Under review as a conference paper at ICLR 2025

DYNAMIC SIMILARITY GRAPH CONSTRUCTION
WITH KERNEL DENSITY ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In the kernel density estimation (KDE) problem, we are given a set X of data
points in R%, a kernel function & : R? x R — R, and a query point q € R?, and
the objective is to quickly output an estimate of) |+ k(q, x). In this paper, we
consider KDE in the dynamic setting, and introduce a data structure that efficiently
maintains the estimates for a set of query points as data points are added to X over
time. Based on this, we design a dynamic data structure that maintains a sparse
approximation of the fully connected similarity graph on X, and develop a fast
dynamic spectral clustering algorithm. We further evaluate the effectiveness of our
algorithms on both synthetic and real-world datasets.

1 INTRODUCTION

Given aset X = {x1,...,X,} of data points, a set @ = {q1, ..., qm } of query points, and a kernel
function k : R x R? — R, the KDE problem is to quickly approximate jiq = > ox,ex kla, i)
for every q € (). As a basic question in computer science, this problem has been actively studied
since the 1990s (Greengard & Strain, |1991) and has comprehensive applications in machine learning
and statistics (Bakshi et al., 2023; /Genovese et al., 2014} Scholkopf & Smolal 2018 |Schubert et al.}
2014).

In this paper we first study the KDE problem in the dynamic setting, where both the sets of data and
query points change over time. The objective is to dynamically update the KDE estimates of jiq as
data points are added to X. Building on the framework for static KDE developed by [Charikar et al.
(2020), our algorithm processes: (i) insertions and deletions of query points, and (ii) insertions of
data points in =2 - n0-25t°(1) time for the Gaussian kerne['} In particular, our algorithm maintains
(1 £ e)-approximate estimates of the kernel densities for every query point q €) throughout the
sequence of data point insertions; see Theorem [3.1] for the formal statement. To the best of our
knowledge, this represents the first dynamic algorithm for the KDE problem that efficiently maintains
query estimates under data point insertions.

Among its many applications, an efficient algorithm for the KDE problem on X = @ C R? can be
used to speed up the construction of a similarity graph for X, one of the key components used in many
graph-based clustering algorithms (e.g., spectral clustering). These clustering algorithms usually
have superior performance over traditional geometric clustering techniques (e.g., k-means) (Ng et al.,
2001} jvon Luxburg}, 2007), but in general lack a dynamic implementation. Our second contribution
addresses this challenge, and designs a dynamic algorithm that maintains a similarity graph for the
dataset X with expected amortised update time n%257°(1) when new data points are added; see
Theorem for the formal statement. Our algorithm guarantees that, when the set X; of data points
present at any time ¢ has a cluster structure, our dynamically maintained graph will have the same
cluster structure as the fully connected graph on X;; hence a downstream graph clustering algorithm
will perform well.

Our designed algorithms are experimentally compared against several baseline algorithms on 8
datasets from different domains, and these experiments confirm the sub-linear update time proven in
theory. These experiments further demonstrate that

'Our algorithm generalises to arbitrary kernel functions, with different powers of 7 in the update time.

Under review as a conference paper at ICLR 2025

* our dynamic KDE algorithm scales better to large datasets than several baseline algorithms,
including the fast static KDE algorithm in|Charikar et al.|(2020)), and

* our dynamic similarity graph construction algorithm runs faster than the fully-connected
and k-nearest neighbour similarity graph baselines, and produces comparable clustering
results when applying spectral clustering.

Related Work. Efficient algorithms for the kernel density estimation problem in low dimensions
have been known for over two decades (Gray & Moorel 2003} |Greengard & Strainl [1991; [Yang
et al., [2003). For the regime of d = Q(logn), there has been some recent progress to develop
sub-linear query time algorithms (Charikar et al.| 2020j Charikar & Siminelakis, [2017; 2019)) based
on locality-sensitive hashing (Andoni & Indyk, |[2008; Datar et al.| 2004)) and importance sampling
using algorithms for computing approximate nearest neighbors (Backurs et al.| 2018} |[Karppa et al.|,
2022)). There has also been recent work studying the approximation of kernel similarity graphs in the
static setting (Macgregor & Sun, 2023} |Quanrud, [2021]).

Dynamic kernel density estimation has been studied in some restricted settings. [Huang et al.| (2024)
give a dynamic variant of the fast Gauss transform (Greengard & Strain, |[1991)) for low-dimensional
data. Given an initial dataset X, |[Liang et al.| (2022) give an efficient algorithm for maintaining a
KDE data structure in which some data point x; is replaced with a new point z. In the same setting,
Deng et al.|(2022) present a dynamic data structure that maintains a spectral sparsifier of the kernel
similarity graph, for smooth kernels.

Our work also relates to a number of works on incremental spectral clustering (Dhanjal et al.,2014;
Laenen & Sun, 2024} Martin et al.,[2018[;|Ning et al.| 2007). However, these works either assume a
fixed vertex set (Dhanjal et al.,|2014; Martin et al.,[2018; Ning et al.,|2007), or are limited to handling
only single edge updates (Laenen & Sun, [2024).

2 PRELIMINARIES

This section lists several facts we use in the analysis, and is organised as follows: Section[2.1] gives
a brief introduction to Locality Sensitive Hashing, which we apply in Section [2.2]to discuss fast
algorithms for Kernel Density Estimation. We informally define an approximate similarity graph in
Section 23]

2.1 LOCALITY SENSITIVE HASHING

Given data x1, . ..,x, € R%, the goal of Euclidean locality sensitive hashing (LSH) is to preprocess
the data in a way such that, given a query point y € R¢, we are able to quickly recover the data points
close to y. Informally speaking, a family A of hash functions H : R? — Z is locality sensitive if
there are values r € R, ¢ > 1, and p; > po, such that it holds for H drawn at random from 7 that
P[H(u) = H(v)] > py when |ju—v|| < r,and P[H(u) = H(v)] < p2 when |jlu—v|| > ¢ .
That is, the collision probability of close points is higher than that of far points. |Datar et al.| (2004)
propose a locality sensitive hash family based on random projections, and their technique is further
analysed by /Andoni & Indyk| (2008):

Lemma 2.1 (Andoni & Indyk| (2008)). Let p and q be any pair of points in R%. Then, for any fixed
r > 0, there exists a hash family H such that, if
Pnear é pl(’r) é]PHNH[H<p> = H<q) ‘ Hp - qH < ’I"]
and
A A
Prar = pa(r,¢) = Pyoy[H(p) = H(a) | [[p —al| > er]

forany c > 1, then
log1/p 1 logt
A near g 7 O
log1/pra ~ @ O \11/2)

for some t, where prear = e=OWY and each evaluation takes dt°®) time.

We follow the work of |Charikar et al.|(2020) and use ¢ = 10g2/ 3 n, which results in n°(Y) evaluation
time and p = % + o(1). In this case, if c = O (logl/7 n) then p~! = c2(1 — B), for B = o(1).

Under review as a conference paper at ICLR 2025

Definition 2.2 (bucket). For any hash function H : R? — 7 and x € RY, let By (x) be the set
defined by By (x) = {x' | H(x) = H(x')},; we call By(x) a bucket.

2.2 KERNEL DENSITY ESTIMATION

Given aset X = {xy,...,x,} of data points, a set Q@ = {q, ..., Q. } of query points, and a kernel
function k : R x R? — R, the KDE problem is to compute
x;€X

for every q €). We assume thaﬂ 1 < pg < n. While a direct computation of the m values for
every q € @ requires mnd operations, there are a number of works that develop faster algorithms for
approximating these m quantities.

Our designed algorithms are based on the work of Charikar, Kapralov, Nouri, and
Siminelakis (Charikar et al., [2020). We refer to their algorithm as CKNS, and provide a brief
overview. At a high level, the CKNS algorithm is based on importance sampling and, for any query
point q, their objective is to sample a data point x; € X with probability approximately proportional
to k(q, x;). To achieve this, they introduce the notion of geometric weight levels {L{'} ; defined as
follows:

Definition 2.3 (Charikar et al.| (2020)). For any query point q, let J,, [log 2"] and for j € [J,],
let Lq {xl € X : k(q,x;) € (2*3‘7 2’j+1] } We define the corresponding distance levels as

r; = max lx — x'||
X,X

k(xx)E(Q J 2= J+1]

forany j € [J,,], and define LJ s 2 X\ (Uje[J L‘;).

nql

By definition, these L;l’s for any query point q partition the data points into groups based on the
kernel distances k(q,x;), progressing geometrically away from q. Their key insight is that the
number of data points in each level L;‘ is bounded:

Lemma 2.4 (Charikar et al.| (2020)). It holds for any query point q and j € [J,,] that ‘Lq‘ 27 pig.

Hence, one can sub-sample the data points with probability 1/(27 - 1) for every j € [O(log(n/puq))]s
and the sampled data points are stored in hash buckets using LSH. This data structure will allow for
fast and good estimation of 11 for any query point q. We further follow |Charikar et al.|(2020), and
introduce the cost of a kernel k.
Lemma 2.5 (Charikar et al.| (2020)). Assume that kernel k induces weight level sets L? s and
corresponding distance levels r;’s. Also, for any query q, integer i € [J,, + 1], and j € [J,]
satisfying v > j, let p € L;‘ and p’ € L. Assuming that H is an Andoni-Indyk LSH family designed
for near distance r; (see Lemma , the following holds for any integer k > 1:

1 Ppeqes [H*(p) = H*(q)] 2

k
= pnear,j’

2. Prpemger [H(0') = H*(a)] < pl5,7,

near,j

where ¢ £ ¢; j £ mln{ =1 logl/7 n} Pnear.j = p1(7;), and 3 = o(1) from Lemma

Definition 2.6 (Cost of a Kernel) Suppose that a kernel k induces distance levels r;’s based on the
kernel value g (see Deﬁmtlonn) For any j € [J,,] we define the cost of kernel k for weight level

LY as
. i_j
cost, (k,j) £ e max 2 Al
,uq(aj) XP2 <’—j+1 “q+ ’70227]-(1 _ﬁ)-‘>

*We make this assumption simply for the ease of our presentation, and setting s > ¢ for any constant ¢
instead will not influence the asymptotic results of our work.

Under review as a conference paper at ICLR 2025

where ¢; j £ min {“T—*l, log!/™ n} and 8 = o(1) from Lemma We define the general cost of a
J

kernel k as cost(k) = MaX,,, e Jg] costy, (k, j). For any j € [J,] we further define

1 i—j
kit —— . — 1 1. 2.1
! 1ngnear,j i:j+1r?-a'ﬁ<]#q+1 ’76127]'(1 - 5)—‘ @D

By the assumption that 1 < g < n, the cost of some popular kernels such as the Gaussian kernel kg,
the ¢-student kernel k¢, and the exponential kernel k, are cost (ky) = ()%, cost(k,) = n°®),
and cost(k,) = n(+o(1) 37 respectively (Charikar et al., 2020).

2.3 APPROXIMATE SIMILARITY GRAPHS

Constructing a similarity graph from a set of data points is the first step of most modern clustering
algorithms. For any set X = {x1,...,x,} of data points in R? and kernel function k : R% x R? —
R>0, a similarity graph F' = (V, E/, w) from X can be constructed as follows: each x; € X is a vertex
in F, and every pair of vertices x; and x; is connected by an edge with weight w(x;,x;) = k(x;, X;).
While this graph F has ©(n?) edges by definition, we can construct in O(n) time a sparse graph G

with O(n) edges such that (i) every cluster in F' has low conductance in G, and (ii) the eigenvalue
gaps of the normalised Laplacian matrices of F' and G are approximately the same (Macgregor|
& Sun| 2023); these two conditions ensure that a typical clustering algorithm on F' and G returns
approximately the same result. We call such a sparse graph G an approximate similarity graph, and
refer the reader to Section[A]in the appendix for its formal definition.

2.4 CONVENTION & ASSUMPTION

For ease of presentation, for any set X C R% and z € RY, we always use X Uz and X \ z to represent
X U{z}and X \ {z}. For a similarity graph G constructed for any set X = {x;,...,%,} C R, we
use X; to represent both the point in R? and the corresponding vertex in G, as long as the underlying
meaning of x; is clear from context. We use (x;,X;) to represent an edge with x; and x; as the

endpoints, and the graphs studied in our paper are always undirected. We use é(n) to represent
O(n - log® n) for some constant c¢. The log operator takes the base 2.

Assumption 2.1. Let ny = | X| denote the number of data points at initialisation. We assume that, if
X; C R? represents the set of data points present after t updates, then | X¢| < n] for constant v > 0.
Moreover, based on the JL Lemma (Johnson, |1984), we always assume that d = O(log | X}|), and
hence our work ignores the dependency on d in the algorithms’ runtime.

3 DYNAMIC KERNEL DENSITY ESTIMATION

In this section we design a data structure to dynamically maintain KDE estimates as new data and
query points are added or removed over time. Our data structure supports INITIALISE(X, @, €),
which creates a hash data structure for the KDE estimates based on X, and it supports operations for
dynamically maintaining the data and query point sets as well as the corresponding estimates. The
main components used in updating the data structure and their performance are as follows:

Theorem 3.1 (Main Result 1). Let k be a kernel function with cost(k) as defined in Definition
and X C R? a set of n data points updated through data point insertions. Assuming QQ = () initiall
the performance of the procedures in Algorithm([l)is as follows:

o Initialisation: INITIALISE(X, 0, €) creates a hash data structure for the KDE, and runs in
time =2 - ni+o(1) - cost(k), where ny is the number of data points at initialisation.

* Query Point Updates: For every query point insertion Q) < Q U q or deletion Q + Q \ q,
ADDQUERYPOINT(q) and DELETEQUERYPOINT(q) update the corresponding sets and

*When Q # @ with |@Q| £ m1, we have an additional additive factor of mq - £72 - ni’m - cost(k) and
my-e 2. p°M. cost(k) in the running time of the initialisation and data point update steps respectively.

Under review as a conference paper at ICLR 2025

data structures. Moreover, ADDQUERYPOINT(q) returns [iq that achieves a (1 £ ¢)-
multiplicative factor approximation of j1q with high probability.

* Data Point Updates: For every data point insertion X < X Uz, ADDDATAPOINT(z)
updates the corresponding sets and data structures, and returns the updated estimates [iq
that achieve (1 + €)-multiplicative factor approximations of g for every maintained query

pointq € Q.

With high probability, the amortised running time for each update procedure is e =2 - n°() . cost(k),
where n = | X| is the current number of data points.

To examine the significance of Theorem notice that the amortised update time e =2 - n°(1) . cost (k)
for the data point insertions is independent of the number of query points |@Q|. This makes our
algorithm significantly more efficient than re-estimating the query points after every update. While
previous work (Liang et al., [2022)) has shown that the CKNS KDE estimaror can extended to the
dynamic setting, our result shows that the estimates of a set of query points can be efficiently updated.

3.1 ANALYSIS FOR THE INITIALISATION

The initialisation step prepares all the data structures used for subsequent data and query point
updates. The main component used in INITIALISE(X, Q,) is the PREPROCESS(X, ¢) procedure,
which preprocesses the data points in X to ensure that the value jiq for any query point q can be fast
approximated. To achieve this, PREPROCESS (X, €) defines

ME{2" | keZ,0<k<log(2n1)},

and indexes every u; € M such that g < ... < fliog(an,); note that p; = 2¢, Then
for uy; € M and j € [log(2 - nq1/p;)] it samples every data point in X with probability
min {1/(2711;), 1}, and employs a hash function H,,, , ;¢ chosen uniformly at random from #*s
with k; = O(1) (cf. Lemma to add every sampled x € X to the buckets { By, , ;,(X)}pi,0,5,0
indexed by all the possible a € [K;] with K1 = O(logn; - €72), and ¢ € [K3] with Ky =
O(log(ny) - cost(k)). In addition, PREPROCESS(X, €) samples every data point in X with probabil-
ity 1/(2n,) for all the possible values of 4; and a, and adds the sampled point to set { X 10 e We
remark that our described PREPROCESS(X, ¢) is almost the same as the one presented in|Charikar
et al.[(2020) and, although this data structure is sufficient to quickly output KDE estimates, we need
to store additional query-hash buckets to update estimates when new data points arrive.

3.2 ANALYSIS FOR UPDATES
When a new query point q arrives, ADDQUERYPOINT(q) performs the following operations:

1. It computes the KDE estimate fiq of piq using the hash-based data structure from
INITIALISE(X, Q, €).

2. It adds q to the sets (), for every p; € M that satisfies fiq < 3, and adds q to the buckets
B;Iui,a,j,e(Q) fora € K], j € [Ju,] and £ € [K5], which we call the query-hash.

When a new data point z arrives, ADDDATAPOINT(z) first checks whether the number of data points

has doubled since the last (re-)construction of the data structure, and re-initialises the data structure if

it is the case. Otherwise, ADDDATAPOINT(z) performs the following operations:

1. It samples z with probability min {1/(2/%!4;),1} for all possible y; € M, and adds
the sampled z to the buckets By, ,,(z) forall a € K1, j € [J,], and £ € [K>];
it also samples z with probability 1/(2n;) for all the possible values of u; and a, and
adds the sampled point to the set {X,,, o}, . Notice that the way that z is added in
the buckets is exactly the same as the one when executing INITIALISE(X U z, @, €), and
hence ADDDATAPOINT(z) correctly updates all the buckets. We remark that this method
of updating the buckets is similar to that of [Liang et al.[(2022), the difference being that for
their dynamic setting instead of adding z to buckets, z replaces some x;.

Under review as a conference paper at ICLR 2025

@ @2\ Rd - Data hash Query hash
= (%)
@<
\Cll/w
@ . f
E o)
! &
> \@ I\ @
’ q1)(\(gz)(|(q4)
LS @)\@)\@
& —(x¢
A4
> @
(xq) () R? Py
by _(x3)
(@) @
: X1 & PN
'\q3l‘ J [\ ())
v - @\@\®
@
@)
X T (Xe) .
o B, 0.5:(2) By, ...

(a) (b) (©)

Figure 1: Illustration of ADDDATAPOINT(z) for a single iteration y; € M, a € K1, j € [J,,], and
¢ € [Ks]. The first row illustrates (a) the subsampled data points Z = {x3, x4, X¢} and query points
Q,; = {a;}?_,, (b) the bucketing of Z by the hash function H,,, , j ¢, as well as (c) the bucketing of
@ by the same hash function. The second row illustrates (a) the relative location of a new arriving
data point z € R?, with shaded red region indicating L%, (b) z’s inclusion in the bucket By, , ., (z),
as well as () the recovery of q3 € By, (z) because z € L.

2. If z is sampled, ADDDATAPOINT(z) recovers all the points q € By, (2) in the query

hash that satisfies q € Q,,, \ (Uj,<i Qu,-/) and z € L§. Every such q is exactly the

point whose KDE estimate jiq would have included z if ADDQUERYPOINT(q) would have
been called after running INITIALISE(X U z, @, €). Hence, the KDE estimates fi4 for the
recovered q are updated appropriately.

See Figurefor illustration. The correctness and running time analysis of ADDDATAPOINT(z) and
ADDQUERYPOINT(q) can be found in Section [Bof the appendix.

Finally, the DELETEQUERYPOINT(q) procedure simply removes any stored information about the
query point q throughout all the maintained data, and its running time follows from the running time
of ADDQUERYPOINT(q).

4 DYNAMIC SIMILARITY GRAPH CONSTRUCTION

In this section we design an approximate dynamic algorithm that constructs a similarity graph under
a sequence of data point insertions, and analyse its performance. Given a set X of n; points in R?
with d = O(logn1), and a sequence of points {z} that will be added to X over time, our designed
algorithm consists of the CONSTRUCTGRAPH and UPDATEGRAPH procedures, whose performance
is summarised as follows:

Theorem 4.1 (Main Result 2). Let k be a kernel function with cost(k) as defined in Definition
and X C R? a set of data points updated through point insertions. Then, the following statements
hold:

1. The Initialisation Step: with probability at least 9/10, the CONSTRUCTGRAPH procedure

constructs an approximate similarity graph G = (X, E,w¢) with |E| = O(n1) edges,
where ny = | X| is the number of data points at initialisation. The running time of the

initialisation step is nﬁo(l) - cost (k).

Under review as a conference paper at ICLR 2025

2. The Dynamic Update Step: for every new arriving data point z, the UPDATEGRAPH pro-
cedure updates the approximate similarity graph G, and with probability at least 9/10
G is an approximate similarity graph for X U z. The expected amortised update time is
ne . cost(k), where n is the number of currently considered data points.

On the significance of Theorem [4.1] first notice that the algorithm achieves an update time of
n°™) . cost(k). For the Gaussian kernel, this corresponds to an update time of n(!*°(1)3 which is

much faster than the O(n) time needed to update the fully connected similarity graph. Secondly, our
result demonstrates that, as long as the dynamically changing set X C R? of points presents a clear
cluster structure, an approximate similarity graph G for X can be dynamically maintained, and the
conductance of every cluster in G can be theoretically analysed, due to the formal definition of an
approximate similarity graph (Definition[A.3). This is another difference between our work and many
heuristic clustering algorithms that lack a theoretical guarantee on their performance.

4.1 ANALYSIS FOR THE INITIALISATION

The main component of the initialisation step is our designed CONSTRUCTGRAPH(X) procedure,
which builds a (complete) binary tree 7 for X, such that each leaf corresponds to a data point
x; € X, and each internal node of 7 corresponds to a dynamic KDE data structure (described in
Section [3) on the descendant leaves/data points. At a high level, CONSTRUCTGRAPH(X) applies
the SAMPLE(X, T, ¢) procedure to recursively traverse 7 and sample L = O(log | X|) neighbours
for every vertex based on the KDEs maintained by the internal nodes. It also stores the paths
Px, ¢ (x; € X, ¢ < L), each of which records the internal nodes that x; visits when sampling its ¢th
neighbour; with these stored paths the algorithm can adaptively resample the tree as new data points
arrive. In addition, the query points whose KDE estimates are dynamically maintained at any internal
node 7" are the data points x; whose sample path Py, ¢ visit 7.

Our proof follows|Macgregor & Sun|(2023) at a high level. However, one crucial difference between
our analysis and theirs is that the weight of every edge (x;,x;) added by our algorithm is set to
be k(x;,x;)/w(i, j). Here, (i, j) depends on min{7 .kde.fiy,, T .kde.jix, }, where T .kde is the
dynamic KDE data structure maintained at the root of 7. In particular, every sampled edge (x;, X;)
is added with this weight independent of the edge being sampled from x; or x;. This modification
allows for correct reweighting and resampling after a sequence of data point insertions.

4.2 ANALYSIS FOR DYNAMIC UPDATES

We design the UPDATEGRAPH(G, T, z) procedure to dynamically update our constructed graph
such that the updated graph is an approximate similarity graph for X U z. At a high level,
UPDATEGRAPH(G, T, z) works as follows (see Figurefor illustration):

1. for every arriving data point z, UPDATEGRAPH(G, T, z) creates a new leaf node for z, and
places it appropriately in 7 ensuring that the new tree is a complete binary tree;

2. UPDATEGRAPH(G, T, z) inspects the internal nodes from the new leaf z to the root of the
tree, and for every such internal node it adds z as a new data point in the corresponding
dynamic KDE estimators;

3. UPDATEGRAPH(G, T, z) further checks in every internal node along the sample path
Px; ¢ whether the KDE estimate of any x; has changed due to the insertion of z. If
s0, Px, ¢ is added to the set A of paths that need to be updated. For every Py, € A,
UPDATEGRAPH(G, T, z) finds the highest internal node 7’ where the KDE estimate of
x; has changed, removes the path from all nodes below 7', and resamples the corre-
sponding edges; this is achieved through RESAMPLE(T, Py, ¢). Additionally, it employs
SAMPLE({z}, T, ¥) to sample L new edges adjacent to z.

From this description, it is easy to see that the total time complexity of UPDATEGRAPH(G, T, z) is
dominated by (i) the time complexity of SAMPLE({z}, T, ¢) and RESAMPLE(T, Px ¢), and (ii) the
total number of paths A4 that need to be reconstructed. First, we study the time complexity of these
two procedures, and our result is as follows:

Under review as a conference paper at ICLR 2025

Pt 7' Unchanged Py, 7—/

SN ST A
AN ANNA VA NRVA A VANA

X11 X10 X11

ASi NN

X1 X2 X3 X4 X5 Xg X1 X2 X3 X4 X5 X X7 Z

(a) b

Figure 2: Ilustration of updating 7 after performing UPDATEGRAPH(z). In (a), Px, ¢ and Py, ¢ are
generated by SAMPLE({x1}, T, ¢) and SAMPLE({x1}, T, ¢’), and correspond to edges (x1,Xg) and
(x1,x3). (b) Illustrates that, after adding z, part of Py, ¢ is updated due to RESAMPLE(T”, Px, /).
and (x1,x3) is replaced by (x1, X¢); however, the update on z doesn’t change Px, .

Lemma 4.2. For any x € R% and { € N, the running time of SAMPLE({x}, T, {) (Algorithm@ and
RESAMPLE(T, Py ¢) (Algorithm|10) is n°(Y) - cost (k).

PLE(T, Px) is called |A| times, Lemma 4.2| implies that the running time of UPDATEGRAPH
depends on the number of re-sampled paths | A]. Therefore, to prove the time complexity of UPDATE-
GRAPH, it remains to show that E[|.A]] is sufficiently small.

Given that SAMPLE(z, T, ¢) is called L = 6*1) times by UPDATEGRAPH(G, T, z), and RESAM-
/l

Bounding the expected number of re-sampled paths corresponds to bounding the number of query
points whose KDE estimates are updated at each affected internal node 7’. However, applying
Theorem [3.1directly is insufficient because, in our approximate similarity graph, the dynamic KDE
data structures start with Q@ = X rather than Q = (). As such, more careful analysis is needed, for
which the following notation for the query points) will be used.

Definition 4.3. Let T be the KDE tree constructed from CONSTRUCTGRAPH(X), and T’ an internal
node of T. Then, for 0 < j < i < [log(2 - T.kde.n)], we define the set

Qui—u, (T') 2 {q € T.kde.Q | n; < k(q, T.kde.X) < 2p; and k(q, T'.kde.X) < 1},

where T'.kde is the dynamic KDE data structure maintained at T

The set Q,, ., (T") represents the set of query points g € X whose KDE estimates are bounded
by 1; when computed with respect to the data points X at the root of the tree, and bounded by
for j < 7 when computed with respect to the data points X’ represented at the internal node 7.
Intuitively, this set captures the query points whose KDE estimates decrease when moving from the
root of the tree to the internal node 7. These sets exhibit the following useful property.

Lemma 4.4. It holds for any q € Q,, ., (T") that P[q € T'.kde.Q] = O (ﬁ)

Hi

To bound the number of maintained query points whose estimate is updated, we look at the expected
number of collisions caused by hashing z in the dynamic KDE data structure 7'.kde at every
affected internal node 7. Crucially, by separately analysing the contributions from query points in
Qu, —p; (T") for i’ > i and applying Lemma 4.4, we can bound the expected number of colliding
points in the buckets 7' .kde. By (z) sufficiently tightly at each affected internal node 7.

Hrasdnl
Lemma 4.5 (Informal version of Lemma|[C.2). Let z be the data point that is added to T through
our designed update procedures, and T’ be any internal node that lies on the path from the new leaf
LEAF(z) to the root of T. Then it holds for any i, a, j, and ¢ that that

Exy [{a € T'.kde.Q,, | T'.kde.H,, q ;(z) = T .kde.H,, . ;c(a)}] = 19) (i - 2711

Bisa,d,L

Under review as a conference paper at ICLR 2025

Combining Lemma with the fact that z is sampled with probability min {1/(2/711;),1} for all
possible i € [[log(2 - T.kde.n)]] and j € J,, along every affected internal node 7, and noting that

there are 6(1) such nodes, we obtain the following result.

Lemma 4.6. For every added z, the expected number of paths A that needs to be resampled by
UPDATEGRAPH(G, T, z) satisfies E[|A|] = O(1).

Combining Lemmas [4.2] and .6 with the running time analysis of other involved procedures proves
the time complexity in the second part of Theorem 4.1 To show that our dynamically maintained G
is an approximate similarity graph, we prove in Lemmathat running CONSTRUCTGRAPH(X)
followed by UPDATEGRAPH(G, T, z) is equivalent to running CONSTRUCTGRAPH (X U z); hence
the correctness of our constructed G follows from the one for CONSTRUCTGRAPH(X).

5 EXPERIMENTS

In this section, we experimentally evaluate our proposed
dynamic algorithms for KDE and approximate similarity Table 1: Dataset size information
graph construction on the Gaussian kernel. All experiments
are performed on a compute server with 64 AMD EPYC

7302 16-Core Processors and 500 Gb of RAM. We report Dataset n d
the 2-sigma errors for all numerical results based on 3 rep- blobs 20,000 10
etitions of each experiment, and Section [D| gives additional mnist 70,000 728
experimental details and results. The code to reproduce the cifar10 50,000 2,048
results is included as part of the supplementary material. aloi 108,000 128

. . msd 515,345 90
We evaluate the algorithms on a variety of real-world covt 581.012 54

. . . . ype ,

and synthetic data, and we summarise their properties glove 1,193,514 100

in Table The datasets cover a variety of domains, in-
cluding synthetic data (blobs (Pedregosa et al.l [2011)),
images (mnist (Lecun et all [1998), aloi (Geusebroek
et al., [2005)), image embeddings (cifar10 (He et al., 2016;
Krizhevsky}|2009)), word embeddings (glove (Pennington et al.,[2014)), and mixed numerical datasets
(msd (Bertin-Mahieux et al., 2011}, covtype (Blackard & Dean||1999), census (Meek et al.,|1990)).

census 2,458,285 68

5.1 Dynamic KDE

To our knowledge, our proposed algorithm is the first

which solves the dynamic kernel density estimation = Exacr ‘
. . E() | — CKNS L
problem. For this reason, we compare against the fol- 150 (]SKM nd
. . S— YNAMIC
lowing baseline approaches: 125 e OUR ALGORITHM

* EXACT: the exact kernel density estimate,
computed incrementally as data points are

Update time (s
-
<
)

added. 50 1
* DYNAMICRS: a dynamic KDE estimator %51
based on uniform random sampling of the data. 0
For all experiments, we uniformly subsample 0 500 1000 1500 2000 2500
the data with sampling probability 0.1. n x10°

* CKNS: we use the fast kernel density esti-
mation algorithm proposed by |Charikar et al.
(2020), and fully re-compute the estimates ev-
ery time the data is updated.

Figure 3: Dynamic KDE update times on
the census dataset

For each dataset, we set the parameter o of the Gaussian

kernel such that the average kernel density 1o - n~* & 0.01 (Karppa et al.,[2022). We split the data
points into chunks of size 1,000 for aloi, msd, and covtype, and size 10,000 for glove and census.
Then, we add one chunk at a time to the set of data points X and the set of query points (). At each
iteration, we evaluate the kernel density estimates jiq produced by each algorithm with the relative

Under review as a conference paper at ICLR 2025

Table 2: The experimental results for the dynamic KDE algorithms. For each dataset, we shade the
cells corresponding to the algorithm with the lowest running time. The running times of the exact
algorithm are 164.5, 2715.6, 2179.9, 5251.7, and 16279.9.

CKNS DYNAMICRS OUR ALGORITHM
dataset Time (s) Err Time (s) Err Time (s) Err
aloi 619.0+10.7 0.050+0.006 19.7+0.3 0.010+0.003 46.940.7 0.060+0.021
msd 14,360.0+0.0 0.385+0.000 1,887.8+0.0 5.430+0.000 306.4+0.0 0.388+0.000

covtype 5,650.3+109.0 0.159+0.002 309.2+2.4 0.018+0.003 151.74+4.5 0.196=+0.017
glove 2,640.8+1677.7 0.221+0.220 1,038.6+26.5 0.004+0.005 445.6+214.6 0.296+0.469
census 10,471.5+160.6 0.080+0.000 3,424.8+5.2 0.005+0.001 836.5+44.6 0.102+0.021

Table 3: Running time and NMI results for the dynamic similarity graph algorithms. For each dataset,
the shaded cells correspond to the algorithm with the lowest running time.

FULLYCONNECTED KNN OUR ALGORITHM
dataset Time (s) NMI Time (s) NMI Time (s) NMI
blobs 72.8+2.2 1.000+0.000 383.6+3.9 0.933+0.095 21.2+0.8 1.000+0.000

cifarl0 19,158.2+231.6 0.001+0.000 3,503.0+490.6 0.227+0.002 1,403.5+152.4 0.339+0.021
mnist 1,328.3+159.5 0.460+0.000 5,796.3+234.3 0.812+0.003 1,470.3+77.9 0.523+0.011

error (Karppa et al.| |2022)

err= = 3 |Pa =t

Q| ac0 Hq

Table 2] gives the total running time and final relative error for each algorithm, and Figure [3|shows the

time taken to update the data structure for the census dataset at each iteration. From these results,

we observe that our algorithm scales better to large datasets than the baseline algorithms, while

maintaining low relative errors. Figure [3] further shows that the update time of our algorithm is

sub-linear in the number of data points, as shown theoretically in Theorem The update time of
the other algorithms is linear in n and their total running time is quadratic.

5.2 DyNAMIC CLUSTERING
For the dynamic similarity graph algorithm, we compare against the two baseline algorithms:

* FULLYCONNECTED: the fully-connected similarity graph with the Gaussian kernel;
¢ KNN: the k-nearest neighbour graph, for & = 20.

We split the datasets into chunks of 1,000 and add each chunk to the dynamically constructed
similarity graph, adding one complete ground-truth cluster at a time. At each iteration, we apply the
spectral clustering algorithm to the constructed similarity graph and report the normalised mutual
information (NMI) (Lancichinetti et al.| [2009) with respect to the ground truth clusters. Table E]
shows the total running times and final NMI values for each algorithm on each dataset. From these
results, we see that our algorithm achieves a competitive NMI value with faster running time than the
baseline algorithms.

REFERENCES

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. Communications of the ACM, 51(1):117-122, 2008.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation for
smooth kernels. In 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS’18),
pp- 615-626, 2018.

10

Under review as a conference paper at ICLR 2025

Ainesh Bakshi, Piotr Indyk, Praneeth Kacham, Sandeep Silwal, and Samson Zhou. Subquadratic
algorithms for kernel matrices via kernel density estimation. In 11th International Conference on
Learning Representations (ICLR’23), 2023.

Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million song
dataset. In 12th International Conference on Music Information Retrieval (ISMIR’11),2011.

Jock A Blackard and Denis J Dean. Comparative accuracies of artificial neural networks and
discriminant analysis in predicting forest cover types from cartographic variables. Computers and
Electronics in Agriculture, 24(3):131-151, 1999.

Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimen-
sions. In 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS’17), pp.
1032-1043, 2017.

Moses Charikar and Paris Siminelakis. Multi-resolution hashing for fast pairwise summations. In
60th Annual IEEE Symposium on Foundations of Computer Science (FOCS’19), pp. 769792,
2019.

Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation
through density constrained near neighbor search. In 61st Annual IEEE Symposium on Foundations
of Computer Science (FOCS’20), pp. 172-183, 2020.

Fan R.K. Chung. Spectral Graph Theory. 1997.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In 20th Annual symposium on Computational Geome-
try (SoCG’04), pp. 253-262, 2004.

Yichuan Deng, Wenyu Jin, Zhao Song, Xiaorui Sun, and Omri Weinstein. Dynamic kernel sparsifiers.
arXiv:2211.14825, 2022.

Charanpal Dhanjal, Romaric Gaudel, and Stéphan Clémengon. Efficient eigen-updating for spectral
graph clustering. Neurocomputing, 131:440-452, 2014.

Christopher R. Genovese, Marco Perone-Pacifico, Isabella Verdinelli, and Larry Wasserman.
Nonparametric ridge estimation. The Annals of Statistics, 42(4):1511 — 1545, 2014. doi:
10.1214/14-A0S1218. URL https://doi.org/10.1214/14-A0S1218\

Jan-Mark Geusebroek, Gertjan J Burghouts, and Arnold WM Smeulders. The Amsterdam library of
object images. International Journal of Computer Vision, 61:103-112, 2005.

Alexander G Gray and Andrew W Moore. Nonparametric density estimation: Toward computational
tractability. In 2003 SIAM International Conference on Data Mining, pp. 203-211, 2003.

Leslie Greengard and John Strain. The Fast Gauss Transform. SIAM Journal on Scientific &
Statistical Computing, 12(1):79-94, 1991.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), pp.
770-778, 2016.

Baihe Huang, Zhao Song, Omri Weinstein, Junze Yin, Hengjie Zhang, and Ruizhe Zhang. A dynamic
low-rank fast gaussian transform. arXiv:2202.12329, 2024.

William B Johnson. Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathe-
matics, 26:189-206, 1984.

Matti Karppa, Martin Aumiiller, and Rasmus Pagh. Deann: Speeding up kernel-density estima-
tion using approximate nearest neighbor search. In 25th International Conference on Artificial
Intelligence and Statistics (AISTATS 22), pp. 3108-3137, 2022.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University
of Toronto, 2009.

11

https://doi.org/10.1214/14-AOS1218

Under review as a conference paper at ICLR 2025

Steinar Laenen and He Sun. Dynamic spectral clustering with provable approximation guarantee. In
41st International Conference on Machine Learning (ICML’24), 2024.

Andrea Lancichinetti, Santo Fortunato, and Janos Kertész. Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics, 11(3):033015, 2009.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and higher-
order cheeger inequalities. Journal of the ACM, 61(6):1-30, 2014.

Jiehao Liang, Zhao Song, Zhaozhuo Xu, and Danyang Zhuo. Dynamic maintenance of kernel density
estimation data structure: From practice to theory. arXiv:2208.03915, 2022.

Peter Macgregor and He Sun. Fast approximation of similarity graphs with kernel density estimation.
In Advances in Neural Information Processing Systems 37 (NeurIPS’23), 2023.

Lionel Martin, Andreas Loukas, and Pierre Vandergheynst. Fast approximate spectral clustering
for dynamic networks. In 35th International Conference on Machine Learning (ICML’18), pp.
3420-3429, 2018.

Chris Meek, Bo Thiesson, and David Heckerman. US Census Data (1990). UCI Machine Learning
Repository, 1990.

NASA. Statlog (Shuttle). UCI Machine Learning Repository, 2002.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Systems 15 (NeurIPS’01), pp. 849—-856, 2001.

Huazhong Ning, Wei Xu, Yun Chi, Yihong Gong, and Thomas Huang. Incremental spectral clustering
with application to monitoring of evolving blog communities. In the 2007 SIAM International
Conference on Data Mining (SDM’07), pp. 261-272, 2007.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Richard Peng, He Sun, and Luca Zanetti. Partitioning Well-Clustered Graphs: Spectral Clustering
Works! SIAM Journal on Computing, 46(2):710-743, 2017.

Jeftrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 15321543, 2014.

Kent Quanrud. Spectral sparsification of metrics and kernels. In 32nd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’21), pp. 1445-1464, 2021. doi: 10.1137/1.9781611976465.87.

William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the American
Statistical Association, 66(336):846-850, 1971.

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT Press, 2018.

Erich Schubert, Arthur Zimek, and Hans-Peter Kriegel. Generalized outlier detection with flexible
kernel density estimates. In 2014 SIAM International Conference on Data Mining, pp. 542-550,
2014.

He Sun and Luca Zanetti. Distributed graph clustering and sparsification. ACM Transactions on
Parallel Computing, 6(3):17:1-17:23, 2019.

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing volume, 17(4):
395-416, 2007.

Changjiang Yang, Ramani Duraiswami, Nail A. Gumerov, and Larry Davis. Improved fast Gauss
transform and efficient kernel density estimation. In 9th International Conference on Computer
Vision (ICCV’03), pp. 664-671, 2003.

12

Under review as a conference paper at ICLR 2025

A ADDITIONAL BACKGROUND KNOWLEDGE

This section presents additional background knowledge used in our analysis, and is organised as
follows: Section lists further notation for graphs and useful facts in spectral graph theory;
Section[A.2]formally defines the concept of an approximate similarity graph.

A.1 NOTATION

Let G = (V, E, w) be an undirected graph of n vertices and weight function w : V' x V' — Rx. For
any edge e = (u,v) € E, we write wg (u, v) or wg(e) to express the weight of e. For a vertex u € V,
we denote its degree by degg(u) £ 3, oy we(u,v), and the volume for any S C V is defined as
volg(S) £ 3 ,cs degq(u). For any two subsets S, T C V, we define the cut value between S and
T by wa(S,T) = 2B (s,T) Wes Where Eg (S, T) is the set of edges between S and T'. Moreover,
for any S C V, the conductance of S is defined as
S,VA\S

CI)G(S) A : wG() \)
min{volg(S), volg(V \ S)}
if S #), and ®5(S) = 1if S = . For any integer k > 2, we call subsets of vertices A1,..., Ay a
k-way partition of G if Ule A; =V and A; N A; = 0 for different i and j. We define the k-way
expansion of G by

= min max Pg(4;).

a(k
p () partitions Aq,...,Ag 1<i<k

Part of our analysis is based on algebraic properties of graphs, hence we define graph Laplacian
matrices. For a graph G = (V, E, w), let Dg € R™*™ be the diagonal matrix defined by D¢ (u, u) =
degq (u) for all u € V. We denote by Ag € R™*" the adjacency matrix of G, where Ag(u,v) =
we (u,v) for all u,v € V. The normalised Laplacian matrix of G is defined as

Lo 21-Dg"?AqDg"?,
where [is the n x n identity matrix. The normalised Laplacian L is symmetric and real-valued,
and has n real eigenvalues which we write as A;(Lg) < ... < A\, (Lg). We sometimes refer to
the ith eigenvalue of L as J; if it is clear from the context. It is known that A\; (Ls) = 0 and
An(Le) < 2 (Chung,|1997). The following result will be used in our analysis.
Lemma A.1 (higher-order Cheeger inequality, [Lee et al.|(2014)). It holds for any graph G and k > 2

that

A.2 APPROXIMATE SIMILARITY GRAPH

We first introduce the notion of cluster-preserving sparsifiers.

Definition A.2 (Cluster-preserving sparsifier, Sun & Zanetti/ (2019)). Let ' = (V, E, w) be any graph
with k clusters, and {S;}¥_, a k-way partition of F corresponding to pr (k). We call a re-weighted
subgraph G = (V,E' C E,wg) a cluster-preserving sparsifier of F if (i) ®(S;) = O(k - P (S;))
Sfor1 < i <k, and (ii) \er1(La) = Q(Ak+1(LF)).

Notice that graph F' = (V, E, w) has exactly k clusters if (i) £ has k disjoint subsets S1, ..., S
of low conductance, and (ii) any (k + 1)-way partition of F' would include some A C V of high
conductance, which would be implied by a lower bound on A1 (Lp) due to (Ad). Together
with the well-known eigen-gap heuristic (von Luxburg, [2007)) and theoretical analysis on spectral
clustering (Peng et al., 2017), these two conditions ensure that the k£ optimal clusters in F' have low
conductance in G as well. Based on this, we define approximate similarity graphs as follows:

Definition A.3 (Approximate Similarity Graph). For any set X C R? of n data points and the fully

connected similarity graph F on X, we call a sparse graph G with 5(n) edges an approximate
similarity graph on X if G is a cluster-preserving sparsifier of F.

We call G an approximate similarity graph in the extended abstract if GG satisfies the properties of
Definition[A3l

13

Under review as a conference paper at ICLR 2025

B OMITTED DETAIL FROM SECTION

This section provides the detailed explanations omitted from Section [3] and is organised as follows:
Section analyses the initialisation and querying procedures. Section analyses the dynamic
update step for adding data points. Finally, Section[B.3|proves Theorem

Algorithm|I]describes all the used procedures and corresponding subprocedures, whose performance
is summarised in Theorem 3.11

Algorithm 1 DYNAMICKDE(X, Q, ¢)

1: Members

2: flg > Query estimates for every point q € Q
3: € > Precision parameter for KDE estimate
4: For p1; € M, create set @, > Set of data points with query estimate less than p;
5: procedure INITIALISE(X Q,¢e)
6: n',n | X|,m [2], N <« [log(2n/)] > C'is a universal constant
7: K +m-N > Number of independent estimators used
8: Ju; {log 2#—"/—‘ for u; € M > See Deﬁnition
9:
10: PREPROCESS (X, ¢) > Initialise the (Charikar et al. (2020) data structure (Algorithm [2)
11: PREPROCESSQUERYPOINTS (X, Q, ¢) > (Algorithm @)
12: procedure ADDQUERYPOINT(q)
13: fiq < QUERYPOINT(X, q,¢) > (Algorithm 3)

14: Store fiq
15: Add q to all sets @, such that fiqg < p;
16: ADDFULLHASH(q) > (Algorithm [4)

17: procedure ADDDATAPOINT(z)
18: n<n+1
19: if n —n' > n/ then

20: INITIALISE(X U z,Q,€) > We reconstruct the data structure
21: else

22: ADDPOINTANDUPDATEQUERIES (2,), €) > (Algorithm E])
23: procedure DELETEQUERYPOINT(q)

24: DELETEFROMDATA(z) > (Algorithm

25: Delete jiq

Algorithm 2 DynamicKDE Preprocessing

1: procedure PREPROCESS(X ¢)
2 Input: the set X of data points, and the precision estimate €
3 for pi; € M do
4 fora=1,2,...,K; do > K1 = O(logn’/e?) independent repetitions
5: forj=1,2,...,J,, do >Jy,, = [10g QM—”W geometric weight levels
6 Ky ; < 200logn/ 'p;e?r,j > See Lemmaand (2.1) for def. of ppear,; and k;
7 psamp < min {Tlllh) 1
8: Sample every x € X W.p. Psamp, and let Z,,; ; be the set of sampled elements
9: for(=1,2,..., Ky ; do
10: Draw a hash function H,,, , ;¢ from hash family #*s (Lemma
11: forxe Z,, ;do
12: Store x in the bucket By, |, . ,(x)
13: Sample every x € X w.p. ﬁ, and let X 1, be the set of sampled elements.
14: Store X, 4 > Set X, , will be used to recover points beyond L ;1

14

Under review as a conference paper at ICLR 2025

Algorithm 3 DynamicKDE Query Procedures

procedure QUERYMUESTIMATE (X, q, €, ;)

Input: set X of data points, query point q, precision estimate ¢, and KDE estimate ;.
fora=1,2,...,K; do > O(logn’ /?) independent repetitions

1:

2

3

4 forj=1,2,...,J,, do

5: Ky ; < 200logn’ 'P;eljfr,j
6: for/=1,2,..., K5 ;do
7 Recover points x € By
8

Higsa,g,L

Recover points X € X 1,0 Such that x € Lf}w 41

(q) such that x € LY

9: S < set of all recovered points in this iteration

10: for x;, € S do

11: wy 4+ k(xy, q)

12: if x;; € L for some j € [J,,] then

13: Dt emin{ﬁ,l}

14: elseif x; € X \ (Uje[JM] L?) then
. 1

15: Pit < 5,7

16: Zq,a < in/ €S wi’/pi'

17: Store Zg,q

18: forb=1,2,...,N do > Get median of N = O(logn) means of size O(1/£?)
. ~ 1 bm

19: Zab < 7 2Za=(b-1ym+1 Zaa

return Median (Zq.1, Zq,2, - -+ Zqg)
20: procedure QUERYPOINT(X, q, ¢)

> If estimate is larger than p;, return

21: Input: set X of data points, query point g, precision estimate €.
22 for Hi € [:U/log(Qn’)a Hlog(2n/)—1s -+ -5 M1, MO] do
23: if QUERYMUESTIMATE (X, q, €, it;) > ; then
24: return QUERYMUESTIMATE(X, q, €, f4;+1)
the previous estimate.
25: return 0

15

Under review as a conference paper at ICLR 2025

Algorithm 4 DynamicKDE Full Hash Procedures

1: procedure PREPROCESSQUERYPOINTS(X, @, ¢)

2 Input: the set X of data points, the set of query points (), and the precision estimate &.
3 forq € Q do

4 fiq < QUERYPOINT(X, q,€)

5: Store fiq

6 Add q to all sets @, such that fiq < p;

7 for p1; € M do

8 fora=1,2,...,K; do

9 forj=1,2,...,J,, do
10: Ky ; < 200logn/ op;e];jw
11: for{=1,2,..., K5 do
12: forq € @Q,, do
13: Store q in full bucket B}*{MYG‘M(q) corresponding to hash value

Hﬂi;a7j7€ (q)

14: procedure ADDFULLHASH(q)
15: Input: New query point g
16: for y; > fiq do

17: fora=1,2,...,K; do

18: forj=1,2,...,J,, do

19: [y j 4 200logn’ - poav

20: for{=1,2,..., Ky ;do

21: Store q in full bucket B}; ~ (q) corresponding to hash value H, a;.¢(q)

Algorithm 5 DynamicKDE Delete Procedures

1: procedure DELETEFROMDATA (z)

2 Input: Query point q to remove

3 for yi; € M do

4: Remove q from @,

5: fora=1,2,...,K; do

6 forj=1,2,...,J,, do

7 Ky ; < 200logn’ 'P;e];]},j

8 for{=1,2,..., K> do

9 Remove g from full bucket B};M oy (q)

B.1 ANALYSIS OF THE INITIALISE AND ADDQUERYPOINT PROCEDURES

We first analyse the INITIALISE(X, @, c) and ADDQUERYPOINT(z) procedures in Algorithm
whose corresponding subprocedures are presented in Algorithms 2] 3] and 4]

We assume that fi; is an estimate satisfying jiq < pt;; we will justify this assumption in Remark
We first analyse the expected number of data points to be sampled in each bucket By, , ., (q).

Lemma B.1. For any a, 11, j, ¢, it holds for q € Q,,, that

Bty || {% € s | Huvit@) = Hya o) || = 00,
any for q € Q,,, that

En,. .0 [{x € X | Hyp ot (%) = Hyage(@I}] = O (27 i) .

Proof. We compute the expected number of collisions in the bucket By, ,, ;, (q), and our analysis
is by case distinction.

16

Under review as a conference paper at ICLR 2025

Case 1: j' < j. It holds by Lemmathat ’L?,

of points that could collide from these geometric weight levels. Since every data point is sampled
with probability 1/ (23+1 ui) in this iteration, the expected number of sampled data points is O(1).

< 27 j1q < 27" i, which upper bounds the number

Case 2: j < j' < J,, +1. We analyse the effect of the LSH. Note that in the jth iteration, we
choose an LSH function whose corresponding distance level is 7;, and use

1 i—j
— X - | -
logpnear,j 1=j+1,.....]u,-JFl C?,j(l - B)

as the number of concatenations. Then, it holds for p € L‘;‘, that

k2 k=

* * 2(1—
Precyr [H*(p) = H*(q)] < p* =7,

where ¢ £ ¢; ; = min{r’;—;l, O <log1/ n)} and p £ pyear ;. Hence, the expected number of

points from weight level L?/ in the query hash bucket is O (2j LJ’) . pkc"’(l*ﬁ) = 5(1), where the

last line holds by the choice of k. Combining the two cases proves the first statement.

The second statement holds for the same analysis, but we have instead that |L?,\ <2 ' Hq < 24’ L/
forq e Q. O

The query time complexity for QUERYMUESTIMATE(X, q, €, 11;) follows from |Charikar et al.
(2020).

Lemma B.2 (Query Time Complexity, Charikar et al. (2020)). For any kernel k, the expected running
time of QUERYMUESTIMATE(X, q, €, ;) (Algorithm ise=?- n;’(l) - cost (k).

Next we show that our returned estimator gives a good approximation with high probability.
Lemma B.3. For any q € R, tg € (0,2n1], py = pg € € (1/n‘;’, 1), the estimator Zq . for
a € [K1] constructed in QUERYMUESTIMATE(X, q, €, ;) (Algorithm satisfies that (1 —n;”) -
tq < E[Zg,a] < pg-

Proof. We first fix arbitrary 5 = j* and a = a*, and sample some point p € L;‘*. By Lemmawe
have

* * kj
]P)H*NH’“J' [H (p) =H (q)] 2 pncar,j'

Since we repeat this process for K, ; = 200logn - p;e]i]r ; times, it holds with high probability that

any sampled point p from band L;»l* is recovered in at least one phase. By applying the union bound,

the probability that all the sampled points are recovered is at least 1 — nfg.

We define Z £ Z,

q,a> and have that

ny

Bz =Y By,

i- D

where y; = 1 if point x; is sampled and x; = 0 otherwise. Hence, it holds that (1 —n;”) p; <
E[x:] < p;, which implies that (1 —ny?) uq < E[Z] < pq. O

Remark 1. LemmaIB_;ir]shows that the estimator Zg.q is unbiased (up to some small inverse poly-
nomial error) for any choice of |; = pq. Therefore, when (1; = 4114, by Markov’s inequality the
probability that the estimator’s returned value is larger than y; is at most 1/4. By taking O(logny)
independent estimates, one can conclude that i; is higher than g if the median of the estimated
values is below p;, and this estimate is correct with high probability. This is achieved on Lines[ISHIY|
of Algorithm To ensure that we find a value of p; that satisfies p;/4 < pq < i with high
probability, on Lines[I8H{24|the algorithm starts with p1; = 2n, and repeatedly halves the estimate
until finding an estimate fiq > (;; at this point the algorithm returns the previous estimate based on

Hit1-

17

Under review as a conference paper at ICLR 2025

Lemma B.4 (Charikar et al| (2020)). For every q € R, g € (0,2n4], € € (1/nf,1), and ;
satisfying p; /4 < pq <, the procedure QUERYMUESTIMATE(X, q, €, 4;) (Algorithmin the
appendix) outputs a (1 £ €)-approximation to pq with high probability.

Proof. Let Z £ Zg ,, and we have that

p:€X
Wiw; w%
— ZE XiXj o E Xi - 72
% Pipi L i) P
w? 2
DITIED D TR ER D)
i#£] i€[n1] ’ i€[n1] pi
2
Wi
< Z w; +max{-]1[pi7é1]} w;
. i€[ni] | Pi .
i€[ny] i€[na]

<2 2y max w; - 29Ty
(ko) JEL, P €LY { } Hi " Ha

<8y, (B.1)

where the second inequality follows from

% Ipi =1] < w?
and
(z:wi)2 = Zwiwj + Z w?,
i i#j i€[ni]

and the third inequality follows from (uq)? = (3, w;)? and p; > 1/ (271 ;).
Let

bm

= A 5 1
zZ % Zgp = m Z Zg,a
a=(b—1)m+1
be the empirical mean of 7 such estimates, as computed on Line[T9]of Algorithm [3] We have that
P(|1Z - pql > epa) SP[|IZ - E[Z)| > epiq — [E[Z] = pq]]
<PB[Z—E[Z)| > (e — n;")pa]

E[Z?]
<)
(57711) (11q)?
ST
m

(- ”1_9)2 (hq)?
where the first inequality follows from |Z — pq| < |Z — E[Z]| + |E[Z] — j14], the second one
follows from E[Z] > (1 — n]?)uq (Lemma , the third one follows from Chebyshev’s inequality
and the last one follows from E[Z?] < E[Z?]/m < 8u?/m and p; < 4piq. By setting m = &
for a large enough constant C' and taking the median of O(log(1/d)) of these means we achieve a
(1 +)-approximation with probability at least 1 — d per query. O

B.2 ANALYSIS OF THE ADDDATAPOINT PROCEDURE

We now analyse the ADDDATAPOINT(z) procedure in Algorithm If the number of data
points has doubled, ADDDATAPOINT(z) calls the INITIALISE(X, Q,¢) procedure. Otherwise,
ADDDATAPOINTANDUPDATEQUERIES(z,), €) is called, which we describe in Algorithm@

18

Under review as a conference paper at ICLR 2025

Algorithm 6 DynamicKDE Update Procedures

10:
11:
12:
13:

14:
15:

16:
17:
18:
19:

20:
21:
22:

1:
2
3
4
5
6:
7
8
9
0
1

23:
24
25:
26:
27:
28:
e Ky .
29:

procedure ADDPOINTANDUPDATEQUERIES(z,), €)

Input: New data point z, the set of query points (), and the precision estimate ¢.
for yi; € M do
fora=1,2,...,K; do
forj=1,2,...,J,, do

Psampling <— min Qj%luiv 1
if z is sampled with probability psampling then
K5 j < 2001logn’ -pgcl;"r’j
for{=1,2,..., K, ; do
Store z in bucket By, , . ,(2)
Recover q € B}‘J%H’M(z) suchthatq € Qy, \ U,/ ., @y, and q € L%

Sample z with probability ﬁ
if z is sampled then

Addzto X,

Recover g € Q suchthatq € @, \ U, ; Qp, andq € L%

Jui+1
S < Set of all recovered points from the full hash in the current iteration
forq € Sdo

wq < k(z,q)

if z € L for some j € [J,,] then

Dq < min{ﬁ, 1},
elseif z € X'\ {J;; ;L] then

Pq < ﬁ
gq,a += wq/Pq
Zq,[am] += wq/(Mpq) > Update empirical mean (Line Algorithm)
fiq < Median (Z%l, qu, ceey Zq,N) > Update median
if ig > p; then

Qu, < Qu, \{a}

Remove q from every Bj; (q) for all ' € [K4],j" € [J,,], and

al gl et

fiq < QUERYPOINT(X, q, €)

We first show that ADDDATAPOINT(z) procedure updates the estimates correctly.

Lemma B.5. After running the ADDDATAPOINT(z) procedure, it holds with high probability for
every q € Q that fiq is a (1 £ €)-approximation of pq.

Proof. We prove that running the initialisation procedure INITIALISE(X U z, @, ¢) is the same as
running INITIALISE(X, @, €), and then running ADDDATAPOINT(z).

» We first examine the ADDPOINTANDUPDATEQUERIES(z,), €) procedure (Algorithm @)
On Lines [7HI(| and Lines [I2HI4] the algorithm samples the point z with probability
min { ﬁ, 1} and ﬁ, respectively: If z is sampled in Lines , the algorithm stores
z in the bucket corresponding to hash value H),, , ; ¢(2z); if z is sampled in Lines 14]
the algorithm adds z to the set X, ,. This is the same as sampling and storing z in
the PREPROCESS(X U z, €) procedure (Algorithm on Lines |8/ and which is called
during INITIALISE(X U z, @, €). Hence, after running INITIALISE(X, @, €) followed by
ADDPOINTANDUPDATEQUERIES(2, @, €), the stored points in H,,, 4 j ¢ and X,,, , for all
pi € M, a € [Ki], j € [Ju,], and £ € [K ;] are the same as the ones after running
INITIALISE(X Uz, Q, €).

19

Under review as a conference paper at ICLR 2025

 Next, we prove that the estimates [i4 are updated correctly for every q € Q. Without loss of
generality, let q be a query point such that q € Qy, \ U; ; @

— We first note that, when running INITIALISE(X, @, ¢) (Algorithm , the KDE es-
timate for q is returned by running QUERYMUESTIMATE(X, q, €, ii;) (Line 24| of

Algorithm [3).
— When running INITIALISE(X U z,Q,¢), if z is sampled on Line (8 during
PREPROCESS(X U z, ¢) for any iteration a € [K;], j € [J,,,], then z is stored in the

bucket By, , . ,(2) forall £ [Ko j] Moreover, 1f z is sampled on Llne.for any

iteration @ € [K], then z is stored in Xm,a. In this case, if H,,, o j.0(q) = Hy,,0,5.0(2)
and z € L;‘ for some ¢ € [Ky;|, orifz € Lf}u_“, then z would be included

in the set of recovered points S for the iteration @ € [K;], and consequently
in the estimator Z4 , when QUERYMUESTIMATE(X U z,q, ¢, 41;) is called during
PREPROCESSQUERYPOINTS (X U z, Q, &) (Algorithm [4).

— On the other hand, we notice that, when running
ADDPOINTANDUPDATEQUERIES(z,), €), q is recovered if (1) H,, 4 j¢(q) =
Hy,aj(z) and q € L% (Lineof Algorithm @ or (i) q € L5, (Lineof
Algorithm@). Furthermore, (i) q € L% if and only if z € LY, for any j" € [J,, + 1],
and (ii) the buckets B;Iui,a,j,é (q) and By, ;,(q) are populated using the same hash
function (Line (13| of Algorithm E]) Therefore, q is recovered at iteration a € [K;]
when running ADDPOINTANDUPDATEQUERIES(z, @, ¢) if and only if z is included
in the estimator Zy , when QUERYMUESTIMATE(X U z,q, €, ;) is called during
PREPROCESSQUERYPOINTS(X U z,@Q,¢). Then, the estimator Z , is updated
accordingly by adding z through Lines [T7H25] of Algorithm [6] as it would be done
through Lines[TOHI9] of Algorithm 3]

— Finally, if jiq > p1;, then we re-estimate the query point on Line @ to ensure we have

the correct estimate [iq. We also update the set (,,, accordingly, and remove q from
every By, (z)forallad’ € [Ky],j" € [J,,]. and ' € [K>).
Hg,a53%,

Combining everything together, we have shown that performing the initialisation proce-
dure INITIALISE(X U z,Q,e) is the same as running INITIALISE(X,Q,¢), followed by
ADDDATAPOINT(z). O

Next, we prove how many times any individual query point q is updated as the data points are inserted
using the ADDDATAPOINT(z) procedure Let X{! = {x1,...,X,, } be the set of points presented at

the time when q is added, and let Z7 £ {z,, ...,z } be the points added up until the query time 7.
We use z; to denote the new point added at time ¢. Note that it holds for the points X at time 7" > 1
that X} = X' U Zr. Next, we define the event F; that

Hai € (L+¢) - k(q, X1), (B.2)

where /i ; is the maintained query estimate for q at time ¢ from Algorrthml 1} By Lemma
know that F, happens with high probability. Moreover, for a large enough constant C' on Line @ of
Algorrthmm, we can ensure that this happens with high probability at every time step ¢. Therefore in
the following we assume JF;! happens. We also introduce the following notation.

Definition B.6. We define T)} to be the time step such that

k(qv X%‘}‘) = k q7 + Zk q, Zt

and
T +1

k:(q,X%}iH) =k(q, X{) + Z k(a,z:) > i

By definition, 7} is the last time step at which the KDE value of q is at most z1;. The next lemme
analyses the number of times a query point q is updated.

20

Under review as a conference paper at ICLR 2025

Lemma B.7. Let q be a maintained query point by our algorithm. Then the total number of updates
UZF during T insertions is, with high probability, U7 = O(1).

Proof. Since the KDE data structure can be re-initialised at most log(7") = O(1) times (cf. Line
of Algorithm|T) through the sequence of 7" updates, it suffices for us to analyse the number of times
q is updated between different re-initialisations; we assume this in the remaining part of the proof.

To analyse the expected number of times that q (Line 23] of Algorithm [6)) is updated throughout the

sequences of updates Zr, we define the random variable Yac}t by

ya & 1 if estimate Zq , is updated at time ¢
at 0 otherwise.

Let 5; ; be the event that estimate Zg , is updated at time ¢, and we assume without loss of generality
that Tj1, <t < T}, forsome p; . First note that estimate Zg o is updated if q € S (Line@of
Algorithm|6). Furthermore, because fiqt—1 € (1 +¢) - k(q, X¢—1) by B2 and T}, <t<T2 ,
one of the following holds:

@) a€Qp, \ (Uj’<1" Quj/);
(i) 9 € Qu,_, \ (Uj’<i’—1 Quy)9
(i) q € Qui/+1 \ (Uj/<i/+1 Qujr)'

Additionally, it holds that q € L;f for some j' € J,,,,.

By these conditions, q is included in .S at time ¢ if and only if z; is sampled at either the iteration
for pir € M, py—1 € M or py41 € M (Line 3] of Algorithm [6), and the corresponding iteration
j e du,, on Lineof Algorithm @ Therefore, it holds for t € (Tj3, T | that

i/ 41
1 1 2k(q, z1)
PEL,] < = < = < ’
[£ae] < 20y 2y Ty
where the last inequality uses the fact that q € L%/ (Definition . Similarly, we have that

k
P [ggt] > (q,2¢))
) 4 L
lI;et Z/l%l = Zf:ll le Y:"t be the total number of times that the query point q is updated, and we
ave that

(B.3)

K, T

Ef] =) > E[Ve]
a=1 t=1
K, T

= Z Z P [gz:lt]
a=1 t=1

K /?i/

Hit 1
Ky
2#1'/
<X
a=1p, €M Hir
—2. K, - |M]|
= 6(1)7

21

Under review as a conference paper at ICLR 2025

where the first inequality follows by (B.3) and the second one holds by the fact that

T#-/
Z k(‘l» zt) < je

=T, |
Similarly, we have that
E U] >

By the Chernoff bound, it holds that

1
— - Ky |M].
1 1 | M|

9 \ Ki-[M|/4
Ptz 105U < (1) < ex(-Ka M) = ol

for some constant ¢, and we have with high probability that
U <20 Ky - [M|=0(1),

which proves the statement. O

B.3 PROOF OF THEOREM[3.1]

Proof. We start with proving the first statement. Notice that PREPROCESS(X, ¢) goes through
M - Ky - J,, - Ko j iterations, where M = O(log(n1)), K1 = O(e72 - log(n1)), J,., = O(log(n1))
and Ky ; = O(log(n1) - cost(k)). Since k; — O(1) by definition, the algorithm concatenates
O(1) LSH functions. By Lemma 2.1} the evaluation trme of H*(x) for any H* € H"i is n(f(l),
and hashing all n; points yields the running time of e~ }M(l) cost(k) for PREPROCESS(X, ¢)

in the worst case. Since we start with an empty set of query points @ = (), the running time of
PREPROCESSQUERYPOINTS(X, Q, €) can be omitted. This proves the first statement.

The guarantees for ADDQUERYPOINT(q) in the second statement follow from Lemma [B.2] and
Lemma The running time for DELETEQUERYPOINT(q) follows from the running time guarantee
for ADDQUERYPOINT(q).

Now we prove the third statement. The correctness of the updated estimate of 14 follows from
Lemmam B.5| To prove the time complexity, we notice that, when running ADDDATAPOINT(), the
procedure goes through M - K7 - J,,, - Ko j iterations, where M = O(logn), K1 = O(log(n)/<?),
Jyu, = O(logn), and Ky ; = O(log(n) - cost(k)). In the worst case, z is sampled in every iteration
on Line|7|of Algorithm 6 and needs to be stored in the bucket By, , , ,(z). Therefore, the running

time of updating all the buckets By, ., . ,(z) for a new z is at most =2 - n°(!) - cost (k). To analyse

Lines[T7H29 of Algorithm|[6] we perform an amortised analysis. By Lemma|B.7| it holds with high

probability that every q € () is updated O() times throughout the sequence of data point updates.
When q € @ is updated, the total running time for Lines is

o2 Ky j+e 2% cost(k)) = O(e72 - cost(k)),

due to Lines [28|and[29] Let T be the total number of query and data point insertions at any point
throughout the sequence of updates, and m £ |Q|. Then the amortised update time is

o e N G) R

where the second inequality follows from 7" > m, as the algorithm started with an empty query set
@ = (). Combining everything together proves the running time.

C OMITTED DETAIL FROM SECTION [4]

This section presents all the detail omitted from Section[d] and is organised as follow: Section [C.1]
presents and analyses the algorithm for the initialisation step; Section [C.2] presents and analyses the
algorithm for the dynamic update step.

22

Under review as a conference paper at ICLR 2025

C.1 THE INITIALISATION STEP

In this subsection we present the algorithms used in the initialisation step, and analyse its correctness
as well as complexity. The following tree data structure will be used in the design of our procedures.

Algorithm 7 Tree Data Structure

1: LEAF(x;)

2: Input: data point x;

3: data + x; > Stores the data point

4: paths < NiIL > Stores the sampling paths ending at this leaf

5: NODE(X)

6: Input: set of data points X

7: data «+ X > Stores the data points in the subtree rooted at this node

8: size < | X| > Number of data points in the subtree rooted at this node

9: kde + NIL > Stores the DynamicKDE structure
10: left < NIL > Left child node
11: right < NIL > Right child node
12: parent «+— NIL > Parent node
13: paths + NiL > Stores the sampling paths passing through this node

Based on this data structure, the main procedures used for constructing an approximate similarity
graph in the initialisation step are presented in Algorithm[8] We remark that, for any set X of data
points, we always set ¢ = 1/log® | X| when running the DYANMICKDE.INITIALISE procedure.
Choosing a fixed value of ¢ in this section allows us to simplify the presentation of the analysis
without loss of generality.

To analyse the correctness and time complexity of the algorithm, we first prove that, for any data point
x; € X, the probability that its sampling path Px, , passes through any internal node 7" depends on
the KDE value of x; with respect to 7”.data.

Lemma C.1. For any point x; € X, tree T constructed by CONSTRUCTGRAPH (Algorithm|8), and
sampling path Px, ¢ (for any € € [L)), the probability that Py, ¢ passes through any internal node T’
of T is given by

2k(x;, T'.data)

xl,é S pat S k(] 7_. |)

2k(x;, T.data) ~

Proof. Let X = {x1,...,Xp, } be the input data points for the CONSTRUCTGRAPH (X, €) procedure
in Algorithm Then, in each recursive call (at some internal root 7"’) to SAMPLE (Algorithm [3]) we
are given the data points X; = 7" .left.data and Xr = 7" .left.data as input and assign Py, , to
either 7,/ = T" left or T} = T .right. By Lineof Algorithm we have that the probability of
assigning Py, ¢ to 7/ .paths is

"7
L -Hx;
T fix,

By the performance guarantee of the KDE algorithm (Theorem , we have that 7" .fix, € (1 +
e) - k(T".data, x;). This gives

P[Px,,c € T; .paths | Pk, . € T" paths] =

. e/t
(1 E) K<, To.981) g 1p, < 77 paths | Py, € T paths]

1+¢) k(x;,7".data)
T
< 1+e¢ k(xl,TL‘data). C.1)
1—¢/ k(x;,T".data)
Next, notice that it holds for a sequence of internal nodes 71, 7z, . .., T, with T;.parent = 7,11 (1 <

1 < r — 1) that

P[Py, ¢ € T1.paths] = H P[Py, ¢ € T;.paths|Py, ; € T;11.paths],

1<j<r—1

23

Under review as a conference paper at ICLR 2025

Algorithm 8 Initialisation Procedures for Constructing an Approximate Similarity Graph

procedure INITIALISETREE(X)
Input: set X of data points

1:
2
3 if | X| = 1 then
4: return LEAF(X) > Leaves store individual data points x; € X
5: else
6: T < NODE(X)
7 m < 2Us(X1/2)] 'j | X| > Nearest power of 2 less than or equal to 72/2
8: X+ X[1:n—m], Xp+ X[A—m+1:7) > Split the dataset into two
9: Tr < INITIALISETREE(X), Tr < INITIALISETREE(X i)
10: T left « T, T.right + Tgr
11: 71 -kde + DYNAMICKDE.INITIALISE(X,, 0, 1/ log® n) > (Algorithm E])
12: Tr-kde <+ DYNAMICKDE.INITIALISE(X g, §, 1/ log® n)
13: return 7
14: procedure SAMPLE(S, T, {)
15: Input: set S of x;, KDE tree T representing data points X, parameter ¢, sample index ¢

16: Output: E = {(x;,x,) for some ¢ and j}
17: for x; € S do

18: Px; 0 Px, e UT

19: T .paths < T .paths U {Px, ¢} > Update and store sample paths
20: if ISLEAF(T) then

21: return S x 7 .data

22: else

23: T = T .left, X;, = T left.data

24: Tr = T.right, X = T .right.data

25: for x; € S do

26: 71 fix, < T1..kde. ADDQUERYPOINT(x;) > (Algorithm|T)
27: Tr-fix, < Tr.kde. ADDQUERYPOINT(x;)

28: SL — (Z), SR — @

29: for x; € S do

30: r ~ Unif[0, 1]

31: if r < Tp.fix, /(TL-fix, + Tr-fix,) then

32: SL — SL Ux;

33: else

34: Sr +— SpUX;

35: return SAMPLE(S,, 71, £) U SAMPLE(SR, Tr, ()

36: procedure CONSTRUCTGRAPH(X)
37: Input: set of data points X

38: T < INITIALISETREE(X)

39: T.kde + DYNAMICKDE.INITIALISE(X, X, 1/log® | X]) > (Algorithm 1)
40: E<« 0

41: for ¢ € [L] do

42: E; = SAMPLE(X, T,?)

43 E+ EUE,

44: for (x;,x;) € Ey do

45: w(i, J) + L - k(x4,x;)/ min{T .kde.fix,, T -kde.fix, }

46: if min{7 kde.jix,, T .kde.jix, } = T .kde.jix, then

47: By, < Bx, Ux; > Keep track of the neighbours with higher degree
48: wG(Xi)Xj) += k(X,,X])/ﬂJ\(’L,])

49: return 7, G £ (X, E,wg)

where each term in the right hand side above corresponds to one level of recursion of the SAMPLE
procedure in Algorithm 8]and there are at most [log,(n1)] terms. Then, by setting 7, = T, 7, = T,

24

Under review as a conference paper at ICLR 2025

(C-1), and the fact that the denominator and numerator of adjacent terms cancel out, we have

[log(n1)] ,

1—¢ k(x;, 7" data) /
—— <))

(1 + 6) h(x, Tdata) S P € T paths]

(1= Moe(mT 1 (x,;, 77 data)
S\l-¢ k(x;, T.data) -

For the lower bound, we have that

[log(n1)]
- |
(1 +i> > (1-20)1801 > 1 3elog(m) > 1/2,

where the final inequality follows by the condition of ¢ that ¢ < 1/log®(n;).

For the upper bound, we similarly have

2

N

)

[log(n1)]
1 7
<1 J_ri) < (1+32) 1T < exp (3¢ Mlog(n)]) < */°

where the first inequality follows since ¢ < 1/log®(ny). O
The remaining part of our analysis is very similar to the proof presented in Macgregor & Sun| (2023)).
For each added edge, CONSTRUCTGRAPH (X) computes the estimate defined by

logm k‘(Xi,Xj)

~ A
=6C -
w(l,]))\k+1 min{,&xiaﬂx]})

where for the ease of notation we denote 7 .kde.iix, £ fix, and T .kde.fix, = fix,. If an edge
(x4,%;) is sampled, then the edge is included with weight k(x;,x;)/%w(4,j). The algorithm in
Macgregor & Sun|(2023) is almost the same as our algorithm, with the only difference that in their
case the edge is included with weight k(x;,x;)/p(4, j), where

2
ﬁ(i,j)é60~k(xi’xj).bgnl-(Al n Al)_(6C.k(xi,xj)-logn1> - lA -
)\k+1 Hx; ,foj Ak-‘,—l Hx; - ,Lij

Notice that

k(xi,x;) - logny < 1 1
Ak+1
Assuming without loss of generality that

6C - k(xi,x;) - logny . <1+ 1) -1,
Ak-‘,—l /Lx,y ,UJva

we have that

) dogm (1, 1), 0.

— + —
Ak+1 fx, fix; 2

As such, the scaling factor w(i, j) in our algorithm and p(, j) in the algorithm of Macgregor &
Sun| (2023)) are within a constant factor of each other. Therefore, to prove the first statement of
Theorem [4.1] one can follow the proof of Theorem 2 of Macgregor & Sun|(2023), while replacing
each p(i, j) with (4, j) appropriately.

C.2 THE DYNAMIC UPDATE STEP
In this subsection we present the algorithm used in the dynamic update step, and analyse its correctness

as well as complexity. Our main algorithm for dynamically updating an approximate similarity graph
is described in Algorithm[9] and the RESAMPLE procedure can be found in Algorithm[I0]

25

Under review as a conference paper at ICLR 2025

Algorithm 9 Dynamic Update Algorithm for Constructing an Approximate Similarity Graph

1: procedure UPDATEGRAPH(G = (X, FE,wg), T, z)

2 Input: an approximate similarity graph G, KDE tree T, new data point z
3: A<+ ADDDATAPOINTTREE(T,z) > (Algorithm 10))
4: Erpew < 0

5: for/e[1,...,L]do > Sample L neighbours from the new vertex z
6 (z,x;) < SAMPLE({z}, T, ()

7 Enew — Enew U {(Za Xj)}

8: w(i,j) < L - k(z,x;)/ min{T .kde.ji,, T .kde.jix, }

9: wa(z,x;) += k(z,%x;)/0(%,)

10: if min{7 kde.ji,, T kde.jix, } = T .kde.fix, then

11: By, + Bx, Uz

12: E <+ FUFEqew
13: for x; such that 7 .kde.[ix, has changed do

14: Let deg;, be the old estimate of 7.kde. i,
15: for x; € By, do
16: we (X, Xj) < wg(Xi, X;5) - deg,q/ min{ 7 .kde. fix,, T kde.fix, }
> Update scaling factor of adjacent edges
17: if min{7 .kde./iy,, 7 .kde.jix, } = T .kde.jiy, then
18: Bxi — Bxi \X]‘
19: for Py, , € Ado
20: Let 7' be the parent of the highest internal node where Py, ¢ was fetched
21: for 7* below 7' such that Py, , € T *.paths do
22: Remove Py, ¢ from 7 *.paths
23: Remove x; from the query set of 7*.left.kde and 7 *.right.kde
24: Remove T from Py, ¢
25: Let x; be the previous sampled neighbour of x; (i.e., leaf in Py,)
26: we (x4, %;) —= k(x;,%;)/w(4, j) where w(3, j) is previous used re-scale factor
27: E + FE\ (x;,%;) if wg(x;,xj) =0
28: (xi,X}) < RESAMPLE(T", Px, ¢, €) > Resample path (Algorithm
29: B« BEU{(x;,x})}if (xi,x}) ¢ £
30: w*(i,7) < L - k(x;,x})/ min{7 kde.fix,, T kde.jix- }
31: if min{T.kde.ﬂxi,T.kde.ﬂxj} = T .kde.[ix: then
32: Bx; — Bx; Ux; > Update neighbours with higher degrees
33: wa (x4, %) += k(xi, x;) /w0 (i, f)

C.2.1 RUNTIME ANALYSIS

Now we analyse the performance of the algorithms used in the dynamic update step. We first prove

Lemmas 4.2l and 4.4]

Proof of Lemmad.2] The running time of the two procedures is dominated by the recursive calls
to ADDQUERYPOINT(x). By Theorem [3.1| the running time of adding a query point is =2 -

n°) . cost(k). Since the depth of the tree 7 is at most [logn], there are at most [log n] recursive
calls to SAMPLE and RESAMPLE. Hence, the total running time of SAMPLE and RESAMPLE is

72 n°M . cost(k). O

Proof of Lemma4] By the tree construction, we have that Plq € 7'kde.Q] =
P[3¢ such that Pqy ¢, € T'.paths], and

2k(q, 7'.data)
k(q, T .data)

2k(a, T kde.X) _ 5 (p;
k(q, Tkde.X) — ~\ /)’

P[3¢' such that Py ¢ € T'.paths] < L -P[Pq, € T .paths] < L -

=1L

26

Under review as a conference paper at ICLR 2025

Algorithm 10 Tree Update Procedures for Constructing an Approximate Similarity Graph

1: procedure ADDDATAPOINTTREE(T, z)

2 Input: KDE tree/node T, new data point z

3 if ISLEAF(T') then

4: x < T.data

5: A < T .parent.paths > Store paths that need to be resampled
6: Tnew < NODE({x,z})

7 Tnew-left <~ LEAF(x), Thew.right < LEAF(z)

8 Tnew-kde <~ DYNAMICKDE.INITIALISE({x, z}, 0, ¢)

> Initialise new KDE data structure

9: Replace the leaf T with node Tpey
10: return A
11: else
12: T .kde. ADDDATAPOINT(z) (Algorithm |I])
13: Let A be the set of points x; € 7.kde.(Q such that 7 .kde.[ix, changes after adding z.
14: A <« {Px, ¢ € T.parent.paths | x; € A}
15: if 7 left.size < T .right.size then

16: return A U ADDDATAPOINTTREE(T .left, z)
17: else
18: return A U ADDDATAPOINTTREE(T .right, z)

19: procedure RESAMPLE(T, Px, 1)
20: Input: KDE tree/node 7, and sampling path Py, ¢
21: ’Pxi,g (*’Px“gUT

22: T .paths < T .paths | J{Px, ¢} > Update and store sample paths
23: if ISLEAF(T) then

24: return x; x 7 .data

25: else

26: Tr = T left, X; = T left.data

27: Tr = T .right, X = T right.data

28: 71, .kde.ADDQUERYPOINT(x;) if x; ¢ T1.kde.Q > (Algorithm|T)
29: Tr.kde.ADDQUERYPOINT(x;) if x; ¢ Tr.kde.Q

30: r ~ Unif]0, 1]

31 ifr < Tr.fix, /(Tr-fix; + Tr-fix,) then

32: RETURN RESAMPLE(Ty,, Py, ¢)

33: else

34: RETURN RESAMPLE(Tg, Px, ¢)

where the first inequality holds by the union bound, the second inequality follows by Lemma[C.I]
and the last line holds by the definition of @, ,,,(7") and L = O(1). O

Next, we state Lemma[4.5]more precisely and provide its proof.

Lemma C.2. Let z be the data point that is added to T through the ADDDATAPOINTTREE(T , z)
procedure in Algorithm and T’ be any internal node that lies on the path from the new leaf
LEAF(z) to the root of T. Then it holds for any i € [[log(2 - T .kde.n')]], a € T'.kde.K, j € [J,,,]
and { that

Ey {a €T .kde.Q,, | T'.kde.H,, o ;(z) = T .kde.H,, . ;(Q)}]] = 0] (1 - 2j+1) .

piraine |
Proof. We first remark that, except for the dynamic KDE structure stored at the root 7 .kde, it does
not necessarily hold that 7' .kde.QQ = 7’.kde.X; this is because that the query points stored at
internal nodes are the ones whose sample paths passed through this node, and the data points are the
leaves of the subtree 7'. Hence, to analyse the expected number of colliding points in the bucket
7' kde.By, ., ,,(z), we need to separately analyse the contributions from q € @, (T") for
i’ > 1. To achieve this, we apply Lemma and have for ¢’ > 1 that

EHui,a,j,Z H{q S T.kde.QW | Tl.kde.HMi’a’j,g(Z) = T/.kde.H‘u“a’j’g(q)}H = O(2j+1 . ,U/i’)-
(C.2)

27

Under review as a conference paper at ICLR 2025

Therefore, it holds that
En,, .. [{a € T kde.Q,, | T'kde.H,, q,(2z) = T'kde.H,, 4 j.e(a)}|]

= EHuiya,J'-,f

> {ae T kde.Q,, | T -kde.H,,, q .(z) = T' kde.H,, o j.e(q) and q € Qu,, v, (T}

i >0

= : :EHH@@J\@

i>i

[[{a € T' kde.Q,, | 7' kde.H,, o ¢(z) = T'kde.H,, . ;(q) and q € Q,., ., (T")}]
<> 0 (‘“ > ‘Ep, ... [[{acTkde.Q,, | T'kde.H,, j(z) = T'kde.H,,, . .(q)}[]

>0 Har
(C.3)
o)
>0 i
=0 (- 2, (C.5)

where (C.3) follows by Lemma[.4] and (C.4) holds by (C.2). O

Lemma C.3. The expected rotal running time for T'.kde.ADDDATAPOINT(z) (Line |12| of Algo-
rithm[10) over all internal nodes T' along the path from the new leaf LEAF(z) to the root of T is
no . cost(k). Moreover, the expected number of paths A (Line|3| Algorithm @) that need to be

resampled satisfies that E[|A]] = O(1).

Proof. We first study the update time and the total number of paths that need to be updated
at a single internal node 7'. Notice that, when 7'.kde.ADDDATAPOINT(z) (Line [12| of Al-
gorithm [I0) is called, the procedure ADDPOINTANDUPDATEQUERIES in Algorithm [6]is called
in the dynamic KDE data structure 7’.kde. Hence, we analyse the expected running time of
ADDPOINTANDUPDATEQUERIES in Algorithm 6]

v
time, where n’ = |7".data| is the number of data points stored at T, and these five lines are executed
with probability at most 1 /(27! 1i;). Since we only consider the collisions with points in 77 .kde.Q,,,,
it holds by Lemma|[C.2] that

First, we have that executing Lines of in Algorithm@takes Ky ;- |7—'.kde-B}}u, s (z)] - /o)

En,,... [|T'kde.Bj, (#)]] =0 (27).

Hence, by our choice of K5 ; = O(log(n') - cost(k)), the expected total running time over all y;, a,

and j of Lines of Algorithm@is £=2 . cost(k) - n’°(Y). The same analysis can also be applied
for Lines [T2HI3|of Algorithm [6] Moreover, the expected number of recovered points in S (Line [I6]of

Algorithm El is 5(1), as the expected number of collisions we consider is

]EH |:|Tl‘kde'B}}ui,a,j,z(z)‘] - 6(2]"’1‘”1)7

i a,j,t

and these points are only considered with probability at most 1/(2771 ;).

Next, we analyse the running time of Lines of Algorithm[6] For every q € S, the total running
time for Lines isO(72 - Ky j + &2 cost(k)) = O(e=2 - cost(k)), due to Linesand

Hence, the expected total running time for running 7'.kde.ADDDATAPOINT(z) at a single 7" is
O (72 -n*MW . cost(k)). As there are at most [logn] nodes 7" that are updated when z is added
and n’ < n, the running time guarantee of the lemma follows.

It remains to prove that E[|.A|] = O(1). Notice that, the number of points q € 7”.kde.Q whose
KDE estimate changes at 7 is the number of recovered points in S (Line [16|of Algorithm E]) From

28

Under review as a conference paper at ICLR 2025

the ADDPOINTANDUPDATEQUERIES procedure (Algorithm [)), it holds for every p; and a that
E[|S|] = O(1); as such for every 77 the expected number of KDE estimates that change — and
therefore the number of paths that need to be resampled — is O(1). As there are at most [log n] trees
7 that are updated when z is added, it holds that E[|.A|] = O(1). O

Next we bound the size of the set By, that keeps track of the neighbours x; of x; in the approximate
similarity graph G that have higher degree.

Lemma C.4. It holds with high probability for all x; € X that |Bx,| < 14 - L.

Proof. We first notice that
By, = {x; € X | T.kde.fix, > T.kde.jix, and i € Yy, },

where Yy = {y;.1,...y;,r} are the indices corresponding to the sampled neighbours of x;. For
every pair of indices ¢, j, and every 1 < ¢ < L, we define the random variable Z; ; o to be 1 if j is the
neighbour sampled from ¢ at iteration ¢, and 0 otherwise, i.e.,

P 1 ify,p=j
34 =Y 0 otherwise.

We fix an arbitrary x;, and notice that

L n
= Z Z j 3,05 (C.6)
(=1 j=1

Fxe; > fie,

where for ease of notation we set fix, = 7 .kde.fix, and /i fix; = 2 T kde. fix; to be the KDE estimates
at the root 7. We have that

L n L n
B> D Zue| =2, 2 ElZul

=1 j=1 1):1 j=1
Nx]' > fix; x > fix;
L n
=2 > Plye=i
=1 j=1
iy >
L 2 2k(x;,x;)
< 75 Xj
S22 g
ﬂxj>ﬂxl
& "L 4k (xq, %)
< iy Xj
22 e
ficy >,
<4-L. (C.7)

Here, the second last inequality holds by the fact that

Py e (1= e)degy(xi) _ degy(x:)
14e” 14¢” 1+e¢ - 2 ’

degy (x;) >

where the last inequality follows by our choice of ¢ < 1/6. Employing the same analysis, we have
that

29

Under review as a conference paper at ICLR 2025

We apply the Bernstein’s inequality, and have that
L n L n
100L2 /2
P Ziis—E Zii >10L| <2 —_—
2 2 Fie ; ; it eXp(4L+10~L/3>

P j > fix;
5L
= 2 _——
exo (-7

=o(1/n).

Hence, by the union bound, it holds with high probability for all x; € X that

L n L n
E E Zj,i,l —E E E ijg <].OL,
=1 j=1 =1 j=1
P > [Focj > fix;

combining this with (C.6) and (C.7), we have with high probability that
|Bx,| — 4L| < 10L,
< 14L. O

which implies that | By,

We are now ready to prove the running time guarantee of the update step.

Lemma C.5. The expected running time of UPDATEGRAPH(G, T, z) is n°1) - cost (k).

Proof. We analyse the running time of UPDATEGRAPH(G, T , z) step by step.

* The ADDDATAPOINTTREE procedure is dominated by the call to the ADDDATAPOINT
procedure on Lineof Algorithm which takes e =2 - n°() . cost(k) time by Lemma

* Next, we analyse the running time of sampling L new neighbours of the new data point
z (Lines [SHIT). The algorithm samples a neighbour x; using the SAMPLE procedure,

which takes e =2 - n°(1) . cost (k) time (Lemma . To add the edge (z, x;), the algorithm
computes the KDE estimate 7.kde. /i, which takes e =2 -n°(1) - cost (k) time, and the weight
value k(z, x;) which takes O(d) = O(1) time. Since L = O(1), the total running time of
Lines|5H11]is =2 - n°™M) . cost (k).

* For Lines E]—@ first note that the expected number of paths that need to be resampled is
E[|A]] = O(1) (Lemma , and the expected number of points x; such that 7.kde./ix,
has changed is O(1). Since by Lemma it holds with high probability that |By,| <
4. L = O(1), the total expected running time of Linesis O(1).

* Finally, we analyse the running time of Lines [T9H33] The running time of removing all
the stored data about the path Py, , that needs to be resampled (Lines [21H27) is dominated
by the time needed for removing all the stored information about x; in 7 *.left.kde and
T*.right.kde for every 7* (Line . Doing this for all 7* takes £~ 2 - n°() . cost(k)
time, since there are O(logn) such trees 7* and in the data structures 7 *.left.kde and
7 .right.kde, x; is removed from all buckets By, (x;), and there are e=2.n°W.cost (k)
such buckets. The running time of the rest of the loop (Lines[Z833) is dominated by the
running time for resampling a path Py, ¢, which is e72 - n°M . cost(k) (Lemma .
Therefore, by the fact that E[|.A]] = O(1) (Lemma , the total expected running time of

Linesis 72 n°W . cost (k).

Combining everything together proves the lemma. O

30

Under review as a conference paper at ICLR 2025

C.2.2 PROOF OF CORRECTNESS

Lemma C6. Ler G' = (X U z,E' wg) be the updated graph after running
UPDATEGRAPH(G, T, z) for the new arriving z. Then, it holds with probability at least 9/10
that G' is an approximate similarity graph on X U z.

Proof. We prove this statement by showing that running CONSTRUCTGRAPH(X) followed by
UPDATEGRAPH(G, T, z) is equivalent to running CONSTRUCTGRAPH (X U z).

* First, we prove that the structure of the tree 7 is the same in both settings: when running
CONSTRUCTGRAPH(X), we ensure that the tree 7 is a complete binary tree. Then, when
inserting a data point z using the ADDDATAPOINT(z) procedure on Line [3|of Algorithm@
z is inserted appropriately (by the condition on Line [T5] of Algorithm [I0) such that the
updated tree is also a complete binary tree. Therefore, the structure of the tree 7 is identical
in both settings.

* Next, on Line [I2] of Algorithm 9] z is added to the relevant 7'.kde dynamic KDE data
structures using the ADDDATAPOINT(z) procedure of Algorithm This ensures that the
stored data points 7’.kde.X at every internal node 7" are identical in both settings and,
by the guarantees of the dynamic KDE data structures (Theorem [3.1)), the query estimates
T’ .kde.fiq for every internal node 7' and any q € 7’ .kde.() are the same in both settings.

* For the new data point z, we sample L new neigbours (Lines [SHIT] of Algorithm [J). By
the previous points, it holds that the tree T is identical in both settings, and therefore the
sampling procedure on Lines in Algorithm [9]for the new data point z is equivalent
to the sampling procedure on Lines[ATH48|of Algorithm [§for the point z when executing
INITIALISE(X U z,¢).

* Then, for any data point x; € X, let (x;,x;) € E be one of its sampled neighbours edge
after running CONSTRUCTGRAPH. It holds that the scaling factor for the edge weight
wa(x;,x;) is

L- k(Xi, Xj)

min{7 kde.jix,, T.kde.fix, }

Notice that after running UPDATEG(z), the scaling factor wg(x;,%;) can change

due to a change in min{7 .kde.fiy,, 7 kde.i, }. Without loss of generality, let

min{7 kde.jix,, 7 .kde.jix; } = T .kde.jix,. By Line 47| of Algorithm |8} in this case
we have x; € ij. We further distinguish between the two cases:

w(i,j) =

1. If T.kde.ix, changes after running UPDATEGRAPH(z), then by the
ADDDATAPOINTTREE(T ,z) procedure all the paths Py, , for 1 < ¢ < L
will be resampled and updated on Lines 2TH33]

2. On the other hand, if 7 .kde.fix; changes and 7 .kde.fix, does not, then the paths
Px, o ending at the leaf corresponding to x; are not necessarily resampled. In this case,
the scaling factor is updated on Lines and therefore w(x;, X;) is appropriately
rescaled.

* Let P, , € T .paths be any sampling path that is not resampled, i.e., Py , & A. This
implies that the KDE estimate of 77.kde.ix, does not change at any internal 7’ where
Px, ¢ is stored, and therefore the sampling procedure for Py , is identical in both settings.

* Finally, let Px, ¢ € A be a sampling path that is resampled, and (x;, x;) be the sampled
edge (contribution) corresponding to Px, ¢. Before resampling the path Py, , starting from
T, on Lines the algorithm removes the stored paths Py, ¢ and query points x; from
every internal node 7* below 7, and removes the weight contribution to w¢(x;,x;) from
Px,,e- Then, on Lines 28 , we resample a new edge (x;, X}), in an equivalent manner as
sampling a new edge when running Lines FTH48]of Algorithm [8] Therefore, the resampling
procedure for the path Py, , is identical to the sampling procedure for Py, , when running
INITIALISE(X U z, £), because the resampling procedure uses the updated KDE estimates
at each internal node 7, which are identical to the KDE estimates that would be computed
in INITIALISE(X U z,€).

31

Under review as a conference paper at ICLR 2025

Combining everything together proves the lemma. O

Finally, we are ready to prove the second statement of Theorem [4.1]

Proof of the Second Statement of Theorem[{d.1] Lemma [C.3] shows the time complexity of
UPDATEGRAPH(G, T, z), and Lemma |C.6[shows the correctness of our updated procedures. Com-

bining these two facts together proves the second statement of Theorem O

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide some more details about our experimental setup and give some additional
experimental results. Table d] provides additional information about all of the datasets used in our
experiments.

D.1 DyNaMIC KDE EXPERIMENTS

Tables[5)and[6]show the experimental evaluation of the dynamic KDE algorithms on several additional
datasets. The results demonstrate that our algorithm scales better to larger datasets than the baseline
algorithms.

Figures [] and 5| show the relative errors and running times for all iterations, datasets, and algorithms
for the dynamic KDE experiments.

D.2 PLOTS FOR DYNAMIC SIMILARITY GRAPH EXPERIMENTS

Table [7| shows the results of the experiments for the dynamic similarity graph, evaluated with the
Adjusted Rand Index (ARI) (Rand) 1971).

Table 4: Datasets used for experimental evaluation. n is the number of data points, d is the dimension,
and o is the parameter we use in the Gaussian kernel.

Dataset n d o License Reference Description

Synthetic clusters from a mixture

blobs 20,000 10 0.01 BSD (Pedregosa et al.|[2011) of Gaussian distributions.
cifarl0 50,000 2,048 0.0001 - (He et al.||2016{|Krizhevsky!2009) ResNet-50 embeddings of images.
mnist 70,000 728 0.000001 CCBY-SA3.0 (Lecunetal./|1998) Images of handwritten digits.
shutdle 58,000 9 0.01 CCBY40 (NASAIR002) Numerical data from NASA
space shuttle sensors.

aloi 108,000 128 0.1 ; (Geusebroek et al.|2005) Images of objects under a variety

of lighting conditions.
msd 515345 90 0000000 CCBY40 (Bertin-Mahicux et al.|2011) Numerical and categorical

eatures of songs.
covtype 581,012 54 0000005 CCBY 4.0 (Blackard & Deanl[1999) Ca“‘)gmp?m features used to predict

orest cover type.

glove 1,193,514 100 0.1 PDDL 1.0 (Pennington et al.|[2014) ‘Word embedding vectors.
census 2458285 68 0.0l CCBY 4.0 (Meek et al.|[1990} Categorical and numerical data from

the 1990 US census.

32

Under review as a conference paper at ICLR 2025

Table 5: Experimental results for dynamic KDE. For each dataset, the shaded results correspond to
the algorithm with the lowest total running time.

CKNS DYNAMICRS OUR ALGORITHM
dataset Time (s) Err Time (s) Err Time (s) Err
shuttle 32.9+2.1 0.146+0.002 0.8+0.0 0.078+0.005 10.9+0.3 0.159+0.024

aloi 619.0+10.7 0.050+0.006 19.7+0.3 0.010+0.003 46.940.7 0.060+0.021

msd 14,360.0+0.0 0.38540.000 1,887.8+0.0 5.430+0.000 306.4+0.0 0.388+0.000
covtype 5,650.3+1090.0 0.159+0.002 309.242.4 0.01840.003 151.7+4.5 0.196+0.017
glove 2,640.8+1677.7 0.221+0.220 1,038.6+26.5 0.004+0.005 445.6+214.6 0.296+0.469
census 10,471.5+160.6 0.080+0.000 3,424.8+5.2 0.005+0.001 836.5+44.6 0.102+0.021

Table 6: Running times for dynamic KDE with the exact algorithm.

Dataset Running Time

shuttle 4.1+0.1

aloi 164.5+13.6
msd 2,715.6+0.0
covtype 2,349.8+101.2
glove 5,251.7+0.0
census 16,202.6+154.6

Table 7: ARI values for the dynamic similarity graph experiments.

FULLYCONNECTED KNN OUR ALGORITHM
dataset Time (s) ARI Time (s) ARI Time (s) ARI
blobs 72.842.2 1.0004+0.000 383.6+3.9 0.797+0.287 21.2+0.8 1.000+0.000

cifarl0 19,158.2+231.6 0.000+0.000 3,503.0+490.6 0.098+0.001 1,403.5+152.4 0.221+0.013
mnist 1,328.3+159.5 0.149+0.000 5,796.3+234.3 0.673+0.001 1,470.3+77.9 0.238+0.011

33

Under review as a conference paper at ICLR 2025

Relative Error

Relative Error

Relative Error

0.175
— FXACT
0.150 1 — CKNS
0.125 4 M m— DyYNAMICRS
. | Al
[N === (OUR ALGORITHM
0.100 + i M
S
0.075 +
0.050 +
0.025 4
0.000 1
0 20 40 60 80 100
n x103
(a) ALOI Relative Error
— EXACT
05 m— CKNS
0.4 m— DYNAMICRS
: = OQUR ALGORITHM
lm%ﬁ‘
0 100 200 300 400 500 600
n x10%
(c) COVTYPE Relative Error
1.0 1 \ — EXACT
lv m— CKNS
0.8 1 i \ - m— DYNAMICRS
= OQUR ALGORITHM
0.6
0.4
0.2 4
0.0 A :
e a .
~0.2 1 —
0 200 400 600 800 1000 1200
n x103
(e) GLOVE Relative Error

Relative Error

Relative Error

Relative Error

0.5 1

0.4 1

ExAct

CKNS
DynaMICRS
OUR ALGORITHM

0.0 A
T T T T T T T
0 10 20 30 40 50 60
n x10?
(b) SHUTTLE Relative Error
— FXACT
10 1 — CKNS
m— DYNAMICRS
81 == (OQUR ALGORITHM
6 -
4 -
2 -
0 — —
T T T T T T
0 100 200 300 400 500
n x103
(d) MSD Relative Error
0.20
— I XACT
— CKNS " W\ N
dUN A
0.15 o === DYNAMICRS L
mmmm= (OQUR ALGORITHM
0.10 +
0.05
0.00 + ——
0 500 1000 1500 2000 2500
n x103
(f) CENSUS Relative Error

Figure 4: Relative errors for all datasets.

34

Under review as a conference paper at ICLR 2025

147 o ExcaCT
19 - = CKNS
m—— DYNAMICRS
0 10 7w OUR ALGORITHM
(2]
E 87
=
jo3
& 61
el
o
) 4 4
2 -
O -
0 20 40 60 80 100
n X 103
(a) ALOI Update Time
30
m— EXACT
95 | == CKNS
= DyYNAMICRS
@ 20 | === OUR ALGORITHM
g
S 15 4
[0}
3
5 10 1
5 -
O -
T T T T T T T
0 100 200 300 400 500 600
n x10?
(c) COVTYPE Update Time
100 1= ExacT AV/L
—— CKNS
]0 o = DyNAMICRS
w m== (QUR ALGORITHM
£ 601
2
3 404
o
=)
20 1
0 -
T T T T T T T
0 200 400 600 800 1000 1200
n x10?
(e) GLOVE Update Time

2.0 4

Update time (s)

Exact

CKNS
DynaMICRS
OUR ALGORITHM

T
0 10 20 30 40 50 60
n x10%
(b) SHUTTLE Update Time
70 - w— F X ACT
m— CKNS
60
== DYNAMICRS
» 50 o mm=== OQUR ALGORITHM
v
£ 404
=]
1
_r§ 30
[=%
= 20 -
10 A
0 -
0 100 200 300 400 500
n X 103
(d) MSD Update Time
175 7 Exacr J
150 | =—CKNS 1
= DYNAMICRS
= |
w 125 1 e OUR ALGORITHM |
a§) 100 1 (1 [
£ 75 4
o
o
> 50 1 ”
25
0 - “
0 500 1000 1500 2000 2500
n x10%
(f) CENSUS Update Time

Figure 5: Running times for all data sets.

35

	Introduction
	Preliminaries
	Locality Sensitive Hashing
	Kernel Density Estimation
	Approximate Similarity Graphs
	Convention & Assumption

	Dynamic Kernel Density Estimation
	Analysis for the Initialisation
	Analysis for Updates

	Dynamic Similarity Graph Construction
	Analysis for the Initialisation
	Analysis for Dynamic Updates

	Experiments
	Dynamic KDE
	Dynamic Clustering

	Additional Background Knowledge
	Notation
	Approximate Similarity Graph

	Omitted Detail from Section 3
	Analysis of the Initialise and AddQueryPoint procedures
	Analysis of the AddDataPoint procedure
	Proof of Theorem 3.1

	Omitted Detail from Section 4
	The Initialisation Step
	The Dynamic Update Step
	Runtime Analysis
	Proof of Correctness

	Additional Experimental Results
	Dynamic KDE Experiments
	Plots for Dynamic Similarity Graph Experiments

