoint procedures
	Analysis of the AddDataPoint procedure
	Proof of Theorem 3.1

	Omitted Detail from Section 4
	The Initialisation Step
	The Dynamic Update Step
	Runtime Analysis
	Proof of Correctness

	Additional Experimental Results
	Dynamic KDE Experiments
	Plots for Dynamic Similarity Graph Experiments

