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Multi-fineness Boundaries and the Shifted Ensemble-aware
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ABSTRACT
Point cloud segmentation forms the foundation of 3D scene un-
derstanding. Boundaries, the intersections of regions, are prone
to mis-segmentation. Current point cloud segmentation models
exhibit unsatisfactory performance on boundaries. There is lim-
ited focus on explicitly addressing semantic segmentation of point
cloud boundaries. We introduce a method called Multi-fineness
Boundary Constraint (MBC) to tackle this challenge. By querying
boundaries at various degrees of fineness and imposing feature
constraints within these boundary areas, we enhance the discrimi-
nation between boundaries and non-boundaries, improving point
cloud boundary segmentation. However, solely emphasizing bound-
aries may compromise the segmentation accuracy in broader non-
boundary regions. To mitigate this, we introduce a new concept of
point cloud space termed ensemble and a Shifted Ensemble-aware
Perception (SEP) module. This module establishes information
interactions between points with minimal computational cost, ef-
fectively capturing direct point-to-point long-range correlations
within ensembles. It enhances segmentation performance for both
boundaries and non-boundaries. We conduct experiments on mul-
tiple benchmarks. The experimental results demonstrate that our
method achieves performance surpassing or comparable to state-
of-the-art methods, validating the effectiveness and superiority of
our approach.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
3d boundary query, feature constraint, long-range correlations, 3d
segmentation, point clouds, scene understanding

1 INTRODUCTION
Point cloud semantic segmentation is a fundamental task in un-
derstanding 3D scenes. Due to point clouds’ unordered and un-
structured nature, mature convolutional methods [19, 20] cannot
be directly applied to them. [9, 33, 61] preprocess point clouds into
structured voxels suitable for 3D convolutions. [7, 12, 15] project
point clouds from different views and extracts features using 2D
convolutions. PointNet [35] introduces the symmetric functions,
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enabling direct input of raw point clouds into neural networks. Sub-
sequently, numerous excellent methods [32, 36, 38] have emerged.
However, most of them are unsatisfactory for segmenting bound-
aries [43]. Boundaries are transitional areas between regions, blend-
ing features from points belonging to various categories. These
mixed features are characterized by complexity and ambiguity. As
the network deepens, these ambiguous features encompassing infor-
mation from multiple semantic categories inevitably spread within
boundary regions, resulting in an unsatisfactory performance on
semantic segmentation at boundaries [10].

Boundary plays a critical role in semantic segmentation. How-
ever, explicit research on semantic segmentation of point cloud
boundaries remains relatively limited compared to 2D image seg-
mentation. JSENet [23] and BGE [10] build a boundary prediction
branch network to assist segmentation. CBL [43] utilizes contrastive
learning to optimize the representation of boundary features. The
commonality among these methods is the requirement to pre-know
the set of boundary points by querying. The quality of the bound-
ary query will affect the performance of boundary semantic seg-
mentation. In 2D images, pixels are semantically connected and
continuous, and a set of pixels can accurately define boundaries.
However, the increased dimensions and the sparsity of point clouds
make objects have more complex spatial interactions with others,
bringing challenges to the boundary definition. [10, 43] use the
neighbor query method KNN (K-Nearest Neighbors) to iterate over
points and label the point as a boundary point if there are points
with different classes in its neighbor. The accuracy of boundaries
heavily depends on the single neighbor query setting, which have
a non-negligible impact on subsequent semantic segmentation.

Different query degrees of fineness result in different boundaries.
High-confidence boundaries can be obtained with a high degree of
fineness query (i.e., reducing the neighbor query range or the num-
ber of query points), but some boundary points may be missed. Con-
versely, with a low degree of fineness query, incorrect boundary de-
lineation may occur, but the integrity of boundary points increases.
Given this, we propose a method called Multi-fineness Boundary
Constraint (MBC). As shown in the bottom-right of Figure 1, it
conducts boundary queries at different degrees of fineness to obtain
more precise and complete boundaries. Boundary points with the
same category and located nearby should exhibit similar features.
MBC randomly selects multiple points as key points for feature con-
straints in the boundary neighbors. It encourages similarity among
points with the same class and dissimilarity between points with
different classes, enhancing the discrimination between boundaries
and non-boundaries. Without additional networks, this approach
reduces the negative impact of erroneous boundary queries and
improves the segmentation accuracy of boundaries.

Introducing additional boundary feature constraints may divert
the model’s attention from semantic segmentation, affecting the
segmentation performance of extensive non-boundary areas [43].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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左下方：Ensemble-aware perception模块的示意图。灰色虚线圆表示传统的
邻域空间。在邻域之内进行特征提取与聚合难以获取远程交互信息。同层
的Ensemble-aware perception模块在点云上滑动获取长程依赖并在不同的
ensemble之间共享参数，来更好地进行全局pattern generalization。为了表
达清晰，图中省略了部分交互箭头。实际上，ensemble中的每个点同其他
点的长程依赖都能被获取。

右下方：多细粒度边界约束示意图（以两个细粒度为例）。红色虚线圆
表示边界邻域。绿色与蓝色点分别表示一个示例区域在不同边界定义细
粒度下查询的边界点。random multi-point constraint在边界邻域上进行，
它在随机选取多个约束关键点（具有红色轮廓的点）。与关键点同类特
征距离被拉进，非同类特征距离被疏远，提升模型对边界区域的特征辨
别能力。（为表达清晰，图中部分交互箭头被省略）
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Figure 1: The overall architecture of MBSE. Bottom-right: the schematic diagram of the MBC. The green and blue points
represent boundary points queried at different degrees of fineness. Points with red contours indicate constraint key points.
Bottom-left: the schematic diagram of the SEP. Ensembles are randomly sampled on the whole input point cloud, not requiring
additional operations such as voxelization. For clarity, cuboids depict ensembles, and some interaction arrows are omitted here.

Balancing global segmentation accuracy is another challenge we
encounter. Long-range correlations refer to dependencies between
distant points, such as geometric and semantic relationships [25].
They aid the model in comprehending the semantic structure and
context of the entire point cloud, enabling a broader perception of
the distinctions between boundaries and non-boundaries, thereby
enhancing overall segmentation performance. Most models extract
and aggregate features within neighbors consisting of several tens
of points. They rely on the deepening of the network to expand the
receptive field progressively. This indirect way makes capturing
long-range correlations among points difficult, potentially result-
ing in the blurring or even loss of crucial features during multiple
abstraction processes. As illustrated in the bottom-left of Figure 1,
we introduce a novel concept in point cloud space called ensemble,
along with a shifted ensemble-aware perception module (SEP) to
address this issue. Unlike methods like BGE [10] that employ masks
to prevent feature aggregation, we encourage information exchange
between points. The point cloud is randomly partitioned into multi-
ple ensembles with an equal point count. SEP captures long-range
correlations within each ensemble, enabling feature abstraction
and aggregation beyond local neighbors. For better global features,
SEP generalizes the ensemble feature pattern to the global point
cloud space with minimal computational cost through shifting and
parameter-sharing on multi-scale point clouds, which improves the
overall semantic segmentation performance.

The MBC and the SEP are detailed in Section 3.1 and Section 3.2,
respectively. We name our methodMBSE (Multi-fineness Bound-
aries and the Shifted Ensemble-aware Encoding framework), which

enhances the segmentation performance of both boundaries and
non-boundaries. Our main contributions are as follows:

• We propose a method called multi-fineness boundary con-
straint (MBC). Without additional networks, it enhances
the feature discrimination between boundaries and non-
boundaries, assisting the discriminator in making better seg-
mentation decisions for boundaries.

• We propose a new concept in point cloud space called en-
semble and a shifted ensemble-aware perception (SEP) mod-
ule. SEP delicately captures direct point-to-point long-range
correlations within ensembles. Through shifting and param-
eter sharing, SEP generalizes the ensemble-level patterns to
the entire point cloud with low computational cost, enhanc-
ing the overall semantic segmentation accuracy.

• The extensive experimental results demonstrate that MBSE
notably improves the performance of baselines, achieving
state-of-the-art or highly competitive performance on multi-
ple benchmarks with an increase of just 1M parameters and
0.5 GFLOPs in computational cost.

2 RELATEDWORK
2.1 Boundary Segmentation
Research on boundary semantic segmentation of 2D images has a
long history. Initially, researchers use low-level image features such
as color to predict boundaries. SBD [17] introduces the first seman-
tic boundary dataset for 2D images, accelerating the development



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Multi-fineness Boundaries and the Shifted Ensemble-aware Encoding for Point Cloud Semantic Segmentation ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

of 2D boundary segmentation. HFL [2] establishes a two-stage pre-
diction network for separately predicting boundaries and boundary
categories. CaseNet [57] proposes an end-to-end deep semantic
edge learning architecture based on ResNet [19] with category
awareness. PED [22] aggregates semantic and instance boundary
segmentation tasks into a multi-branch network. SEAL [58] pro-
poses a method of correcting noisy labels to help networks generate
high-quality boundaries.

Compared to the mature 2D image boundary segmentation, rela-
tively fewer studies explicitly focus on point cloud boundary seg-
mentation. Somemethods [10, 23] divide 3D semantic segmentation
into boundary prediction and semantic segmentation subtasks. The
segmentation accuracy of these methods is closely related to the
quality of boundary prediction, incorrect boundary predictions can
adversely affect semantic segmentation. CBL [43] demonstrates the
poor performance of current point cloud semantic segmentation
models in boundary segmentation and proposes a method based on
contrastive learning to enhance boundary feature representation.
These explicit boundary semantic segmentation methods rely on
querying to obtain boundary points. However, none of the above
methods realize the impact of boundary queries on semantic seg-
mentation. Our work does not treat the boundary prediction as a
subtask. We introduce feature constraints on boundaries at differ-
ent degrees of fineness to optimize the feature representation and
enhance the semantic discrimination between boundaries and non-
boundaries, aiding the discriminator in making better segmentation
decisions on boundary areas.

2.2 Point Cloud Feature Abstraction
The inherent non-structural and unordered characteristics of point
clouds pose challenges for feature abstraction. Various approaches
have been developed for preprocessing point clouds to structured
data. Voxel-based methods [31, 47, 54, 61] transform point clouds
into fixed-size voxels, treating them as the smallest processing
units for feature abstraction. SEGCloud [44] utilizes a 3D fully
convolutional neural network (CNN) to extract features from point
cloud voxels and then restores the prediction results to the original
point cloud resolution through trilinear interpolation. To mitigate
unnecessary computations caused by sparse point clouds when
applying 3D dense convolution, OctNet [41] uses an unbalanced
octree to partition the point cloud hierarchically, with its leaf nodes
storing feature representations extracted by 3D convolution. Voxel-
based methods can directly utilize mature CNNs to extract point
cloud features, but the voxelization process may lead to the loss of
information such as spatial position.

Methods based on multi-view projection [7, 15, 16, 42, 49] project
3D point clouds into 2D images from different viewpoints. CNNs
are employed to extract and fuse features that can be utilized for
downstream tasks. SnapNet [3] generates RGB and depth images,
employs fully convolutional networks for 2D image feature ab-
straction and labeling, and then reprojects them back to the point
cloud. SnapNet-R [11] improves upon SnapNet by independently
using FuseNet [18] to extract features and performing semantic
segmentation on multi-view images. Methods based on multi-view
are susceptible to the projection angles. Additionally, this method
may lose features due to internal occlusions within point clouds.

Point-based methods [24, 48, 55, 59] directly extract features
from the raw point cloud, making them a current research hotspot
in point cloud semantic segmentation. PointNet++ [36] introduces
hierarchical and multi-scale grouping structures to capture features
at multiple scales and local neighbors. Subsequently, Point Trans-
former [60] and StratifiedTransformer [25] establish transformer-
based frameworks for point cloud semantic segmentation, which
achieve excellent performances. Meanwhile, MLP-based methods
PointNext [38] and PointVector [6] demonstrate the competitive-
ness of MLPs (Multi-Layer Perceptions) and Transformer [46]. How-
ever, the methods mentioned above progressively aggregate local
features in neighbors, making it difficult for distant points to inter-
act. Although Transformer structures have the advantage of large
receptive fields, they still apply self-attention at a local feature level
due to the high volume of point cloud data. The locally aggregated
features may blur the information of key points. Unlike existing
works, we focus on the direct interaction between points. We gen-
eralize the patterns to the entire point cloud through shifting and
parameter-sharing with a low computational cost, capturing better
local and global feature representations.

3 METHOD
In this section, we present our MBSE framework, comprising the
multi-fineness boundary constraint (MBC) and the shifted ensemble-
aware perception (SEP). The two components are described in Sec-
tion 3.1 and 3.2, respectively.

3.1 Multi-fineness Boundary Constraint
Explicitly improving the performance of point cloud boundary seg-
mentation requires accurate localization of boundaries. We observe
that point cloud boundary queries can impact semantic segmen-
tation performance, a problem that has yet to be systematically
explored in previous research. Incorrect boundary queries can ad-
versely affect boundary feature representations, thereby misleading
semantic segmentation discriminators. In this section, we present a
multi-fineness boundary constraint method that imposes feature
similarity constraints on multiple sets of boundaries queried with
different degrees of fineness. This approach enhances the semantic
discrimination between boundaries and non-boundaries, improving
the segmentation performance on boundaries.

3.1.1 Multi-fineness Boundary Query. [10, 43] uses KNN to
query the point’s neighbor and determines whether it is a boundary
point according to the categories of the points in its neighbor,
which has a severe drawback. Due to the uneven distribution of
point clouds, KNN, which lacks distance restrictions, may group
distant points into the same neighbor, leading to errors in boundary
neighbor queries in sparse areas. We refer to this situation as the
enclave phenomenon. To address this issue, we use a ball query to
limit the query distance of the neighbors. Specifically, to classify
a point 𝑥𝑖 , which belongs to the point cloud X, we query the 𝑘
nearest points of 𝑥𝑖 within the preset 3D spatial range. If there is a
point that is inconsistent with the class of 𝑥𝑖 , 𝑥𝑖 is identified as a
boundary point. The set of boundary points B can be represented
by the following formula:

B = {𝑥𝑖 ∈ X | ∃ 𝑥 𝑗 ∈ 𝑄𝑘
𝑟 (𝑥𝑖 ) ∧ 𝑙𝑖 ≠ 𝑙 𝑗 }. (1)
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Here, 𝑙𝑖 represents the ground truth of 𝑥𝑖 , and 𝑄𝑘
𝑟 (𝑥𝑖 ) denotes the

operation of querying the 𝑘 nearest points within a distance 𝑟 from
𝑥𝑖 . Although the method alleviates the enclave phenomenon, in-
appropriate settings of 𝑘 and 𝑟 may lead to inaccurate boundary
queries for point clouds. A high degree of fineness query (i.e., re-
ducing 𝑟 or 𝑘) can enhance the precision of boundary queries but
may overlook some boundary points. Conversely, a low degree of
fineness query (i.e., increasing 𝑟 or 𝑘) can obtain more complete
boundaries but might mistakenly classify non-boundary points as
boundary points. Considering this, we conduct boundary queries at
multiple degrees of fineness, obtaining multiple sets of boundaries
by setting different values of 𝑘 and 𝑟 . The multi-fineness boundary
set B𝑚 can be formalized as:

B𝑚 = {𝑥𝑖 ∈ X | ∃ 𝑥 𝑗 ∈ 𝑄
𝑘𝑚
𝑟𝑚 (𝑥𝑖 ) ∧ 𝑙𝑖 ≠ 𝑙 𝑗 }, 𝑚 = {0, ..., 𝑀 − 1}. (2)

Where𝑀 represents the number of fineness degrees. Conducting
boundary queries at multiple degrees of fineness helps mitigate
potential issues from a single query, such as boundary misclassifi-
cation and incompleteness.

(a) Single center point (b) Random multiple points

Figure 2: Comparison between two constraints. The differ-
ent colors of the points represent their respective classes.
The points with red contours indicate constraint key points.
The black and green dashed lines indicate the features being
pushed away and drawn together, respectively.

3.1.2 Random Multi-point Boundary Feature Constraints.
Features serve as the basis for segmentation, and clear and distin-
guishable features are conducive to the segmentation discriminator
making correct decisions. However, boundaries represent intersec-
tions of two or more objects with different categories. As local fea-
tures are continuously extracted and aggregated, boundary regions
experience feature fusion among points with different categories,
leading to ambiguity in the region’s features. This ambiguity poses
a challenge for the point cloud semantic segmentation discrimi-
nator in accurately segmenting boundary points, which is one of
the main reasons for the poor performance of current semantic
segmentation models in boundary regions.

To address this issue, we impose feature constraints within the
boundary neighbor whose center point is the boundary point. In
the neighbor, we enhance the feature similarity between the con-
straint key points and the points belonging to the same category
while reducing it otherwise. CBL [43] takes the center points as
constraint key points. As shown in Figure 2a, The single center
point constraint only imposes constraints between the constraint

key point and its neighboring points, neglecting the establishment
of constraint relationships among other points except for the con-
straint key point. The similarity information of features within the
boundary neighbor is underutilized, limiting the effectiveness of
the feature constraints. As illustrated in Figure 2b, we extend the
feature constraints to the entire boundary neighbor. Specifically, in
a boundary neighbor, 𝑞 non-repeating points are randomly selected
as constraint key points for 𝑞 times of feature constraints. Inspired
by [8, 14, 34], the feature constraint for the boundary neighbor
centered at 𝑥 (𝑥 ∈ B) can be formulated as follows:

L𝑥 = − 1
𝑞

∑︁
𝑗 ∈𝑅

(
𝑄𝑘

𝑟 (𝑥)
) 𝑙𝑜𝑔

∑
𝑝∈𝑄𝑘

𝑟 (𝑥)∧𝑙𝑝=𝑙 𝑗 𝑒𝑥𝑝
(
−𝑑 (𝑓𝑝 , 𝑓𝑗 )/𝜏

)∑
𝑣∈𝑄𝑘

𝑟 (𝑥) 𝑒𝑥𝑝
(
−𝑑 (𝑓𝑣, 𝑓𝑗 )/𝜏

) . (3)

Where 𝑑 represents the Euclidean metric. 𝜏 represents the con-
straint temperature. 𝑅(·) represents the operation of randomly
non-repeated selection. Note that in low-density regions, there
may be cases where the number of points is less than 𝑘 in some
neighbor queries. In our implementation, the points are randomly
duplicated to ensure each boundary neighbor contains the same
number of points. We independently apply random multi-point
boundary feature constraints to boundaries at different fineness
degrees. The multi-fineness boundary feature constraint L𝑀𝐵𝐶 can
be formulated as follows:

L𝑀𝐵𝐶 =
1
𝑀

𝑀−1∑︁
𝑚=0

𝜆𝑚

∑︁
𝑥 ∈B𝑚

L𝑥 . (4)

Here, 𝜆𝑚 represents the weight of the feature constraint for the
𝑚-𝑡ℎ boundary query fineness degree. Boundary constraints at
higher fineness degrees are assigned higher weights to ensure the
accuracy of feature constraints. In contrast, those at lower fineness
degrees are given lower weights to balance the completeness of
boundary feature constraints. Finally, the total criterion of our
MBSE framework is

L𝑀𝐵𝑆𝐸 = L𝑠𝑒𝑔 + L𝑀𝐵𝐶 . (5)

Where L𝑠𝑒𝑔 stands for the loss of semantic segmentation. The
above settings will be described in Section 4.1. The multi-fineness
boundary constraints enhance the feature discrimination between
boundaries and non-boundaries, reducing the difficulty of classi-
fication for the semantic segmentation discriminator. It improves
the segmentation performance of boundary regions. The detailed
evaluation and analysis of MBC is given in Section 4.4.1.

3.2 Shifted Ensemble-aware Perception
Introducing boundary feature constraints may distract the net-
work from supervising segmentation, leading to problems such as
unbalanced segmentation accuracy [43]. Long-range correlations
enable the network to better comprehend the semantic structure
of point clouds and discern differences between boundaries and
non-boundaries across larger spatial extents. In this section, we
introduce a new point cloud space called ensemble and propose
a novel shifted ensemble-aware perception module. This module
captures the direct point-to-point long-range correlations within
ensembles. Additionally, It generalizes the ensemble patterns to the
global point cloud with minimal computational cost, enhancing the
overall segmentation performance.
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Figure 3: Diagram of the Ensemble-aware Perception Module, illustrating the process of obtaining ensemble-aware perception
encoding within an ensemble. 𝐹 and 𝐹 ′ respectively represent the number of input features and the number of features after
dimension reduction. 𝑁 represents the number of points in the ensemble.

3.2.1 Ensemble Point Cloud Space. Long-range correlation
refers to the association or relationship that exists between dis-
tant elements [25]. Capturing the long-range correlation can help
the model identify semantic relationships between different parts of
the point cloud, thereby improving semantic segmentation accuracy.
Obtaining long-range correlations requires establishing remote in-
formation interaction. Current point cloud segmentation models
[6, 29, 38] mainly rely on aggregating features in local neighbors,
which consist of several tens of points, to obtain high semantic
features for segmentation. These models’ receptive fields gradually
increase as the networks deepen and local features are aggregated.
Obtaining relevant information between two non-adjacent points
may require multiple rounds of feature abstractions or aggrega-
tions. In this complex process, some crucial long-range correlation
information may be lost. However, due to the high volume of point
cloud data, establishing direct global long-range interactions re-
quires enormous computational costs.

To avoid this, we propose a novel concept in point cloud space
called ensemble. The input point cloud X is randomly divided into
𝑛 non-overlapping ensembles 𝜖𝑖 (i.e., 𝜖𝑖 ⊂ X and 𝜖𝑖 ∩ 𝜖 𝑗 = ∅).
Each ensemble contains the same number of points. The spatial
size of the ensemble depends on the size of the input point cloud,
with the detailed configuration described in Section 4.1. Without
extra computational overhead, the random partitioning of ensem-
bles allows distant points in the point cloud to be grouped into
the same feature encoding unit, facilitating direct information ex-
change between distant points. Direct information interactions
and contextual relationships can be established within each ensem-
ble, capturing long-range correlation. Compared to traditional local
neighbor aggregation, ensembles extend the feature encoding space.
The method for obtaining long-range correlation encodings within
an ensemble is described in the following subsection.

3.2.2 Ensemble-aware Perception Encoding. The feature en-
codings embedded with long-range correlations are obtained in
each ensemble. The diagram of the ensemble-aware perception
module is illustrated in Figure 3. We take the inherent unordered
nature of point clouds as prior knowledge, where semantic features
should remain invariant to translation or rotation. Specifically, for
each ensemble 𝜖𝑖 , the difference between its position 𝑝𝜖𝑖 and the

average position of the point cloud 𝑝X is embedded into the in-
put features 𝑓𝜖𝑖 . This embedding ensures the position-invariant
representation of the perception module and facilitates the gener-
alization of the perception module across different ensembles in
subsequent stages. This operation F can be formulated as follows:

F (𝜖𝑖 ) = ℎ𝜃𝑝

(
[𝑓𝜖𝑖 ,

𝑝𝜖𝑖 − 𝑝X
𝑛

]
)
. (6)

Where [·, ·] denotes the concatenation operation. ℎ𝜃𝑝 is an op-
eration implemented with an MLP that integrates features with
position information and reduces the feature dimension to 1/𝑠 of
its original size. 𝑛 denotes the number of ensembles in the point
cloud. The output of F (𝜖𝑖 ) serves as the initial encoding for the
𝑖-𝑡ℎ ensemble. The ensemble-aware perception module captures
long-range correlations between points by computing associations
and transforming the feature space. We argue that long-range cor-
relations should exist in diverse aspects, such as semantics, geome-
tries, color spaces, and density distributions. A single feature space
transformation is insufficient to characterize point clouds’ complex
spatial and semantic features. We employ 𝐺 space transformations
to capture long-range correlations within ensembles from multi-
ple perspectives. Additionally, we perform contribution perception
for different space transformations. The long-range correlation set
M, which encompasses 𝐺 long-range correlations for 𝜖𝑖 , can be
formulated as:

M(𝜖𝑖 ) =
{
𝑤 𝑗A𝑇 (𝜖𝑖 )T𝑗 (𝜖𝑖 ) | ∀𝑗 ∈ {0, ...,𝐺 − 1}

}
. (7)

Here,A andT represent operations for feature alignment and space
transformation, respectively, implemented by MLPs.𝑤 𝑗 denotes the
contribution perception weight of the 𝑗-𝑡ℎ space transformation,
implemented through a set of learnable parameters processed by
Softmax function. Then, we multiply the𝐺 long-range correlation
matrixes with the initial feature encoding F (𝜖𝑖 ) and sum them
point-wise to integrate long-range correlation representations. The
perception encoding of the 𝑖-𝑡ℎ ensemble can be formulated as:

H(𝜖𝑖 ) = ℎ𝜃 𝑓

(
O
(
F (𝜖𝑖 )M 𝑗 (𝜖𝑖 )

) )
. (8)

Here, ℎ𝜃 𝑓 represents an MLP used for feature alignment. O stands
for the operation of the point-wise matrix addition. H(𝜖𝑖 ) con-
tains ensemble-level long-range correlations.Without progressively
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deepening the network and feature extraction, the ensemble-aware
perception module’s direct receptive field spans the ensemble rather
than just the neighbor with several dozen points.

3.2.3 Multi-layer Shifting and Parameter Sharing. Hierar-
chical structures are widely applied in point cloud segmentation
[6, 29, 38]. Existing models utilize hierarchical structures to down-
sample point clouds, obtaining multiple levels of sub-point clouds.
With increasing downsamplings and feature abstraction iterations,
high-layer sub-point clouds containing fewer points encapsulate
richer semantic information conducive to semantic segmentation.
While low-layer sub-point clouds with more points exhibit lower
semantic feature levels, they compensate for detailed information
such as position lost in high semantics. Ensemble-aware perception
modules are applied separately at different layers to fully utilize
features from different hierarchical layers. At lower layers, it en-
hances models’ capability to capture spatial geometric patterns,
while at higher layers, it strengthens global interactions among
high-level semantic features. Like images, point clouds also possess
positional invariance, necessitating ensemble-aware perception to
be spatially agnostic. The ensemble-aware perception module shifts
and shares its parameters across the point cloud to capture and
generalize long-range correlations. We obtain the shifted ensemble-
aware perception encoding of the point cloud X𝑙 at the 𝑙-𝑡ℎ layer
by concatenating its 𝑛 ensemble-aware perception encodings at
spatial locations aligned with the input and establishing a shortcut
connection, which can be formulated as follows:

K𝑙 (X𝑙 ) =
[{
H 𝑙 (𝜖𝑖 ) | ∀𝑖 ∈ {0, ..., 𝑛 − 1}

}]
+ 𝑓X𝑙 . (9)

Multi-layer shifting and parameter sharing establish an information
exchange pathway from ensembles to the entire point cloud with
low computational cost, further expanding the receptive fields. It
enables the model to interact information with a global receptive
field at different layers and generalize local patterns among different
ensembles, thereby enhancing its ability to capture global spatial
geometry and long-range correlations. The detailed evaluation and
analysis of SEP is given in Section 4.4.2.

4 EXPERIMENTS
In this section, we showcase and analyze the performance of MBSE
on point cloud semantic segmentation and part segmentation on
multiple benchmarks. Through comparative experiments with vari-
ous recent state-of-the-art methods and ablation studies, we demon-
strate the effectiveness and superiority of our MBSE.

4.1 Implementation Details
We apply the MBSE framework to the popular and representative
PointNext [38] family, taking its four variants as baselines. We add
an SEP after each of their four sub-sampling modules and replace
the loss function with our L𝑀𝐵𝑆𝐸 . For fairness, we employ the
same training and evaluation strategies as the baselines. Except for
ShapePartNet [56], we do not use any voting strategy for evaluation.
For MBC, we conduct boundary queries on three fineness degrees
(i.e.,𝑀 = 3). The boundary neighbor query distances 𝑟𝑚 and point
numbers 𝑘𝑚 are set to (0.05, 0.1, 0.2) and (4, 8, 12), respectively.
The number of random constraint key points is set to (2, 4, 6). The

constraint temperature 𝜏 is set to 1. The weights 𝜆𝑚 for multi-
fineness constraints are set to (0.5, 0.3, 0.2). For SEP, the downscale
factor 𝑠 is set to 4. The four downsampled sub-point clouds are
evenly divided into (36, 28, 20, 12) ensembles, respectively. The
criterion used for segmentation (i.e., L𝑠𝑒𝑔) is CrossEntropy. 24k
points are fed as a batch to train the models. We evaluate the
models using the entire scene as input. Unless otherwise specified,
all experiments are conducted according to the above settings.

4.2 3D Semantic Segmentation
For point cloud semantic segmentation, we evaluate our MBSE on
the widely used S3DIS [1] and ScanNet [5]. S3DIS is a challenging
large-scale 3D point cloud dataset. The results on S3DIS Area 5 are
shown in Table 1. MBSE improves the performance of all Point-
Next variants. Compared to the PointNext-XL [38], MBSE increases
mIoU, OA, and mAcc by 1.3%, 0.4%, and 0.8%, respectively, and sur-
passes PointVector-XL [6] in terms of mIoU and OA. It achieves the
best or second-best performance in IoU for almost half of all cate-
gories. Compared to PointVector, MBSE extends the direct receptive
field to a larger ensemble level rather than the traditional neighbor.
Based on the Transformer architecture, StratifiedFormer [25] has
a larger receptive field, which is an advantage over the models
based on MLPs. Nevertheless, MBSE performs highly competitively
because it can capture direct correlations between points over long
distances without requiring feature aggregation in neighbors. Fur-
thermore, MBSE performs well in segmenting objects with high
boundary proportions, such as beams and columns. On PointNext-L
and PointNext-XL, the IoU of the beam is improved to 0.2% and
0.4% by MBSE, respectively, while this metric remains at 0.0% for
almost all other comparative models.

We further evaluate MBSE on S3DIS Area 6-fold and ScanNet.
The results are reported in Table 2. ScanNet comprises 1,613 3D
indoor scans. We train and evaluate the models on training and
validation sets, respectively. MBSE significantly improves the per-
formance of all baselines. On S3DIS Area 6-fold, except for mIoU,
the PointNext-XL model equipped with MBSE achieves the best
performance. On ScanNet, the number of input points is set to 64k.
TheMBSE versions of PointNext-L and PointNext-XL achieve a 1.1%
and 1.4% improvement in mIoU compared to the baselines, respec-
tively. MBSE can provide more considerable performance boosts
for larger baseline models. It is primarily due to larger models being
able to extract richer high-level semantic information. Increasing
feature discrimination and capturing long-range correlations for
high semantic features yields superior semantic segmentation per-
formance. To accurately evaluate the impact of MBSE on baselines,
we did not modify the structure of the baselines. MBSE is applied
with the same experimental settings on all baselines, with parame-
ters and computational costs of 1M and 0.5 GFLOPs, respectively.
The volume of the baselines primarily determines the parameters
and computational costs of the models.

4.3 3D Object Part Segmentation
ShapeNetPart [56] is a widely used dataset for 3D object part seg-
mentation. It contains a total of 16 different object categories with
16,880 models. Each category is comprised of 2 to 6 parts, resulting
in a maximum of 50 labeled parts. The results are reported in Table
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Table 1: Comparison results on S3DIS Area 5. Consistent with PointNext, we use 24k input points, while the number of input
points for StratifiedFormer is set to 80k. * denotes the method that also explicitly considers the boundary of the point cloud.
The best and the second-best performance is bolded. The red indicates improvement over baseline.

Method mIoU OA mAcc ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet [35] 41.1 - 49.0 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
PointCNN [28] 57.3 85.9 63.9 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
SPGraph [26] 58.0 86.4 66.5 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
KPConv [45] 67.1 - 72.8 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
MinkowskiNet [4] 65.4 - 71.7 91.8 98.7 86.2 0.0 34.1 48.9 62.4 81.6 89.8 47.2 74.9 74.4 58.6
JSENet* [23] 67.7 - - 93.8 97.0 83.0 0.0 23.2 61.3 71.6 89.9 79.8 75.6 72.3 72.7 60.4
PCT [13] 61.3 - 67.7 92.5 98.4 80.6 0.0 19.4 61.6 48.0 76.6 85.2 46.2 67.7 67.9 52.3
PAConv [51] 66.6 - 73.0 94.6 98.6 82.4 0.0 26.4 58.0 60.0 89.7 80.4 74.3 69.8 73.5 57.7
Point Trans. [60] 70.4 90.8 76.5 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3
StratifiedFormer [25] 72.0 91.5 78.1 96.2 98.7 85.6 0.0 46.1 60.0 76.8 92.6 84.5 77.8 75.2 78.1 64.0
CBL* [43] 69.4 90.6 75.2 93.9 98.4 84.2 0.0 37.0 57.7 71.9 91.7 81.8 77.8 75.6 69.1 62.9
RepSurf-U [40] 68.9 90.2 76.0 - - - - - - - - - - - - -
PointMetaBase [29] 71.3 90.8 - - - - - - - - - - - - - -
PointVector-XL [6] 72.3 91.0 78.1 95.1 98.6 85.1 0.0 41.4 60.8 76.7 84.4 92.1 82.0 77.2 85.1 61.4

PointNext-S 64.2 88.2 70.7 94.0 98.3 80.9 0.0 23.8 48.7 66.6 81.0 90.0 68.0 72.0 58.0 54.0
+MBSE 65.5 88.7 72.5 94.2 98.4 79.8 0.0 24.4 53.3 69.1 81.7 89.3 71.9 71.2 63.5 54.7

PointNext-B 67.5 89.4 73.9 93.8 98.4 82.3 0.0 18.9 55.8 74.3 82.2 90.8 76.5 74.8 71.8 58.0
+MBSE 68.4 89.7 74.3 93.4 98.3 82.8 0.0 27.6 57.0 72.9 83.2 91.4 75.7 74.0 77.9 55.2

PointNext-L 69.3 90.1 75.7 94.0 98.5 83.6 0.1 30.5 60.1 72.2 82.1 91.3 76.8 74.7 77.6 59.9
+MBSE 70.1 90.6 76.3 93.8 98.7 84.0 0.2 37.1 59.6 73.9 87.2 89.7 78.3 75.6 73.9 58.7

PointNext-XL 71.1 91.0 77.2 93.7 98.6 85.3 0.0 42.3 60.6 70.9 84.4 92.4 80.4 78.1 76.6 61.0
+MBSE 72.4 91.4 78.0 95.4 98.9 85.9 0.4 45.4 60.9 75.9 86.8 91.9 79.7 79.1 77.9 62.5

Table 2: Comparison results on Area 6-fold and ScanNet.

Method S3DIS Area 6-fold ScanNet Params FLOPs
mIoU OA mAcc mIoU M G

PointNet [35] 47.6 78.5 66.2 - 3.6 35.5
DGCNN [48] 56.1 84.1 - - 1.3 -
DeepGCN [27] 60.0 85.9 - - 3.6 -
KPConv [45] 70.6 - 79.1 69.2 15.0 -
RandLA-Net [21] 70.0 88.0 82.0 - 1.3 5.8
MinkowskiNet [4] - - - 72.2 37.9 -
PointASNL [53] 68.7 88.8 79.0 63.5 22.4 19.1
BAAF [39] 72.2 88.9 83.1 - 5.0 -
Point Trans. [60] 73.5 90.2 81.9 70.6 7.8 5.6
CBL [43] 73.1 89.6 79.4 - 18.6 -
PointMetaBase [29] 77.0 91.3 - 72.8 19.7 11.0
PointVector [6] 78.4 91.9 86.1 - 24.1 58.5

PointNext-S 68.0 87.4 77.3 64.5 0.8 3.6
+MBSE 70.3 88.6 78.7 65.2 1.8 4.1

PointNext-B 71.5 88.8 80.2 68.4 3.8 8.9
+MBSE 72.9 89.7 81.5 69.6 4.8 9.4

PointNext-L 73.9 89.8 82.2 69.4 7.1 15.2
+MBSE 75.7 91.2 84.7 70.5 8.1 15.7

PointNext-XL 74.9 90.3 83.0 71.5 41.6 84.8
+MBSE 77.8 92.2 86.4 72.9 42.6 85.3

3. To ensure fair comparison experiments, following PointNext, we
employed voting by averaging the results of 10 randomly scaled

input point clouds, with scaling factors ranging from 0.8 to 1.2. The
input point number is set to 2,048. We conduct boundary queries
on two fineness degrees (i.e., 𝑀 = 2), with query distances 𝑟𝑚 of
0.05 and 0.1 and query numbers 𝑘𝑚 of 4 and 8, respectively. The
number of random constraint key points is set to 2 and 4. The
weights of multi-fineness constraint 𝜆𝑚 are set to 0.7 and 0.3. Focal-
Loss is used as the segmentation criterion. The input point cloud is
downsampled into four sub-point clouds, each containing (8, 4, 2, 1)
ensembles, respectively. The MBSE version of PointNext achieved
the best performance in both instance mIoU and class mIoU.

4.4 Ablation and Analysis
To further verify the effectiveness of ourMBSE, we perform ablation
studies on S3DIS Area 5 with PointNext-XL as the baseline.

4.4.1 The Effectiveness of MBC. We conduct detailed compar-
isons of the different boundary query methods, query fineness
degrees, and feature constraint methods in MBC. Additionally, we
show the performance of the beam and the columnwith high bound-
ary proportions. From Table 4, it can be observed that the boundary
query method affects the semantic segmentation accuracy. The
segmentation accuracy of the multi-boundary version with KNN
is even lower than that of the single-boundary version, as looser
boundary queries on KNNmay result in more erroneous boundaries.
Ball queries limit the range of neighbor queries, improving the qual-
ity of boundary queries. In the multi-boundary setting, ball queries
improve 0.6%, 1.0%, and 1.7% in mIoU, OA, and mAcc over KNN, re-
spectively. Multi-fineness boundaries with ball queries substantially
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Table 3: Comparison results on ShapeNetPart.

Method ins. mIoU cls. mIoU

PointNet [35] 83.7 80.4
SpiderCNN [52] 85.3 82.4
RS-CNN [30] 86.2 84.0
KPConv [45] 86.4 85.1
CurveNet [50] 86.8 -
ASSANet [37] 86.1 -
Point Transformer [60] 86.6 83.7
PointMLP [32] 86.1 84.6
StratifiedFormer [25] 86.6 85.1
PointVector [6] 86.9 -
PointMetaBase [29] 87.1 85.1

PointNext-S 87.0 85.2
+MBSE 87.6 85.5

enhance the performance of objects with high boundary propor-
tions, increasing the IoU of beams and columns by 0.2% and 1.7%
over single-boundary, respectively, demonstrating the effective-
ness of multi-fineness boundary queries. The random multi-point
constraint effectively enhances the feature discrimination quality
between boundaries and non-boundaries compared to single center
point constraints. MBC notably improved the segmentation per-
formance of objects with high boundary proportions. However,
the overall performance improvement is modest, mainly because
introducing boundary constraints may divert the model’s attention
from supervising the segmentation.

Table 4: The results of different settings on the MBC. Except
for the changes stated in each row, the rest of the settings
are set to the defaults to control variables.

Method mIoU OA mAcc beam column

baseline 71.1 91.0 77.2 0.0 42.3
single bound. (knn) 70.9 90.7 77.1 0.0 41.0
multi-bounds. (knn) 70.8 90.1 75.7 0.0 38.9
single bound. (bq.) 71.2 91.0 77.0 0.0 42.5
single constraint 71.2 90.8 77.3 0.1 43.7
MBC (default) 71.4 91.1 77.4 0.2 44.2

4.4.2 The Effectiveness of SEP. To explore the effectiveness of
SEP, we conducted ablation studies on its key components. The
results of its performance and computational cost are reported in
Table 5. Removing the relative position embedding led to a decrease
in all metrics, demonstrating the effectiveness of position-invariant
representation. Non-shared parameter results in a 4.8M increase in
the number of parameters and a sharp drop in performance. The
main reason is that ensembles are randomly sampled sub-point
clouds and the non-shared parameter poses challenges for pattern
convergence. Furthermore, we explore how the number of space
transformation blocks affects SEP. Increasing the number of blocks
enables the model to perceive the interrelations between points

from more aspects, capturing long-range correlations comprehen-
sively. However, an excessive number of the blocks might overfit
the training data, leading to a decrease in performance. After com-
parison, we set the default number of space transformation blocks
to 8. Different long-range correlations contribute differently to the
segmentation. Contribution perception enabled SEP to achieve bet-
ter performance. SEP boosted the baseline’s mIoU, OA, and mAcc
by 0.9%, 0.2%, and 0.6% in low computational cost, proving the
effectiveness of SEP.

Table 5: The results of different settings on the performance
and computational cost in SEP. The values in Param and
GFLOPs represent the variations relative to the complete SEP
with default settings. ∼0 indicates a negligible change in com-
putational cost, which is difficult to reflect in the evaluation
metrics due to orders of magnitude.

Method mIoU OA mAcc Param GFLOPs

baseline 71.1 91.0 77.2 -1.0 -0.5
w/o pos. embedding 71.8 91.0 77.4 ∼ 0 ∼ 0
non-shared parameter 69.6 88.7 74.9 +4.8 0
one space transformation 71.3 91.1 77.2 -0.6 -0.3
16 space transformations 70.7 89.5 76.8 1.3 0.7
w/o contribution percep. 71.7 91.1 77.4 ∼0 ∼0
SEP (default) 72.0 91.2 77.8 - -

4.4.3 Relationship between MBC and SEP. We analyze the
relationship between MBC and SEP. Both MBC and SEP stably im-
prove the baseline performance. MBC demonstrated a relatively
modest improvement compared to SEP, as its emphasis lies pri-
marily on enhancing boundary segmentation. Compared to solely
applying either MBC or SEP, MBSE further improves the semantic
segmentation performance of the model. This is because SEP fur-
ther generalizes and optimizes the feature discrimination between
boundaries and non-boundaries constrained by MBC across the
global point cloud. The complementarity of the two enables MBSE
to achieve excellent segmentation performance on both boundaries
and the overall point cloud.

5 CONCLUSION
We conduct the first systematic study on the impact of boundary
queries on the semantic segmentation of point clouds. We intro-
duce a multi-fineness boundary constraint approach, which explic-
itly enhances the feature discrimination between boundaries and
non-boundaries, improving the accuracy of difficult-to-segment
categories with high boundary proportions. Additionally, we pro-
posed a shifted ensemble-aware perception module that establishes
direct point-to-point interactions in novel ensemble spaces. With
low computational costs, SEP effectively generalizes the discrimi-
nation patterns between boundaries and non-boundaries and the
long-range correlations across the entire point cloud. Experimental
results demonstrate that MBSE significantly improves segmenta-
tion performance for classes with high boundary proportions and
the overall point cloud. We hope this work will inspire further
exploration into studying the explicit enhancement of boundary
segmentation and the long-range correlations in point clouds.
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