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Abstract

In recent years, there has been interest in how geometric properties such as intrinsic
dimension (ID) of a neural network’s hidden representations change through its
layers, and how such properties are predictive of important model behavior such as
generalization ability. However, evidence has begun to emerge that such behavior
can change significantly depending on the domain of the network’s training data,
such as natural versus medical images. Here, we further this inquiry by exploring
how the ID of a network’s learned representations changes through its layers,
in essence, characterizing how the network successively refines the information
content of input data to be used for predictions. Analyzing eleven natural and
medical image datasets across six network architectures, we find that how ID
changes through the network differs noticeably between natural and medical image
models. Specifically, medical image models peak in representation ID earlier in
the network, implying a difference in the image features and their abstractness
that are typically used for downstream tasks in these domains. Additionally, we
discover a strong correlation of this peak representation ID with the ID of the data
in its input space, implying that the intrinsic information content of a model’s
learned representations is guided by that of the data it was trained on. Overall, our
findings emphasize notable discrepancies in network behavior between natural and
non-natural imaging domains regarding hidden representation information content,
and provide further insights into how a network’s learned features are shaped by its
training data.

Introduction

In science, it is common to use relatively simple models to approximate the behavior of complex
systems. The parameters of such models for real systems can often be estimated using observed
data, which can then be used to extrapolate to future behavior. This approach has been increasingly
applied to deep learning, such as where relatively simple measurable geometrical properties (intrinsic
dimension, curvature, etc.) of a network’s manifold of learned representations [2] or training data [27]
can predict important behavior such as generalization, adversarial robustness, or prompt perplexity
[19]. However, it has been recently found that such behavior can vary significantly between data
domains—in particular natural versus medical images—with many open questions remaining about
what other behavior can change due to such domain shift [16, 17, 35]. Here, we further this inquiry
by exploring how the intrinsic dimension (ID) of a neural network’s learned representations—which
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describes their intrinsic information content/minimum number of degrees of freedom—changes
through its layers, and how this behavior changes depending on the dataset or data domain.

It has been found that for ImageNet [4] classification networks (both convolutional and transformer-
based), the ID of hidden representations typically first steadily increases through successive network
layers, then past a certain point, decreases until the output [2, 35]. It is hypothesized that this first stage
of “dimensionality expansion” is the network pre-processing the data to disentangle certain correlated,
nuisance features (such as luminance or contrast) which are irrelevant to the final prediction, which
may have parallels in human visual processing [32, 33]. Once this is completed and the ID has
peaked, the second stage begins where the network successively compresses the representations
to lower- and lower-dimensional manifolds that are better suited for generalizing to unseen data
[2, 22]. Importantly, prior results with ImageNet models have shown the ID of the final hidden layer
representations to be closely correlated with generalization error [2], pointing it to being a useful
property for describing network behavior. However, the generality of such findings in other datasets
or data domains is unknown.

In this work, we first explore how layer-by-layer representation ID progression differs for models
trained on datasets beyond ImageNet, including both three other natural image datasets and seven
medical image datasets for a wide range of diagnostic tasks. We find that these curves have typically
different shapes depending on if the model was trained on natural or medical images. In particular, the
depth at which the ID peaks at some dmax

repr is noticeably deeper into the model on average for natural
image models, which we attribute to the task-relevant features of medical images typically requiring
less abstract representations to capture, and so can be “pre-processed” for compression earlier in the
network. Next, we explore the relationship between dmax

repr and the intrinsic dimension of the raw data
in its native space, ddata [27], and discover a new result: there is a strong correlation between dmax

repr
and ddata across all datasets and models, implying that the maximum intrinsic complexity of learned
representations in a model is guided by the intrinsic complexity of the model’s training data.

1 Experimental Methods

The manifold hypothesis and intrinsic dimension. Neural networks work by mapping high-
dimensional input data (like images) to significantly lower-dimensional manifolds of learned rep-
resentations [10, 2] which describe features that generalize to new data, made possible by learning
the lower-dimensional manifold structure of such datasets in their native space [7]. The intrin-
sic dimension of such a manifold can be computed via a relatively simple estimator that utilizes
maximum likelihood estimation (MLE) [20, 23] given the high dimensional dataset (in our case,
of representations) which we use here following prior work [17, 27] via the implementation of
https://github.com/mazurowski-lab/intrinsic-properties. We set the nearest-neighbor
hyperparameter to k = 20 following [17, 16, 27].

Consider some C-class image classification neural network f : Rn → RC with L layers fi indexed
by i = 1, . . . , L, i.e., f = fL ◦ . . . ◦ f2 ◦ f1, and f≤i(x) := (fi ◦ . . . ◦ f1)(x) denotes the ith hidden
layer output given input data x ∈ Rn. Given some unlabeled input dataset X , the intrinsic dimension
direpr of an ith layer’s manifold of representations H := {f≤i(x) : x ∼ X} can be computed by
applying one of the aforementioned estimators toH. In this work, we will mainly analyze the way
that representation ID changes from layer to layer, i.e., the sequence d1repr, . . . , d

i
repr, . . . , d

L
repr.

Datasets. We experiment on binary classification datasets from both natural imaging and medical
imaging. The former includes ImageNet [4], CIFAR10 [18], SVHN [26], and MNIST [5], where
the two predictive classes are randomly chosen for any given experiment (i.e., model training and
ID estimation). The latter utilizes the same datasets and predictive tasks as [17]; including (1) brain
MRI glioma detection (BraTS, [24]); (2) breast MRI cancer detection (DBC, [29]); (3) prostate MRI
cancer risk scoring (Prostate MRI, [31]); (4) brain CT hemorrhage detection (RSNA-IH-CT, [8]);
(5) chest X-ray pleural effusion detection (CheXpert, [14]); (6) musculoskeletal X-ray abnormality
detection (MURA, [28]); and (7) knee X-ray osteoarthritis detection (OAI, [34]).

We follow the same procedure for dataset creation as in [17], creating randomly-sampled, even
class-balanced training sets of size N ∈ {500, 750, 1000, 1250, 1500, 1750} and test sets of size 750;
natural image model results are averaged over 5 runs of different randomly selected class pairings.
Representation ID estimates for a given model are made using its training set, following [2]. Our
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results will be presented for N = 1750 unless otherwise stated, but we provide all results for the
other N in Appendix A.1. All images are resized to 224× 224 and normalized to [0, 1].

Models. We evaluate six common convolutional network architectures: VGG-13, -16, -19 [30]
and ResNet-18, -34, and -50 [12]. Each network is trained via Adam [15] until maximally fitting to
the given training set. We analyze the representations outputted by all pooling layers, convolutional
blocks (or residual blocks for the ResNet models), and fully-connected layers.

2 Experiments and Results

Progression of hidden representation intrinsic dimension through network depth. We will
first analyze how representation intrinsic dimension (ID) direpr changes with respect to relative
network depth i/L for models trained on either natural or medical image datasets or, in other words,
the way that intrinsic representation information content changes through the depth of the network.
We will characterize these ID curves by the depth

i∗ := argmaxi(d
i
repr) (1)

at which the ID peaks at some dmax
repr := di

∗

repr, transitioning from the aforementioned “pre-processing”
stage to the “compression” stage of the model. This dmax

repr is hypothesized to be the minimum number
of degrees of freedom needed to represent the data such that task-irrelevant features are decorrelated
with task-related features before the compression phase can begin. We show these curves for all
datasets in Fig. 1, along with peak ID values dmax

repr and their depths i∗/L for each dataset in Table 1,
averaged over all models.
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Figure 1: Progression of representation intrinsic dimension direpr with respect to relative network
depth i/L, for all models trained on each dataset.

We see that the typical shapes of these ID curves differ depending on whether the model was trained
on a natural image or medical image dataset; in particular, the average dmax

repr for natural image
models is 0.57, while for medical image models it is noticeably earlier in the networks at 0.35.
This implies that for medical image datasets, features needed for diagnostic tasks are typically less
abstract/hierarchical than those for natural image tasks and so can be pre-processed by the network
for prediction usage at earlier layers. We find the same for other training set sizes (Appendix A.1.1).
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ImageNet CIFAR-10 SVHN MNIST Avg.
dmax
repr 39 ± 4 39 ± 9 26 ± 6 14 ± 3 29 ± 10

i∗/L 0.40 ± 0.10 0.65 ± 0.14 0.77 ± 0.24 0.47 ± 0.24 0.57 ± 0.15

BraTS DBC OAI CheXpert MURA RSNA-IH-CT Prostate-MRI Avg.
21 ± 5 23 ± 5 26 ± 4 34 ± 7 21 ± 5 17 ± 3 6 ± 1 21 ± 8

0.40 ± 0.10 0.23 ± 0.14 0.65 ± 0.22 0.40 ± 0.16 0.40 ± 0.16 0.33 ± 0.10 0.05 ± 0.00 0.35 ± 0.17

Table 1: Hidden representation peak intrinsic dimension dmax
repr and the relative network depth i∗/L at

which it was attained for each dataset (see Fig. 1 for reference), averaged over all architectures. Top
table: natural image datasets. Bottom table: medical image datasets. Confidence intervals provided
as standard deviations over all model architectures.

The relationship between hidden representation intrinsic dimension and dataset intrinsic di-
mension. We hypothesize that the learned representation manifolds of a network may be shaped
by the properties and complexity of the dataset manifold in its native (pixel) space. Prior work [17]
studied the relationship between the intrinsic dimension of final hidden layer representations for
classification networks, dL−1

repr , with the intrinsic dimension of the dataset itself, ddata, and theoreti-
cally and empirically showed that dL−1

repr . ddata. Intuitively, this describes that the network learns
to convert the data to a final hidden representation constructed mainly of intrinsic features that are
task-relevant, which will be a subset of a larger number of intrinsic features that can be used to
describe the data in its original space. Here we will explore this relationship between the intrinsic
information content of input data and representations further.
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Figure 2: Correlation of peak hidden represen-
tation intrinsic dimension dmax

repr with intrinsic
dataset dimension ddata, averaged (with stan-
dard deviation error bars) over all models.

When a network’s representations reach a peak in-
trinsic dimension dmax

repr at some depth (Fig. 1), it
implies that task-irrelevant features have fully been
decorrelated from task-relevant features in the post-
processing stage, such that the former can be removed
from the representation in the remaining layers (the
compression stage) without affecting the latter. We
therefore hypothesize that dmax

repr will be proportional
to the dataset’s ddata because it describes the input
data features in a decorrelated manner (as degrees
of freedom) before any task-irrelevant features are
discarded in later layers. We evaluated this empiri-
cally as shown in Fig. 2, averaging dmax

repr and ddata
estimates for each dataset over all models, and in-
triguingly found this correlation to be quite high
(r = 0.89), with dmax

repr being roughly double ddata.
This relationship and correlation is quite consistent
for different training set sizes (Appendix A.1.2).

Why is it not the case that this constant of proportion-
ality is closer to 1, i.e., dmax

repr ≈ ddata? We hypothe-
size that while the networks learn to compress input
data to a dimensionality much lower than the extrin-
sic dimension/pixel count (on the order of 105) while still well-representing the data’s information
content, it is not quite the perfectly optimal, truly minimum number of degrees of freedom that can
describe the data. While this could be due to limited network capacity, in our over-parameterized
regime it is more likely that compressing the data further simply has a marginal effect on downstream
task performance, as the representation dimensionality is already quite low and usable for downstream
task prediction in the compression stage of the network, so the network has no need to learn to do so.

Related Work

Beyond intrinsic dimension (ID), other metrics of the intrinsic complexity, dimensionality, capacity,
or related characteristics of a hidden layer’s representations include manifold capacity [3], linear
ID [13], local ID [1, 21], and others. We choose to analyze MLE estimator-based ID rather than
manifold capacity due to it not requiring specifying labels/a task for the dataset, as manifold capacity
focuses on how class representation manifolds are modified through the network, so that our findings

4



may more easily generalize to models for tasks beyond classification. We focus on global nonlinear
ID rather than local or linear ID due to its established relationship with important phenomena such
as network generalization ability [2]. Other general nonlinear manifold ID estimators beyond MLE
include TwoNN [6], GeoMLE [9], and k-NN Graph Distance [11].

Conclusions

In this work, we explored how the intrinsic dimension (ID) of hidden representations changes through
a neural network’s depth, in particular studying how the shape of this ID curve changes depending
on the training dataset and data domain. We found that these curves peak at noticeably earlier
layers when the model is trained with medical imaging data compared to natural images, implying a
discrepancy between the two data domains in the abstractness of prediction-relevant features. We
also studied the relationship between this peak representation ID and the ID of the dataset in its input
space, between which we found a strong correlation, pointing to a close connection between the
information content of a model’s representations and the content of its training data.

We expect that our findings will extend to other tasks beyond binary classification, not just because the
ID estimator does not use labels, but also because similar “pre-processing then compression” represen-
tation ID progression curves (Fig. 1) have been seen in models for both multi-class classification [2]
and other non-supervised, non-vision (as well as non-CNN) models [35]. Future research directions
could include (1) further probing our proposed connections between learned feature “abstractness”
and peak representation ID, such as by seeing if training for classification tasks with increasingly
abstract super-classes (e.g., as in WordNet [25]) results in an increased peak ID depth in the network;
as well as (2) attempting to disentangle the effects of dataset ID and feature “abstractness” on peak
representation ID using experiments that can control the precise ID of training data, such as in [27].
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A Supplementary Material

A.1 Additional Results

A.1.1 Progression of hidden representation intrinsic dimension through network depth.

We provide Table 2 to show the same results of average peak intrinsic dimension dmax
repr and the relative

network depth i∗/L at which it was attained for natural vs. medical images, to supplement Table 1
for all training set sizes N . We also show the actual representation ID curve plots for each dataset for
these other N in Figs. 3, 4, 5, 6, and 7 to supplement Fig. 1.

A.1.2 The relationship between hidden representation intrinsic dimension and dataset
intrinsic dimension.

We provide Fig. 8 to show the same results of Fig. 2 for all other training set sizes.
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Figure 3: Progression of hidden representation intrinsic dimension direpr with respect to relative
network depth i/L, for all models trained on each dataset, for N = 500. Top row: natural image
models. Lower rows: medical image models.
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Figure 4: Progression of hidden representation intrinsic dimension direpr with respect to relative
network depth i/L, for all models trained on each dataset, for N = 750. Top row: natural image
models. Lower rows: medical image models.
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Figure 5: Progression of hidden representation intrinsic dimension direpr with respect to relative
network depth i/L, for all models trained on each dataset, for N = 1000. Top row: natural image
models. Lower rows: medical image models.
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Figure 6: Progression of hidden representation intrinsic dimension direpr with respect to relative
network depth i/L, for all models trained on each dataset, for N = 1250. Top row: natural image
models. Lower rows: medical image models.
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Figure 7: Progression of hidden representation intrinsic dimension direpr with respect to relative
network depth i/L, for all models trained on each dataset, for N = 1500. Top row: natural image
models. Lower rows: medical image models.
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Figure 8: Correlation of peak hidden representation intrinsic dimension dmax
repr with intrinsic

dataset dimension ddata, averaged over all models, for additional training site sizes of N =
500, 750, 1000, 1250, 1500, ordered left-to-right, to supplement the N = 1750 result of Fig. 2.
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Natural Image Models
N = 500 N = 750 N = 1000 N = 1250 N = 1500 N = 1750

dmax
repr 22± 6 25± 8 25± 8 27± 8 29± 10 29± 10

i∗/L 0.54± 0.13 0.53± 0.17 0.58± 0.17 0.54± 0.16 0.63± 0.12 0.57± 0.15

Medical Image Models
N = 500 N = 750 N = 1000 N = 1250 N = 1500 N = 1750

dmax
repr 17± 5 18± 5 19± 7 20± 7 21± 7 21± 8

i∗/L 0.36± 0.16 0.37± 0.16 0.36± 0.12 0.38± 0.10 0.36± 0.15 0.35± 0.17

Table 2: Hidden representation peak intrinsic dimension dmax
repr and the relative network depth i∗/L at

which it was attained, on average over all natural image models vs. all medical image models, for
each training set size N (extending the results of Table 1, averaged over all architectures.
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