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1 INTRODUCTION

Causal structure learning (CSL) refers to the task of learn-
ing causal relationships between variables in the form of
a directed graph. Recent years have seen considerable the-
oretical and methodological advances in CSL, including
formulation via continuous optimization [Zheng et al., 2018,
Lippe et al., 2021, Lopez et al., 2022]. Despite these develop-
ments, CSL in scientific applications remains challenging,
due to problem dimension, noise, data limitations, latent
variables, and a lack of ground-truth causal knowledge.

The application of CSL to problems in biomedicine yields
many of such problems. Advances in molecular biology
have enabled gene-knockout experiments at an unprece-
dented scale [Dixit et al., 2016] with measurements of tens
of thousand of variables under thousands of interventions,
and recent experiments spanning millions of cells [Replogle
et al., 2022]. These developments promise to transform
biomedical discovery by enabling causal experiments at
genome-wide scale. However, it remains challenging to un-
derstand performance, making it difficult to establish reli-
able CSL-based workflows.

Related Work. The need to better understand CSL perfor-
mance characteristics has motivated a line of work in bench-
marking methods [Eigenmann et al., 2020, Chevalley et al.,
2022]. Single-cell Expression of Genes In-silico (SERGIO)
was developed by Dibaeinia and Sinha [2020] as an ap-
proach based on stochastic differential equations. Causal-
Bench [Chevalley et al., 2022] has also been developed as
a framework for evaluating structure learners directly from
real-world data.

Contributions. We propose CausalRegNet, an approach for
generating realistic synthetic data from an underlying di-
rected acyclic graph (DAG) at the scale now seen in contem-
porary experiments and data acquisition pipelines. Our work
has several novel contributions: (i) We show how structural
causal models can be used to generate realistic data; (ii)
We put forward an interpretable and user-friendly approach

to calibrating simulators; (iii) We develop CausalRegNet,
a simulator motivated by large-scale interventional experi-
ments in biology, which can be matched to real-world gene
perturbation screens such as Replogle et al. [2022].

2 BACKGROUND

Definition 2.1 (Structural Causal Model; Peters et al.
[2017]). A structural causal model (SCM) C = (S,PN ) is
a collection S of d structural assignments corresponding to
each Xj ∈ X = {X1, . . . , Xd},

Xj := fj(Xpa(j), Nj), j = 1, . . . , d, (1)

where Xpa(j) ⊆ X\{Xj} are parents of Xj , PN is a joint
distribution over noise variables, which we require to be
jointly independent.

The causal relationship between Xj and Xpa(j) can be rep-
resented via a causal graph. The causal graph G = (V,E) is
composed of vertices V = [d], each corresponding to a ran-
dom variable in X, and edges E = {i → j : Xi ∈ Xpa(j)}.
We assume that G has no paths of the form j → . . . → i,
that is, G is acyclic and there are no paths along directed
edges that lead from a child to one of its parents.

Definition 2.2 (Additive Noise Model; Hoyer et al. [2008]).
An SCM with structural assignments of the form,

Xj := fj(Xpa(j)) +Nj (2)

where fj(·) is an arbitrary function and the noise variables
Nj are jointly independent, is an additive noise model
(ANM). If fj(·) is linear and the noise variables are dis-
tributed as Nj ∼ N (0, σ2

j ) this gives the family of linear
Gaussian ANMs.

3 METHODOLOGY

We begin by defining the desiderata for CausalRegNet,
which are used to guide development of a simulator for CSL
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in genomics data: (i) interpretability of simulator parame-
ters; (ii) scalability to the size of real-world experiments;
(iii) non-varsortability as defined by Reisach et al. [2021];
(iv) matched distributional properties across empirical and
synthetic data.

For each node j, the random variable associated with this
node is distributed according to,

Xj ∼ NegBin(µj , σ
2
j ), (3)

where µj is the mean expression and σ2
j is the variance. The

parameters are defined as

µj = µ0
j · f

reg
j (Xpa(j); Θj), and, (4)

σ2
j = µj(1 + µj/θj), (5)

where µ0
j is the observational mean and f reg

j (·) represents
the regulatory effect of the parents of Xj on Xj . The mean-
variance relationship imposed via σ2

j and the multiplica-
tive regulatory effect reflect established domain knowledge
[Love et al., 2014], satisfying desiderata (i).

The regulatory effect function takes a sigmoidal form,

f reg
j (Xpa(j); Θj) =

αj

1 + exp
{
−γj(w(xpa(j)) + bj)

} , (6)

where αj is the maximum regulatory effect of Xpa(j) on Xi,
and w(xpa(j)) is any function that aggregates the regulatory
effect of parents.

For simplicity, here we use w(xpa(j)) =
∑

i∈pa(j) wij ·
xi/µ

0
i , where W ∈ Rn×n is a weighted adjacency matrix

that defines the strength of relationship between Xi and Xj

and [W ]ij = wij is the edge weight for the edge going from
Xi to Xj .

The parameters γj and bj are calibrated according to the
aggregation function w(·), maximum regulatory effect αj >
1, and minimum regulatory effect 0 < βj < 1. To do this,
we define the following value conditions:

I. Baseline Expression Condition (BEC):

if ∀i ∈ pa(j), Xi = 0, then f reg
j (Xpa(j)) = βj ,

II. Observational Expression Condition (OEC):

if ∀i ∈ pa(j), Xi = µ0
i then f reg

j (Xpa(j)) = 1.

In other words, we first have that when the expression of
each of the parents of node j are at zero, the regulatory
effect will be at the baseline βj . Conversely, when each of
the parents of j are expressed at the observational mean, then
the regulatory effect is equal to 1, implying µj = µ0

j ·1 = µ0
j .

That is, Xj is at its observational mean.

These value conditions allow us to freely specify the ag-
gregation function w(·) and calibrate the regulatory effect
function to guarantee maximum and minimum effects.These
conditions are sufficient to yield closed-form solutions for
γj and bj given the parameters {αj , βj , w(·)}.

4 EXPERIMENTS

Figure 1a shows the time taken to simulate data from graphs
of size 3 to 10,000. The scalability of CausalRegNet is
shown to be comparable to the simple Gaussian ANM. For
the same graphs, SERGIO takes upwards of 2.78 hours. To
examine the varsortability of data generated by each simula-
tor we generated data from causal chain and causal graph
structures. The results for the causal chain and causal graph
simulations are shown in Figure 1b-c, respectively, with
CausalRegNet outperforming SERGIO and the Gaussian
ANM. Hence, CausalRegNet satisfies desiderata (ii) and
(iii).
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Figure 1: (a) Simulation time. Mean varsortability of data
generated from (b) a causal chain and (c) a causal graph
structure by each simulator with 95% confidence intervals.

We extract 100 cancer-related genes from the Replogle et al.
[2022] dataset and fit negative binomial distributions to
each gene that are then used to simulate via CausalRegNet.
Figure 2b shows the distribution of Wasserstein distances
(WDs) between the synthetic and real marginal expression
distributions when compared to the true expression distribu-
tions (green) and a random gene (purple). The distribution
of interventional effects is shown to be realistic in Figures
2c-d. CausalRegNet therefore satisfies desiderata (iv).
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Figure 2: (a) Comparison between real and simulated data
in DAG with 3 nodes. (b) Comparison between WD for
shuffled and true gene labels on synthetic distributions. The
distribution of interventional effects with (c) αj = 2 and (d)
αj = 5 for each node.

Furthermore, in the full paper, we present a simulation study
to examine the performance of various CSL algorithms
using CausalRegNet as our synthetic data generator.
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