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ABSTRACT

Vision- and language-guided embodied AI requires a fine-grained understanding
of the physical world through language and visual inputs. Such capabilities are
difficult to learn solely from task-specific data, which has led to the emergence
of pre-trained vision-language models as a tool for transferring representations
learned from internet-scale data to downstream tasks and new domains. However,
commonly used contrastively trained representations such as in CLIP have been
shown to fail at enabling embodied agents to gain a sufficiently fine-grained scene
understanding—a capability vital for control. To address this shortcoming, we
consider representations from pre-trained text-to-image diffusion models, which
are explicitly optimized to generate images from text prompts and as such, contain
text-conditioned representations that reflect highly fine-grained visuo-spatial in-
formation. Using pre-trained text-to-image diffusion models, we construct Stable
Control Representations which allow learning downstream control policies that
generalize to complex, open-ended environments. We show that policies learned
using Stable Control Representations are competitive with state-of-the-art repre-
sentation learning approaches across a broad range of simulated control settings,
encompassing challenging manipulation and navigation tasks.

1 INTRODUCTION

In this paper, we propose Stable Control Representations (SCR): pre-trained vision-language
representations from text-to-image diffusion models that can capture both high and low-level details
of a scene (Rombach et al., 2022; Ho et al., 2022). While diffusion representations have seen success
in downstream vision-language tasks, for example, in semantic segmentation (Baranchuk et al., 2022;
Tian et al., 2023; Wang et al., 2023), they have, to date, not been used for control. We perform a
careful empirical analysis in which we deconstruct pre-trained vision-language representations from
text-to-image diffusion models to understand the effect of different design decisions.

In our empirical investigation, we find that—despite not being trained for representation learning—
diffusion representations can outperform general-purpose models like CLIP (Radford et al., 2021)
across a wide variety of embodied control tasks. This is the case even for purely vision-based tasks
and settings that require task understanding through text prompts. A highlight of our results is the
finding that diffusion model representations enable better generalization to unseen object categories
in a challenging open-vocabulary navigation benchmark (Yenamandra et al., 2023) and provide
improved interpretability through attention maps (Tang et al., 2023).

Our key contributions are as follows:
1. In Section 2, we introduce a multi-step approach for extracting vision-language representations

for control from text-to-image diffusion models. We show that these representations are capable
of capturing both the abstract high-level and fundamental low-level details of a scene, offering an
alternative to models trained specifically for representation learning.

2. In Section 3, we evaluate the representation learning capabilities of diffusion models on a broad
range of embodied control tasks, ranging from purely vision-based tasks to problems that require
an understanding of tasks through text prompts, thereby showcasing the versatility of diffusion
model representation.
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Figure 1: Top: Stable Control Representations use pretrained text-to-image diffusion models as a
source of language-guided visual representations for downstream policy learning. Bottom: Stable
Representations obtain all-round competitive performance on a wide range of embodied domains,
including those that require open-vocabulary generalization. For further details, see Section 3.

3. In Appendix D, we systematically deconstruct the key features of diffusion model representations
for control, elucidating different aspects of the representation design space, such as the input
selection, the aggregation of intermediate features, and the impact of fine-tuning on enhancing
performance.

In summary, we have demonstrated that diffusion models are versatile representation learners for
control and can be used as a powerful tool to drive progress in embodied AI.

The code for our experiments can be accessed at:
https://github.com/ykarmesh/stable-control-representations.

2 STABLE REPRESENTATIONS FOR CONTROL

In this paper, we consider extracting language-guided visual representations from the open-source
Stable Diffusion model. We follow a similar protocol as Wang et al. (2023), Traub (2022), and Yang
& Wang (2023): Given an image-text prompt, s = {simage, stext}, associated with a particular task, we
use the SD VQ-VAE model as the encoder E(·) and partially noise the latents z0 =̇ E(simage) to some
diffusion timestep t. We then extract representations from the intermediate outputs of the denoiser
ϵθ(zt, t, stext). This process is illustrated in Figure 2. We refer to the extracted representations as
Stable Control Representations (SCR). We will describe the design space for extracting SCR in
the remainder of this section.

2.1 LAYER SELECTION AND AGGREGATION

We are interested in evaluating the internal representations from the denoiser network, that is, the
U-Net ϵθ(·). The first design choice we consider is which layers of ϵθ to aggregate intermediate
outputs from. The U-Net does not have a representational bottleneck, and different layers potentially
encode different levels of detail. Trading off size with fidelity, we concatenate the feature maps
output from the mid and down-sampling blocks to construct the representation. This is shown at the
bottom of Figure 2 and we ablate this choice in Appendix D.1. Since outputs from different layers
may have different spatial dimensions, we bilinearly interpolate them so that they are of a common
spatial dimension and can be stacked together. We then pass them through a learnable convolutional
layer to reduce the channel dimension before feeding them to downstream policies. The method used
to spatially aggregate pre-trained representations can significantly affect their efficacy in downstream
tasks, as we will discuss in Appendix D.4. We use the best-performing spatial aggregation method
for all the baselines that we re-train in Section 3.

2.2 DIFFUSION TIMESTEP SELECTION

Next, we consider the choice of extraction timestep t for the denoising network (shown on the left of
Figure 2). Recall that the images we observe in control tasks are un-noised (i.e., corresponding to
x0), whereas the SD U-Net expects noised latents, corresponding to zt for t ∈ [0, 1000].
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Figure 2: Extraction of Stable Control Representa-
tions from Stable Diffusion. Given an image-text
prompt, s = {simage, stext} corresponding to a par-
ticular task, we encode and noise the image and
feed it into the U-Net together with the language
prompt. We may then aggregate features from
multiple levels of the downsampling process, as
described in Section 2.

The choice of timestep t influences the fidelity of
the encoded latents since a higher value means
more noising of the inputs. Yang & Wang (2023)
have observed that there are task-dependent op-
timal timesteps and proposed adaptive selection
of t during training, while Xu et al. (2023) have
used t = 0 to extract representations from un-
noised inputs to do open-vocabulary segmen-
tation. We hypothesize that control tasks that
require a detailed spatial scene understanding
benefit from fewer diffusion timesteps, corre-
sponding to a later stage in the denoising pro-
cess. We provide evidence consistent with this
hypothesis in Appendix D.2. To illustrate the
effect of the timestep, we display final denoised
images for various t values in different domains
in Figure 10.

2.3 PROMPT SPECIFICATION

Since text-to-image diffusion models allow conditioning on text, we investigate if we can influence
the representations to be more task-specific via this conditioning mechanism. For tasks that come
with a text specifier, for example, the sentence “go to object X”, we simply encode this string and
pass it to the U-Net. However, some tasks are purely vision-based and in these settings, we explore
whether constructing reasonable text prompts affects downstream policy learning when using the
U-Net’s language-guided visual representations. We present this analysis in Appendix D.3.

2.4 INTERMEDIATE ATTENTION MAP SELECTION

Recent studies (Wang et al., 2023; Tang et al., 2023) demonstrate that the Stable Diffusion model
generates localized attention maps aligned with text during the combined processing of vision and
language modalities. Wang et al. (2023) leveraged these word-level attention maps to perform open-
domain semantic segmentation. We hypothesize that these maps can also help downstream control
policies to generalize to an open vocabulary of object categories by providing helpful intermediate
outputs that are category-agnostic. Following Tang et al. (2023), we extract the cross-attention maps
between the visual features and the CLIP text embeddings within the U-Net. An example of the
word-level attention maps is visualized in Figure 11. We test our hypothesis on an open-domain
navigation task in Section 3.2, where we fuse the cross-attention maps with the extracted feature
maps from the U-Net. We refer to this variant as SCR-ATTN.

2.5 FINE-TUNING ON GENERAL ROBOTICS DATASETS

Finally, we consider fine-tuning strategies to better align the base Stable Diffusion model towards
generating representations for control. This serves to bridge the domain gap between the diffusion
model’s training data (e.g., LAION images) and robotics datasets’ visual inputs (e.g., egocentric
tabletop views in manipulation tasks or indoor settings for navigation). Crucially, we do not use any
task-specific data for fine-tuning. Instead, we use a small subset of the collection of datasets used by
prior works on representation learning for embodied AI (Majumdar et al., 2023; Xiao et al., 2022):
we use subsets of the EpicKitchens (Damen et al., 2018), Something-Something-v2 (SS-v2; Goyal
et al., 2017), and the Bridge-v2 (Walke et al., 2023) datasets.

We adopt the same text-conditioned generation objective as that of the base model for the fine-tuning
phase. As is standard, we fine-tune the denoiser U-Net ϵθ but not the VAE encoder or decoder.
Image-text pairs are uniformly sampled from the video-text pairs present in these datasets. A possible
limitation of this strategy is that text-video aligned pairs (a sequence of frames in a control task
that correspond to a single language instruction) may define a many-to-one relation for image-text
pairs. However, as we see in experiments in which we compare to the base Stable Diffusion model in
Section 3, this simple approach to robotics alignment is useful in most cases. Further details related
to fine-tuning are provided in Appendix F. We refer to the representations from this fine-tuned model
as SCR-FT.
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Figure 3: MuJoCo Tasks: Average success rate and std.
error for the various representations on Meta-World &
Franka Kitchen.

Model Meta-World Franka Kitchen

R3M 96.0 ± 1.1 57.6 ± 3.3
VC-1 92.3 ± 2.5 47.5 ± 3.4
CLIP 90.1 ± 3.6 36.3 ± 3.2
Voltron 72.5 ± 5.2 33.5 ± 3.2
SD-VAE 75.5 ± 5.2 43.7 ± 3.1
SCR 94.4 ± 1.9 45.0 ± 3.3
SCR-FT 94.9 ± 2.0 49.9 ± 3.4

Figure 4: Open Vocab Mobile Manipu-
lation: Average Success Rates and Std.
Error over 3 seeds on Eval episodes.

Model Success Rate

Oracle 77.6
Detic 36.7
VC-1 40.6 ± 2.2
CLIP 38.7 ± 1.7
SCR 38.7 ± 1.2
SCR-FT 41.9 ± 1.0
SCR-FT-ATTN 43.6 ± 2.1

3 EMPIRICAL EVALUATION

In this work, we evaluate Stable Control Representations (SCR) on an extensive suite of tasks from
6 benchmarks covering few-shot imitation learning for manipulation in Section 3.1, reinforcement
learning-based indoor navigation in Section 3.2 and appendix C.1, and tasks related to fine-grained
visual prediction in Appendix C.2. Together, these tasks allow us to comprehensively evaluate
whether our extracted representations can encode both high and low-level semantic understanding of
a scene to aid downstream policy learning. We begin this section by listing the common baselines
used across tasks, followed by the description of individual task setups and results obtained.

We compare SCR and its variants (i.e., SCR-FT and SCR-FT-ATTN) to the following prior work in
representation learning for control:
- R3M (Nair et al., 2022) pretrains a ResNet50 encoder on video-language pairs from the Ego4D
dataset using time-contrastive video-language alignment learning.
- MVP (Xiao et al., 2022) and VC-1 (Majumdar et al., 2023) both pretrain ViT-B/L models with the
masked auto-encoding (MAE) objective on egocentric data from Ego4D, Epic-Kitchens, Something-
Something-v2 (Goyal et al., 2017, SS-v2) and ImageNet, with VC-1 additionally pretraining on
indoor navigation videos.
- CLIP (Radford et al., 2021) trains text and ViT-based image encoders using contrastive learning on
web-scale data.
- Voltron (Karamcheti et al., 2023) is a language-driven representation learning method that involves
pretraining a ViT-B using MAE and video-captioning objectives on aligned text-video pairs from
SS-v2.
- SD-VAE Rombach et al. (2022) is the base VAE encoder used by SD to encode images into latents.

To assess how well the vision-only methods would do on tasks with language specification, we
concatenate their visual representations with the CLIP text embeddings of the language prompts.
While we are limited by the architecture designs of the released models we are studying, to ensure a
more fair comparison we try to match parameter counts as much as we can. We use the ViT-Large
(307M parameters) versions of CLIP, MVP, and VC-1 since extracting SCR involves a forward pass
through 500M parameters.

3.1 FEW-SHOT IMITATION LEARNING

We start by evaluating SCR on commonly studied representation learning benchmarks in few-shot
imitation learning. Specifically, our investigation incorporates five commonly studied tasks from
Meta-World (Yu et al., 2019) (same as CORTEXBENCH (Majumdar et al., 2023)), which includes
bin picking, assembly, pick-place, drawer opening, and hammer usage; as well as five tasks from
the Franka-Kitchen environments included in the RoboHive suite (Kumar et al., 2023), which entail
tasks such as turning a knob or opening a door. We adhere to the training and evaluation protocols
adopted in their respective prior works to ensure our results are directly comparable (detailed further
in Appendix H.1).

Results. We report the best results of SCR and baselines in Figure 3. On Meta-World, we see that
SCR outperforms most prior works, achieving 94.9% success rate. In comparison, VC-1, the visual
foundation model for embodied AI and CLIP achieved 92.3 and 90.1% respectively. On Franka-
Kitchen, SCR obtains 49.9% success rate, which is much higher than CLIP (36.3%) and again
outperforms all other baselines except for R3M. We note that R3M’s sparse representations excel in
few-shot manipulation with limited demos but struggle to transfer beyond this setting (Majumdar
et al., 2023; Karamcheti et al., 2023).
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We see that while the SD-VAE encoder performs competitively on Franka-Kitchen, it achieves a
low success rate on Meta-World. This observation allows us to gauge the improved performance
of SCR from the base performance gain we may get just from operating in the latent space of
this VAE. Additionally, we see that the task-agnostic fine-tuning gives SCR-FT an advantage (4%)
over SCR on Franka-Kitchen while making no difference on Meta-World. Note that the other
high-performing baselines (R3M and Voltron) have been developed for downstream control usage
with training objectives that take temporal information into account, while VC-1 has been trained on
a diverse curation of robotics-relevant data. In this context, SCR’s comparable performance shows
that generative foundation models hold promise for providing useful representations for control, even
with relatively minimal fine-tuning on non-task-specific data.

3.2 OPEN VOCABULARY MOBILE MANIPULATION

We now shift our focus to evaluating how Stable Diffusion’s web-scale training can enhance policy
learning in open-ended domains. We consider the Open Vocabulary Mobile Manipulation (OVMM)
benchmark (Yenamandra et al., 2023) that requires an agent to find, pick up, and place objects in
unfamiliar environments. One of the primary challenges here is locating previously unseen object
categories in novel scenes (illustrated in Figure 9 (left)).

To manage this complex sparse-reward task, existing solutions (Yenamandra et al., 2023) divide
the problem into sub-tasks and design modular pipelines that use open-vocabulary object detectors
such as Detic (Zhou et al., 2022). We study a modified version of the Gaze sub-task (detailed in
Appendix H.2), which focuses on locating a specified object category for an abstracted grasping action.
The task’s success is measured by the agent’s ability to precisely focus on the target object category.
This category is provided as an input to the policy through its CLIP text encoder embedding. The
evaluation environments cover both novel instances of object categories seen during policy learning,
as well as entirely unseen categories. We compare to VC-1, the best model from Appendix C.1 and
CLIP, since prior work has studied it for open-vocab navigation (Khandelwal et al., 2022; Majumdar
et al., 2022). We also incorporate a baseline that trains a policy with ground truth object masks,
evaluated using either the ground truth or Detic-generated masks (labeled as Oracle/Detic).

Results. Figure 4 shows SCR matches the performance of CLIP, while SCR-FT surpasses VC-1
by 1.3%, beating CLIP and SCR by 3.2%. Surprisingly, VC-1’s visual representation does better
than CLIP’s image encoder representation, given that the downstream policy has to fuse these with
the CLIP text embedding of the target object category. Compared to these baselines, we can see the
benefit of providing intermediate outputs in the form of text-aligned attention maps to the downstream
policy (+1.7%). These word-level cross-attention maps simultaneously improve policy performance
and also aid explainability, allowing us to diagnose successes and failures. Samples of attention maps
overlaid on evaluation episode images can be found in Appendix H. Interestingly, the foundation
model representations (CLIP, VC-1, SCR) perform better than Detic. While object detections serve as
a category-agnostic output that downstream pick-and-place policies can work with, noisy detections
can often lead to degraded downstream performance, as we see in this case. Nonetheless, there is still
a sizeable gap to ‘Oracle’ which benefits from ground truth object masks.

4 CONCLUSION

In this paper, we proposed Stable Control Representations, a powerful method for leveraging general-
purpose diffusion features for control. We showed that our extracted representations lead to strong
performance across a wide variety of tasks including manipulation, image-goal and object-goal based
navigation, grasp point prediction, and referring expressions grounding. As such, we hope that
SCR will help drive data-efficient control and enable open-vocabulary generalization in challenging
domains; these capabilities will only improve as generative modeling advances. Furthermore, we
demonstrated the additional interpretability benefits that pre-trained text-to-image diffusion models
provide us from attention maps. In the open-domain navigation experiments, we noted they helped
performance but also aided in diagnosing any downstream failures of the policy during development.
Finally, we discussed which insights we uncovered in this paper could be more broadly applied to
other foundation models, such as feature aggregation and finetuning.
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SUPPLEMENTARY MATERIAL

A RELATED WORK

We first review prior work on representation learning and diffusion models for control.

Representation Learning with Diffusion Models. Diffusion models have received a lot of recent
attention as flexible representation learners for computer vision tasks of varying granularity—ranging
from key point detection and segmentation (Tian et al., 2023; Wang et al., 2023) to image classifica-
tion (Yang & Wang, 2023; Traub, 2022). Wang et al. (2023) has shown that intermediate layers of
a text-to-image diffusion model encode semantics and depth maps that are recoverable by training
probes. These approaches similarly extract representations by considering a moderately noised input,
and find that the choice of timestep can vary based on the granularity of prediction required for the
task. Yang & Wang (2023) train a policy to select an optimal diffusion timestep, we simply used
a fixed timestep per class of task. Several works (Tian et al., 2023; Wang et al., 2023; Tang et al.,
2023) observe that the cross-attention layers that attend over the text and image embeddings encode a
lot of the spatial layout associated with an image and therefore focus their method around tuning,
post-processing, or extracting information embedded within these layers.

Visual Representation Learning for Control. Over the past decade, pre-trained representation
learning approaches have been scaled for visual discrimination tasks first, and control tasks more
recently. Contrastively pre-trained CLIP (Radford et al., 2021) representations were employed for
embodied navigation tasks by EmbCLIP (Khandelwal et al., 2022). MAE representations have been
used in control tasks by prior works like VC-1 (Majumdar et al., 2023), MVP (Xiao et al., 2022)
and OVRL-v2 (Yadav et al., 2023). R3M (Nair et al., 2022) and Voltron (Karamcheti et al., 2023)
leverage language supervision to learn visual representations. In contrast, we investigate if powerful
text-to-image diffusion models trained for image generation can provide effective representations for
control.

Diffusion Models for Control. Diffusion models have seen a wide range of uses in control aside
from learning representations. These can broadly be categorized into three areas. First, diffusion
models have been used a class of expressive models for learning action distribution for policies (Chi
et al., 2023; Pearce et al., 2023; Hansen-Estruch et al., 2023); this can help model multimodality and
richer action distributions than Gaussians. Second, off-the-shelf diffusion models have been used to
augment limited robot demonstration datasets by specifying randomizations for object categories seen
in the data through inpainting (Kapelyukh et al., 2023; Yu et al., 2023; Mandi et al., 2022). Diffusion
models trained from scratch have also been shown to be an effective method for data augmentation (Lu
et al., 2023; Jackson et al., 2024). Third, planning can be cast as sequence modeling through diffusion
models (Janner et al., 2022; Ajay et al., 2023; Du et al., 2023).

B BACKGROUND

We briefly review diffusion models and text-conditional image generation, and then describe the
control setting we consider in this work.

B.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a class of generative models
that learn to iteratively reverse a forward noising process and generate samples from a target data
distribution p(x0), starting from pure noise. Given p(x0) and a set of noise levels σt for t = 1, . . . , T ,
a denoising function ϵθ(xt, t) is trained on the objective

LDM(θ) = Ex0,ϵ,t[∥ϵ− ϵθ
(
xt, t))∥22

]
= Ex0,ϵ,t[∥ϵ− ϵθ

(
x0 + σt · ϵ, t))∥22

]
, (B.1)

where ϵ ∼ N (0, 1), t ∼ Unif(1, T ), and x0 ∼ p(x0). To generate a sample x0 during inference,
we first sample an initial noise vector xT ∼ N (0, σT ) and then iteratively denoise this sample for
t = T, ..., 1 by sampling from p(xt−1|xt), which is a function of ϵθ(xt, t).

In some settings, we may want to generate samples with a particular property. For example, we may
wish to draw samples from a conditional distribution over data points, p(x0|c), where c captures
some property of the sample, such as classification label or a text description (Rombach et al., 2022;
Saharia et al., 2022). In these settings, we may additionally train with labels to obtain a conditioned
denoiser ϵθ(xt, t, c) and generate samples using classifier-free guidance (Ho & Salimans, 2021).

10



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

B.2 LATENT DIFFUSION MODELS

Latent diffusion models (Rombach et al., 2022) reduce the computational cost of applying diffusion
models to high-dimensional data by instead diffusing low-dimensional representations of high-
dimensional data. Given an encoder E(·) and decoder D(·), Equation (B.1) is modified to operate on
latent representations, z0 =̇ E(x0), yielding

LLDM(θ) = Ex0,c,ϵ,t[∥ϵ− ϵθ
(
E(x0) + σt · ϵ, t, c)∥22

]
, (B.2)

where ϵ ∼ N (0, 1), t ∼ Unif(1, T ), x0, c ∼ p(x0, c). After generating a denoised latent representa-
tion z0, it can be decoded as x0 = D(z0).

A popular instantiation of a conditioned latent diffusion model is the text-to-image Stable Diffusion
model (SD; Rombach et al., 2022). The SD model is trained on the LAION-2B dataset (Schuhmann
et al., 2022) and operates in the latent space of a pre-trained VQ-VAE image encoder (Esser et al.,
2021). The model architecture is shown at the top of Figure 1 and is based on a U-Net (Ronneberger
et al., 2015), with the corresponding conditioning text prompts encoded using CLIP’s (Radford et al.,
2021) language encoder.

B.3 POLICY LEARNING FOR CONTROL

We model our environments as Markov Decision Processes (MDP, Sutton & Barto (2018)), defined as a
tuple M = (S,A, P,R, γ), where S and A denote the state and action spaces respectively, P (s′|s, a)
the transition dynamics, R(s, a) the reward function, and γ ∈ (0, 1) the discount factor. Our goal is
to optimize a policy π(a|s) that maximizes the expected discounted return Eπ,P [

∑∞
t=0 γ

tR(st, at)].

In this paper, we consider visual control tasks that may be language-conditioned, that is, states are
given by s = [simage, stext], where stext specifies the task. We are interested in pre-trained vision-
language representations capable of encoding the state s as fϕ(simage, stext). This encoded state is
then supplied to a downstream, task-specific policy network, which is trained to predict the action at.
Our evaluation encompasses both supervised learning and reinforcement learning regimes for training
the downstream policies. We train agents through behavior cloning on a small set of demonstrations
for the few-shot manipulation tasks we study in Section 3.1. For the indoor navigation tasks we study
in Appendix C.1 and Sec. 3.2, we use a version of the Proximal Policy Optimisation (PPO, Schulman
et al., 2017) algorithm.

C EXTENDED EMPIRICAL EVALUATION DETAILS

C.1 IMAGE-GOAL NAVIGATION

We now assess SCR in more realistic visual environments, surpassing the simple table-top scenes in
manipulation benchmarks. In these complex settings, the representations derived from pre-trained
foundational models are particularly effective, benefiting from their large-scale training. We study
Image-Goal Navigation (ImageNav), an indoor visual navigation task that evaluates an agent’s ability
to navigate to the viewpoint of a provided goal image (Zhu et al., 2017). The position reached by the
agent must be within a 1-meter distance from the goal image’s camera position. This requires the
ability to differentiate between nearby or similar-looking views within a home environment. This task,
along with the semantic object navigation task that we study in Section 3.2, allows for a comprehensive
evaluation of a representation’s ability to code both semantic and visual appearance-related features
in completely novel evaluation environments.

We follow the protocol for the ImageNav task used by Majumdar et al. (2023) and input the pre-trained
representations to an LSTM-based policy trained with DD-PPO (Wijmans et al., 2019) for 500 million
steps on 16 A40 GPUs (further details in Appendix H.3). Given the large training requirements, we
only run SCR-FT and directly compare to the results provided in Majumdar et al. (2023).

Table 1: ImageNav: Success Rate on Gibson Scenes.

Model MVP CLIP-B R3M VC-1 SD-VAE SCR SCR-FT

Success 68.1 52.2 30.6 70.3 46.6 73.9 69.5
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Results. We evaluate our agent on 4200 episodes in 14 held-out scenes from the Gibson dataset and
report the success rate in Table 1. We find that SCR outperforms all approaches achieving a success
rate of 73.9%, while SCR-FT is tied with VC-1 (69.5% vs 70.3%), the SOTA visual representation
from prior work. We also see that R3M, the best model for few-shot manipulation from Figure 3
performs very poorly (30.6%) in this domain, showing its limited transferability to navigation tasks.

C.2 FINE-GRAINED VISUAL PREDICTION

In Sections 3.1 and 3.2 and appendix C.1, our analysis focused on the performance of various
representations across an array of control tasks. We now turn our attention to two downstream tasks
involving fine-grained visual prediction. These tasks have been previously examined by Karamcheti
et al. (2023) as proxy measures to evaluate the efficacy of representations for control applications.

The Referring Expressions Grounding task requires the identification and bounding box prediction
of an object in an image based on its textual description. Similar to Karamcheti et al. (2023), we use
the OCID-Ref Dataset (Wang et al., 2021) for our experiments. We show a sample image-text pair
from the dataset to showcase the complexity of the task in Figure 5. The frozen visual representation
is concatenated with a text embedding and passed to a 4-layer MLP, which predicts the bounding box
coordinates. We report the bounding box accuracy at a 25% Intersection-over-Union (IoU) threshold
across different scene clutter levels for SCR-variants and baselines in Table 2.

The lemon on the rear left of the instant_noodles.

Figure 5: Sample from the OCID-Ref dataset
used for the Referring Expressions task.

Model Average Maximum
clutter

Medium
clutter

Minimum
clutter

CLIP 68.1 60.3 76.6 67.0
R3M 63.3 55.3 68.3 63.3
Voltron 92.5 96.9 91.8 90.2

VC-1 94.6 93.7 96.5 93.7
SD-VAE 94.3 93.2 96.3 93.4

SCR 92.9 91.1 95.9 91.8
SCR-FT 91.8 90.1 94.8 90.8

Table 2: Referring Expression Grounding (Accu-
racy at threshold IoU of 0.25 with label.).

Results. We see that SCR is tied with Voltron and that VC-1 and SD-VAE perform the best with a
1.5% lead. The better performance of these vision-encoder-only methods highlights that on this task,
it is not a challenge for the downstream decoder to learn to associate the visual embeddings with the
(CLIP) text encoding of the language specification. Since the training budget is fixed, we observed
that some of the runs could potentially improve over extended training. However, we were primarily
interested in this task not just to compare the downstream visual prediction performance, but to
use it as a testbed for exploring the following two questions: (1) Do the performance differences
between the representations we evaluated in Sections 3.1 and 3.2 and appendix C.1, stem from the
absence of fine-grained spatial information encoded within the representations? We refute this claim
in Appendix D.4, where we present the impact of the representations’ spatial aggregation method on
prediction performance. (2) Additionally, we explore to what extent language prompting influences
the representations from SCR on language-conditioned tasks in Appendix D.3.
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Table 3: Grasp Affordance Prediction: Precision
on pixels corresponding to positive graspability
at varying probability threshold levels.

Model Top99 Top95 Top90

CLIP 60.3 45.0 28.6
CLIP (Comp) 72.9 55.9 36.5

Voltron 62.5 42.8 32.1
SD-VAE 55.6 41.3 33.8

SCR 72.8 55.9 54.5
SCR-FT 72.3 54.6 44.4

The Grasp Affordance Prediction task requires
predicting per-pixel segmentation outputs for cer-
tain areas of objects in an RGB image. These
areas correspond to parts of the surface that would
be amenable to grasping by a suction gripper. The
evaluation metric adopted in prior work is the
precision of predictions corresponding to positive
graspability at varying confidence levels (90, 95,
and 99th percentile of the predicted per-pixel prob-
abilities, denoted as Top90, Top95, and Top99 in
Table 3). We refer the reader to Karamcheti et al.
(2023) for the complete task setup details.

We re-ran all the methods using the evaluation repository provided with the work, and obtained
different results compared to the reported numbers in Karamcheti et al. (2023), which we attribute to
a bug that we fixed related to the computation of the precision metrics. The evaluation procedure for
this task adopted in prior work involves a 5-fold cross-validation, and we observed a high variability
in the results, with different runs of 5-fold cross-validation yielding different final test metrics. Our
findings highlight that SCR and our adaptation of CLIP (in gray, detailed in Appendix D.4) both excel
at this task, achieving a Top99 score of 72.9. Interestingly, we see that fine-tuning did not enhance
the performance of SCR on the visual prediction tasks explored in this section and Section 3.1,
suggesting a potential disconnect between visual prediction and control task benchmarks.

C.3 FINE-TUNING CLIP

Table 4: Performance on Franka-Kitchen
after fine-tuning CLIP.

Model Franka-Kitchen

CLIP 36.9 ± 3.2
CLIP (FT) 34.2 ± 2.9

We follow the same experimental constraints that we took
into account while fine-tuning the diffusion model to get
SCR-FT: we trained it on the same text-image pairs from
the same datasets, and using CLIP’s contrastive loss to
bring the visual embedding of the middle frames of a video
closer to the video caption’s text embedding. Specifically,
for our experiment, we use the huggingface CLIP finetun-
ing implementation and train the model with a batch size
of 384 (the maximum number of samples we were able to fit on 8 A40 GPUs) with a learning rate of
5e-5 and a weight decay of 0.001 for 5000 update steps (same as SR-FT). We present the results in
Table 4 for Franka-Kitchen, and note the lack of improvement on the task post-fine-tuning.

C.4 COMPARISON WITH LIV

Table 5: Comparing to LIV on manipu-
lation and navigation tasks.

Model Franka-Kitchen OVMM

SCR 45.0 38.7
SCR-FT 49.9 41.9

LIV 54.2 8.4

We include a comparison with LIV (Ma et al., 2023) on
two tasks that involve manipulation and navigation. LIV
is a vision-language representation learned through con-
trastive learning on the EpicKitchens dataset (Damen et al.,
2018). Similar to R3M results in the main paper, this rep-
resentation does well on manipulation tasks but poorly on
navigation tasks.

C.5 OVERALL RANKING OF REPRESENTATIONS

In Table 6, we present the consolidated scores across the
four control benchmarks we study in Section 3, for all the representations we evaluate in this work.
This is to give a higher-level view of the all-round performance of the different representations on
the diverse set of tasks we consider. We see that VC-1, SCR, and SCR-FT emerge as the top three
visual representations overall. While VC-1 is a representation-learning foundation model trained
specifically for robotics tasks, SCR and SCR-FT are the diffusion model representations that we
study in this paper, confirming the potential of large pre-trained foundation generative models across
a wide array of downstream robotics tasks.
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Table 6: Representation Performance Comparison: Numbers in the task columns (OVMM, ImageNav,
MetaWorld, Franka Kitchen) indicate relative scores of different representations (normalized by the
highest score on that task), and the average normalized score column indicates the averaged scores
across the task-wise relative scores where numbers are available.

Method OVMM ImageNav MetaWorld Franka Kitchen Average Norm. Score
VAE - 0.629 0.786 0.759 0.725
R3M - 0.414 1.000 1.000 0.805
VC-1 0.969 0.951 0.961 0.825 0.927
CLIP 0.924 0.706 0.939 0.630 0.800
SR 0.924 0.706 0.939 0.630 0.922
SR-FT 1.000 0.942 0.989 0.866 0.949

Table 7: We analyze the impact of varying the denoising timestep, layers selection, and input text
prompt for the performance of SCR on the Franka-Kitchen benchmark. Numbers indicate mean ±
standard error over 3 seeds.

(a) Denoising timestep.

Timestep Success Rate

0 49.9 ± 3.4
10 48.2 ± 3.1
100 42.0 ± 3.7
110 42.0 ± 3.4
200 35.1 ± 3.2

(b) Layers selection.

Layers Success Rate

Down[1-3] + Mid 49.9 ± 3.4
Down[1-3] 43.0 ± 3.4
Mid 41.6 ± 3.3
Mid + Up[0] 42.1 ± 3.6

(c) Input text prompt.

Prompt Type Success Rate

None 49.9 ± 3.4
Relevant 49.2 ± 3.5
Irrelevant 48.7 ± 3.3

D DECONSTRUCTING STABLE CONTROL REPRESENTATIONS

In this section, we aim to deconstruct which design choices from Section 2 were most crucial for
SCR’s strong performance and assess our representation’s robustness to each.

D.1 LAYER SELECTION

We begin our investigation by examining how the performance of SCR is influenced by the selection
of layers from which we extract feature maps. We previously chose outputs from the mid and
downsampling layers of the U-Net (Figure 2), because their aggregate size closely matches the
representation sizes from the ViT-based models (VC-1, MVP, and CLIP). Appendix G details the
feature map sizes obtained for all the models we study. Table 7a lists the success rates achieved on
the Franka-Kitchen domain when we use different sets of block outputs in SCR. We see that utilizing
outputs from multiple layers is instrumental to SCR’s high performance. This finding underscores
a broader principle applicable to the design of representations across different models: leveraging
a richer set of features from multi-layer outputs should enhance performance on downstream tasks.
However, it’s important to acknowledge the practical challenges in applying this strategy to ViT-based
models. The high dimensionality of each layer’s patch-wise embeddings (16×16×1024 for ViT-L for
images of size 224×224), may complicate the

D.2 SENSITIVITY TO THE NOISING TIMESTEP

Next, we characterize the sensitivity of task performance to the denoising step values chosen during
representation extraction on the Franka-Kitchen tasks in Table 7b. We see that the performance across
nearby timesteps (0 and 10 or 100 and 110) is similar, and that there is a benefit to doing a coarse
grid search up to a reasonable noising level (0 vs 100 vs 200) to get the best value for a given task.

D.3 HOW IS LANGUAGE GUIDING THE REPRESENTATIONS?

Recall that in the OVMM experiments (Section 3.2), we concatenated the target object’s CLIP text
embedding to the visual representations before feeding it to the policy. For SCR and SCR-FT, we
also provided the category as the text prompt to the U-Net, and additionally extracted the generated
cross-attention maps for SCR-FT-ATTN. In this subsection, we seek to more closely understand how
the text prompts impact the representations in SCR.

14



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Text CLIP

e) Text Only

Image

Text CLIP

Stable

Diffusion

b) Prompt Only

Image

Text CLIP

Stable

Diffusion

+

d) Prompt and Concat

Image

Text CLIP

Stable

Diffusion

+

c) Concat Only

Image
Stable


Diffusion

a) No Text Input

Figure 6: Illustration of different approaches to providing rele-
vant vision-language inputs to a downstream task-decoder.

Configuration Score

Voltron 92.5
(a) No text input 14.8
(b) Prompt Only 82.7
(c) Concat Only 92.2
(d) Prompt + Concat 92.9
(e) Only text encoding 37.5

Table 9: Ablating text input to
SCR on referring expressions
task.

We first consider the Franka-Kitchen setup from Section 3.1, which includes manipulation tasks that
do not originally come with a language specification. We experiment with providing variations of
task-relevant and irrelevant prompts during the representation extraction in SCR. Table 7c shows
the downstream policy success rates for irrelevant (“an elephant in the jungle”) and relevant (“a
Franka robot arm opening a microwave door”) prompts, compared to our default setting of not
providing a text prompt (none). We see that providing a prompt does not help with downstream policy
performance and can indeed degrade performance as the prompt gets more irrelevant to the visual
context of the input.

Table 8: Ablations of the input text prompt on Franka Kitchen.

Prompt Type None Relevant Irrelevant

Success Rate 49.9 ± 3.4 49.2 ± 3.5 48.7 ± 3.3

We now move to the Referring Expressions Grounding task from Appendix C.2, which requires
grounding language in vision to do bounding box prediction. To study the role of the U-Net in
shaping the visual representations guided by the text, we examine different text integration methods
to generate SCR representations and compare them to the Voltron baseline in Table 9.

We compared the following approaches for providing the task’s text specification to the task decoder
(also depicted in Figure 6):

• No text input: Exclude text prompt from both SCR and the task decoder by passing an empty
prompt to the U-Net and using only the resulting SCR output for the decoder.

• Prompt Only: Pass text prompt only to the U-Net.
• Concat Only: Concatenate the CLIP embedding of the text prompt with the visual representation,

feeding an empty prompt to the U-Net.
• Prompt + Concat: Combine “Prompt Only” and “Concat Only”.
• Only text encoding: Remove visual representations completely and rely only on CLIP text

embeddings.

Looking at the results of (a) and (b) in Table 9, it is evident that incorporating the text prompt
into the U-Net significantly enhances accuracy compared to ignoring the text altogether. The
transition from (b) to (c) indicates that directly providing text embeddings to the decoder improves
performance, suggesting that certain crucial aspects for object localization are not fully captured
by the representation alone. Going from (c) to (d) we see that with concatenated text embeddings,
further modulation of the visual representations does not significantly benefit this task. Finally, (e)
reveals the extent to which the task relies on text-based guesswork.

These findings align with both intuition and recent research in controllable generation through
diffusion models (Zhao et al., 2023), which underscores the challenges associated with using long-
form text guidance. However, ongoing efforts that focus on training models with more detailed image
descriptions or leveraging approaches to encode and integrate sub-phrases of lengthy texts could
solve this problem.
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Table 10: We ablate the spatial aggregation method for VC-1 and CLIP. On the fine-grained visual
prediction tasks, we compare the average precision between using multi-head attention pooling
(MAP) and the Compression layer. On the Meta-World & Franka-Kitchen tasks, we compare the
average success rate and std. error when between the CLS token embedding and the Compression
layer.

Model Aggregation Refer Exp. Grasp Affordance Meta-World Franka-Kitchen
Method Grounding Prediction

VC-1 MAP/CLS 93.2 24.7 88.8 ± 2.2 52.0 ± 3.4
VC-1 Comp 94.6 83.9 92.3 ± 2.5 47.5 ± 3.4

CLIP MAP/CLS 68.1 60.3 88.8 ± 3.9 35.3 ± 3.4
CLIP Comp 94.3 72.9 90.1 ± 3.6 36.3 ± 3.2

D.4 METHOD OF SPATIAL AGGREGATION MATTERS

In this study, we refined the approach for extracting representations from prior research by integrating
a convolutional layer that downsamples the spatial grid of pre-trained representations. This adjustment,
described as a “compression layer” by Yadav et al. (2023), aims to reduce the high channel dimension
of pre-trained model outputs without losing spatial details, facilitating more effective input processing
by downstream task-specific decoders.

We now explore the impact of this modification in comparison to other baseline methods that employed
different strategies. Specifically, we substituted the multi-headed attention pooling (MAP) used for
CLIP embeddings in the work by Karamcheti et al. (2023) with our convolutional downsampling layer.
This change significantly improved performance on the fine-grained visual prediction tasks from
Appendix C.2 as reported in Table 10 (columns 3-4). This result challenges previous conclusions
regarding CLIP’s limitations in making accurate low-level spatial predictions (Karamcheti et al.,
2023), emphasizing the critical role of appropriate representation aggregation.

The above experiment helps to rule out the hypothesis that a limited ability to make fine-grained
visual predictions is the reason for CLIP’s lower performance on downstream control tasks. However,
we found that the introduction of the compression layer to CLIP embeddings did not markedly affect
control tasks, where performance improvements were modest. We present these results in Table 10
(columns 5-6) for VC-1 and CLIP on the MuJoCo tasks. We see that the compression layer (Comp)
often outperforms the use of CLS token embeddings (by 1-2%), however, it still does not help CLIP
match the best-performing models. Note that we used the compression layer method of aggregation
for all the baselines we ran to ensure we compared to their best numbers in Table 1 and Fig. 4. We
suggest that future studies adopt this methodology, where relevant, to enable a fairer comparison of
representations.

E DISCUSSION

In Appendix D, we deconstructed various components of SCR and identified where techniques used
in our approach could apply to other foundational control models. Our analysis in Appendices D.1
and D.4 revealed that using multi-layer features and appropriate spatial aggregation significantly
affects performance, and overlooking these factors can lead to misleading conclusions about the
capabilities of previously used representations. Next, our investigation into how language shapes
diffusion model representations uncovered nuanced results. Text influence on representations does
not uniformly enhance their downstream utility. This is particularly evident in tasks where text
specification is not required and where training and test environments are congruent, minimizing
the need for semantic generalization. Furthermore, tasks like referring expressions grounding
demonstrate the necessity of direct access to text embeddings for accurate object localization, even
when representations are modulated to considerable success.

In the OVMM task, we identified a scenario where multimodal alignment is essential. Here, we
proposed a method to more explicitly utilize the latent knowledge of the Stable Diffusion model.
While extracting similar text-aligned attention maps isn’t straightforward for other multimodal
models, future research could design methods to derive precise text-associated attribution maps for
these models. Finally, we contrast the simplicity of fine-tuning diffusion models with that of the
contrastive learning objective required to fine-tune CLIP. While the former only requires image-text
or image-only samples for the conditional or unconditional generation objectives respectively, the
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Bridge v2Epic-Kitchens Something-Something v2

Figure 7: Snapshots from the datasets we use for finetuning the Stable Diffusion model.

latter would require a sophisticated negative label sampling pipeline along with very high batch sizes
to ensure that the model does not collapse to a degenerate solution (Radford et al., 2021).

F FINE-TUNING STABLE DIFFUSION

For our experiments, we start with the runwayml/stable-diffusion-v1-5 model weights
hosted on huggingface.com and finetune them using the diffusers library. As mentioned in Section 2.5,
we use a subset of the frames from EpicKitchens, Something-Something-v2 and Bridge-v2 datasets.
More specifically, we take the middle one-third of the video clips and sample 4 frames randomly from
this chunk to increase the chances of sampling frames where the text prompt associated with the video
clip is most relevant for describing the scene. This subsampling results in a paired images-language
dataset of size 1.3 million. Figure 7 shows some samples of the images from the finetuning datasets
we use. Since different embodiments (human and robot) are visible in the training images, we prepend
the corresponding embodiment name to the text prompt for the associated image during training.

We adopt the same text-conditioned generation objective as that of the base model for the fine-tuning
phase. As is standard, we fine-tune the denoiser U-Net ϵθ but not the VAE encoder or decoder.
Image-text pairs are uniformly sampled from the video-text pairs present in these datasets. A possible
limitation of this strategy is that text-video aligned pairs (a sequence of frames in a control task
that correspond to a single language instruction) may define a many-to-one relation for image-text
pairs. However, as we see in experiments in which we compare to the base Stable Diffusion model in
Section 3, this simple approach to robotics alignment is useful in most cases.

We finetune on the dataset for only a single epoch (5000 gradient steps) using 2 GPUs with a total
batch size of 512 and a learning rate of 1e−4. Although the original Stable Diffusion model is trained
on images of resolution 512x512, we finetune the model on images downscaled to 256x256, since
it aligned with the resolution requirements of the downstream application. We show some sample
generations from the diffusion model after finetuning in Figure 8. Interestingly, we observe that the
model learns to associate the prompt with not just the human or robot hand but also with the style of
the background and objects of the training datasets.

G REPRESENTATION EXTRACTION DETAILS

Here, we describe the representation extraction details for all our baselines assuming a 224x224 input
image:
- Stable Control Representations: The Stable Diffusion model downsamples the input images by
a factor of 64. Therefore, we first resize the input image to a size of 256x256. We pass the image
to the VAE, which converts it into a latent vector of size 32x32x4 and passes it to the U-Net. We
use the last three downsampling blocks’ and the mid block’s output feature map of sizes 8x8x640,
4x4x1280, 4x4x1280, and 4x4x1280 respectively. The total size is, therefore, 102400, and we linearly
interpolated them to the same spatial dimension (8x8) before concatenating them channel-wise.
- R3M (Nair et al., 2022): For most of our experiments we use the original ResNet50 model, which
outputs a 2048 dimensional vector. For the referring expressions and grasp affordance prediction
tasks from the Voltron evaluation suite (Karamcheti et al., 2023), a VIT-S is used, which outputs an
embedding of size 14x14x384=75,264
- MVP (Xiao et al., 2022) and VC-1 (Majumdar et al., 2023): The last layer (24th) outputs an
embedding of size 16x16x1024=262,144.
- CLIP (Radford et al., 2021): For ViT-B, the last layer (12th) outputs an embedding of
size 14x14x768=150,528. For ViT-L, the last layer (24th) outputs an embedding of size
16x16x1024=262,144.
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Human hand

opening a drawer

slicing a cucumber with a knife

tossing a box in the trash

wiping the kitchen counter

Robot hand

wiping the kitchen counterslicing a cucumber with a knife

tossing a box in the trash opening a drawer

Figure 8: Image generations from the finetuned Stable Diffusion model. We provide 4 different
prompts, each prefixed with either “Human hand” or “Robot hand”.

- Voltron (Karamcheti et al., 2023): We use the VCond-Base model which outputs a representation of
size 14x14x768=150,528.
- SD-VAE Rombach et al. (2022): Outputs a latent vector of size 32x32x4=4096.

H TASK DESCRIPTIONS

H.1 FEW-SHOT IMITATION LEARNING

For all baselines, we freeze the pre-trained vision model and train a policy using imitation learning
on the provided set of 25 expert demonstrations. The results are then reported as the average of the
best evaluation performance for 25 evaluation runs over 3 seeds.

Meta-World. We follow Majumdar et al. (2023) and use the hammer-v2, drawer-open-v2, bin-
picking-v2, button-press-topdown-v2, assembly-v2 tasks from the Meta-World benchmark suite Yu
et al. (2019). Each task provides the model with the last three 256 × 256 RGB images, alongside
a 4-dimensional gripper pose. The model is a 3-layer MLP with a hidden dimension of 256 and is
trained for 100 epochs similar to Majumdar et al. (2023). The training uses a mini-batch size of 256
and a learning rate of 10−3.

Franka-Kitchen. The tasks involved here include Knob On, Knob Off, Microwave Door Open,
Sliding Door Open, and L Door Open, each observed from three distinct camera angles. For each
task, the model receives a 256 × 256 RGB image and a 24-dimensional vector representing the
manipulator’s proprioceptive state. For our experiments, we follow Kumar et al. (2023) and use a
2-layer MLP with a hidden dimension of 256 and train for 500 epochs. The mini-batch size is set at
128, with a learning rate of 10−4. We additionally correct a bug in the RoboHive implementation of
the VC-1 baseline, specifically on input image normalization. Adjusting the image normalization to a
0-1 range resulted in a significant improvement in its performance.

H.2 OVMM

Open-Vocabulary Mobile Manipulation (OVMM; Yenamandra et al., 2023) is a recently proposed
embodied AI benchmark that evaluates an agent’s ability to find and manipulate objects of novel
categories in unseen indoor environments. Specifically, the task requires an agent to “Find and
pick an object on the start receptacle and place it on the goal recetacle”, where
object, start receptacle and goal recetacle are the object category names. Given
the long-horizon and sparse-reward nature of this task, current baselines (Yenamandra et al., 2023)
divide the problem into sub-tasks, which include navigation to the start receptacle, precise camera
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Figure 9: Snapshots of a sample scene from the Habitat environments for the OVMM (left) and
ImageNav (right) task.

re-orientation to focus on the object (an abstracted form of grasping), navigating to the goal receptacle,
and object placement.

Since our aim is to investigate the open-vocabulary capabilities of pre-trained representations, we
choose to evaluate the models on only the precise camera re-orientation task (more commonly known
as the Gaze task). In the original Gaze task, the agent is initialized within a distance of 1.5m and
angle of 15◦ from the object which is lying on top of the start receptacle. The episode is
deemed successful when the agent calls the Pick action with the camera’s center pixel occupied
by the target object and the robot’s gripper less than 0.8m from the object center. In our initial
experiments, we found the current initialization scheme would lead the agent to learn a biased policy.
This policy would call the Pick action after orienting towards the closest object in the field of view.
Therefore, we chose to instantiate a harder version of the gaze task, where the episode starts with the
agent spawned facing any random direction within 2.0m of the object.

We carry out our experiments in the Habitat simulator (Szot et al., 2021) using the episode dataset
provided by Yenamandra et al. (2023). This dataset uses 38 scenes for training and 12 scenes for
validation, all originating from the Habitat Synthetic Scenes Dataset (HSSD; Khanna et al., 2023).
These validation scenes are populated with previously unseen objects, spanning 106 seen and 22
unseen categories. The validation set consists of a total of 1199 episodes.

Our agent is designed to resemble the Stretch robot, characterized by a height of 1.41 meters and a
radius of 0.3 meters. At a height of 1.31 meters from the base, a 640x480 resolution RGBD camera is
mounted. This camera is equipped with motorized pan and tilt capabilities. The agent’s action space
is continuous, allowing it to move forward distances ranging from 5 to 25 centimeters and to turn left
or right within angles ranging from 5 to 30 degrees. Additionally, the agent can adjust the head’s pan
and tilt by increments ranging from 0.02 to 1 radian in a single step.

In our experiments, we use a 2 layer LSTM policy and pass in the visual encoder representations
after passing them through the compression layer. We initialize the LSTM weights with the LSTM
weights of the Oracle model to get a slight boost in performance. We train our agents using the
distributed version of PPO (Wijmans et al., 2019) with 152 environments spread across 4 80 GB
A100 GPUs. We train for 100M environment steps while evaluating the agent every 5M steps and
report the metrics based on the highest success rate observed on the validation set.

H.3 IMAGENAV

We conduct our ImageNav experiments in the Habitat simulator (Savva et al., 2019), using the episode
dataset from Mezghani et al. (2021). The dataset uses 72 training and 14 validation scenes from
the Gibson Xia et al. (2018) scene dataset with evaluation conducted on a total of 4200 episodes.
The agent is assumed to be in the shape of a cylinder of height 1.5m and radius 0.1m, with an RGB
camera mounted at a height of 1.25m from the base. The RGB camera has a resolution of 128×128
and a 90◦ field-of-view.

At the start of each training episode, an agent is randomly initialized in a scene and is tasked to
find the position from where the goal image was taken within 1000 simulation steps. At each
step, the agent receives a new observation and is allowed to take one of the four discrete actions
including MOVE FORWARD (25cm), TURN LEFT (30◦), TURN RIGHT (30◦) and STOP. The
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Table 11: Hyperparameters and configuration settings used across tasks and methods.

Benchmark Timestep Prompt Attn Layers Post Compression Dim

Meta-World 200 No No Mid + Down [1-3] 3072
Franka Kitchen 0 No No Mid + Down [1-3] 2048
ImageNav 0 No No Mid + Down [1-3] 2048
OVMM 100 Yes Yes Mid + Down [1-3] 2048
Referring Expression 0 Yes No Mid + Down [1-3] 8192
Grasp Prediction 0 No No Mid + Down [1-3] 8192

episode is a success if the agent calls the STOP action within 1m of the goal viewpoint. Similar
to Yadav et al. (2023); Majumdar et al. (2023) we train our agents using a distributed version of
DD-PPO Wijmans et al. (2019) with 320 environments for 500M timesteps (25k updates). Each
environment accumulates experience across up to 64 frames, succeeded by two epochs of Proximal
Policy Optimization (PPO) using two mini-batches. While the pre-trained model is frozen, the policy
is trained using the AdamW optimizer, with a learning rate of 2.5× 10−4 and weight decay of 10−6.
Performance is assessed every 25M training steps, with reporting metrics based on the highest success
rate observed on the validation set.

I HYPERPARAMETERS

We provide the hyperparameters used in Section 3 for Stable Control Representations in Table 11.
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Figure 10: Noising and denoising plots for images from 3 of our tasks using the fine-tuned Stable
Diffusion model. For each image, we first add noise up to timestep t, where t ∈ {100, 200, 300}, and
then denoise the image back to timestep 0. We observe that different tasks have different optimal
timesteps based on the amount of information the images contain. On Meta-World, SD is able to
reconstruct the image correctly even at t=200, while for refer expression, noising leads to information
loss even at t=100.
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Figure 11: The Stable Diffusion model allows us to extract word-level cross-attention maps for any
given text prompt. We visualize these maps in a robotic manipulation environment and observe that
they are accurate at localizing objects in a scene. Since these maps are category agnostic, downstream
policies should become robust to unseen objects at test time.

(1) Find Tomato

(4) Find Spray Bottle (5) Find Plant Container

(2) Find Gaming Console (3) Find Plant Container

(6) Find Candle Holder

Figure 12: Images from OVMM benchmark with their corresponding attention maps obtained from
the fine-tuned Stable Diffusion (SD) model. The first 5 pairs of images correspond to failed episodes,
with the bottom right pair corresponding to a successful episode. The attention maps help us interpret
the cause of failure: (1) Tomato - SD wrongly attends strongly to an apple. (2) Gaming Console -
visible at the top of the image; however, SD attends to multiple objects due to low visual quality. (3)
Plant Container - SD instead focuses on the two glasses it sees in the image. (4) Spray Bottle - SD
completely misses the spray bottles in the image and attends to the lava lamp. (5) Plant Container -
SD wrongly attends to the apple. (6) Candle Holder - SD correctly attends.
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