
Under review as submission to TMLR

Neural DDEs with Learnable Delays for Partially Observed
Dynamical Systems

Anonymous authors
Paper under double-blind review

Abstract

Many successful methods to learn dynamical systems from data have recently been intro-
duced. Such methods often rely on the availability of the system’s full state. However, this
underlying hypothesis is rather restrictive as it is typically not confirmed in practice, leaving
us with partially observed systems. Utilizing the Mori-Zwanzig (MZ) formalism from statis-
tical physics, we demonstrate that Constant Lag Neural Delay Differential Equations (ND-
DEs) naturally serve as suitable models for partially observed states. In empirical evaluation,
we show that such models outperform existing methods on both synthetic and experimental
data. Code is available at https://anonymous.4open.science/r/DynamicalSysDDE-F86C/

1 Introduction

Learning system dynamics is essential in many domains such as biology (Roussel, 1996; Epstein, 1990),
climate research (Ghil et al., 2008; Keane et al., 2019) or finance (Achdou et al., 2012). In a data-driven
context, given a dataset of L distinct trajectories of length N + 1, represented as {(tl0, xl0), . . . , (tlN , xlN)}Ll=1,
which are observations of a unknown system:

dx
dt = f(t, x(t))

x(0) = x0

(1)

we wish to learn a model for the dynamics of x(t) with x : R→ Rn and f : R × Rn → Rn. Using Equation
1’s ODE dynamics model to fit the aforementioned dataset is natural and well suited, Neural Ordinary
Differential Equations (NODEs), introduced in Chen et al. (2018), follows this exact formulation. NODEs
gave rise to the class of continuous depth models and can be viewed as a continuous extension of Residual
Networks (He et al., 2016). An immediate extension of NODEs, referred to as Augmented NODEs (Dupont
et al., 2019), explores the existence of certain functions that NODEs are unable to represent. It tackles
this expressivity limitation of NODEs by expanding the dimension of the solution space from Rn to Rn+p

through the incorporation of an additional proxy variable a(t). The additional introduced dimensions allow
to learn more complex functions using simpler flows. The Augmented NODE is defined as follows:

d

dt

[
x(t)
a(t)

]
= f

(
t,

[
x(t)
a(t)

])
,

[
x(0)
a(0)

]
=
[
x0
0

]
. (2)

Unfortunately, many applications have to deal with partially observable states and non-Markovian dynamics
making a NODE problem formulation ill-suited. An instance of this issue is in the metal cutting pro-
cess, where the neglect of tools’ vibration delay can lead to poor surface quality (Kalmár-Nagy et al.,
2001). Similarly, ignoring non-Markovian phenomena such as gene transcription, translation times, and
inter-compartmental transport within cells leads to unrealistic models of biological systems. Examples
include gene expression, cell division, and circadian rhythms (Jensen et al., 2003; Tiana et al., 2007). Fur-
thermore, in climate science, accurately predicting phenomena like the El Niño-Southern Oscillation (ENSO)
necessitates the inclusion of feedback loops (Kondrashov et al., 2015). To address ODEs limited expressivity
some sort of memory mechanism is required.

1

https://anonymous.4open.science/r/DynamicalSysDDE-F86C/

Under review as submission to TMLR

The distinctive feature of recurrent neural networks (RNNs) is their ability to incorporate a "memory" as
a latent variable. This allows them to leverage past inputs, influencing both the current input and output
(Jordan, 1986; Rumelhart et al., 1985; Hochreiter & Schmidhuber, 1997). RNNs are commonly employed
for processing sequential or time series data, making them well-suited for dynamical systems. However, the
discrete nature of RNNs collides with the appealing continuous formulation of the problem. Often compared
to LSTMs, Reservoir Computing (RC), can be regarded as a noteworthy alternative to RNNs for its efficient
training and strong performance in capturing long-term statistics when full state dynamics are accessible
Vlachas et al. (2020). RCs use a fixed, randomly connected recurrent neural network (the reservoir) to
capture the dynamics of input data while training only the output layer. Once mapped, only a simple
readout layer is needed to extract the reservoir’s state and train it to achieve the desired output Jaeger &
Haas (2004); Maass et al. (2002)

An alternative hybrid technique named Latent ODE combines NODE and RNNs together (Rubanova et al.,
2019). This variational-autoencoder model uses an ODE-RNN encoder and ODE decoder architecture to
construct a continuous time model with a latent state defined at all times trained with a set of N observations
x(ti) at times ti. The initial latent state z0 is sampled via a parameterized Gaussian distribution. The final
output (i.e., the entire trajectory) is generated by integrating the initial state z0 over time with another
parameterized vector-field fθ and projecting it back onto the original space.

Another approach is to incorporate non-Markovianity into the formulation by including the historical past
state in Equation 1. Such a choice promotes more transparency than RNNs rather "opaque" nature. This
brings us into the domain of Neural Delay Differential Equations (NDDEs), which is another subset of
models falling under the umbrella of continuous depth models, alongside NODEs. A generic delay differential
equation (DDE) is described by :

dx
dt = f(t, x(t), x(α1(t)), . . . , x(αk(t)))

∀t, αi(t) = t− τi(t, x(t)), i ∈ 1, 2, . . . , k
x(t < 0) = ψ(t)

(3)

where, ψ : R− → Rn is the history function, ∀i, τi : R× Rn → R+ is a delay function, and f : [0, T]× Rn ×
· · · × Rn → Rn can be a parameterized network. The history function ψ serves as the initial condition for
DDEs, analogous to x0 in ODEs.

The modeling capabilities of NDDEs vary based on the chosen delay type. Inherently, NDDEs, with their
delays, incorporate and leverage information from preceding time points, effectively converting the delay
term into a dynamic memory mechanism. Initially proposed by Zhu et al. (2021) to learn NDDEs with
a single constant delay, subsequent work by Zhu et al. (2023) and Schlaginhaufen et al. (2021) explored
piece-wise constant delays and developed a stabilizing loss for NDDEs, respectively. Additionally, Oprea
et al. (2023) focused on learning a single delay within a small network (less than 10 parameters).

In this paper, we extend these previous contributions by embedding NDDEs in the general framework of the
MZ formalism. We explore the possibility of learning the values of the delays at the same time as neural
flows for realistic network sizes and extend the state of the art to complex physical applications.

Our main contributions are the following :

• Provide a theoretically grounded formulation for partially observed systems with the Mori-Zwanzig
formalism.

• Demonstrate that constant lag NDDEs can model partially observed dynamics with nu-
merical examples and experimental data from fluid mechanics. Code is available at
https://anonymous.4open.science/r/DynamicalSysDDE-F86C/.

• Provide an opensource package for constant lag DDEs compatible with neural networks, implemented
in Pytorch. This implementation allows to learn jointly the delay and the DDE’s dynamics. Code
is available at https://anonymous.4open.science/r/torchdde-38F6/.

2

https://anonymous.4open.science/r/DynamicalSysDDE-F86C/
https://anonymous.4open.science/r/torchdde-38F6/

Under review as submission to TMLR

Figure 1: Measuring the fully observed state of a system (1) is often impossible due to its high dimensionality.
Ultimately the user only has at its disposable sparse observations of the full state that can be seen as low
dimensional observable function g (2). The MZ equation DDE approximation (Proposition 2.2) can then
used to model partially observed systems (3).

2 Modelling Partially Observed Dynamical Systems

In this section we first introduce the Mori-Zwanzig formalism, suitable for partially-observed dynamical
systems, then discuss the limitations of the usual way to solve them in practice with Integro-Differential
Equations, and propose our new approach based on Takens’ theorem to tackle these issues.

2.1 The Mori-Zwanzig (MZ) formalism

The Mori-Zwanzig formalism, rooted in statistical mechanics, provides a method to construct accurate evo-
lution equations for relevant quantities, such as macroscopic observables, within high-dimensional dynamical
systems (Mori, 1965; Zwanzig, 1966; Zwanzig et al., 1972). This framework is instrumental in situations
where the full state x(t) is unavailable, and one can only access lower dimensional observations. Addition-
ally, the MZ formalism is relevant for addressing dimension reduction problems (Zhu, 2019). We will operate
within the first scenario, i.e. with partially-observed dynamical systems.
Theorem 2.1. Mori-Zwanzig equation formalism Let us consider a nonlinear system evolving on a
smooth manifold S ⊂ Rn:

dx
dt = G(x), x(0) = x0, (4)

where the full state x ∈ S can be accessed only through the lens of an arbitrary number of scalar-valued
observables gi : S −→ R. Then, the dynamics of the vector of observables g = [g1, . . . , gm] follow the Integro-
Differential Equation (IDE) :

dg

dt
= M(g(t))−

∫ t

0
K(g(t−s), s)ds+ F (t). (5)

where M is a Markovian term, i.e. a function involving current observables g(t), and where the function K,
which depends on past observables, is integrated over the whole time since the initial condition, while the
noise term F accounts for the dynamics of the observables in the unobservable space.

This equation, derived within the framework of the Mori-Zwanzig theory (see Appendix A), is sometimes
referred to as the Generalized Langevin Equation (GLE). It provides a rigorous governing equation for the
observables g. This elegant formulation of partially observed dynamics yields an exact evolution equation that
takes the form of an Integro-Differential Equation. Therefore, learning the dynamics of partially observed
systems boils down to estimating each term of the differential equation above. Appendix B demonstrates
some cases where the noise term F can be null, a scenario we set ourselves in.

3

Under review as submission to TMLR

2.2 Approximations of Integro-Differential Equations (IDE)

The statement in Theorem 2.1 outlines the structure of the vector field dynamics. However, solving this
dynamical equation can prove challenging due to the complexity implied by the integral term. We now
discuss several approaches from the literature to estimate this integral.

A simplistic approximation consists in just disregarding the integral term, focusing solely on the impact
of the observable g at the current time step t. This corresponds to NODE Chen et al. (2018), where the
dynamics are approximated as:

dg
dt ≈ fθ(t, g(t)).

where fθ is a neural network with parameters θ.

Instead of neglecting it, an approach to approximate the integral consists in studying particular asymptotic
regimes. Among the many different models proposed in the literature (Stinis, 2003; Chorin & Stinis, 2005;
Stinis, 2006), one of the the most popular consists in approximating the integral under assumptions of very
short memory or very long memory regimes.

For example, the t-model, also commonly called slowly decaying memory approximation (Chorin et al., 2002)
leads to Markovian equations with time-dependent coefficients, , which can subsequently be modeled using
a NODE (see Appendix C for full derivation). However these remain asymptotic approximations, and, more
problematically, they are not extendable to intermediate-range memory in general.

Another approach consists in performing Monte Carlo integration (Robert et al., 1999). This work has been
extended in a neural network-based formulation (Neural IDE) Zappala et al. (2022), where the memory
integrand is decomposed as a product of type K(t, s)F (g(s)). However the number of function evaluations
required to accurately integrate Equation 5 scales with the increasing value of t, making the process compu-
tationally intensive. In practice, experiments indicate that Neural IDE is at least 150 times slower compared
to other models introduced subsequently (cf Appendix E). In a similar spirit, under assumptions of short
memory, one can restrict the integral to a short past and discretize it in time, leading to an equation of the
form (Gallage, 2017):

dg

dt
≈M(g(t))− 1

k

k∑
i=1

K(g(t− τi), τi) (6)

using k delays τi uniformly spaced instead of sampling them by Monte Carlo. Such approximations can
be improved using high-order discretization schemes, yet, as for Neural IDE, they require an unaffordable
number of delays τi if the integrand varies quickly or if the interval is too large.

2.3 Exact representation with Neural DDE

While Equation (6) only provides an approximation of the true dynamics and requires many delays, we
show that using a more complex function of a small number of delays it is actually possible to represent the
dynamics exactly. For this, let us consider diffeomorphic dynamical systems, that is, ODEs whose flow is
invertible (in the full state space) and smooth in both time directions.
Proposition 2.2 (Exact representation with delays). For any diffeomorphic dynamical system, and
differentiable observables g, using the same notations as for Theorem 2.1, there exists almost surely a function
M of the current observables, a finite number k of delays τ1, ..., τk > 0 and a function f such that the
observables exactly follow the dynamics:

dg

dt
= M(g(t)) + f

(
t, g(t), g(t− τ1), g(t− τ2), ..., g(t− τk)

)
. (7)

The proof, deferred to Appendix I, is based on the application of Takens’ theorem (hence the diffeomorphism
requirement), which also provides a bound on the required number of delays: twice the intrinsic dimension
of the manifold S in which the full state x lives, plus one. Note that this evolution equation is exact:

4

Under review as submission to TMLR

approximations may arise from the optimization or the expressivity of the neural networks estimating M
and f , but not from the number of delays provided they reach Takens’ bound. This is in contrast with the
discretization of the IDE integral as in Equation (6), which becomes asymptotically precise only when
the number of delays becomes large compared to the complexity of the integrand. Note that integral
discretizations as in Equation (6) are doable with a single linear layer of a neural network taking past
observables g(t− τi) as input, and that Proposition 2.2 actually states that by stacking more layers one can
reach exact representation of the dynamics.

Additionally, this framework is also motivated in practice with climate models from Ghil et al. (2008);
Falkena et al. (2021) that utilize the MZ formalism to derive DDE structures.

Experiments in Section 4 will illustrate that NDDEs where both the delays and their dynamics are learned
jointly can effectively capture the dynamics of partially observed systems. Before this, we detail how to
perform such a training in the next section. In Figure 1, the general scenario is highlighted, wherein users
have access solely to the system’s observables and we wish to learn their dynamics by using the MZ equation
approximation (Eq. 7).

3 Neural Delay Differential Equations with Learnable Delays

A constant lag NDDE is part of the larger family of continuous depth models that emerged with NODE
Chen et al. (2018), it is defined by:

dx
dt = fθ(t, x(t), x(t− τ1), . . . , x(t− τk))

x(t < 0) = ψ(t)
(8)

where ψ : R→ Rn be the history function, ∀i, τi ∈ R+ be a delay constant and fθ : [0, T]×Rn×· · ·×Rn → Rn
be neural network.

There are two possible ways of training continuous-depth models: discretize-then-optimize or optimize-then-
discretize (Kidger, 2022). In the former, the library’s inherent auto-differentiation capabilities are leveraged.
In the latter, the adjoint dynamics are employed to compute the gradient’s loss. Theorem 3.1 provides the
adjoint method for constant lag NDDEs.
Theorem 3.1. Let us consider the continuous-depth DDE model below where τ can appear in the parameters
vector θ and the notation x(t) = xt for conciseness :

x′
t = fθ(t, xt, xt−τ), τ ∈ R+

xt<0 = ψt
(9)

and the following loss function :

L(xt) =
∫ T

0
l(xt) dt

The gradient’s loss w.r.t. the parameters is given by:

dL
dθ =−

∫ T

0
λt

(
∂f(xt, xt−τ ; θ)

∂θ
+ ∂f(xt, xt−τ ; θ)

∂xt−τ
x′
t−τ

)
dt+

∫ 0

−τ
λt+τ

∂f(xt+τ , xt; θ)
∂xt

∂ψt
∂θ

dt. (10)

where the adjoint dynamics λt are given by another DDE:

λ̇t = ∂l(xt)
∂xt

− λt
∂f(xt, xt−τ ; θ)

∂xt
− λt+τ

∂f(xt+τ , xt; θ)
∂xt

,

λt≥T = 0.
(11)

5

Under review as submission to TMLR

Proof for Theorem 3.1 and a generalization for multiple constant delays are in Appendix G. The second
integral term in equation 10 is more often than not null since the history function ψt is user defined and not
learnt. Algorithm 1 that uses Theorem 3.1’s results outlines the training procedure for a Neural DDE with
one learnable constant delay (Appendix H provides a version for multiple delays). Without loss of generality,
we set ourselves in the case where the dataset D is comprised of one trajectory:

Algorithm 1 Training a Neural DDE with one learnable delay with the adjoint method.
Require: Dataset of one trajectory D = {(t0, x0), . . . , (tN , xN)}.
Require: Initialized model fθ.
Require: Initialized positive delays τ that can appear in the parameters vector θ.

1: for i← 1, . . . , Nepochs do
2: Create history function interpolation ψ with data from D such that t < τ .
3: Solve DDE dynamics (Eq. 9):

4:

{
x′(t) = fθ(t, x(t), x(t− τ))
x(t < τmax) = ψ(t)

.

5: Compute loss L(x(tN)) =
∫ tN
τmax

l(x(s)) ds
6: Solve Adjoint dynamics (Eq. 11):

7:

{
λ′(t) = ∂l(x(t))

∂x(t) − λ(t)∂fθ(x(t),x(t−τ))
∂x(t) − λ(t+ τ)∂fθ(x(t+τ),x(t))

∂x(t)
λ(t ≥ tN) = 0.

.

8: Compute dL
dθ (Eq. 10)

9: Update θ
10: end for

Learning the delays τi within NDDEs is crucial for accurately modeling partially observed dynamics. Indeed,
certain delays may not provide relevant enough information (if too small, entries of the delay vector data are
too similar; if too large, the entries tend to be completely uncorrelated and cannot be numerically linked to
a consistent dynamical system), therefore delays need to be adapted during training. This is illustrated in
the second Cavity experiment in Section 4.2, where the training of NDDEs with fixed delays remains stuck,
while concurrently learning the delays converges to a satisfactory solution. Appendix J briefly illustrates
how suitable delays (and the information contained within these delayed observables) can impact the model’s
learning process.

Substantial efforts have been expanded to design a user-friendly API, developing a numerically robust DDE
solver, and implementing the adjoint method (referenced as Theorem 3.1) in the torchdde package. These
advancements ensure a seamless integration of DDEs for future users, enhancing reproducibility. Further
details about torchdde are available in the supplementary materials and benchmarks are found in Appendix
E.3.

4 Experiments

Numerous experiments have been carried out, categorically addressing two aspects: firstly, validating the
existing adjoint approach and assessing the benefits of incorporating learnable constant delays; secondly,
examining how neural DDEs with learnable delays is essential to effectively approximate partially observed
systems, demonstrated on both synthetic data and experimental data. All datasets are divided into training,
validation, and test sets with proportions of 70%, 10%, and 20%, respectively. Additional experiments are
also provided in Appendix F.

In summary, the experiments involving the Brusselator and KS System presented below demonstrate the
learning of multiple delays. NDDE is the only model that accurately captures the statistics of the KS
System. In the Cavity experiment presented below, learning delays is crucial, as fixed delays fail to capture
the system’s dynamics correctly.

6

Under review as submission to TMLR

4.1 Dynamical systems

Toy Dataset We demonstrate that the current approach with the adjoint method can learn jointly the delay
and the dynamics of a system used to model population dynamics in biology Arino et al. (2009); Banks et al.
(2017). Such a described system is formulated through the following DDE :

dx
dt = x(t) (1− x(t− τ)) ,

x(t < 0) = ψ(t)
(12)

where we integrate from t ∈ [0, 10], τ = 1, ψ(t) = x0, x0 is sampled from the uniform distribution U(2.0, 3.0)
adn 256 trajectories were generated.

The following experiments showcase how NDDEs can effectively model partially observed systems with the
systems past state values rather than with opaque latent variables.

Brusselator The Belousov-Zhabotinsky kinetic equation Belousov (1959); Zhabotinskii (1964) can be mod-
elled by the Brusselator system :

{
dϕ1
dt = A−Bϕ1 − ϕ1 + ϕ2

1ϕ2
dϕ2
dt = Bϕ1 − ϕ2

1ϕ2.
(13)

where we integrate in the time domain t ∈ [0, 25], the initial condition ϕ1 is sampled from the uniform
distribution U(0, 2.0), ϕ2 = 0.0 and 1024 trajectories were generated . We set ourselves in the partially
observable case where we only have ϕ1’s dynamics and wish to reconstruct its dynamics.

Kuramoto–Sivashinsky (KS) System We set ourselves in another experiment with the chaotic Ku-
ramoto–Sivashinsky System whose 1D dynamics u(x, t) is :

∂u

∂t
+ ∂2u

∂x2 + ∂4u

∂x4 + 1
2
∂u2

∂x
= 0

The system is integrated over the time domain t ∈ [0, 30], its spatial domain Dx = [0, 22] is discretized into
128 points and 2048 trajectory samples were generated. To put ourselves in the partially observed setting
we choose to observe k features uniformly spread across the spatial domain (here k = 5).

Incompressible open cavity flow We consider here as experimental demonstrator the modelling based on
time-series derived from wind tunnel experiments of an open cavity flow represented in Figure 2; the facility
is described in Tuerke et al. (2020), where the data we provide in open access with this work are discussed.
Open cavity flow attracted numerous research efforts in the last decades for the interesting dynamics at
work: the flow is characterized by an impinging shear layer activating a centrifugal instability in a cavity;
this interplay, reminiscent of the feedback acoustic mechanisms described in Rossiter (1964), leads to a
self-sustained oscillation. A broad range of dynamics is observed, ranging from limit cycles, to toroidal and
chaotic dynamics. The data obtained is for a Reynolds number Re = 9190. More details on the experimental
setup is given in Tuerke et al. (2020).

7

Under review as submission to TMLR

LSTM NODE ANODE Latent ODE NDDE
Brusselator 0.0051± 0.0031 0.77± 0.00080 0.0050± 0.0050 0.014± 0.0076 0.016± 0.0076
KS 0.77± 0.041 0.71± 0.10 0.55± 0.027 0.43± 0.07 0.28± 0.024
Cavity 0.75± 0.46 0.96± 0.0011 0.65± 0.0090 0.25± 0.14 0.13± 0.012

Table 2: Model performance (MSE) over the test set on each experiments averaged over 5 runs

Figure 2: Sketch of open cavity flow taken from
Tuerke et al. (2020). A data acquiring sensor is
placed in P. The cavity has a length of L and
depth of H. The incoming laminar boundary
layer is characterized by the freestream velocity
U∞ and the momentum thickness Θ0.

KS Cavity Brusselator
NDDE 5 1 2

Table 1: Number of delays used in NDDE for
each experiment

4.2 Results

In this section, we assess the performance of the models with their ability to predict future states of a given
partially observed system along with the toy dataset experiment. In this study, LSTM, NODE, ANODE,
Latent ODE and NDDE were selected for comparison, and Table 2 displays the test MSE loss over each
experiment. Appendix K goes in more details about each model’s architecture and the training and testing
procedure. Every model incorporates a form of ’memory’ into its architecture, with the exception of NODE.
While LSTM and Latent ODE utilizes hidden units and ANODE employs its augmented state a(t), NDDE
leverages past states such as x(t− τ). Finally, Table 1 outlines the number of delays employed in NDDE for
each experiment. We provide in Appendix D a general discussion on the delays learnt and their evolution
during the training process of each experiment. In all subsequent figures, the y-axis y(t) represents our
observables (introduced for each system in Section 4.1), defined as y(t) = g(x(t)).

Toy dataset Figure 3 & 4 respectively depict the model’s robust convergence to accurate dynamics and
the delay evolution during training over many seeds, showcasing a consequence of Takens’ theorem (Takens,
1981), that is, by using a delay-coordinate map, one can construct a diffeomorphic shadow manifold M ′

from univariate observations of the original system in the generic sense. In our case such a lag variable is
(x(t), x(t−τ)) with τ ∈ R+. The result of Figure 4 may seem surprising as the underlying DDE has a unique
delay τ = 1. However, we are not approximating the exact dynamics from the DDE itself but rather from
the shadow manifold M ′. In classical approaches (see Tan et al. (2023a;b)), the selected delay with Takens’
theorem for SSR corresponds to the time series’ minimum delayed mutual information which measures the
general dependence of two variables Fraser & Swinney (1986).

0Figure taken from Tuerke et al. (2020)

8

Under review as submission to TMLR

Figure 3: Toy dataset random test sample Figure 4: Toy dataset delay evolution during
training

Brusselator In the case of this highly stiff and periodic dataset, all models demonstrate satisfactory per-
formance except for NODE. NODE predicts the trajectory’s mean thus highlighting the importance of
incorporating memory terms. Remarkably, both LSTM and ANODE perform equally well, with NDDE and
Latent ODE slightly trailing by a narrow margin as shown in Figure 5. In addition to evaluating the MSE
loss performance, Figure 6 demonstrates the stability of each trained model on the Brusselator system over
an extended period. After training within a specific time interval, we lengthened the integration period to
five times the original training duration to assess the models’ performance. It is observed that NDDE, along
with LSTM, NODE and Latent ODE, are the only models that remain stable throughout this duration, with
NDDE exhibiting the best performance over the extended horizon.

Figure 5: Brusselator random test sample Figure 6: The long-term behavior of each trained
model for the Brusselator system

KS System This experiment deals with a chaotic setting of the partially observed system. By observing
periodically k features, the hopes of estimating the high order spatial partial derivatives of u(x, t) is in vain
making such formulation of the problem even more challenging. Figure 7 showcases random test samples
from two different training runs, highlighting how NDDEs outperform other models struggling with the
dynamics of the selected features. Furthermore, in a chaotic setting, the statistics of the dynamics prove
more informative than the trajectory itself. Figure 8 demonstrates that the DDE formulation is distinctive in
its adherence to the density distribution of the KS System’s test set. This outcome highlights that utilizing
past states x(t − τ) as memory buffers, as opposed to opaque latent variables, can lead to superior results.
Furthermore, considering the chaotic nature of the system, we calculated an important metric: the maximum
Lyapunov exponent (MLE) of the generated trajectories from our trained models. Table 3 displays the MLE
estimates for each model, showing that the Neural DDE with learnable delays closely aligns with the ground
truth compared to other models.

9

Under review as submission to TMLR

Figure 7: KS random test sample

Figure 8: Example of KS testset density plots

Ground Truth NDDE NODE ANODE Latent ODE
λmax 0.1291 0.1279 0.0968 0.1198 0.0354

Table 3: Estimation of the maximum Lyapunov exponent λmax for the KS system based on the generated
trajectories from the test set for each model.

Cavity Once more, the NDDE formulation distinguishes itself from other models as seen in Figure 9, and
this can be attributed to various factors. The experimental setup encourages a delayed formulation of the
problem, with the vortex-induced flow originating from the cavity, coupled with partial observability issues.
Latent ODE yields acceptable results compared to NODE that generates the system’s average trajectory,
while LSTM and ANODE capture vague oscillations, albeit occasionally in conflicting phases. Finally, these
experiments demonstrate that NDDE can effectively model trajectories even in the presence of noise in the
data.

10

Under review as submission to TMLR

Figure 9: Cavity random test samples prediction Figure 10: NDDE’s with constant and learnable
delays MSE train loss for different delay initial-
ization values ranging from 0.2 to 1.0.

Lastly, we compare NDDEs with learnable and fixed delays on our Cavity dataset. Figure 10 illustrates how
the value of initial delays affects system learning. Delays are initialized from 0.2 to 1.0 in increments of 0.1,
with the models starting with the same weights. Dotted lines represent the setup with learnt delays, while
solid lines indicate fixed delays. The results show that learnt delays consistently outperform fixed delays.
Additionally, the transition from a learnt delays loss of 100 to 10−1 can occur more easily depending on the
initial value. For instance, a delay initialized at 1.0 is seen to converge faster than those initialized at 0.2.

5 Conclusion

In this study, we showcased the capability of constant lag neural delay differential equations (NDDEs) to
effectively represent partially observed systems. The theoretical support for this assertion comes from the
Mori-Zwanzig formalism and with its simplification that introduces DDE dynamics. We applied NDDEs to
synthetic, chaotic, and real-world noisy data, and conducted comparisons with other continuous-depth and
memory based models. The performed experiments revealed two key insights: firstly, the essential role of
memory in accurately capturing dynamics; secondly, it was demonstrated that LSTMs’ and Latent ODEs’
hidden latent states or ANODEs’ latent variables are not the exclusive means or sometimes come short to
achieve optimal performance, emphasizing the efficacy of delayed terms as an efficient dynamic memory
mechanism.

NDDEs come with inherent limitations, such as the linear scaling of its adjoint method with the number of
delays (refer to Appendix G for the case of multiple constant delays). Another question is how to determine
the optimal number of delays to consider; this said, overestimating the number of delays does not hurt
the final performance. Promising directions for future research involve exploring an equivalent version of
ANODEs with NDDEs to assess whether simpler flows can be learned. Additionally, there is a research
opportunity to investigate regularization terms that could enhance the NDDE training process. Specifically,
we are contemplating the inclusion of a penalty term resembling of a delayed mutual information, inspired
by the work of (Fraser & Swinney, 1986).

References
Yves Achdou, Olivier Bokanowski, and Tony Lelièvre. Partial differential equations in finance. The Ency-

clopedia of Financial Models, 2, 2012.

O. Arino, M.L. Hbid, and E.A. Dads. Delay Differential Equations and Applications: Proceedings of the
NATO Advanced Study Institute held in Marrakech, Morocco, 9-21 September 2002. Nato Science Series
II:. Springer Netherlands, 2009. ISBN 9789048104079.

11

Under review as submission to TMLR

H.T. Banks, J.E. Banks, Riccardo Bommarco, A.N. Laubmeier, N.J. Myers, Maj Rundlöf, and Kristen
Tillman. Modeling bumble bee population dynamics with delay differential equations. Ecological Modelling,
351:14–23, 2017. ISSN 0304-3800. doi: https://doi.org/10.1016/j.ecolmodel.2017.02.011. URL https:
//www.sciencedirect.com/science/article/pii/S0304380017301606.

Belousov. A periodic reaction and its mechanism,in Collection of short papers on radiation medicine for
1958. , Med. Publ. Moscow, 1959.

Jonathan Calver and W.H. Enright. Numerical methods for computing sensitivities for odes and ddes.
Numerical Algorithms, 74, 04 2017. doi: 10.1007/s11075-016-0188-6.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,
and Roman Garnett (eds.), NeurIPS, pp. 6572–6583, 2018. URL http://dblp.uni-trier.de/db/conf/
nips/nips2018.html#ChenRBD18.

Alexandre J. Chorin and Panagiotis Stinis. Problem reduction, renormalization, and memory, 2005.

Alexandre J Chorin, Ole H Hald, and Raz Kupferman. Optimal prediction with memory. Physica D:
Nonlinear Phenomena, 166(3-4):239–257, 2002.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural ODEs. Advances in Neural
Information Processing Systems, 32, 2019.

Irving R Epstein. Differential delay equations in chemical kinetics: Some simple linear model systems. The
Journal of Chemical Physics, 92(3):1702–1712, 1990.

Swinda K. J. Falkena, Courtney Quinn, Jan Sieber, and Henk A. Dijkstra. A delay equation model for
the atlantic multidecadal oscillation. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 477(2246):20200659, February 2021. ISSN 1471-2946. doi: 10.1098/rspa.2020.0659.
URL http://dx.doi.org/10.1098/rspa.2020.0659.

Andrew M. Fraser and Harry L. Swinney. Independent coordinates for strange attractors from mutual
information. Phys. Rev. A, 33:1134–1140, Feb 1986. doi: 10.1103/PhysRevA.33.1134. URL https:
//link.aps.org/doi/10.1103/PhysRevA.33.1134.

Roshini Samanthi Gallage. Approximation of continuously distributed delay differential equations. Southern
Illinois University at Carbondale, 2017.

Michael Ghil, Ilya Zaliapin, and Sylvester Thompson. A delay differential model of ENSO variability:
parametric instability and the distribution of extremes. Nonlinear Processes in Geophysics, 15(3):417–
433, 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic systems and saving energy in
wireless communication. science, 304(5667):78–80, 2004.

MH Jensen, Kim Sneppen, and G Tiana. Sustained oscillations and time delays in gene expression of protein
hes1. Febs Letters, 541(1-3):176–177, 2003.

MI Jordan. Serial order: a parallel distributed processing approach. technical report, june 1985-march 1986.
Technical report, California Univ., San Diego, La Jolla (USA). Inst. for Cognitive Science, 1986.

Tamás Kalmár-Nagy, Gábor Stépán, and Francis C Moon. Subcritical hopf bifurcation in the delay equation
model for machine tool vibrations. Nonlinear Dynamics, 26:121–142, 2001.

12

https://www.sciencedirect.com/science/article/pii/S0304380017301606
https://www.sciencedirect.com/science/article/pii/S0304380017301606
http://dblp.uni-trier.de/db/conf/nips/nips2018.html#ChenRBD18
http://dblp.uni-trier.de/db/conf/nips/nips2018.html#ChenRBD18
http://dx.doi.org/10.1098/rspa.2020.0659
https://link.aps.org/doi/10.1103/PhysRevA.33.1134
https://link.aps.org/doi/10.1103/PhysRevA.33.1134

Under review as submission to TMLR

Andrew Keane, Bernd Krauskopf, and Henk A Dijkstra. The effect of state dependence in a delay differential
equation model for the El Niño southern oscillation. Philosophical Transactions of the Royal Society A,
377(2153):20180121, 2019.

Patrick Kidger. On neural differential equations, 2022.

Dmitri Kondrashov, Mickaël D Chekroun, and Michael Ghil. Data-driven non-markovian closure models.
Physica D: Nonlinear Phenomena, 297:33–55, 2015.

Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the National
Academy of Sciences, 17(5):315–318, 1931.

Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time computing without stable states: A
new framework for neural computation based on perturbations. Neural computation, 14(11):2531–2560,
2002.

Emmanuel Menier, Sebastian Kaltenbach, Mouadh Yagoubi, Marc Schoenauer, and Petros Koumoutsakos.
Interpretable learning of effective dynamics for multiscale systems, 2023.

Thibault Monsel, Onofrio Semeraro, Lionel Mathelin, and Guillaume Charpiat. Time and state dependent
neural delay differential equations. In 1st ECAI Workshop on “Machine Learning Meets Differential
Equations: From Theory to Applications”, pp. 1–20. PMLR, 2024.

Hazime Mori. A Continued-Fraction Representation of the Time-Correlation Functions. Progress of The-
oretical Physics, 34(3):399–416, 09 1965. ISSN 0033-068X. doi: 10.1143/PTP.34.399. URL https:
//doi.org/10.1143/PTP.34.399.

Lyle Noakes. The takens embedding theorem. International Journal of Bifurcation and Chaos, 1(04):867–872,
1991.

Maria Oprea, Mark Walth, Robert Stephany, Gabriella Torres Nothaft, Arnaldo Rodriguez-Gonzalez, and
William Clark. Learning the delay using neural delay differential equations, 2023.

Christian P Robert, George Casella, Christian P Robert, and George Casella. Monte carlo integration.
Monte Carlo statistical methods, pp. 71–138, 1999.

JE Rossiter. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds.
Aeronautical Research Council and Reports and Memoranda, 1964.

Marc R Roussel. The use of delay differential equations in chemical kinetics. The Journal of Physical
Chemistry, 100(20):8323–8330, 1996.

Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent odes for irregularly-sampled time series,
2019.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal representations by error
propagation, 1985.

Tim Sauer, James A Yorke, and Martin Casdagli. Embedology. Journal of statistical Physics, 65:579–616,
1991.

Andreas Schlaginhaufen, Philippe Wenk, Andreas Krause, and Florian Dörfler. Learning stable deep dy-
namics models for partially observed or delayed dynamical systems, 2021.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey, 2022. URL
https://arxiv.org/abs/2101.10382.

Panagiotis Stinis. Stochastic optimal prediction for the kuramoto-sivashinsky equation, 2003.

Panagiotis Stinis. Higher order mori-zwanzig models for the euler equations, 2006.

13

https://doi.org/10.1143/PTP.34.399
https://doi.org/10.1143/PTP.34.399
https://arxiv.org/abs/2101.10382

Under review as submission to TMLR

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk Pflüger,
and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning, 2023.

Floris Takens. Detecting strange attractors in turbulence. In David Rand and Lai-Sang Young (eds.),
Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381, Berlin, Heidelberg, 1981. Springer Berlin
Heidelberg. ISBN 978-3-540-38945-3.

Eugene Tan, Shannon Algar, Débora Corrêa, Michael Small, Thomas Stemler, and David Walker. Selecting
embedding delays: An overview of embedding techniques and a new method using persistent homology.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(3):032101, 03 2023a. ISSN 1054-1500. doi:
10.1063/5.0137223. URL https://doi.org/10.1063/5.0137223.

Eugene Tan, Shannon Algar, Débora Corrêa, Michael Small, Thomas Stemler, and David Walker. Selecting
embedding delays: An overview of embedding techniques and a new method using persistent homology.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(3), March 2023b. ISSN 1089-7682. doi:
10.1063/5.0137223. URL http://dx.doi.org/10.1063/5.0137223.

Yifeng Tian, Yen Ting Lin, Marian Anghel, and Daniel Livescu. Data-driven learning of Mori–Zwanzig
operators for isotropic turbulence. Physics of Fluids, 33(12):125118, December 2021. ISSN 1070-6631,
1089-7666. doi: 10.1063/5.0070548. URL https://aip.scitation.org/doi/10.1063/5.0070548.

Guido Tiana, Sandeep Krishna, Simone Pigolotti, Mogens H Jensen, and K Sneppen. Oscillations and
temporal signalling in cells. Physical biology, 4(2):R1, 2007.

F Tuerke, François Lusseyran, Denisse Sciamarella, Luc Pastur, and G Artana. Nonlinear delayed feedback
model for incompressible open cavity flow. Physical Review Fluids, 5(2):024401, 2020.

Pantelis-Rafail Vlachas, Jaideep Pathak, Brian R Hunt, Themistoklis P Sapsis, Michelle Girvan, Edward
Ott, and Petros Koumoutsakos. Backpropagation algorithms and reservoir computing in recurrent neural
networks for the forecasting of complex spatiotemporal dynamics. Neural Networks, 126:191–217, 2020.

Emanuele Zappala, Antonio Henrique de Oliveira Fonseca, Andrew Henry Moberly, Michael James Higley,
Chadi Abdallah, Jessica Cardin, and David van Dijk. Neural integro-differential equations, 2022.

A M Zhabotinskii. [PERIODIC COURSE OF THE OXIDATION OF MALONIC ACID IN a SOLUTION
(STUDIES ON THE KINETICS OF BEOLUSOV’S REACTION)]. Biofizika, 9:306–311, 1964.

Qunxi Zhu, Yao Guo, and Wei Lin. Neural delay differential equations. In The Ninth International Conference
on Learning Representations, 2021.

Qunxi Zhu, Yao Guo, and Wei Lin. Neural delay differential equations: System reconstruction and image
classification, 2023.

Yuanran Zhu. Mori-Zwanzig Equation: Theory and Applications. University of California, Santa Cruz, 2019.

Robert Zwanzig. Approximate eigenfunctions of the liouville operator in classical many-body systems. Phys.
Rev., 144:170–177, Apr 1966. doi: 10.1103/PhysRev.144.170. URL https://link.aps.org/doi/10.
1103/PhysRev.144.170.

Robert Zwanzig, K. S. J. Nordholm, and W. C. Mitchell. Memory effects in irreversible thermody-
namics: Corrected derivation of transport equations. Phys. Rev. A, 5:2680–2682, Jun 1972. doi:
10.1103/PhysRevA.5.2680. URL https://link.aps.org/doi/10.1103/PhysRevA.5.2680.

14

https://doi.org/10.1063/5.0137223
http://dx.doi.org/10.1063/5.0137223
https://aip.scitation.org/doi/10.1063/5.0070548
https://link.aps.org/doi/10.1103/PhysRev.144.170
https://link.aps.org/doi/10.1103/PhysRev.144.170
https://link.aps.org/doi/10.1103/PhysRevA.5.2680

Under review as submission to TMLR

A Derivation of Theorem 2.1

The dynamics of a physical model can be written as the evolution equation of the form

∂

∂t
etGu(0) = Gu(0)

where the etG is the evolution operator and G is the corresponding infinitesimal generator and u an
observable function Zhu (2019). The goal is to find an appropriate projector P and Q = I − P that splits
the dynamics of the original high-dimensional system into resolved variables, unresolved variables and the
interaction between these two.

If we consider a nonlinear system evolving on a smooth manifold S ⊂ Rn.

dx

dt
= F (x), x(0) = x0

The system can be seen through the lens of an arbitrary number of scalar-valued observables ∀i, gi : S −→ C.
The dynamics of any scalar-valued observable gi(x) (quantity of interest) can be expressed with the Koopman
operator K(t, s) Koopman (1931),

gi(x(t)) = [K(t, s)gi](x(s)) (14)
K(t, s) = e(t−s)L, Lgi(x) = F (x) · ∇gi(x) (15)

with L the Liouville operator. Often rather than not, instead of computing the dynamics of all observables, it
is better to compute the evolution of a subset of quantities of interest. This subspace can be modelled with a
bounded linear operator P (projector) and its orthogonal projector Q = I−P. Since we are only considering
a subset of observable we seek to get the dynamics of PK(t, s). With the definition of the Koopman operator
and the Dyson identity

etL = etQL +
∫ t

0
esLPLe(t−s)QLds (16)

we obtain the Mori-Zwanzig operator equation

d

dt
etL = etLPL+ etQLQL+

∫ t

0
esLPLe(t−s)QLQLds (17)

The three terms at the right hand side are respectively the streaming (or Markovian) term, the fluctuation
(or noise) term and the memory term.

Then, one can apply Eq. equation 17 to an arbitrary observable function gi and evaluate it at x to get the
dynamics of the projected (or not) resolved variables of the system.

One can rewrite also the MZ’s functional form equation (Tian et al., 2021) by applying equation 17 to all
observables gi at their initial condition gi(t = 0) = gi0 and concatenating all observable gi together into
g = [g1, . . . , gm].

dg(t)
dt

= M(g(t)) + F (t)−
∫ t

0
K(g(t− s), s)ds (18)

15

Under review as submission to TMLR

where

M(g(t)) = etLPLg0 (19)
F (t) = etQLQLg0 (20)
K(g(t− s), s) = −e(t−s)LPLesQLQLg0 (21)

B Cancelling out the noise term F (x, t)

One possibility is by applying the projector P we get rid of the fluctuation/noise term.

∂

∂t
PetL = PetLPL+

∫ t

0
PesLPLe(t−s)QLQLds (22)

since the etQQL and P live in orthogonal subspaces. Instead of learning your observable g you consider Pg.

The other option depends on information that is unavailable as it is orthogonal to the observed subspace.
However, this term vanishes if the history of the observed subspace is known, and the orthogonal dynamics
are dissipative Menier et al. (2023).

C t-model derivation

In the case of the slowly decaying memory (i.e., t-model), we have the approximation :

etQL ≈ etL. (23)

By rewriting the memory term of the Mori-Zwanzig equation (Eq. 17)

∫ t

0
e(t−s)LPLesQLQLds =

∫ t

0
Le(t−s)LesQLQLds−

∫ t

0
e(t−s)LesQLQLQLds.

where we used the commutation of L and QL with etL and esQL, respectively. By using Equation 23, which
eliminates the s dependence of both integrands we get :

∫ t

0
e(t−s)LPLesQLQLds ≈ tetLPLQL.

Only time dependence remains of the memory integral. We refer to Zhu (2019) for a more detailed discussion
on the t-model.

D Learning the delays

As a reminder, Table 1 provides the number of delays used in each experiment.

For each experiment, we present randomly selected models and display the evolution of delays during training
in Figure 11. Empirically, across all our experiments, we observe that the delays converge to specific values.
Notably, if the system is periodic, these values do not match the system’s period as observed in the Brusselator
experiment. This makes sense, as incorporating such a delay would not provide any additional information
to the NDDE model. For the KS system experiments, we see that the delays that are initialized close to
each tend to spread out during the training phase in order to maximize the system’s information diversity.

16

Under review as submission to TMLR

Figure 11: Delay’s evolution during training for each experiment mentioned on each subplot’s y-axis

E Neural IDE and Neural DDE Benchmark

Firstly, let us compare both Neural IDE and Neural DDE analytically where any function fθ denotes a
parameterized network:

dg

dt
= Mθ(g(t))−

∫ t

0
Kθ(g(t− s), s)ds (24)

dg

dt
= fθ1(g(t)) + fθ2(t, g(t), g(t− τ1), . . . , g(t− τn)) (25)

The second term on the right hand side of Equation 24 is much more computationally involved than that
of the second term on the right hand side of Equation 25 . Indeed, Equation 25 only needs 2 function
evaluations to evaluate it’s right hand side(RHS). On the other hand, the number of function evaluation
required to integrate Equation 24 will scale as t grows in order to get a correct evaluation of the integral
term. For a more theoretical examination of computational complexity, please refer to Appendix A.6 of
Monsel et al. (2024).

E.1 Computation Time

Figure 12 compares the computation time of a forward pass between a Neural IDE and Neural DDE of the
same size (roughly 500 parameters). We use the following setup :

• Use a RK4 solver with a timestep of dt = 0.1.

• Use a batch size of 128.

• Neural DDE uses 5 delays.

17

Under review as submission to TMLR

• Different state g(t) dimensions are tested : [5, 10, 50, 100] .

• The upper integration bound is varied from t = 0.2 to t = 2.0s.

Figure 12: Time duration of forward pass averaged over 5 runs

This benchmark clearly shows how expensive Neural IDE is. NDDEs integration is at least an order of
magnitude faster. (Please note that in Figure 12, the notation "#i" refers to the number of features that our
state g(x, t) has).

E.2 Memory Consumption

We also performed memory profiling between the two methods and compared their memory needs for one
forward pass. We use the following setup :

• Use a RK4 solver with a timestep of dt = 0.1.

• Use a batch size of 128.

• Neural DDE uses 5 delays.

• Different state g(t) dimension is 100 .

• The upper integration bound is varied from t = 0.2 to t = 2.0s.

18

Under review as submission to TMLR

Figure 13: Memory consumption of forward pass averaged over 5 runs

For extremely small tasks, the memory requirements of IDEs are excessive, as depicted in Figure 13. Despite
this, we attempted to implement the Neural IDE method in our experiments. Unfortunately, during training,
we encountered memory issues, even with a simple problem like the Brusselator. The reason behind this is
that the integral component needs to be recalculated at each integration step, causing scalability problems
when the integration duration is extensive.

E.3 torchdde’s memory and time benchmark

In this subsection, we provide time and memory benchmarks on some of torchdde’s solvers. In order to
compare both training methods of optimize-then-discretize (i.e. the adjoint method) and discretize-then-
optimize (i.e. regular backpropagation), we present the Brusselator’s experiment time duration and memory
usage for various solvers during training (with a batch size of 1024) in Tables 4 and 5, respectively. The
results are as expected : the adjoint method is slower (by a small factor) and consumes less memory than
the regular backpropagation. These results are consistent with NODE’s examination of the adjoint method
and conventional backpropagation tradeoffs Chen et al. (2018).

Adjoint Backpropagation
RK4 4.8± 0.23 1.89± 0.09
RK2 2.4± 0.005 0.90± 0.005
Euler 1.5± 0.01 0.47± 0.003

Table 4: Clock Time (s) per batch

Adjoint Backpropagation
RK4 2.2± 18 2.87± 4
RK2 2.15± 20 2.48± 3
Euler 2.09± 15 2.264± 9

Table 5: GPU consumption (Gb±Mb) per batch

Figure 14 & 15 compares respectively time and memory consumption for a forward of a Neural DDE with
varying number of delays, each having approximately 28k parameters. We use the following setup :

• Use a RK4 solver with a timestep of dt = 0.1.

• Use a batch size of 128.

• Neural DDE uses [1, 3, 5, 10, 20] delays.

• State g(t) dimension is 100 .

• The upper integration bound is varied from t = 0.2 to t = 5.0s.

19

Under review as submission to TMLR

• The notation "#i" in the figure refers to the number of delays used in the Neural DDE.

Figure 14: Time duration of forward pass aver-
aged over 5 runs

Figure 15: Memory consumption of forward pass
averaged over 5 runs

F Additional experiments

We present the Shallow Water equation dataset, available in the PDEBenchmark suite (Takamoto et al.,
2023). We put ourselves in the highly restrictive partially-observable setting by randomly sampling 4 points
on the spatial grid and fit its dynamics. Finally, Table 6 presents a summary of the test loss from this exper-
iments along with the number of parameters for each model in Table 7. Figure 16 illustrates the performance
of each model on the Shallow Water testset. Excluding NODE, all models yield satisfactory outcomes. How-
ever, when evaluating based on Mean Squared Error (MSE), NDDEs yielded better performance than the
presented baselines.

Figure 16: Random test sampled of Shallow Water dataset

LSTM NODE ANODE Latent ODE NDDE
Shallow Water 0.0031± 0.001 0.046± 0.035 0.004± 0.001 0.0058± 0.001 0.001± 0.0001

Table 6: Shallow Water test loss experiments averaged over 5 runs

20

Under review as submission to TMLR

LSTM NODE ANODE Latent ODE NDDE
Shallow Water 2512 2404 2534 5853 2662

Table 7: Number of parameters for Shallow Water experiment

G Proof of Theorem 3.1

Proof is inspired from Calver & Enright (2017) and put into ML context.
For conciseness, we use the following notation x(t) = xt, λ(t) = λt, etc...

We want to solve the optimization problem where τ may appear in our parameter vector θ :

arg min
θ

L(xt),

s.t. L(xt) =
∫ T

0
l(xt)dt,

ẋt − f(xt, xt−τ ; θ) = 0,
xt≤0 = ψ(t).

(26)

We consider the following Lagrangian :

J = L+
∫ T

0
λt
(
ẋt − f(xt, xt−τ ; θ)

)
dt.

=⇒ dJ
dθ = dL

dθ

(27)

Integration by parts yields :

J =
∫ T

0
l(xt)dt+

[
λtxt

]T
0
−
∫ T

0
λ̇txt + λtf(xt, xt−τ ; θ)dt. (28)

Taking the derivative w.r.t. θ :

dJ
dθ =

∫ T

0

∂l(xt)
∂xt

∂xt
∂θ

dt+ λT
dxT
dθ − λ0

�
�
�7

0
dx0

dθ

+
∫ T

0
−λ̇t

∂xt
∂θ

dt+
∫ T

0
−λt

∂f(xt, xt−τ ; θ)
∂θ

dt

+
∫ T

0
−λt

∂f(xt, xt−τ ; θ)
∂xt

∂xt
∂θ

dt+
∫ T

0
−λt

∂f(xt, xt−τ ; θ)
∂xt−τ

[∂xt−τ
∂θ

+ x′
t−τ

∂t− τ
∂θ

]dt.

(29)

Since ∂t−τ
∂θ = ∂t−τ

∂τ = −1 the following equation simplifies to :

dJ
dθ =

∫ T

0

∂l(xt)
∂xt

∂xt
∂θ

dt+ λT
dxT
dθ − λ0

�
�
�7

0
dx0

dθ

+
∫ T

0
−λ̇t

∂xt
∂θ

dt+
∫ T

0
−λt

∂f(xt, xt−τ ; θ)
∂θ

dt

+
∫ T

0
−λt

∂f(xt, xt−τ ; θ)
∂xt

∂xt
∂θ

dt+
∫ T

0
λt
∂f(xt, xt−τ ; θ)

∂xt−τ

[
∂xt−τ
∂θ

+ x′
t−τ

]
dt.

(30)

21

Under review as submission to TMLR

Rearranging integrals

We rework the first part of the last term to close the equation on xt :

∫ T

0
λt
∂f(xt, xt−τ ; θ)

∂xt−τ

∂xt−τ
∂θ

dt =
∫ T−τ

−τ
−λt+τ

∂f(xt+τ , xt; θ)
∂xt

∂xt
∂θ

dt. (31)

∫ T

0
−λt

∂f(xt, xt−τ ; θ)
∂xt−τ

∂xt−τ
∂θ

dt =
∫ T−τ

−τ
−λt+τ

∂f(xt+τ , xt; θ)
∂xt

∂xt
∂θ

dt. (32)

Chosing the multipliers so that λt≥T = 0, we get :

∫ T

0
−λt

∂f(xt, xt−τ ; θ)
∂xt−τ

∂xt−τ
∂θ

dt =
∫ T

−τ
−λt+τ

∂f(xt+τ , xt; θ)
∂xt

∂xt
∂θ

dt. (33)

Finally, observing that ∂xt≤0
∂θ = 0, the last term becomes :

∫ T

0
−λt

∂f(xt, xt−τ ; θ)
∂xt−τ

∂xt−τ
∂θ

dt =
∫ T

0
−λt+τ

∂f(xt+τ , xt; θ)
∂xt

∂xt
∂θ

dt. (34)

Adjoint Equation

Finally, injecting this result, we rearrange the terms in Eq.29 :

dJ
dθ =−

∫ T

0

(
λ̇t −

∂l(xt)
∂xt

+ λt
∂f(xt, xt−τ ; θ)

∂xt
+ λt+τ

∂f(xt+τ , xt; θ)
∂xt

)∂xt
∂θ

dt

−
∫ T

0
λt

(
∂f(xt, xt−τ ; θ)

∂θ
+ ∂f(xt, xt−τ ; θ)

∂xt−τ
x′
t−τ

)
dt+

�
�

��>
0

λT
dxT
dθ

+
∫ 0

−τ
λt+τ

∂f(xt+τ , xt; θ)
∂xt

∂ψt
∂θ

dt.

(35)

The last term vanishes because of the chosen adjoint final condition λt≥T = 0, thus we get the following
adjoint dynamics, to be integrated backwards in time :

λ̇t = ∂l(xt)
∂xt

− λt
∂f(xt, xt−τ ; θ)

∂xt
− λt+τ

∂f(xt+τ , xt; θ)
∂xt

, (36)

λt≥T = 0. (37)

Hence, the gradient’s loss w.r.t to the parameters is :

dJ
dθ =−

∫ T

0
λt

(
∂f(xt, xt−τ ; θ)

∂θ
+ ∂f(xt, xt−τ ; θ)

∂xt−τ
x′
t−τ

)
dt+

+
∫ 0

−τ
λt+τ

∂f(xt+τ , xt; θ)
∂xt

∂ψt
∂θ

dt.

(38)

The last term is more often than null since the history function is parameter independent simplifying ever
further the equation.

22

Under review as submission to TMLR

Notes on the derivative of the loss

Practically, the loss L(xt) is evaluated from a finite number N of points in time :

L(xt) =
∫ T

0
l(xt)dt (39)

=
∫ T

0

[N∑
i=1

l̄(xti)δ(t− ti)
]
dt. (40)

With l̄ a function computing the objective for each sampled point. This yields the following gradient :

∂l(xt)
∂xt

=
N∑
i=1

∂l̄(xti)
∂xti

δ(t− ti). (41)

This term is then always null, except for t = ti, this is why the adjoint dynamics in Eq.equation 35 are
integrated from one sampling point ti to the previous ti−1, where the adjoint state is incremented as follows :

λt−
i

= λt+
i
− ∂l̄(xti)

∂xti
. (42)

which corresponds to integrating the dirac in Eq.equation 41 in reverse time for an infinitesimal time.

Case for multiple constant delays

For the case of multiple delays τi, the first term λt
∂f(xt,xt−τ ;θ)

∂xt
in the adjoint dynamics (Eq. 36) is replaced

by :

λt
∂f(xt, xt−τ1 , . . . , xt−τk

; θ)
∂xt

(43)

and the term λt+τ
∂f(xt+τ ,xt)

∂xt+τ
in the adjoint dynamics (Eq. 36) is replaced by the following :

n∑
i=0

λt+τi

∂f(xt+τi , xt−τ0+τi , . . . , xt−τn+τi)
∂xt+τi

(44)

For the gradient ∂f(xt,xt−τ ;θ)
∂xt−τ

x′
t−τ in Equation 38 is replaced by the following :

n∑
i=0

∂f(xt, xt−τ0 , . . . , xt−τn
)

∂xt−τi

x′
t−τi

(45)

Finally
∫ 0

−τ λt+τ
∂f(xt+τ ,xt;θ)

∂xt

∂ψt

∂θ from Equation 38 is replaced by :

n∑
i=0

∫ 0

−τi

λt+τi

∂f(xt+τi , xt−τ0+τi , . . . , xt−τn+τi)
∂xt

∂ψt
∂θ

(46)

23

Under review as submission to TMLR

H Training Neural DDE algorithm with several delays

In this Appendix, we present the equivalent of Algorithm 1 for multiple constant delayed Neural DDEs,
highlighting several key differences. First, it is necessary to allocate τmax of the training trajectories to
compute the history function of the DDE. Additionally, the adjoint dynamics and the gradient computation
become more complex due to the presence of multiple delays.

Algorithm 2 Training a Neural DDE with learnable delays with the adjoint method.
Require: Dataset of one trajectory D = {(t0, x0), . . . , (tN , xN)}.
Require: Initialized model fθ.
Require: Initialized k positive delays τ1, . . . , τk that can appear in the parameters vector θ.

1: for i← 1, . . . , Nepochs do
2: Set τmax = max(τ1, . . . , τk)
3: Create history function interpolation ψ with data from D such that t < τmax.
4: Solve DDE dynamics:

5:

{
x′(t) = fθ(t, x(t), x(t− τ1), . . . , x(t− τk))
x(t < τmax) = ψ(t)

.

6: Compute loss L(x(tN)) =
∫ tN
τmax

l(x(s)) ds
7: Solve Adjoint dynamics :

8:

{
λ′(t) = ∂l(x(t))

∂x(t) − λ(t)∂fθ(x(t),x(t−τ1),...,x(t−τk))
∂x(t) −

∑k
i=1 λ(t+ τi)∂fθ(x(t+τi),x(t−τ0+τi),...,x(t−τn+τi))

∂x(t+τi)
λ(t ≥ tN) = 0.

.

9: Compute dL
dθ :

10:

dL
dθ =−

∫ T

0
λ(t)

(
∂fθ(x(t), x(t− τ))

∂θ
+

n∑
i=0

∂fθ(x(t), x(t− τ0), . . . , x(t− τn))
∂x(t− τi)

x′(t− τi)
)
dt

+
n∑
i=0

∫ 0

−τi

λ(t+ τi)
∂f(x(t+ τi), x(t− τ0 + τi), . . . , x(t− τn + τi))

∂x(t)
∂ψ(t)
∂θ

(47)

11:
12: Update θ
13: end for

I Proof of Proposition 2.2

Let us start by stating Takens’ theorem as expressed by (Noakes, 1991; Takens, 1981):
Theorem I.1 (Takens’ embedding theorem). Let M be compact. There is an open dense subset D of
Diff(M)× Ck(M,R) with the property that the Takens map

h : M → R2m+1

given by h(x) = (g(x), g(ϕ(x)), g(ϕ ◦ ϕ(x)), ...g(ϕ2m(x))) is an embedding of Ck manifolds, when (ϕ, g) ∈ D.

Here, ϕ stands for the operator that advances the dynamical system by a time step τ , i.e. that sends x(t) to
x(t+ τ), and g is the observable operator, that sends a full state x(t) to actual observables g(x(t)) =: g(t).
Variants of this Theorem, e.g. Sauer et al. (1991), include the consideration of any set of different delays τi
instead of uniformly spaces ones. The representation h(x(t)) = (g(x(t)), g(x(t − τ)), g(x(t − 2τ)), ...g(x(t −
2mτ)) then becomes h(x(t)) = (g(x(t)), g(x(t − τ1)), g(x(t − τ2)), ...g(x(t − τ2m)). In the proof of Takens’
theorem, m is the intrinsic dimension of the dynamical system, i.e. the one of the manifold M .

Now, given the full state x that follows the dynamics :

24

Under review as submission to TMLR

dx
dt = G(x), x(0) = x0 (48)

we use the chain rule on the observable g:

dg
dt = g′(x(t))G(x) (49)

By applying the inverse of the delay coordinate map h−1 from theorem I.1, which is invertible from its image
as it is an embedding, we show that g’s dynamics possesses a DDE structure:

dg
dt = (g′ ×G) ◦ h−1(g(t), g(t− τ1), . . . , g(t− τn)) (50)

The proof is completed by choosing f = (g′ × G) ◦ h−1 −M where M is obtained by the Mori-Zwanzig
formalism (Equation (5)).

Note that to be able to apply Takens’ theorem, we needed the step-forward operator ϕ to be a diffeomorphism,
i.e. the flow of the dynamical system to be smooth and smoothly invertible. Also, we used the differentiability
of the observables g to express g′.

J The importance of relevant delays

Let us consider a dynamical system evolving on a compact smooth manifold S ⊂ Rd, assumed to be an
attractor. Let us consider a C2 observable function g : S → R.

Takens’ theorem (Takens, 1981) rigorously discusses conditions under which a delay vector of a scalar-valued
observable (g(x(t)), g(x(t− τ)), . . . , g(x(t− pτ))), p ∈ N defines an embedding, a smooth diffeomorphism
onto its image. It guarantees a topological equivalence between the original dynamical system and the one
constructed from the memory of the observable. The dynamics of the system can then be reformulated on
the set (g(x(t)), g(x(t− τ)), . . . , g(x(t− pτ))).

The Takens’ theorem, later extended by Sauer et al. (1991), establishes a sufficient condition but does not
provide information about the time delay τ . From a mathematical viewpoint, the delay could be arbitrary,
besides some pointwise values excluded by the theorem. In practice however, its value is instrumental in a
successful embedding. If too small, entries of the delay vector data are too similar; if too large, the entries
tend to be completely uncorrelated and cannot be numerically linked to a consistent dynamical system.

We here illustrate the impact of suitable delays in the relevance of the information available to inform the
future evolution of the observable. We consider a simple 2-delay dynamical system described by:

g(t+ ∆t) = cos(g(t− τ1)) sin(g(t− τ2))− α sinc(3 g(t− τ1)) + α cos(g(t− τ2)),
g(t < 0) = ψ(t),

with α = 0.2, τ1 = p⋆1 ∆t, τ2 = p⋆2 ∆t, p⋆1 = 125, p⋆2 = 200.

The relevance of the delays {τ1, τ2} for informing g(t + ∆t) is assessed in terms of the mutual informa-
tion I ((g(t− τ1), g(t− τ2)) , g(t)) and shown in Fig. 17 as a 2-D map in terms of p1 and p2. The map
is symmetric, consistently with the symmetry of the mutual information, I ((g(t− τ1), g(t− τ2)) , g(t)) =
I ((g(t− τ2), g(t− τ1)) , g(t)).

It can be seen that the amount of information shared between the current observation and a delay vector of
the observable widely varies with the delays. The ability of the present Neural DDE method to learn the
delays, in addition to the model fθ, is thus key to its performance and wide applicability.

25

Under review as submission to TMLR

K Training hyperparameters

Our training approach incorporates a progressive strategy considered to be curriculum learning strategy
Soviany et al. (2022). We begin by feeding the models shorter trajectory segments and gradually increase
their length when the patience hyperparameter is exceeded. This process continues until we reach the desired
trajectory length. Each time the trajectory length is increased, we reset the patience hyperparameter to 0. It
is then incremented by 1 if the validation loss fails to decrease, and reset to 0 if the validation loss improves.
This method aligns with the principles of curriculum learning, a technique that involves training machine
learning models in a structured order, typically progressing from simpler to more complex examples. In
our case, this translates to moving from shorter to longer trajectories. This approach aims to enhance the
learning process and improve model performance. Table 8 displays the patience hyperparameter and how
much trajectory length was given initially. Table 9 refers to the number of parameters of each model. The
loss function used across all experiments is the MSE loss, and we employ the Adam optimizer with a weight
decay of 10−7. Table 14 provides the initial and final learning rates (lri, lrf) for each experiment, which are

associated with the scheduler. The scheduler is a StepLR scheduler with a gamma factor (γ = exp
{

log
lrf
lri

N

}
,

where N is the trajectory’s length). The scheduler adjusts the learning rate as the trajectory length increases,
allowing training to start with the initial learning rate lri and gradually decrease to the final learning rate lrf .
All continuous-time models (NODE, ANODE, Latent ODE and NDDE) used RK4 for numerical integration.
Table 11 shows the width and depth of the MLPs for NODE, ANODE, and NDDE across all experiments.
Additionally, we provide the hidden size and number of layers for the LSTM model in Table 13. Finally, Table
12 summarizes the Latent ODE hyperparameters, where the vector field fθ (defined in the introduction) is
an MLP with the width and depth specified in the second and third columns, the latent size of z0 in the last
column, and the RNN’s hidden size in the fourth column. If some models has less parameters compared to
others it is that we found that they provided better results with less. ANODE’s augmented state dimension
matches that of the number of delays used by NDDE displayed in Table 1. Due to the inherent different nature
of each model, they provide output of different length and don’t necessarily start at the same initial time t0
: Table 10 provides a MSE comparison along the common trajectory predicted by all models. Compared to
Table 2, the results barely differ.

KS Cavity Brusselator
Length Start 15% 50% 25%
Patience 40 50 20

Table 8: How long is the trajectory chunks given at first and the patience used for each experiment

Figure 17: {τ1 = p1 ∆t, τ2 = p2 ∆t}-map of Delayed Mutual Information, I ((g(t− τ1), g(t− τ2)) , g(t)). The
maximum is exhibited at (125, 200) and (200, 125), in accordance with p⋆1 = 125, p⋆2 = 200.

26

Under review as submission to TMLR

LSTM NODE ANODE Latent ODE NDDE
Brusselator 1764 3265 3395 3666 3331
KS 18130 9029 11609 8118 19343
Cavity 2234 2209 2274 3642 2242

Table 9: Number of parameters for each experiment

LSTM NODE ANODE Latent ODE NDDE
Brusselator 0.0051± 0.0031 0.75± 0.0014 0.0050± 0.0050 0.014± 0.0076 0.011± 0.0076
KS 0.77± 0.061 0.71± 0.10 0.53± 0.052 0.43± 0.07 0.30± 0.032
Cavity 0.75± 0.51 0.96± 0.0001 0.65± 0.021 0.25± 0.14 0.13± 0.0081

Table 10: Test loss experiments averaged over 5 runs over common trajectory predictions

NODE/ANODE/NDDE
Width Depth

Brusselator 32 4
KS 64 3
Cavity 32 3
Shallow Water 32 3

Table 11: MLP width and depth for each experiment

Experiment Width Size Depth Hidden Size Latent Size
Brusselator 16 3 16 16
KS 32 3 16 16
Cavity 16 3 8 8
Shallow Water 32 3 8 8

Table 12: Configuration parameters for each experiment for Latent ODE

Experiment Hidden Size Number of Layers
Brusselator 5 10
KS 25 5
Shallow Water 6 10
Cavity 7 7

Table 13: Hidden size and number of layers for each experiment for LSTM model

27

Under review as submission to TMLR

Experiment lri lrf

Brusselator 0.001 0.0001
Cavity 0.005 0.00005
KS 0.01 0.0001
Shallow Water 0.001 0.00001

Table 14: Initial and final learning rates for each experiment

28

	Introduction
	Modelling Partially Observed Dynamical Systems
	The Mori-Zwanzig (MZ) formalism
	Approximations of Integro-Differential Equations (IDE)
	Exact representation with Neural DDE

	Neural Delay Differential Equations with Learnable Delays
	Experiments
	Dynamical systems
	Results

	Conclusion
	Derivation of Theorem 2.1
	Cancelling out the noise term F(x,t)
	t-model derivation
	Learning the delays
	Neural IDE and Neural DDE Benchmark
	Computation Time
	Memory Consumption
	torchdde's memory and time benchmark

	Additional experiments
	Proof of Theorem 3.1
	Training Neural DDE algorithm with several delays
	Proof of Proposition 2.2
	The importance of relevant delays
	Training hyperparameters

