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ABSTRACT

Autonomous agents powered by large language models (LLMs) have garnered sig-
nificant research attention. However, fully harnessing the potential of LLMs for
agent-based tasks presents inherent challenges due to the heterogeneous nature of
diverse data sources featuring multi-turn trajectories. In this paper, we introduce
AgentOhana as a comprehensive solution to address these challenges. AgentO-
hana aggregates agent trajectories from distinct environments, spanning a wide
array of scenarios. It meticulously standardizes and unifies these trajectories into
a consistent format, streamlining the creation of a generic data loader optimized
for agent training. Leveraging the data unification, our training pipeline maintains
equilibrium across different data sources and preserves independent randomness
across devices during dataset partitioning and model training. Additionally, we
present xLAM-v0.1, a large action model tailored for AI agents, which demon-
strates exceptional performance across various benchmarks. Begin the exploration
at https://github.com/SalesforceAIResearch/xLAM.

1 INTRODUCTION

Large language models (LLMs) have shown strong abilities in code generation, mathematical rea-
soning, conversational AI, and AI agents (OpenAI, 2023; Jiang et al., 2023; Zhang et al., 2023; Liu
et al., 2023a; Nijkamp et al., 2023). Among these, LLM-powered autonomous agents are gaining in-
creasing attention. Recent frameworks for LLM agents, such as AutoGPT (Gravitas, 2023), OpenA-
gent (Xie et al., 2023), BOLAA (Liu et al., 2023b), XAgent (Team, 2023), and LangChain (Chase,
2023), have been designed to support agent tasks, and they have attracted significant interest in the
open-source community.

Nevertheless, many existing agents are powered by closed-source LLM APIs such as GPT-4 (Ope-
nAI, 2023) and Gemini (Team et al., 2023), mainly because most open-source models struggle to
perform long-horizon reasoning and handle complex agent tasks (Liu et al., 2023a;b). Recently,
there have been ongoing efforts on training open-source models instead of relying solely on com-
mercialized APIs. For instance, AgentLM (Zeng et al., 2023), Lemur (Xu et al., 2023) and Lu-
mos (Yin et al., 2023) are trained for agents based on Llama-2 family (Touvron et al., 2023), along
with special reasoning, planning and acting prompts design such as ReAct (Yao et al., 2023) and
Self-Reflection (Shinn et al., 2023; Madaan et al., 2023; Wang et al., 2023b) to enhance the abilities.
On the same, there are works to open-source agent relevant data and train agent models such as
ToolLlama (Qin et al., 2023), ToolAlpaca (Tang et al., 2023), Lumos (Yin et al., 2023) and API-
bank (Li et al., 2023) to enhance abilities on reasoning, tool usages and plannings. They have shown
impressive performance on agent relevant tasks.

However, navigating the data landscape for LLM agents becomes increasingly intricate when deal-
ing with non-standardized data formats sourced from diverse dataset collections, especially those
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featuring interactions of multi-turns, as commonly observed in agent-relevant data. The heterogene-
ity in data structures, syntaxes, labeling conventions, and processing methods across datasets poses
a formidable challenge, complicating the training and fine-tuning processes of LLMs. The lack
of standardized formats introduces complexities in harmonizing disparate data sources, leading to
potential biases and inconsistencies. Addressing these challenges requires developing robust pre-
processing pipelines, ensuring unification and compatibility across varied data formats, and imple-
menting strategies to mitigate biases that may arise from non-standardized representations. With the
increasing demand for comprehensive and diverse datasets, establishing effective methods to man-
age non-standardized data formats is crucial for ensuring the robust performance of LLM agents
across a spectrum of applications.

In this work, we bridge the existing gap by building a comprehensive agent data collection and
training pipeline, named AgentOhana. Drawing inspiration from the notable achievements of Di-
alogStudio (Zhang et al., 2023) and FLAN (Longpre et al., 2023) in the realms of Conversational
AI and instruction-based fine-tuning, AgentOhana is designed to accommodate the wide variety of
data structures and formats encountered in LLM agent trajectories. It employs specialized processes
to transform disparate data into a uniform format, achieving seamless integration across multiple
sources. Furthermore, the collection undergoes a meticulous filtering process to ensure high-quality
trajectories, thereby introducing an extra layer of quality control. Leveraging the data standardiza-
tion and unification, our training pipeline preserves independent randomness across devices during
both dataset partitioning and model training, thus avoiding the inadvertent introduction of biases into
the training process. This comprehensive approach guarantees that AgentOhana not only unifies tra-
jectories across environments but also enhances the overall quality and the reliability of the collected
data, as well as the performance and the robustness of the model. Our approach ensures that Agen-
tOhana serves as a versatile and accessible resource for the research community, streamlining the
development process for future applications. The contributions of this paper are as follows:

• Innovative Solution to Data Heterogeneity: We introduce AgentOhana, a pioneering platform
designed to address the complex challenges associated with the consolidation of heterogeneous
data sources pertaining to multi-turn LLM agent trajectories. This contribution represents a critical
step forward in overcoming the obstacles of data diversity and fragmentation.

• Extensive Environmental Coverage: AgentOhana distinguishes itself by incorporating agent
data from ten distinct environments, spanning a comprehensive array of scenarios. This diverse
collection facilitates a broad spectrum of research opportunities, enabling investigations into vari-
ous aspects of agent behavior and interaction.

• Data Standardization and Unification: A core achievement of this work is the systematic stan-
dardization and unification of LLM agent data into a consistent format. This process has enabled
the creation of a generic data loader, optimizing the dataset for agent training that maintains equi-
librium across different data sources and preserves independent randomness across devices.

• Large Agent Model: We have developed XLAM-v0.1, a robust large action model tailored for AI
agents. Demonstrating strong performance across five rigorous benchmarks, XLAM-v0.1 show-
cases the potential of AgentOhana in facilitating the training of high-performing AI agents. All
the code, dataset, and model will be made open source upon publication.

2 METHODOLOGY

As illustrated in the workflow of AgentOhana shown in Figure 1, we adopt a homogeneous multi-
turn data format designed to consolidate trajectories from heterogeneous data sources. Additionally,
we introduce a method called AgentRater to assess and filter agent trajectories based on public or
close-world models. Finally, we adopt a generic dataloader as a central component to enable smooth
integration of various datasets into a distributed training process.

2.1 HETEROGENEITY OF VARIOUS DATASETS

The formats of agent data vary significantly across different environments, posing significant dif-
ficulties and challenges in unifying data, training, and analyzing models. As illustrated in row 1
of Figure 2, trajectories from two distinct environments show markedly different data organization
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Figure 1: Workflow of AgentOhana. A homogeneous multi-turn data format is designed to consoli-
date heterogeneous trajectories from diverse data sources. AgentRater then assesses and filters agent
trajectories. Finally, a streaming data loader enables integration of various datasets and feeds data
into a distributed training process at random.

methods, a phenomenon observed universally across different environments. For instance, the Hot-
potQA environment (Liu et al., 2023b) consolidates the whole target trajectory into a single string
under the prompt key. This design requires efforts to retrieve user query, Thought, Model Action: i
along with Env Observation: i for each step ith ∈ [1, N ] from a single string. Conversely, ToolAl-
paca requires the identification and matching of prompt inputs, model outputs, and observations at
each step, followed by the accurate aggregation of trajectory history prior to proceeding to the next
step. Appendix A shows more examples of the original trajectories from four environments.

2.2 HOMOGENEOUS MULTI-TURN AGENT TRAJECTORY STANDARDIZATION

To address the challenges identified, we propose a unified agent data format, as depicted in row 2
of Figure 2, showcasing our proposed unified trajectory data format. We construct a homogeneous
JSON dictionary format to encapsulate all relevant content of each trajectory. Concretely, our format
incorporates all important elements such as user query to store the initial user query, model name
to identify the corresponding model and score to log the available model performance score. These
elements can be used to differentiate between models and are poised to facilitate the development
of pairwise samples for cutting-edge training methodologies such as DPO (Rafailov et al., 2023),
self-reward (Yuan et al., 2024) and AI feedback (Guo et al., 2024) LLMs. Additionally, we save
auxiliary trajectory information or specific notes into other information, providing a reference for
further analysis or model improvement initiatives.

To enhance the preservation and analysis of multi-turn agent trajectory information, we propose a
structured definition of a step that captures the details of each interaction turn. A step comprises
three main components: input, output, and next observation. The input component consolidates the
current prompt and a historical record of past interactions, serving as a comprehensive context for the
interaction. The output component captures the model’s predictions, detailing its decision-making
and planning. The next observation component records the environment’s feedback, essential for
the feedback loop and system adaption.

Our framework employs a predefined method for aggregating interaction history within the input
component, effectively concatenating inputs and outputs from previous steps to construct a compre-
hensive context. Specifically, at the ith step, the input is formatted as input of step 1, Action: output
of step 1, Observation: next observation of step 1, ..., input of step i-1, Action: output of step i-1,
Observation: next observation of step i-1. This approach ensures a detailed chronological account
of interactions, facilitating a nuanced understanding of the trajectory.

While this default aggregation strategy of input is integral to our framework, we also accommodate
the customization of data compilation methods. Users are encouraged to explore alternative strate-
gies that exploit the structured input, output, and next observation components, tailoring the data
format to their specific research or application needs. Figure 2, row 2, illustrates the transformation
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{
    "question": "Which magazine was started first Arthur's Magazine or 
First for Women?",
    "answer": "Arthur's Magazine",
    "correct": true,
    "reward": 1.0,
    "halted": false,
    "error": false,
    "prompt": "
    Question: Which magazine was started first Arthur's Magazine or 
First for Women? Follow Action[param] format.\n Thought: I need to 
Search[Arthur's Magazine] and then Search[First for Women] to collect 
their starting information.\n Model Action 1: Search[Arthur's Magazine] 
\n Env Observation 1: Arthur's Magazine was published in 1844. \n 
Model Action 2: Search[First for Women]\n Env Observation 2: First for 
Women is a woman's magazine published in 1989. \n Model Action 3: 
Finish[Arthur's Magazine]\n Env Observation 3: Answer is CORRECT"
}

[[
            "Begin!\n\nUSER: Can you send a GET request to link 1 and then 
retrieve the cookie by sending another GET request to link 2\n Follow 
Action: name \n Action Input: {param} format.",
            "ASSISTANT Thought: I need to send a request to set the 
cookie. \nASSISTANT Action: sendHttpRequest\nASSISTANT Action 
Input: {link1}\nASSISTANT Observation: ",
            "Status Code: 200.... Response 1\n",
            "ASSISTANT Thought: The request was successful.\nASSISTANT 
Action: getClientRequestData\nASSISTANT Action Input: {link 
2}\nASSISTANT Observation: ",
            "Status Code: 200. ...\nASSISTANT Thought: ",
            "The cookie data was retrieved.\nASSISTANT Response: The 
request was successful."
        ],
        [
            false, true, false, true, false, true
        ]
    ]]

(A) HotpotQA (B) ToolAlpaca

[{"user query": "Which magazine was started first Arthur's Magazine or 
                First for Women?",
  "model name": "gpt-4",
  "score": "1.0",
  "other information": {"answer": "Arthur's Magazine", "correct": true,    
                     "halted": "false", "error": false},
  "steps": [
  {
    "input": "Which magazine was started first Arthur's Magazine or First 
            for Women? Follow Action[param] format.",
    "output": "Thought: I need to Search[Arthur's Magazine] and then    
       Search[First for Women] to collect their starting information.",
    "step_id": 1,
    "next observation": "OK."
   },
  {
  "input": Cumulative Steps
    "output": "Action: Search[Arthur's Magazine]",
    "step_id": 2,
    "next observation": "Arthur's Magazine was published in 1844."
   },
  {
    "input": Cumulative Steps
   "output": "Action: Search[First for Women]",
     "step_id": 3,
     "next observation": "First for Women is a woman's magazine 
published in 1989."
   },
  {
   "input": Cumulative Steps
     "output": "Action: Finish[Arthur's Magazine]",
   "step_id": 4,
     "next observation": "Answer is CORRECT."
   },
  ]
}]

[{
  "user query": "Can you send a GET request to link 1 and then retrieve    
             the cookie by sending another GET request to link 2?",
  "model name": "gpt-3.5- turbo",
  "score": "1.0",
  "other information": {},
  "steps": [
   {
    "input": "Can you send a GET request to link 1 and then retrieve the    
         cookie by sending another GET request to link 2? \n Follow      
       Thought: plan\nAction: name\n Action Input: {param} format.",
    "output": "Thought: I need to send a request to set the cookie.\n        
Action: sendHttpRequest\n Action Input: {link1}",
    "step_id": 1,
    "next observation": "Status Code: 200. ... ."
   },
  {
  "input": Cumulative Steps
    "output": "Thought: The request was successful.\n Action: 
getClientRequestData\n Action Input: {link 2}",
    "step_id": 2,
    "next observation": "Status Code: 200. ... ."
   },
  {
    "input": Cumulative Steps
   "output": "Thought: The cookie data was retrieved.",
     "step_id": 3,
     "next observation": "The request was successful."
   },
  ]
}]

AgentOhana Trajectories  

Figure 2: Example trajectories from (A) HotpotQA, (B) ToolAlpaca to AgentOhana.

of trajectories from environments such as HotpotQA and ToolAlpaca using our defined step struc-
ture, where output aligns with the format specifications in the initial prompt input, demonstrating
the framework’s adaptability and practical utility.

By standardizing the capture of interactions between agents and their environments, this methodol-
ogy not only facilitates a uniform approach to data documentation but also enhances the potential
for in-depth analysis and refinement of AI models. This is achieved by providing a granular view
of the agent interactions, decision-making process and its results, thereby enabling a more nuanced
understanding and improvement of model performance.

2.3 AGENTRATER

Agent trajectories represent a complex subset of data distinct from general and straightforward in-
structional data. While datasets like Alpaca (Dubois et al., 2023) features single-turn examples, and
LMSYS-Chat (Zheng et al., 2023a) includes dialogues averaging around two turns, these generally
encompass simpler interaction patterns. DialogStudio (Zhang et al., 2023) does offer multi-turn
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[BEGIN OF JSON DICT FILE]
{Given Agent Trajectory}
[END OF JSON DICT FILE]

Given above json dict contains a trajectory, please rate according to the overall accuracy and efficiency of the model output to the input 
and observation.
Here are keys for the json dict file:
    ### Initial Input of Step 1 ###: this indicates the initial input of the first step
    ### Model Output of Step 1 ###: this indicates the model output based on the Initial Input of the first step
    ### Observation of Step 1 ###: this indicates the observation from environments based on the Model Output of the first step
    ### Model Output of Step 2 ###: this indicates the model output based on the observation of the first step and the previous history
    ### Observation of Step 2 ###: this indicates the observation from environments based on the Model Output of the second step
    ### Model Output of Step 3 ###: this indicates the model output based on the observation of the second step and the previous history
    So on and so forth for the rest of the steps.

Each assistant receives a score on a scale of 0 to 5, where a higher score indicates higher level of the overall model accuracy and efficiency.
Please provide your evaluation as follows:
    1. A single line containing a numerical score indicating the evaluation.
    2. In the subsequent line, please provide a detailed explanation supporting your score, focusing on the criteria of accuracy and 
efficiency. Ensure your evaluation avoids any potential bias.

Figure 3: A prompt template for the AgentRater, where an open-source model (e.g., Mistral) or
close-world API (e.g., ChatGPT) will rate the whole agent trajectory based on criterias and then
assign a score from 0-5.

dialogue examples, these are primarily confined to conversations between the user and the system,
lacking interactions with external environments.

In contrast, agent trajectories delve into more intricate scenarios where an agent interacts with com-
plex environments such as websites, APIs, and tools. This complexity is heightened by the agent’s
capacity to communicate with other agents, navigate through diverse interfaces, and undertake tasks
that require a sequence of interactions rather than single or limited exchanges.

The challenge with agent trajectories extends to the evaluation of performance and quality. While
some environments offer rewards as feedback for an agent’s trajectory, such rewards are often tied
to the task’s final outcome rather than reflecting the quality of the trajectory itself. Consequently, a
high reward does not necessarily indicate a flawless trajectory. For example, an agent might gener-
ate invalid actions during intermediate steps of a task. Here is partial trajectory from the Webshop
environment (Yao et al., 2022): model output of step 4: ”click[old world style]”, observation of step
4: ”You have clicked old world style.”; model output of step 5: ”click[rope sausage]”, observation
of step 5: ”Invalid action!”; model output of step 6: ””, observation of step 6: ”Invalid action!”;
model output of step 7: ”click[Buy Now]”, observation of step 7: ”Your score (min 0.0, max 1.0):
1.0”, where the reward is 1.0, but the agent randomly clicks other invalid buttons in Webshop web-
site or generates empty responses before buying an item.

To mitigate the issues, we design a method, named AgentOhana to rate the agent trajectory based on
strong public models such as Mistral (Jiang et al., 2023) or close-world APIs such as ChatGPT (Ope-
nAI, 2023). Different with approaches (Zhang et al., 2023; Chen et al., 2023) where they rate each
triplet of (instruction, input, response) pair on general instruction data as there are usually single-turn
or short conversations, we rate the whole trajectory on agent data. Figure 3 shows a corresponding
prompt template, where we rate the trajectory with a score 0-5 and an explanation, and they can be
used to further develop better AgentRater models. Table 2.3 shows the statistics of AgentOhana.

2.4 GENERIC DATALOADER

As the protocol involves loading data in the correct format for the trainer, the implementation of
a generic dataloader becomes crucial in harmonizing the entire data and training pipeline. This
dataloader serves as a central component, facilitating seamless integration of diverse datasets into
the training process. Its generic nature ensures flexibility and compatibility across various data
formats, enabling efficient data ingestion before feeding into the training framework.
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Environments & Data #Sampled Trajs #Filtered Trajs #Average Turns
Webshop (Yao et al., 2022) 11200 2063 6.8
AlfWorld (Shridhar et al., 2021) 954 336 13.5
HotpotQA (Yang et al., 2018) 1740 402 4.8
ToolBench (Qin et al., 2023) 83771 30319 3.1
ToolAlpaca (Tang et al., 2023) 3936 3399 2.5
Operating System (Liu et al., 2023a) 647 195 3.9
APIbank (Li et al., 2023) 33415 4902 1.0
DataBase (Liu et al., 2023a) 6376 538 2.0
Mind2Web (Deng et al., 2023) 23378 122 1.0
Knowledge Graph (Liu et al., 2023a) 2501 324 6.0
AgentOhana 167918 42600 3.1

Table 1: Statistics of AgentOhana. AgentOhana consists of data from 10 different environments.
#Sampled Trajs indicates the trajectories sampled and filtered from the original environment, #Fil-
tered Trajs indicates the filter trajectories with the AgentRater score >= 4.0, #Average Turns in-
dicates average number of turns in the filtered trajectories. Among the environments, Operating
System, DataBase, Mind2Web and Knowledge Graph are derived from (Zeng et al., 2023). Addi-
tionally, AgentOhana integrates partial general instruction data sourced from DialogStudio (Zhang
et al., 2023), this subset is not represented in the table.

2.4.1 AGENTMODELDATASETBASE

We have introduced the AgentModelDatasetBase class to streamline common tasks such as prompt
formatting while providing a virtual template for creating individual datasets. While loading data
may appear straightforward at this stage, there are still several intricate issues to address. For in-
stance, in addition to employing a machine-assisted filter as detailed in Section 2.3, users may prefer
a certain level of control over data quality. Moreover, the randomness of data batching from different
datasets could pose challenges, particularly when dealing with distributed training among multiple
devices, which requires a a comprehensive approach to ensure robust dataset management.

2.4.2 CUSTOM DATASETS CREATION

Individual dataset As depicted in the following example, we begin by loading individual raw
data prepared from Section 2.2, typically via the streaming mode. Then, for each dataset, we can
optionally introduce the filter generator to further customize the selection of data just before feeding
it into the trainer. For instance, in the following example, data with relatively low scores will be
further evaluated and removed. Finally, we shuffle this dataset randomly with controlled seeding to
ensure randomness and reproducibility.

class WebshopMultiTurn(AgentModelDatasetBase):
# we can further filter out trajectories at this stage
@staticmethod
def _high_score_filter_generator(data, score=0.8):

for d in data:
if d["score"] >= score:

yield {"prompt": d["input"], "chosen": d["output"]}

def create_datasets(self, seed=None):
train_data = load_dataset(

...
streaming = self.args.streaming,

)
train_data = IterableDataset.from_generator(

self._high_score_filter_generator,
gen_kwargs={"data": train_data}

)
train_data = train_data.shuffle(seed=seed, buffer_size=1000)
return train_data
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Combined Datasets Our primary focus in combining datasets lies in ensuring randomness during
the batching process, particularly when dealing with multiple datasets. To achieve this, we em-
ploy the init device seed function to diversify the controlled seeds based on the process ID when
data parallelism is utilized across multiple devices. By carefully managing the seeding process,
we aim to maintain a balanced distribution of data by partitioning, shuffling and interleaving data
across devices while preserving randomness, thus enhancing the robustness and reproducibility of
our training procedure.

toolbench_multi_turn = ToolBenchMultiTurn(tokenizer, script_args)
webshop_multi_turn = WebshopMultiTurn(tokenizer, script_args)
...
data = [toolbench_multi_turn, webshop_multi_turn, ...]
sample_probs = [0.1, 0.1, ...]

# a device-dependent seeding will be utilized based on the combination of
# the given default seed and the process ID
seed = init_device_seed(seed=42)
train_dataset, eval_dataset = interleave_data(data, sample_probs, seed)

3 EXPERIMENTS

3.1 TRAINING

We have developed xLAM-v0.1, a large, robust action model for AI Agent. xLAM-v0.1 is initialized
from the pre-trained Mixtral-8x7B-Instruct-v0.1 model (Jiang et al., 2024). To execute this fine-
tuning process, we adopt a supervised fine-tuning approach and capitalize on the capabilities of the
AgentOhana collection. Our fine-tuning procedure is conducted concurrently on 8 Nvidia H100
GPUs, utilizing the 4-bit quantized QLoRA framework (Dettmers et al., 2023). Throughout the
fine-tuning process, our model traverses each individual dataset approximately 3 times on average.
This multi-epoch training regimen facilitates comprehensive exposure to the dataset, enabling the
model to effectively learn intricate patterns present in the training data.

3.2 BENCHMARKS

In the subsequent sections, we will present experimental evaluations conducted across five bench-
marks: Webshop (Yao et al., 2022), HotpotQA (Yang et al., 2018), ToolEval (Qin et al., 2023),
ToolQuery (Ma et al., 2024) and MINT-Bench (Wang et al., 2023a). Further details about these
benchmarks and their associated metrics can be found in Appendix B.

Webshop creates an online shopping environment simulating product purchases, while HotpotQA
involves multi-hop question-answering tasks requiring logical reasoning across Wikipedia passages
via the Wikipedia API. We follow BOLAA’s framework (Liu et al., 2023b) and use Average Reward
for Webshop and F1 Score for HotpotQA, to measure model performance. In Webshop, the reward
metric assesses model accuracy based on the attributes overlapping between the purchased and the
ground-truth items, while in HotpotQA, it quantifies the accuracy of agent-predicted answers against
ground-truth responses.

ToolEval is designed for real-time assessment of functional calling capabilities via RapidAPI, ini-
tially utilizing ChatGPT as its evaluator. We follow the paper to use Pass Rate as the evaluation
metric and present our findings at the first level of the ToolEval evaluation, focusing on three dis-
tinct scenarios: (1) unseen instructions with the same set of tools, (2) unseen tools within previously
seen categories, and (3) unseen tools from entirely new categories that have not been seen before.

ToolQuery contains three distinct environments: Weather, Movie and Academia environments. It is
designed to measure an agent’s proficiency in utilizing tools to retrieve, access and query information
about weather, movie and computer science academia. It uses Success Rate and Progress Rate to
evaluate the overall performance and the progressive performance over interactive turns.

MINT-Bench benchmark focuses on reasoning, coding, and decision-making through a diverse set of
established evaluation datasets. The benchmark asks LLMs to solve tasks with different interaction
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LLM LAA Architecture

ZS ZST ReAct PlanAct PlanReAct BOLAA
Llama-2-70b-chat (Touvron et al., 2023) 0.0089 0.0102 0.4273 0.2809 0.3966 0.4986
Vicuna-33b (Zheng et al., 2023b) 0.1527 0.2122 0.1971 0.3766 0.4032 0.5618
Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024) 0.4634 0.4592 0.5638 0.4738 0.3339 0.5342
GPT-3.5-Turbo 0.4851 0.5058 0.5047 0.4930 0.5436 0.6354
GPT-3.5-Turbo-Instruct 0.3785 0.4195 0.4377 0.3604 0.4851 0.5811
GPT-4-0613 0.5002 0.4783 0.4616 0.7950 0.4635 0.6129
xLAM-v0.1 0.5201 0.5268 0.6486 0.6573 0.6611 0.6556

Table 2: Average reward on the Webshop environment. Bold and Underline results denote the best
result and the second best result for each setting, respectively.

LLM LAA Architecture

ZS ZST ReAct PlanAct PlanReAct
Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024) 0.3912 0.3971 0.3714 0.3195 0.3039
GPT-3.5-Turbo 0.4196 0.3937 0.3868 0.4182 0.3960
GPT-4-0613 0.5801 0.5709 0.6129 0.5778 0.5716
xLAM-v0.1 0.5492 0.4776 0.5020 0.5583 0.5030

Table 3: Average reward on the HotpotQA environment. Bold and Underline results denote the best
result and the second best result for each setting, respectively.

limits from 1 to 5 steps and quantify LLMs’ tool-augmented task-solving capability by absolute
performance Success Rate, which measures the percentage of successful task instances as a function
of interaction steps.

3.3 WEBSHOP

Table 2 showcases the performance of our model within the Webshop environment. xLAM-v0.1
consistently outperforms both GPT-3.5-Turbo and GPT-3.5-Turbo-Instruct across all agent configu-
rations. Moreover, it surpasses GPT-4-0613 in five out of six settings, with the latter demonstrating
superior planning capabilities but lower performance in reasoning, self-reflection, and multi-agent
interactions. These findings underscore the robust and versatile capabilities of the xLAM model
across a variety of agent scenarios.

3.4 HOTPOTQA

Table 3 details the results in the HotpotQA environment, highlighting xLAM’s superior performance
relative to GPT-3.5-Turbo and Mixtral-8x7B-Instruct-v0.1 across all settings. While GPT-4-0613
exhibits a slight performance edge, our analysis on models’ predictions reveals that it typically
identifies correct answers within four steps, suggesting that it may have been trained on a substan-
tial corpus of relevant question-answering examples, thereby possessing enhanced domain-specific
knowledge compared to its counterparts.

Unseen Insts & Same Set Unseen Tools & Seen Cat Unseen Tools & Unseen Cat
TooLlama V2 (Qin et al., 2023) 0.4385 0.4300 0.4350
GPT-3.5-Turbo-0125 0.5000 0.5150 0.4900
GPT-4-0125-preview 0.5462 0.5450 0.5050
xLAM-v0.1 0.5077 0.5650 0.5200

Table 4: Pass Rate on ToolEval on three distinct scenarios. Bold and Underline results denote the
best result and the second best result for each setting, respectively.

3.5 TOOLEVAL

Table 4 displays the results on ToolEval. xLAM-v0.1 surpasses both TooLlama V2 and GPT-3.5-
Turbo-0125 across all evaluated scenarios, and outperforms GPT-4-0125-preview in two out of the
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three settings. This performance indicates xLAM-v0.1’s superior capabilities in function calling
and handling complex tool usage tasks. We posit that the model’s performance could be enhanced
further through data augmentation involving a variety of prompts.

3.6 TOOLQUERY

Success Rate Progress Rate
GPT-4 0.683 0.851
xLAM-v0.1 0.533 0.766
Claude2 0.483 0.735
GPT-3.5-Turbo 0.450 0.694
DeepSeek-67b (Bi et al., 2024) 0.400 0.714
GPT-3.5-Turbo-16k 0.317 0.591
Lemur-70b (Xu et al., 2023) 0.283 0.720
CodeLlama-34b (Roziere et al., 2023) 0.133 0.600
CodeLlama-13b (Roziere et al., 2023) 0.250 0.525
Llama2-70b (Touvron et al., 2023) 0.000 0.483
Mistral-7b (Jiang et al., 2023) 0.033 0.510
Vicuna-13b-16k (Chiang et al., 2023) 0.033 0.343

Table 5: Testing results on ToolQuery across three distinct environments.

Table 5 shows testing results on the unseen ToolQuery benchmark, where the baseline results are
provided by the benchmark’s originators. Notably, xLAM-v0.1 achieves second-place performance
across the benchmark’s three unique environments, surpassing commercial models such as Claude2
and GPT-3.5-Turbo, and other open-source alternatives. These results demonstrate that xLAM-
v0.1 can effectively utilize tools for information access and querying, affirming its robustness and
efficiency in complex tasks.

3.7 ABLATION STUDY

Table 6 in Appendix C presents the ablation study outcomes for AgentRater within the Webshop and
HotpotQA environments. Consistent with the findings reported by Chen et al. (2023), we discovered
that training models on a smaller dataset of higher quality, as facilitated by AgentRater, enhances
both the training efficiency and overall model performance.

3.8 MINT-BENCH

Table 7 in Appendix D presents the testing results on the challenging and comprehensive MINT-
Bench, with baseline comparisons drawn from the official leaderboard. The xLAM-v0.1 model
secures the third rank in this rigorous benchmark, outperforming other agent-based models such as
Lemur-70b-Chat-v1 and AgentLM-70b, as well as Claude-2 and GPT-3.5-Turbo-0613. These results
highlight exceptional capability of xLAM to navigate the complexity of multi-turn interactions and
task resolution.

4 CONCLUSION

In conclusion, the creation of AgentOhana represents a significant step forward in addressing the
challenges inherent in consolidating diverse data of the multi-turn LLM agent trajectories. Through
the development of unified data and training pipelines, we have established a framework capable
of handling the intricacies of various data structures and formats, thereby ensuring compatibility
across a multitude of environments. By providing a comprehensive and high-quality dataset, we
aim to empower researchers and practitioners to push the boundaries of AI capabilities, ultimately
contributing to the advancement of autonomous agents powered by LLMs.
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Appendix

A HETEROGENEITY OF VARIOUS DATASETS

Figure 4 shows original trajectories from four environments.

{
    "question": "Which magazine was started first Arthur's Magazine or First for Women?",
    "answer": "Arthur's Magazine",
    "correct": true,
    "reward": 1.0,
    "halted": false,
    "error": false,
    "prompt": "Solve a question answering task with Plan, interleaving Action, Observation steps. 
Plan is decided ahead of Actions. Action can be three types: \n(1) Search[entity], which searches 
the exact entity on Wikipedia and returns the first paragraph if it exists. If not, it will return some 
similar entities to search.\n(2) Lookup[keyword], which returns the next sentence containing 
keyword in the last passage successfully found by Search.\n(3) Finish[answer], which returns the 
answer and finishes the task.\nYou may take as many steps as necessary.\n\nHere are some 
examples:\nQuestion: Musician and satirist Allie Goertz wrote a song about the \"The 
Simpsons\" character Milhouse, who Matt Groening named after who?\nPlan: I need to first 
need to Search[Milhouse] to find who it is named after with Lookup[named after]. Then I will 
collect the information to Finish[answer].\nAction 1: Search[Milhouse]\nObservation 1: 
Milhouse Mussolini Van Houten is a recurring character in the Fox animated television series 
The Simpsons voiced by Pamela Hayden and created by Matt Groening.\nAction 2: 
Lookup[named after]\nObservation 2: (Result 1 / 1) Milhouse was named after U.S. president 
Richard Nixon, whose middle name was Milhous. \nAction 3: Finish[Richard Nixon]\n\n(END OF 
EXAMPLES)\n\nQuestion: Which magazine was started first Arthur's Magazine or First for 
Women?\nPlan: I need to Search[Arthur's Magazine] and then Search[First for Women] to collect 
their starting information. If I find the answer, I will Finish[Arthur's Magazine] or Finish[First for 
Women]. If I cannot find the answer, I will Lookup[started first] in both results.\nAction 1: 
Search[Arthur's Magazine]\nObservation 1: Arthur's Magazine (1844\u20131846) was an 
American literary periodical published in Philadelphia in the 19th century. Edited by Timothy 
Shay Arthur, it featured work by Edgar A. Poe, J.H. Ingraham, Sarah Josepha Hale, Thomas G. 
Spear, and others. In May 1846 it was merged into Godey's Lady's Book.A few years later Arthur 
would launch a new publication entitled Arthur's Home Magazine.\nAction 2: Search[First for 
Women]\nObservation 2: First for Women is a woman's magazine published by A360media in 
the US. The magazine was started in 1989 by Bauer Media Group. In 2011 the circulation of the 
magazine was 1,310,696 copies.\nAction 3: Finish[Arthur's Magazine]\nObservation 3: Answer 
is CORRECT"
}

 [{
        "asin": "B000RNNI0O", "category": "beauty", "query": "women's fragrance",
        "name": "Diable Bleu Women Eau De Parfum Spray, 3.4 Ounce",
        "product_category": "Beauty & Personal Care",
        "instruction": "i am interested in a long lasting perfume, and price lower than 40.00",
        "attributes": ["long lasting"], "price_upper": 40.0, "goal_options": [], "weight": 1
    },
    {
        "step_id": "session_fixed_2_step_0",
        "action": "reset",
        "observation": "\nWebShop \nInstruction:  \ni am interested in a long lasting perfume, 
and price lower than 40.00 dollars \n[Search] ",
        "retrieved_items": []
    },
    {
        "step_id": "session_fixed_2_step_1",
        "action": "search[long lasting perfume under 40.00 dollars]",
        "observation": "\n[Back to Search] \nPage 1 (Total results: 50)\n[Next >] \n[B08R2Z8RW5] 
\nDUMONT ADORA (100ML) ... \n[B09Q36MMYC] \nBeauty Creative Styling ... ",
        "retrieved_items": ["B08R2Z8RW5", "B09Q36MMYC"]
    },
    {
        "step_id": "session_fixed_2_step_2",
        "action": "click[B08R2Z8RW5]",
        "observation": "\n[Back to Search] \n[< Prev] \nDUMONT ADORA (100ML) Eau De Parfum 
\u2013 Perfume Body Spray for Women, ...\n[Reviews] \n[Attributes] \n[Buy Now] ",
        "retrieved_items": []
    },
    {
        "step_id": "session_fixed_2_step_3",
        "action": "click[Buy Now]",
        "observation": "Your score (min 0.0, max 1.0): 1.0",
        "retrieved_items": []
    }]

[[
            "A chat between a curious user and an artificial intelligence assistant. The assistant 
gives helpful, detailed, and polite answers to the user's questions with the help of some 
tools.\nYou have access to the following tools:\n\ngetDetails: ...\n\nThe chat follows this 
format:\nUSER: the user's question\nASSISTANT Thought: the assistant's inner thought about 
what to do next \nASSISTANT Action: the action to take, must be one of [getDetails, 
sendHttpRequest, getClientRequestData, testProxyHeaders, simulateStatusCode].\nASSISTANT 
Action Input: the input for the action, in JSON format.\nASSISTANT Observation: the result of 
the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nASSISTANT 
Thought: summarize the information gathered\nASSISTANT Response: the final response to 
the user\nUSER: user's next question\n...\n\nBegin!\n\nUSER: I need to test my app's behavior 
when receiving cookies. Can you send a GET request to 
https://httpbin.org/cookies/set?sessionid=1234567890abcde and then retrieve the cookie data 
by sending another GET request to https://httpbin.org/cookies?\nASSISTANT Thought: ",
            "I need to send a request to set the cookie and then retrieve the cookie 
data.\nASSISTANT Action: sendHttpRequest\nASSISTANT Action Input: {\"method\": \"GET\", 
\"url\": \"https://httpbin.org/cookies/set?sessionid=1234567890abcde\"}\nASSISTANT 
Observation: ",
            "Status Code: 200. Response: {\"response\": {\"status_code\":200,\"headers\":{\"Content- 
Length\":\"29\",\"Content- Type\":\"text/plain; 
charset=utf-8\",\"Date\":\"{{current_date_time}}\",\"Set- 
Cookie\":\"sessionid=1234567890abcde\"},\"body\":\"Set sessionid cookie to 
1234567890abcde\"}}\nASSISTANT Thought: ",
            "The request was successful and the cookie was set.\nASSISTANT Action: 
getClientRequestData\nASSISTANT Action Input: {\"url\": 
\"https://httpbin.org/cookies\"}\nASSISTANT Observation: ",
            "Status Code: 200. Response: {\"requestData\": 
{\"headers\":{\"Accept\":\"*/*\",\"Host\":\"httpbin.org\",\"User- Agent\":\"curl/7.72.0\",\"X- Amzn- 
Trace- Id\":\"{{random_uuid}}\"},\"form\":{},\"files\":{},\"cookies\":{}}}\nASSISTANT Thought: ",
            "The request was successful and the cookie data was retrieved.\nASSISTANT Response: 
The request to https://httpbin.org/cookies/set?sessionid=1234567890abcde was successful."
        ],
        [
            false, true, false, true, false, true
        ]
    ]]

     [{
          "role": "system",
          "content": "You are an AutoGPT, capable of utilizing numerous tools and functions to 
complete the given task. \n1.First, I will provide you with the task description, and your task will 
commence. \n2.At each step, you need to analyze the current status and determine the next 
course of action by executing a function call. \n3.Following the call, you will receive the result, 
transitioning you to a new state.  ...\n"
        },
        {
          "role": "user",
          "content": "\nMy family and I want to explore the recommended wines and update our 
profile details. Can you please suggest some wines for us and provide us with an option to 
update our profile information?\nBegin!\n"
        },
        {
          "role": "assistant",
          "content": "I should call the 'recommendations_for_direct_wines' API to provide the user 
with a list of recommended wines... ",
          "function_call": {
            "name": "recommendations_for_direct_wines",
            "arguments": " {}"
          }
        },
        {
          "role": "function",
          "name": "recommendations_for_direct_wines",
          "content": " {\"error\": \"\", \"response\": \"{\\\"response\\\":...\":0}\"}"
        },
        {
          "role": "assistant",
          "content": "...",
          "function_call": {
            "name": "profile_for_direct_wines",
            "arguments": " {}"
          }
        }]

(A) (B)

(C) (D)

Figure 4: Original trajectories from (A) HotpotQA, (B) Webshop, (C) ToolAlpaca, (D) ToolBench.
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B BENCHMARKS

Webshop (Yao et al., 2022) creates an online shopping environment simulating product purchases,
while HotpotQA (Yang et al., 2018) involves multi-hop question-answering tasks requiring logical
reasoning across Wikipedia passages via the Wikipedia API. We adopt BOLAA’s framework Liu
et al. (2023b), comprising five single-agent settings and a multi-agent scenario, to evaluate model
performance. For the Webshop benchmark, BOLAA comprises 900 user queries, of which we serve
200 as a test subset. For HotpotQA, 300 user questions are sampled into three difficulty levels—easy,
medium, and hard—with each category containing 100 questions. These questions are exclusively
reserved for model testing to ensure a rigorous evaluation process. We use BOLAA’s evaluation
metrics, average reward for Webshop and F1 score for HotpotQA, to measure model performance.
In Webshop, the reward metric assesses model accuracy based on the attributes overlapping between
the purchased and the ground-truth items, while in HotpotQA, it quantifies the accuracy of agent-
predicted answers against ground-truth responses.

ToolEval (Qin et al., 2023) is designed for real-time assessment of functional calling capabilities via
RapidAPI, initially utilizing GPT-3.5-Turbo-16k as its evaluator. However, after careful investiga-
tion, we found GPT-3.5-Turbo-16k unreliable for assessing complex function calls and tool usage
scenarios. Consequently, we switched to GPT-4-0125-preview as our primary evaluator. Due to
the real-time nature of these evaluations, APIs may experience downtime or timeouts, leading to
inconsistency in model comparisons across different time frames. To address this, all models are
evaluated within the same time frame. Our evaluation employs the default depth-first search-based
decision tree methodology, augmented by the Pass Rate metric to assess an LLM’s ability to exe-
cute instructions, a fundamental criterion for optimal tool usage. We present our findings at the first
level of the ToolEval evaluation, focusing on three distinct scenarios: (1) unseen instructions with
the same set of tools, (2) unseen tools within previously seen categories, and (3) unseen tools from
entirely new categories that have not been seen before.

ToolQuery (Ma et al., 2024) contains three distinct environments: Weather, Movie and Academia
environments. It is designed to measure an agent’s proficiency in utilizing tools to retrieve, access
and query information about weather, movie and computer science academia. It uses success rate
and progress rate to evaluate the overall performance and the progressive performance over interac-
tive turns.

MINT-Bench (Wang et al., 2023a) evaluates LLMs’ ability to solve tasks with multi-turn interactions
by using tools and leveraging natural language feedback. The benchmark focuses on reasoning,
coding, and decision-making through a diverse set of established evaluation datasets, and carefully
curate them into a compact subset for efficient evaluation. The benchmark asks LLMs to solve tasks
with different interaction limits from 1 to 5 step and quantify LLMs’ tool-augmented task-solving
capability by absolute performance success rate, which measures the percentage of successful task
instances as a function of interaction steps.

C ABLATION STUDY

LLM LAA Architecture

ZS ZST ReAct PlanAct PlanReAct
xLAM-v0.1 0.5201 0.5268 0.6486 0.6573 0.6611
w/o AgentRater 0.4998 0.4992 0.6338 0.6283 0.6546
xLAM-v0.1 0.5492 0.4776 0.5020 0.5583 0.5030
w/o AgentRater 0.5138 0.4647 0.4917 0.5225 0.4904

Table 6: Average reward on the Webshop (Row 1) and HotpotQA environment (Row 2).

D MINT-BENCH
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1-step 2-step 3-step 4-step 5-step
GPT-4-0613 nan nan nan nan 69.45
Claude-Instant-1 12.12 32.25 39.25 44.37 45.90
xLAM-v0.1 4.10 28.50 36.01 42.66 43.96
Claude-2 26.45 35.49 36.01 39.76 39.93
Lemur-70b-Chat-v1 (Xu et al., 2023) 3.75 26.96 35.67 37.54 37.03
GPT-3.5-Turbo-0613 2.73 16.89 24.06 31.74 36.18
AgentLM-70b (Zeng et al., 2023) 6.48 17.75 24.91 28.16 28.67
CodeLlama-34b (Roziere et al., 2023) 0.17 16.21 23.04 25.94 28.16
Llama-2-70b-chat (Touvron et al., 2023) 4.27 14.33 15.70 16.55 17.92

Table 7: Testing results on MINT-Bench with different interaction limits from 1 to 5 step.
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