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Abstract

Generative models trained on internet-scale data are capable of generating novel
and realistic texts, images, and videos. A natural next question is whether these
models can advance science, for example by generating novel stable materials.
Traditionally, models with explicit structures (e.g., graphs) have been used in mod-
eling structural relationships in scientific data (e.g., atoms and bonds in crystals),
but generating structures can be difficult to scale to large and complex systems.
Another challenge in generating materials is the mismatch between standard gen-
erative modeling metrics and downstream applications. For instance, common
metrics such as the reconstruction error do not correlate well with the downstream
goal of discovering novel stable materials. In this work, we tackle the scalability
challenge by developing a unified crystal representation that can represent any
crystal structure (UniMat), followed by training a diffusion probabilistic model on
these UniMat representations. Our empirical results suggest that despite the lack
of explicit structure modeling, UniMat can generate high fidelity crystal structures
from larger and more complex chemical systems, outperforming previous graph-
based approaches under various generative modeling metrics. To better connect
the generation quality of materials to downstream applications, such as discovering
novel stable materials, we propose additional metrics for evaluating generative
models of materials, including per-composition formation energy and stability
with respect to convex hulls through decomposition energy from Density Function
Theory (DFT). Lastly, we show that conditional generation with UniMat can scale
to previously established crystal datasets with up to millions of crystals structures,
outperforming random structure search (the current leading method for structure
discovery) in discovering new stable materials.

1 Introduction

Large generative models trained on internet-scale vision and language data have demonstrated
exceptional abilities in synthesizing highly realistic texts [1, 2], images [3, 4], and videos [5, 6].
The need for novel synthesis, however, goes far beyond conversational agents or generative media,
which mostly impact the digital world. In the physical world, technological applications such as
catalysis [7], solar cells [8], and lithium batteries [9] are enabled by the discovery of novel materials.
The traditional trial-and-error approach that discovered these materials can be highly inefficient and
take decades (e.g., blue LEDs [10] and high-Tc superconductors [11]). Generative models have
the potential to dramatically accelerate materials discovery by generating and evaluating material
candidates with desirable properties more efficiently in silico.
One of the difficulties in materials generation lies in characterizing the structural relationships between
atoms, which scales quadratically with the number of atoms. While representations with explicit
structures such as graphs have been extensively studied [12, 13, 14, 15], explicit characterization
of inter-atomic relationships becomes increasingly challenging as the number of atoms increases,
which can prevent these methods from scaling to large materials datasets with complex chemical
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Figure 1: UniMat representation of crystal structures. Crystals are represented by the atom locations stored at the
corresponding elements in the periodic table (and additional unit cell parameters if coordinates are fractional).
For instance, the bottom right atom Na in the crystal is located at [1, 0, 0], hence the periodic table has value
[1, 0, 0] at the Na entry.

systems. On the other hand, given that generative models are designed to discover patterns from data,
it is natural to wonder if material structures can automatically arise from data through generative
modeling, similar to how natural language structures arise from language modeling, so that large
system sizes becomes more of a benefit than a roadblock.
Existing generative models that directly model atoms without explicit structures are largely inspired
by generative models for computer vision, such as learning VAEs or GANs on voxel images [16, 17]
or point cloud representations of materials [18]. VAEs and GANs have known drawbacks such
as posterior collapse [19] and mode collapse [20], potentially making scaling difficult [21]. More
recently, diffusion models [22, 23] have been found particularly effective in generating diverse yet
high fidelity image and videos, and have been applied to data at internet scale [24, 5]. However, it
is unclear whether diffusion models are also effective in modeling structural relationships between
atoms in crystals that are neither images nor videos.
In this work, we investigate whether diffusion models can capture inter-atomic relationships effectively
by directly modeling atom locations, and whether such an approach can be scaled to complex chemical
systems with a larger number of atoms. Specifically, we propose a unified representation of materials
(UniMat) that can capture any crystal structure. As shown in Figure 1, UniMat represents atoms
in a material’s unit cell (the smallest repeating unit) by storing the continuous value x, y, z atom
locations at the corresponding element entry in the periodic table. This representation overcomes
the difficulty around joint modeling of discrete atom types and continuous atom locations. With
such a unified representation of materials, we train diffusion probabilistic models by treating the
UniMat representation as a 4-dimensional tensor and applying interleaved attention and convolution
layers, similar to [24], across periods and groups of the periodic table. This allows UniMat to capture
inter-atom relationships while preserving any inductive bias from the periodic table, such as elements
in the same group having similar chemical properties.
We first evaluate UniMat on a set of proxy metrics proposed by [15], and show that UniMat generally
works better than the previous state-of-the-art graph based approach and a recent language model
baseline [25]. However, we are ultimately interested in whether the generated materials are physically
valid and can be synthesized in a laboratory. In answering this question, we run DFT relaxations [26]
to compute the formation energy of the generated materials, which is more widely accepted in
material science than learned proxy metrics in [27]. We then use per-composition formation energy
and stability with respect to convex hull through decomposition energy as more reliable metrics for
evaluating generative models for materials. UniMat drastically outperforms previous state-of-the-art
according to these DFT based metrics.
Lastly, we scale UniMat to train on all experimentally verified stable materials as well as additional
stable / semi-stable materials found through search and substitution (over 2 million structures in
total). We show that predicting material structures conditioned on element type can generalize (in a
zero-shot manner) to predicting more difficult structures that are not a neighboring structure to the
training set, achieving better efficiency than the predominant random structure search. This allows
for the possibility of discovering new materials with desired properties effectively. In summary, our
work contributes the following:
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• We develop a novel representation of materials that enables diffusion models to scale to large and
complex materials datasets, outperforming previous methods on previous proxy metrics.

• We conduct DFT calculations to rigorously verify the stability of generated materials, and propose
to use per-composition formation energy and stability with respect to convex hull for evaluating
generative models for materials.

• We scale conditional generation to all known stable materials and additional materials found
by search and substitution, and observe zero-shot generalization to generating harder structures,
achieving better efficiency than random structure search in discovering new materials.

2 Scalable Diffusion for Materials Generation
We start by proposing a novel crystal representation that can represent any material with a finite
number of atoms in a unit cell (the smallest repeating unit of a material). We then illustrate how
to learn both unconditional and conditional denoising diffusion models on the proposed crystal
representations. Lastly, we explain how we can verify generated materials rigorously using quantum
mechanical methods.

2.1 Scalable Representation of Crystal Structures
An ideal representation for crystal structures should not introduce any intrinsic errors (unlike voxel
images), and should be able to support both up scaling to large sets of materials on the internet and
down scaling to a single compound system that a particular group of scientists care about (e.g., silicon
carbide). We develop such a scalable and flexible representation below.
Periodic Table Based Material Representation. We first observe that periodic table captures rich
knowledge of chemical properties. To introduce such prior knowledge to a generative model as an
inductive bias, we define a 4-dimensional material space, M := RL×H×W×C , where H = 9 and
W = 18 correspond to the number of periods and groups in the periodic table, L corresponds to
the maximum number of atoms per element in the periodic table, and C = 3 corresponds to the
x,y,z locations of each atoms in a unit cell. We define a null location using special values such
as x = y = z = −1 to represent the absence of this atom. A visualization of this representation
is shown in Figure 1. To account for invariances in order, rotation, translation, and periodicity,
we incorporate data augmentation through random shuffling and rotations similar to [28, 18, 29].
Note that when crystals are represented using Cartesian coordinates, this representation is already
sufficient for expressing any crystal structure x ∈ M with less than L atoms per chemical element.
When crystals are represented using fractional coordinates, we need additional unit cell parameters
(a, b, c) ∈ R3 and (α, β, γ) ∈ R3 to specify the lengths and angles between edges of the unit cell as
shown in Figure 1. We denote this representation UniMat, as it is a unified representation of crystals,
and has the potential to represent broader chemical structures (e.g., drugs, molecules, and proteins).
Flexibility for Smaller Systems. While UniMat can represent any crystal structure, sometimes one
might only be interested in generating structures with one specific element (e.g., carbon in graphene)
or two-chemical compounds (e.g., silicon carbide). Instead of setting H and W to the full periods and
groups of the periodic table, one can set H = 1,W = 1 (for one specific element) or H = 9,W = 2
(for elements from two groups) to model specific chemical systems of interest. L can also be adjusted
according to the number of elements expected to exist in the system.

2.2 Learning Diffusion Models with UniMat Representation
With the UniMat representation above, we now illustrate how effective training of diffusion mod-
els [30, 23] on crystal structures can be enabled, followed by how to generate crystal structures
conditioned on compositions or other types of material properties. Details of the model architecture
and training procedure can be found in Appendix 6.
Diffusion Model Background. Denoising diffusion probablistic models are a class of probabilistic
generative models initially designed for images where the generation of an image x ∈ Rd is formed
by iterative denoising. That is, given an image x sampled from a distribution of images p(x), a
randomly sampled Gaussian noise variable ϵ ∼ N (0, Id), and a set of T different noise levels βt ∈ R,
a denoising model ϵθ is trained to denoise the noise corrupted image x at each specified noise level
t ∈ [1, T ] by minimizing:

LMSE = ∥ϵ− ϵθ(
√
1− βtx+

√
βtϵ, t))∥2.

Given this learned denoising function, new images may be generated from the diffusion model by
initializing an image sample xT at noise level T from a Gaussian N (0, Id). This sample xT is then
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Figure 2: Illustration of the denoising process for unconditional generation with UniMat. The denoising model
learns to move atoms from random locations back to their original locations. Atoms not present in the crystal are
moved to the null location during the denoising process, allowing crystals with an arbitrary number of atoms to
be generated.

iteratively denoised by following the expression:
xt−1 = αt(xt − γtϵθ(xt, t)) + ξ, ξ ∼ N

(
0, σ2

t Id
)
, (1)

where γt is the step size of denoising, αt is a linear decay on the currently denoised sample, and σt

is some time varying noise level that depends on αt and βt. The final sample x0 after T rounds of
denoising corresponds to the final generated image.
Unconditional Diffusion with UniMat. Now instead of an image x ∈ Rd, we have a material
x ∈ Rd with d = L×H×W ×3 tensor as described in Section 2.1, where the inner-most dimension
of x represents the atom locations (x,y,z). The denoising process in Equation 1 now corresponds to
the process of moving atoms from random locations back to their original locations in a unit cell as
shown in Figure 2. Note that the set of null atoms (i.e., atoms that do not exist in a crystal) will have
random locations initially (left-most structure in Figure 2), and are gradually moved to the special
null location during the denoising process. The null atoms are then filtered when the final crystals are
extracted. The inclusion of null atoms in the representation enables UniMat to generate crystals with
an arbitrary number of atoms (up to a maximum size). We parametrize ϵθ(xt, t) using interleaved
convolution and attention operations across the L,H,W dimensions of xt similar to [24], which can
capture inter-atom relationships in a crystal structure. When atom locations are represented using
fractional coordinates, we treat unit cell parameters as additional inputs to the diffusion process by
concatenating the unit cell parameters with the crystal locations.
Conditioned Diffusion with UniMat. While the unconditional generation procedure described
above allows generation of materials from random noise, the learned materials distribution p(x) would
largely overlap with the training distribution. This is undesirable in the context of materials discovery,
where the goal is to discover novel materials that do not exist in the training set. Futhermore, practical
applications such as material synthesis often focus on specific types of materials, but one do not have
much control over what compound gets generated during an unconditional denoising process. This
suggests that conditional generation may be more relevant for materials discovery.
We consider conditioning generation on compositions (types and ratios of chemical elements) c ∈
RH×W when only the composition types are specified (e.g., carbon and silicon), or on c ∈ RL×H×W

when the exact composition (number of atoms per element) is given (e.g., Si4C4). We denote the
conditional denoising model as ϵθ(xt, t|c). Since the input to the unconditional denoising model
ϵθ(xt, t) is a noisy material of dimensions (L,H,W, 3), we concatenate the conditioning variable c
with the noisy material along the last dimension before inputting the noisy material into the denoising
model, so that the denoising model can easily condition on compositions as desired.
In addition to conditioning on compositions, one may also want to incorporate material properties
or information such as formation energy, bandgap, or even textual descriptions into the generation
process. Since conditioning on this auxiliary information does not have to be enforced strictly, similar
to composition conditioning, we can leverage classifier-free guidance [31] and use

ϵ̂θ(xt, t|c, aux) = (1 + ω)ϵθ(xt, t|c, aux)− ωϵθ(xt, t|c) (2)
as the denoising model in the reverse process for sampling materials conditioned on auxiliary
information aux, where ω controls the strength of auxiliary information conditioning.

2.3 Evaluating Generated Materials

Different from generative models for vision and language where the quality of generation can be easily
assessed by humans, evaluating generated crystals rigorously requires calculations from Density
Functional Theory (DFT) [32], which we elaborate in detail below.
Drawbacks of Learning Based Evaluations. One way to evaluate generative models for ma-
terials is to compare the distributions of formation energy Ef between a generated and reference
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set, D(p(Egen
f ), p(Eref

f )), where D is a distance measure over distributions, such as earth mover’s
distance [15]. Since using DFT to compute Ef is computationally demanding, previous work has
relied on a learned network to predict Ef from generated materials [15]. However, predicting Ef can
have intrinsic errors, particularly in the context of materials discovery where the goal is to generate
novel materials beyond the training manifold of the energy prediction network.
Even when Ef can be predicted with reasonable accuracy, a low Ef does not necessarily reflect
ground-truth (DFT) stability. For example, [27] reported that a model that can predict Ef with an
error of 60 meV/atom (a 16-fold reduction from random-guessing) does not provide any predictive
improvement over random guessing for stable material discovery. This is because most variations
in Ef are between different chemical systems, whereas for stability assessment, the important
comparison is between compounds in a single chemical system. When materials generated by two
different models contain different compounds, the model that generated materials with a lower
Ef could have simply generated compounds from a lower Ef system without enabling efficient
discovery [33].
The property that captures relative stabilities between different compositions is known as decompo-
sition energy (Ed). Since Ed depends on the formation energy of other compounds from the same
system, predicting Ed directly using machine learning models has been found difficult [27].

Evaluating via Per-Composition Formation Energy. Different from learned energy predictors,
DFT calculations provide more accurate and reliable Ef values. When two models each generate a
structure of the same composition, we can directly compare which structure has a lower DFT com-
puted Ef (and is hence more stable). We call this the per-composition formation energy comparison.
We define average difference in per-composition formation energy between two sets of materials A
and B as

∆Ef (A,B) =
1

|C|
∑

(x,x′)∈C

(
EA

f,x − EB
f,x′

)
, (3)

where C = {(x, x′) | x ∈ A, x′ ∈ B, comp(x) = comp(x′)} denotes the set of structures from A
and B that have the same composition. We also define the Ef Reduction Rate between set A and
B as the rate where structures in A have a lower Ef than the structures in B of the corresponding
compositions, i.e.,

Ef Reduction Rate(A,B) =
1

|C|
|{(x, x′) | (x, x′) ∈ C ∧ EA

f,x < EB
f,x′}|, (4)

where C is the same as in Equation 3. We can then use ∆Ef and the Ef Reduction Rate to
compare a generated set of structures to some reference set, or to compare two generated sets.
∆Ef (A,B) measures how much lower in Ef (on average) the structures in a set A are compared to
the structures of correponding compositions in a set B, while Ef Reduction Rate(A,B) reflects how
many structures in A have lower Ef than the corresponding structures in B. We use these metrics to
evaluate generated materials in Section 3.2.1.

Evaluating Stability via Decomposition Energy We also want to compare generated materials
that differ in composition. To do so, we can use DFT to compute decomposition energy Ed. Ed

measures a compound’s thermodynamic decomposition enthalpy into its most stable compositions on
a convex hull phase diagram, where the convex hull is formed by linear combinations of the most
stable (lowest energy) phases for each known composition [34]. As a result, decomposition energy
allows us to compare compounds from two generative models that differ in composition by separately
computing their decomposition energy with respect to the convex hull formed by a larger materials
database. The distribution of decomposition energies will reflect a generative model’s ability to
generate relatively stable materials. We can further compute the number of novel stable (Ed < 0)
materials from set A with respect to convex hull as

# Stable(A) = |{x ∈ A | EA
d,x < 0}|, (5)

and compare this quantity to some other set B. We apply this metric to evaluate generative models
for materials in Section 3.2.

Evaluating against Random Search Baseline. For structure prediction given compositions, one
popular non-learning based approach is Ab initio random structure search (AIRSS) [35]. AIRSS
works by initializing a set of sensible structures given the composition and a target volume, relaxing
randomly initialized structures via soft-sphere potentials, followed by DFT relaxations to minimize
the total energy of the system. However, discovering structures (especially if done in a high-
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Validity % ↑ COV % ↑ Property Statistics ↓
Method Dataset Structure Composition Recall Precision Density Energy # Elements

CDVAE
Perov5 100 98.5 99.4 98.4 0.125 0.026 0.062

Carbon24 100 − 99.8 83.0 0.140 0.285 −
MP20 100 86.7 99.1 99.4 0.687 0.277 1.432

LM
Perov5 100 98.7 99.6 99.4 0.071 − 0.036
MP20 95.8 88.8 99.6 98.5 0.696 − 0.092

UniMat
Perov5 100 98.8 99.2 98.2 0.076 0.022 0.025

Carbon24 100 − 100 96.5 0.013 0.207 −
MP20 97.2 89.4 99.8 99.7 0.088 0.034 0.056

Table 1: Proxy evaluation of unconditional generation using CDVAE [15], language model [25], and UniMat.
UniMat generally performs better in terms of property statistics, and achieves the best coverage on more difficult
dataset (MP-20). We note the limitation of these proxy metrics, and defer more rigorous evaluation to DFT
calculations.

Test Set CDVAE Test Set CDVAE Test Set CDVAE Test Set UniMat Test Set UniMat Test Set UniMat

Figure 3: Qualitative evaluation of materials generated by CDVAE [15] (left) and UniMat (right) trained on
MP-20 in comparison to the test set materials of the same composition. Materials generated by UniMat generally
align better with the test set.

throughput framework) requires a large number of initializations and relaxations which can often fail
to converge [36, 33].
One practical use of conditional UniMat is to propose initial structures given compositions, with
the hope that the generated structures will result in a higher convergence rate for DFT calculations
compared to structures proposed by AIRSS, which are based on manual heuristics and random
guessing of initial volumes. We can further conduct formation and decomposition energy analysis
similar to evaluating unconditional generations on structures proposed by AIRSS and generative
models.

3 Experimental Evaluation
We now evaluate UniMat using both the previous proxy metrics from [15] as well as metrics derived
from DFT calculations, as discussed in Section 2.3. UniMat is able to generate orders of magnitude
more stable materials verified by DFT calculations compared to the previous state-of-the-art generative
model. We further demonstrate UniMat’s ability in accelerating random structure search through
conditional generation.

3.1 Evaluating Unconditional Generation Using Proxy Metrics

Datasets, Metrics, and Baselines. We begin the evaluation following the same setup as CD-
VAE [15], and train three generative models on Perov-5, Carbon-24, and MP-20 materials datasets.
We report metrics on structural and composition validity determined by atom distances and SMACT,
coverage metrics based on CrystalNN fingerprint distances, and property distributions in density,
learned formation energy, and number of atoms following CDVAE. In addition to CDVAE, we include
a recent language model baseline that learns to directly generate crystal files [25].
Results. Evaluation results on UniMat and baselines are shown in Table 5. All three models
perform similarly in terms of structure and composition validity on the Perov-5 dataset due to its
simplicity. UniMat performs slightly worse on the coverage based metrics on Perov-5, but achieves
better distributions in energy and number of unique elements. On Carbon-24, UniMat outperforms
CDVAE in all metrics. On the more realistic MP-20 dataset, UniMat achieves the best property
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statistics, coverage, and composition validity, but worse structure validity than CDVAE. Results on
full coverage metrics from CDVAE are in Appendix 9.
In addition, we qualitatively evaluate the generated materials from training on MP-20 in Figure 3.
We select generated materials that have the same composition as the test set from MP-20, and use the
VESTA crystal visualization tool [37] to plot both the test set materials and the generated materials.
The range of fractional coordinates in the VESTA settings were set from -0.1 to 1.1 for all coordinates
to represent all fractional atoms adjacent to the unit cell. In general, we found that UniMat generates
materials that are visually more aligned with the test set materials than CDVAE.

Validity % ↑ COV % ↑
Model size Struct. Comp. Recall Precision

Small (64) 95.7 86.0 99.8 99.3
Medium (128) 96.8 86.7 99.8 99.5

Large (256) 97.2 89.4 99.8 99.7

Figure 4: UniMat trained with a larger feature dimension
results in better validity and coverage.

Ablation on Model Size. In training on larger
datasets with more diverse materials such as MP-
20, we found benefits in scaling up the model
as shown in Table 4, which suggests that the
UniMat representation and the UniMat training
objective can be further scaled to systems larger
than MP-20, which we elaborate more in Sec-
tion 3.3.

3.2 Evaluating Unconditional Generation Using DFT Calculations

As discussed in Section 2.3, proxy-based evaluation in Section 3.1 should be backed by DFT
verifications similar to [16]. In this section, we evaluate stability of generated materials using metrics
derived from DFT calculations in Section 2.3.

3.2.1 Per-Composition Formation Energy

Setup. We start by running DFT relaxations using the VASP software [26] to relax both atomic
positions and unit cell parameters on generated materials from models trained on MP-20 to compute
their formation energy Ef (see details of DFT in Appendix 7). We then compare average difference
in per-composition formation energy (∆Ef in Equation 3) and the formation energy reduction rate
(Ef Reduction Rate in Equation 4) between materials generated by CDVAE and the MP-20 test set,
between UniMat and the test set, and between UniMat and CDVAE.
Results. We plot the difference in formation energy for each pair of generated structures from
UniMat and CDVAE with the same composition in Figure 5. We see the majority of the generated
compositions from UniMat have a lower formation energy. We further report ∆Ef and the Ef

Reduction Rate in Table 2. We see that among the set of materials generated by UniMat and CDVAE
with overlapping compositions, 86% of them have a lower energy when generated by UniMat.
Furthermore, materials generated by UniMat have an average of -0.21 eV/atom lower Ef than
CDVAE. Comparing the generated set against the MP-20 test set also favors UniMat.

3.2.2 Stability Analysis through Decomposition Energy

As discussed in Section 2.3, generated structures relaxed by DFT can be compared against the convex
hull of a larger materials database in order to analyze their stability through decomposition energy.
Specifically, we downloaded the full Materials Project database [34] from July 2021, and used this to
form the convex hull. We then compute the decomposition energy for materials generated by UniMat
and CDVAE individually against the convex hull.

Figure 5: Difference in Ef for each composition gener-
ated by UniMat and CDVAE, i.e., EA

f,x−EB
f,x′ , where

A and B are sets of structures generated by UniMat
and CDVAE, respectively. UniMat generates more
structures with lower Ef .

A, B ∆Ef (eV/atom) Ef Reduc. Rate

CDVAE, MP-20 test 0.279 0.083

UniMat, MP-20 test 0.061 0.254
UniMat, CDVAE -0.216 0.863

Table 2: ∆Ef (Equation 3) and Ef Reduction Rate
(Equation 4) between CDVAE and MP-20 test, between
UniMat and MP-20 test, and between UniMat and CD-
VAE. UniMat generates structures with an average of
-0.216 eV/atom lower Ef than CDVAE. 86.3% of the
overlapping (in composition) structures generated by
UniMat and CDVAE has a lower energy in UniMat.
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Figure 6: Histogram of decomposition energy Ed of
structures generated by CDVAE and UniMat after DFT
relaxation. UniMat generates structures with lower de-
composition energies.

# Stable # Metastable # Stable
MP 2021 MP 2021 GNoME

CDVAE 56 90 1
UniMat 414 2157 32

Table 3: Number of stable (Ed < 0) and metastable
(Ed < 25meV/atom) materials generated compared
against the convex hull of MP 2021, and stability
against GNoME with 2 million structures. UniMat gen-
erates an order of magnitude more stable / metastable
materials than CDVAE.

MgBr10 Rb2TcF6 Sm2Cl2O2 Sr2BrNBa2TbIr1O6 CsCeSe2 ErBi2ClO4 KI10 KTmTe2 KGdSe2

Figure 7: Visualizations of materials generated by UniMat trained on MP-20 before DFT relaxation that have
Ed < 0 after relaxation compared against the convex hull of MP 2021. We note that these materials require
further analysis and verification before they can be claimed to be realistic or stable.

Results. We plot the distributions of the decomposition energies after DFT relaxation for the
generated materials from both models in Figure 6. Note that only the set of generated materials that
converged after DFT calculations are plotted. We see that UniMat generates materials that are lower
in decomposition energy after DFT relaxation compared to CDVAE. We further report the number
of newly discovered stable / metastable materials (with Ed < 25meV/atom) from both UniMat and
CDVAE in Table 3. In addition to using the convex hull from Materials Project 2021, we also use
another dataset (GNoME) with 2.2 million materials constructed via structure search to construct a
more challenging convex hull [33]. We see that UniMat is able to discover an order of magnitude
more stable materials than CDVAE with respect to convex hulls constructed from both datasets. We
visualize examples of newly discovered stable materials by UniMat in Figure 7.

3.3 Evaluating Composition Conditioned Generation
We have verified that some of the unconditionally generated materials from UniMat are indeed novel
and stable through DFT calculations. We now assess composition conditioned generation which is
often more practical for downstream synthesis applications.
Setup. For the structure search baseline, we use AIRSS to randomly initialize 100 structures per
composition for a fixed set of compositions followed by relaxation via soft-sphere potentials. We
then run DFT relaxations on these AIRSS structures. For conditional generation using UniMat, we
train composition conditioned UniMat (as described in Section 2.2) on the GNoME dataset consisting
of 2.2 million stable materials. We then sample 100 structures per composition for the same set of
compositions used by AIRSS. We then evaluate the rate of compositions for which at least 1 out of
100 structures converged during DFT calculations for both structures initialized by AIRSS and by
UniMat. In addition to convergence rate, we also evaluate the ∆Ef (UniMat,AIRSS) and the Ef

Reduction Rate (UniMat,AIRSS) on the DFT relaxed structures. Since none of the test compositions
exist in the training set of GNoME, we are essentially evaluating the ability of UniMat to generalize
to more difficult structures in a zero-shot manner. See the detailed setup of AIRSS in Appendix 8.

Figure 8: Difference in per-composition formation en-
ergy between structures produced by UniMat and AIRSS.
More compounds generated by UniMat lead to lower for-
mation energy than AIRSS.

Results. We first observe that AIRSS has an
overall convergence rate of 0.55, whereas Uni-
Mat has an overall convergence rate of 0.81. We
note that both AIRSS and UniMat can be fur-
ther optimized for convergence rate, so these
results are only initial signals on how condi-
tional generative models compare to structure
search. Next, we take the relaxed structure
with the lowest Ef from both UniMat and
AIRSS for each composition, and plot the per-
composition Ef difference in Figure 8, and
∆Ef (UniMat,AIRSS) = −0.68eV/atom, and
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Ef Reduction Rate(UniMat, AIRSS) = 0.8, which suggests that UniMat is indeed effective in
initializing structures that lead to lower Ef than AIRSS.

4 Related Work
Diffusion Models for Structured Data Diffusion models [22, 23, 38] were initially proposed for
generating images from noise of the same dimension through a Markov chain of Gaussian transitions,
and have been adopted to structured data such as graphs [39, 40, 41, 42], sets [43] and point clouds [44,
45, 46]. Diffusion modeling for materials requires joint modeling of continuous atom locations and
discrete atom types. Previous approaches either embed discrete quantities into a continuous latent
space, risking information loss [15], or directly learn discrete-space transformations [40, 47] on
graphs represented by adjacency matrices that scale quadratically in the number of atoms.
Generative Models for Materials Discovery. Generative models originally designed for images
have been applied to generating material structures, such as GANs [48, 18, 49], VAEs [28, 16, 50,
29], and diffusion models [15]. These methods were developed to work with different materials
representations as voxel images [28, 16, 29], graphs [15], point clouds [18], and phase fields or
electron density maps [51, 29]. However, existing work has mostly focused on simpler materials in
binry compounds [16, 49], ternary compounds [48, 18], or cubic systems [28]. [15] show that graph
neural networks with latent space diffusion guided by gradient of formation energy can scale to larger
materials datasets such as the Materials Project [34]. However, the quality of generated materials
seems to decrease drastically when scaled to larger systems. Recently, large language models have
been applied to directly generate files containing crystal information [52, 25]. However, the ability of
language models to directly generate files with structural information requires further confirmation,
and the generated materials require further verification through DFT calculations.
Evaluation of Materials Discovery The most reliable verification of generated materials is through
Density Function Theory (DFT) calculations [53], which uses quantum mechanics to calculate
thermodynamic properties such as formation energy and energy above the hull, thereby determining
the stability of generated structures [16, 49, 54, 55, 56, 57, 49, 18]. However, DFT calculations require
extensive computational resources. Alternative proxy metrics such as pairwise atom distances and
charge neutrality [58] were developed as a sanity check of generated materials [15, 25]. Fingerprint
distances [59, 60] have also been used to measure precision and recall between the generated set and
some held-out test set [61, 62, 13, 25]. To evaluate properties of generated materials, existing works
often use a separate graph neural network (GNN) to predict properties of generated material, which
is subject to the quality of the property prediction GNN. Furthermore, [63] has shown that although
machine learning models can predict formation energies reasonably well, learned formation energies
do not reproduce DFT-calculated relative stabilities, bringing the value of learned property based
evaluation into question.

5 Limitations and Conclusion
We have presented the first diffusion model for materials generation that can scale to train on datasets
with millions of materials. To enable effective scaling despite the large number of atoms in complex
systems, we developed a novel representation, UniMat, based on the periodic table, which enables
any crystal structure to be effectively represented. The UniMat representation is sparse when the
chemical system is small, which may incur computational cost that should be reduced by future work.
Despite this limitation, we show that UniMat enables training of diffusion models that results in better
generation quality than previous state-of-the-art learned materials generators. We further advocate
for using DFT calculations to perform rigorous stability analysis of materials generated by generative
models.
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Appendix
6 Architecture and Training
We repurpose the 3D U-Net architecture [64, 65] which originally models the spatial and time
dimensions of videos into modeling periods and groups of the periodic table as well as the number of
atoms dimension, which can be seen as the time dimension in videos. We apply the spatial down-
sampling pass followed by the spatial upsampling pass with skip connections to the downsampling
pass activations with interleaved 3D convolution and attention layers as in standard 3D U-Net. The
hyperparamters in training the UniMat diffusion model are summarized in Table 4.

Hyperparameter Value
Base channels 256
Optimizer Adam (β1 = 0.9, β2 = 0.99)
Channel multipliers 1, 2, 4
Learning rate 0.0001
Blocks per resolution 3
Batch size 512
Attention resolutions 1, 3, 9
EMA 0.9999
Attention head dimension 64
Dropout 0.1
Training hardware 32 TPU-v4 chips
Training steps 200000
Diffusion noise schedule cosine
Noise schedule log SNR range [-20, 20]
Sampling timesteps 256
Sampling log-variance interpolation γ = 0.1
Weight decay 0.0
Prediction target ϵ

Table 4: Hyperparameters for training the UniMat diffusion model.

7 Details of DFT Calculations
We use the Vienna ab initio simulation package (VASP) [66, 67] with the Perdew-Burke-Ernzerhof
(PBE) [68] functional and projector-augmented wave (PAW) [69, 70] potentials in all DFT calcula-
tions. Our DFT settings are consistent with Materials Project workflows as encoded in pymatgen [71]
and atomate [72]. We use consistent settings with the Materials Project workflow including the
Hubbard U parameter applied to a subset of transition metals in DFT+U, 520 eV plane-wave basis
cutoff, magnetization settings and the choice of PBE pseudopotentials, except for Li, Na, Mg, Ge,
and Ga. For Li, Na, Mg, Ge, and Ga, we use more recent versions of the respective potentials with
the same number of valence electrons. For all structures, we use the standard protocol of two stage
relaxation of all geometric degrees of freedom, followed by a final static calculation along with the
custodian package [71] to handle any VASP related errors that arise and adjust appropriate simulations.
For the choice of KPOINTS, we also force gamma centered kpoint generation for hexagonal cells
rather than the more traditional Monkhorst-Pack. We assume ferromagnetic spin initialization with
finite magnetic moments, as preliminary attempts to incorporate different spin orderings showed
computational costs prohibitive to sustain at the scale presented. In AIMD simulations, we turn off
spin-polarization and use the NVT ensemble with a 2 fs time step, except for simulations including
hydrogen, where we reduce the time step to 0.5 fs.

8 Details of AIRSS and Conditional Evaluation
Random structures for conditional evaluation of UniMat are generated through Ab initio random
structure search [35]. Random structures are initialized as “sensible” structures (obeying certain
symmetry requirements) to a target volume then relaxed via soft-sphere potentials. For this paper, we
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always generate 100 AIRSS structures for every composition, many of which failed to converge as
detailed in Section 3.3. We try a range of initial volumes spanning 0.4 to 1.2 times a volume estimated
by considering relevant atomic radii, finding that the DFT relaxation fails or does not converge for
the whole range for each composition. Note that these settings could be further finetuned to optimize
AIRSS for convergence rate.
To compute the convergence rate for AIRSS, we use a total of 57,655 compositions from previous
AIRSS runs[33], for which 31,917 converged, and hence the AIRSS convergence is 0.55. When we
run conditional generation, we randomly sampled 157 compounds from the 31,917 AIRSS-converged
compounds, and 309 compounds from the 25,738 compounds where AIRSS had no structure that
converged. Among the 157 compounds where AIRSS converged, 137 from UniMat converged, and
among the 309 compounds that AIRSS did not converge, 231 from UniMat converged, resulting in an
overall convergence rate 137/157∗31917/(31917+25738)+231/309∗25738/(31917+25738) =
0.817 for UniMat.

9 Additional Results

Method Dataset COV-R ↑ AMSD-R ↓ AMCD-R ↓ COV-P ↑ AMSD-P ↓ AMCD-P ↓
CDVAE Perov-5 99.4 0.048 0.696 98.4 0.059 1.27

Carbon-24 99.8 0.048 0.00 83.0 0.134 0.00
MP-20 99.15 0.154 3.62 99.49 0.1883 4.014

UniMat
Perov5 99.2 0.046 0.711 98.2 0.074 1.399

Carbon24 100 0.018 0.0 96.5 0.052 0.0
MP20 99.8 0.097 2.41 99.7 0.119 2.41

Table 5: Full proxy coverage metrics from CDVAE. UniMat performs better on larger datasets such as MP-20.
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