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ABSTRACT

Probabilistic forecasting models for joint distributions of targets in irregular time
series are a heavily under-researched area in machine learning with, to the best of
our knowledge, only three models researched so far: GPR, the Gaussian Process
Regression model (Dürichen et al., 2015), TACTiS, the Transformer-Attentional
Copulas for Time Series (Drouin et al., 2022; Ashok et al., 2024) and ProFITi
(Yalavarthi et al., 2024b), a multivariate normalizing flow model based on invertible
attention layers. While ProFITi, thanks to using multivariate normalizing flows,
is the more expressive model with a better predictive performance, we will show
that it suffers from marginalization inconsistency: it does not guarantee that the
marginal distributions of a subset of variables in its predictive distributions coincide
with the directly predicted distributions of these variables. Also, TACTiS does not
provide any guarantees for marginalization consistency.
We develop a novel probabilistic irregular time series forecasting model, Marginal-
ization Consistent Mixtures of Separable Flows (moses), that mixes several nor-
malizing flows with (i) Gaussian Processes with full covariance matrix as source
distributions and (ii) a separable invertible transformation, aiming to combine
the expressivity of normalizing flows with the marginalization consistency of
Gaussians. In experiments on four different datasets we show that moses outper-
form other state-of-the-art marginalization consistent models, perform on par with
ProFITi, but different from ProFITi, guarantees marginalization consistency.

1 INTRODUCTION

In many real-world domains ranging from health to astronomy time-variant data is measured in an
irregular fashion: different channels are measured at different times and usually not on a regular grid.
Besides mere point estimates, i.e., just the expected target values for some channels at some future
time points, one is usually interested in a probabilistic/distributional forecast of a distribution of
target values. A full predicted distribution of target values provides way more information about
the targets. For example, when bioengineers are growing bacteria in tanks they are interested in
predicting the oxygen levels. The expected value is already interesting, but if additionally we can
predict more fine-grained the whole distribution of possible oxygen levels this allows them now to
quantify the risk that the oxygen level falls below some critical threshold and all bacteria die; the
expected value alone is not sufficient to do so. Consequently, in recent years several models have
been developed for probabilistic forecasting of irregular time series (De Brouwer et al., 2019; Deng
et al., 2020; Biloš et al., 2021; Schirmer et al., 2022).

However, all these models are limited to forecasting the distribution of the value of a single channel
at a single time. But decision makers often require information about several variables and their
interaction, that is, about the predicted joint distribution of several channels at several times. In our
initial example, the bioengineers will be interested not just in the forecasts of the oxygen levels and
the biomass, but also in their interaction: a risk for either low biomass or low oxygen levels might be
tolerable, but a risk that both occur at the same time will require their intervention.

Probabilistic forecasting models for joint distributions of targets in irregular time series are a heavily
under-researched area in machine learning with, to the best of our knowledge, only three models
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researched so far: GPR, the Gaussian Process Regression model (Dürichen et al., 2015) uses a
multivariate normal distribution as predictive distribution, TACTiS, the Transformer-Attentional
Copulas for Time Series (Drouin et al., 2022; Ashok et al., 2024) uses a copula with normalizing
flows for the marginal distributions, and ProFITi (Yalavarthi et al., 2024b) uses a multivariate
normalizing flow model based on invertible attention layers. ProFITi, thanks to using normalizing
flows, is able to learn way more expressive predictive distributions, for example, it could express
multi-modal predictive distributions, while GPR being limited to multivariate Gaussians cannot do
that. Consequently, it outperforms GPR by a wide margin in experiments.

Models for probabilistic forecasting of joint target distributions in irregular time series have to be able
to express distributions over a varying number of variables, as by the nature of irregular time series,
the number of observations that fall into a given span of time might vary. However, the capability
to provide predictive distributions for a varying number of observations/variables introduces a new
issue: to get the predictive joint distribution for values of channels at some time points, we can query
the model multiple ways: (i) we can just ask for the predictive distribution of those variables directly
or (ii) we can ask for the joint predictive distribution of all variables, and then marginalize out the
variables that were not queried. Using a consistent model we expect to get the same answer either
way — we call this property marginalization consistency. An important special case is that the
univariate marginals of the models’ joint predictive distributions agree with the univariate predictive
distributions it provides when directly queried.

We show that the currently best performing probabilistic forecasting model for joint target distributions
in irregular time series, ProFITi, neither provides any guarantees to be marginalization consistent nor
empirically happens to be marginalization consistent on the standard datasets used in experiments.
Its main competitor, TACTiS, does not provide guarantees for marginalization consistency either. In
contrast, while GPR is marginalization consistent, it shows worse predictive performance.

From this starting point we will construct a novel model that combines the ideas of Gaussian
Processes and normalizing flows in a way completely different from ProFITi and GPR, to achieve
both, guaranteed marginalization consistency and high predictive accuracy (see Figure 4).

Overall our contributions as follows:

1. We propose a measure for the degree of marginalization consistency of models for joint
distributions with varying size, the Wasserstein Distance between the (possibly numerically)
marginalized predicted joint distribution of several variables and the directly predicted
marginal distribution (Section 6);

2. We show that the currently best performing model for probabilistic irregular time series
forecasting, ProFITi, does not provide any guarantees for marginalization consistency, and in
experiments we show furthermore that it actually suffers from marginalization inconsistency
(Section 7);

3. We develop a novel probabilistic irregular time series forecasting model, Marginalization
Consistent Mixtures of Conditional Flows (moses), that mixes several normalizing flows
with (i) Gaussian Processes with full covariance matrix as source distributions (but the
usual identity matrix) and (ii) a separable invertible transformation (i.e., for each dimension
separately, instead of the usual multivariate ones), aiming to combine the expressivity of
normalizing flows with the marginalization consistency of mixtures of Gaussian Processes
(Sections 4 and 5);

4. We prove that Marginalization Consistent Mixtures of Separable Flows are guaranteed
marginalization consistent (Sections 4 and 5);

5. In experiments on four different datasets we show that Marginalization Consistent Mixtures
of Separable Flows outperform other state-of-the-art marginalization consistent models,
perform on par with ProFITi, but guarantee marginalization consistency (Section 7);1

1Code available at https://anonymous.4open.science/r/seperable_flows-BACC
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2 PRELIMINARIES

We make use of the triplet representation of an irregular time series for probabilistic forecasting (Horn
et al., 2020). Here, an irregularly sampled time series X is a sequence of N -many triplets:

X ∶= ((tOBS
n , cOBS

n , vOBS
n ))n=1∶N ∈ Seq(X ) X = R × {1, . . . ,C} ×R (1)

where tOBS
n ∈ R is the observation time point, and vOBS

n ∈ R is the observed value in channel
cOBS
n ∈ {1, . . . ,C}. A time series query Q is a sequence of K-many pairs:

Q ∶= ((tQRY
k , cQRY

k ))k=1∶K ∈ Seq(Q) Q = R × {1, . . . ,C} (2)

where tQRY
k ∈ R is the future time point and cQRY

k ∈ {1, . . . ,C} is the queried channel. A forecasting
answer y is a sequence of scalars: y = (y1, . . . , yK), where yk is the forecasted value in channel cQRY

k

at time tQRY
k . Here, Seq(X ) denotes the space of finite sequences over X .

For forecasting, all the query time points are after the observations: mink=1∶K tQRY
k >maxn=1∶N tOBS

n .
The task of probabilistic irregular time series forecasting is to find a model p̂ that can predict the joint
multivariate distribution p̂(y ∣ Q,X) of the answers y, given the query points Q and observed series
X . Both the context N = ∣X ∣ and the query length K = ∣Q∣ are allowed to be dynamic (R1).

As the time stamp and channel-ID are included in each sample, the order of the samples does not
matter, and hence any model prediction should be independent of it (R2). Moreover, for a subquery
Q′ of Q, there are two different ways to predict the joint distribution: either by marginalizing the
predicted distribution of the complete query Q, or by predicting the joint distribution of the subquery
Q′ directly. The two predictions should be equivalent (R3).

Requirements. A marginalization consistent probabilistic irregularly sampled time series forecast-
ing model must satisfy the following requirements:

R1 Joint Multivariate Prediction.
The model p̂ can predict the joint distribution across multiple time steps of a multivariate time
series for arbitrary sizes of both the query K = ∣Q∣ and context N = ∣X ∣.

p̂∶Seq(R ×Q) × Seq(X )Ð→ R≥0,
(y,Q,X)z→ p̂(y1, . . . , yK ∣ Q1, . . . ,QK ,X1, . . . ,XN)

(3)

So that, for a given pair (Q,X), the partial function (y1, . . . , yK) ↦ p̂(y1, . . . , yK ∣ Q,X)
realizes a probability density on R∣Q∣.

R2 Permutation Invariance.
The predicted density should be invariant under permutations of both the query or context:

p̂(y ∣ Q,X) = p̂(yπ ∣ Qπ,Xτ) ∀π ∈ S∣Q∣, τ ∈ S∣X ∣ (4)

R3 Marginalization Consistency/Projection Invariance.
Predicting the joint density for the sub-query Q−k given by removing the k-th item should yield
the same result as marginalizing the k-th variable from the complete query.

p̂(y−k ∣ Q−k,X) = ∫
R
p̂(y ∣ Q,X)dyk (5)

This generalizes to any subset KS ⊆ {1, . . . ,K}.

For a model satisfying R1-R3, we will only have to marginalize if we try to validate the marginaliza-
tion consistency. For this validation we added requirement R3. Yalavarthi et al. (2024b) discussed R1
and R2, but did not consider R3. We argue that irregularly sampled time series is realization of a
stochastic process and R3 is a fundamental property of any model that mimics it.

Theorem 1. Any model that satisfies R1-R3 realizes an R-valued stochastic process over the index
set T = R × {1, . . . ,C}.
Proof. This is a direct application of Kolmogorov’s extension theorem (Øksendal, 2003)
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ground truth

moses (1) moses (2) moses (3) moses (4)

GMM (1) GMM (5) GMM (10) GMM (15)

Figure 1: (Top) Importance of multiple flow components: moses(1) cannot represent the correct
distribution, but moses(4) can. (Bottom) Limitation of Gaussian Mixture Models: GMM needs 15
components to match the distribution of moses(4).

3 RELATED WORK

There have been multiple works that deal with point forecasting of irregular time series (Ansari
et al., 2023; Che et al., 2018; Chen et al., 2024; Yalavarthi et al., 2024a). In this work we deal with
probabilistic forecasting of irregular time series. Models such as NeuralFlows (Biloš et al., 2021),
GRU-ODE (De Brouwer et al., 2019), and CRU (Schirmer et al., 2022) predict only the marginal
distribution for a single time stamp. Additionally, interpolation models like HetVAE (Shukla & Marlin,
2022) and Tripletformer (Yalavarthi et al., 2023) can also be applied for probabilistic forecasting.
However, they also produce only marginal distributions. All the above models assume underlying
distribution is Gaussian which is not the case for lots of real-world datasets. On the other hand,
Gaussian Process Regression (Dürichen et al., 2015), TACTiS/TACTiS-2, the Transformer-Attentional
Copulas for Time Series (Drouin et al., 2022; Ashok et al., 2024) and ProFITi (Yalavarthi et al.,
2024b) can predict proper joint distributions. TACTiS is a copula model and ProFITi a conditional
normalizing flow model, both can predict any arbitrary distribution. But as both use self-attention on
the queries in their encoders, their parametrization of their copula and flow, respectively, depends on
all queries in a complex way, and thus they cannot provide any marginalization guarantees.

There have been works on models for tractable and consistent marginals for fixed number of variables
such as tabular data. Probabilistic Circuits (Choi et al., 2020) create a sum-prod network on the
marginal distributions in such a way that marginals are tractable and consistent. Later, univariate
normalizing flows were added to the leaf nodes of the circuit for better expressivity by Sidheekh
et al. (2023). However, it is not trivial to extend such circuits to deal with sequential data of variable
size. Gaussian Mixture Models (GMMs) (Duda & Hart, 1974) are often used only for unconditional
density estimation, but can be extended to conditional density estimation. They can provide tractable
and consistent marginal distributions. However, GMMs are not expressive enough and often require a
very large number of components to approximate even simple distributions, as shown in Figure 1.
Note that normalizing flow models such as (Dinh et al., 2017; Papamakarios et al., 2017; 2021)
neither provide tractable marginals nor are applicable to varying number of variables.

Existing works have explored mixtures of normalizing flows for fixed-length sequences. For ex-
ample, Pires & Figueiredo (2020) and Ciobanu (2021) used flows with affine coupling or masked
autoregressive transformations for density estimation, while Postels et al. (2021) applied them to
reconstruction tasks. However, these models cannot handle dynamic sequence lengths, and their
marginals are intractable.

4 CONSTRUCTING MARGINALIZATION CONSISTENT CONDITIONAL
DISTRIBUTIONS

Our goal is to build a model for the conditional joint distribution p(y1, . . . , yK ∣ Q1, . . . ,Qk,X), as
in Equation (3). Since the model should satisfy R3, it follows that the marginal distribution of yk
must only depend on Qk and X .

4
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Separably Parametrized Gaussians. The arguably most simple model for a permutation invariant
conditional distribution for variably many variables is the family of multivariate Normal distributions
N (y ∣ µ(x),Σ(x)), whose conditional mean function µ(x) and conditional covariance function
Σ(x) are separable, i.e.:

µk = µ̃(Qk,X) Σk,ℓ = Σ̃(Qk,Qℓ,X) (6)

with mean function µ̃∶Q × Seq(X )→ R and a covariance function Σ̃∶Q ×Q × Seq(X )→ R, a setup
very well known from Gaussian processes. Such a separably parametrized multivariate Gaussian is
marginalization consistent by design, as marginalizing a Normal distribution boils down to relevant
rows and columns of the covariance matrix and the corresponding elements of the mean vector.

However, Gaussian Processes form a restrictive class of models, as any joint distribution of variables is
Gaussian. To capture more complex distributions, more expressive models are required. Normalizing
flows are a popular choice for this task (Rezende & Mohamed, 2015; Papamakarios et al., 2021).

Separable Normalizing Flows. Normalizing flows model distributions by transforming a source
distribution pZ on RK by means of an invertible transformation f ∶RK → RK . Then the target
distribution, the distribution of the image of f , can be concisely described by the transformation
theorem for densities

pY (y) ∶= pZ(f−1(y; θ)) ⋅ ∣det(
∂f−1(y; θ)

∂y
)∣ (7)

Existing approaches to normalizing flows use very simple source distributions, typically a multivariate
standard normal pZ(z) ∶= N (z ∣ 0, I), and model interactions between variables by means of the
transformation (Rezende & Mohamed, 2015; Papamakarios et al., 2021). Current approaches for
conditional normalizing flows for a variadic number of variables followed the same approach and
tackled the problem by engineering expressive transformations between vectors of same size, for any
size (Liu et al., 2019; Biloš & Günnemann, 2021; Yalavarthi et al., 2024b). For example, ProFITi
uses an invertible attention mechanism.

All these models in general will not have a guarantee for marginalization consistency. To the best of
our knowledge, there is no simple condition on the transform that would provide such a guarantee.

We therefore propose a drastic change, reversing the standard approach for normalizing flows: to
combine (i) simple, separable transforms with (ii) a richer source distribution, namely a Gaussian
Process with full covariance matrix. This way interactions between variables cannot be represented by
the transformation anymore, but they can be represented by the covariance of the source distribution.
Lemma 1. A conditional normalizing flow model over RK or Seq(R) is called separable, if it can
be expressed in the form

f(z ∣ Q,X) = (ϕ(z1 ∣ Q1,X), . . . , ϕ(zK ∣ QK ,X)) (8)

for some univariate function ϕ∶R×Q×Seq(X )→ R, that is invertible in the first argument. Any model
that consists of such a separable flow transformation, combined with a marginalization consistent
model for the source distribution, is itself marginalization consistent. (Proof: Appendix A.1)

Conditional Mixtures of Flows. When using separably parametrized Gaussians as source distribu-
tions in Lemma 1, and expressive univariate transformations, we can model any kind of marginal as
well as rich interactions between variables. However, the model is still restricted in its expressiveness,
allowing for variable-wise separable transformations of a unimodal (Gaussian) distribution only.
We therefore resort to the most simple way to further increase the expressiveness of the model:
we combine several of such separable flows into a mixture. Figure 1 shows that even just a few
components can lead to a much more expressive model, in particular comparable to a simple GMM
without flow transformations.
Lemma 2. Given probabilistic models (p̂d)d=1∶D that satisfy R1-R3, then a mixture model

p̂(y ∣ Q,X) =
D

∑
d=1

wd(X) p̂d(y ∣ Q,X) (9)

with permutation invariant weight function w∶Seq(X )→∆D, were ∆D denotes probability simplex
in D variables: ∆D ∶= {w ∈ RD ∣ wd ≥ 0,∑dwd = 1}, also satisfies R1-R3. (Proof: Appendix A.2)

5
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pZ1(z ∣ h1)

N (µ(h1),Σ(h1))

pZd
(z ∣ hd)

N (µ(hd),Σ(hd))

f1 fd

pY1(y ∣ h1) pYd
(y ∣ hd)

⊕
pY (y ∣ Q,X)

XQ

enc

h ∈ RD×K×M

w ∈∆D

ϕ ϕ

z1 ∈ R zK ∈ R

y1 ∈ R yK ∈ R
y ∼ pYd

(y ∣ hd)

z ∼ pZd
(z ∣ hd)

w1 wd

h1 hdD-many flows hd,1 hd,K

Figure 2: Illustration of proposed moses. D-many flows (fixed). K-many variables (variable).
Encoder (enc) takes X,Q (observed series and query timepoint-channel ids.) as input, and outputs an
embedding h (depends on both X , and Q) and w (depends on X only). µ,Σ of pZd

are parametrized
by hd. Flow transformation of pZd

is parametrized by hd. Transformation layer consists of K-many
univariate transformations ϕ that transforms zk of z ∼ pZd

(z ∣ hD) to yk of y ∼ pFLOW
d (y ∣ hd).

5 MIXTURES OF SEPARABLE FLOWS (MOSES)

Based on the constructions from the last section, we propose to build a marginalization consistent
model for forecasting irregular time series in four components (see Figure 2):

1. A separable encoder, consisting of

(i) A shared encoding hOBS ∶= encOBS(X; θOBS) of the observations, used for all queries.
(ii) D-many encodings hd,k ∶= encQRY(Qk,X; θQRY

d ) of each query and entire context.

2. D-many Gaussian Processes pZd
(z ∣ µd,Σd), each separably parametrized according to (6),

by the encoder for queries hd.

3. D-many separable normalizing flows p̂FLOW
d , one on top of each of the source distributions,

whose transformations fd are also separably parametrized by the encoded queries hd.

4. A mixture of the D-many normalizing flows with mixing weights w ∶= w(hOBS), depending
only on the encoded observations hOBS, but not the queries.

1. Separable Encoder. To encode both the observations X = ((tOBS
n , cOBS

n , vOBS
n ))n=1∶N and queries

Q = ((tQRY
k , cQRY

k ))k=1∶K , we apply a positional embedding with learnable parameters (af , bf)f=1∶F
to the time component (Kazemi et al., 2019).

pos embed(t)f ∶= {
af t + bf if f = 1
sin(af t + bf) else

(10)

And one-hot encodings for the channel component. The value is simply passed through.

x ∶= [pos embed(tOBS
n ),one-hot(cOBS

n ), vOBS
n ]n=1∶N (∈ RN×(F+C+1)) (11a)

q ∶= [pos embed(tQRY
k ),one-hot(cQRY

k )]k=1∶K (∈ RK×(F+C)) (11b)

The observations are further encoded via self-attention and the queries via cross-attention w.r.t. the
encoded observations:

hOBS ∶=MHA(x,x,x; θOBS) (∈ RN×M) (12a)

h̃ ∶=MHA(q,hOBS,hOBS; θQRY) (∈ RK×D⋅M) (12b)

h ∶= reshape(h̃) (∈ RD×K×M) (12c)

where MHA denotes multihead attention. For the encoding of the queries we use an encoding
dimension D ⋅M and reshape each hk into D encodings hd,k of dimension M .

6
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2. D separably parametrized Gaussian source distributions pZd
(z ∣ µd,Σd). We model means

and covariances simply by a linear and a quadratic function in the encoded queries hd:

µ(hd) = hdθ
MEAN Ô⇒ µ(hd)k = hd,kθ

MEAN (13a)

Σ(hd) = IK +
(hdθ

COV)(hdθ
COV)T√

M ′
Ô⇒ Σ(hd)k,l = δkl +

(hd,kθ
COV)(hd,lθ

COV)T√
M ′

(13b)

where θMEAN ∈ RM×1 and θCOV ∈ RM×M ′

are trainable weights shared across all D mixture compo-
nents. IK is an identity matrix of size K, and δkl = 1 if k = l else 0 denotes the Kronecker delta.
In Eq. (13b), we divide the inner product with

√
M ′ for stable learning, as done in (Vaswani et al.,

2017). Since Σ(hd) is the sum of a positive semi-definite matrix and positive definite matrix, it is
guaranteed to be positive definite itself. Note that, hd, which is encoded from both context X and
queries Q, takes the role of X and Q together in (6).

3. D separable normalizing flows p̂FLOW
d . To achieve separable invertible transformations, any uni-

variate bijective functions can be applied on each variable separately. Spline based functions attracted
interest due to their expressive and generalization capabilities (Durkan et al., 2019; Dolatabadi
et al., 2020). We employ computationally efficient Linear Rational Spline (LRS) transforma-
tions (Dolatabadi et al., 2020). For a conditional LRS ϕ(zk;hd,k, θ

FLOW), the function parameters
such as width and height of each bin, the derivatives at the knots, and λ are computed from the
conditioning input hd,k and some model parameters θFLOW. θFLOW helps to project hd,k to the function
parameters, and is common to all the variables z1∶K so that the transformation ϕ can be applied
for varying number of variables K. Note that we also share the same θFLOW across all the D-many
mixture components as well. For details, see Appendix A.4.

4. Mixture Model. We model the mixture weights via cross attention, using trainable parameters
β ∈ RD×M as attention queries, and a softmax to ensure the weights to sum to 1:

w ∶= softmax(MHA(β,hOBS,hOBS; θMIX)) (14)

Theorem 2. Our model, moses, satisfies R1-R3 and hence realizes a stochastic process via Kol-
mogorov’s Extension Theorem (see Theorem 1). Proof. See Appendix A.3.

Training. Given a batch of training instances B, where for each instance, we have Q, X and y, we
minimize the normalized joint negative log-likelihood (njNLL) (Yalavarthi et al., 2024b):

LnjNLL(θ) = 1

∣B∣ ∑
(Q,X,y)∈B

− 1

∣y∣ log p̂(y ∣ Q,X) (15)

where θ ∶= (θOBS, θQRY, θMIX, θMEAN, θCOV, θFLOW). njNLL generalizes negative log-likelihood to vary-
ing number of variables.

6 MEASURING MARGINALIZATION CONSISTENCY VIOLATION

To measure the marginalization inconsistency in a probabilistic model, we use the Wasserstein
distance (WD), also known as earth mover’s distance (EMD). It quantifies the distance between two
probability distributions, representing the “cost” of shifting probability mass from one distribution to
another. We consider the Wasserstein distance between the two distributions:

1. The univariate marginals directly predicted with the model.
2. The univariate marginals obtained from numerically integrating the joint distribution.

Corresponding to the left and right-hand side of Equation (5). The Wasserstein r-distance between
two univariate empirical distributions, pEMP

U and pEMP
V , given by the samples U = (u1, . . . , uN) and

V = (v1, . . . , vN), can be expressed in terms of the order statistics: (Bobkov & Ledoux, 2019)

WDr(pEMP
U , pEMP

V ) = (
1

N

N

∑
n=1
∥uπn − vτn∥r)

1/r
(16)

here π and τ are the permutations that sort the samples U and V respectively.

7
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Figure 4: Demonstration of marginal consistency for moses (ours), ProFITi Yalavarthi et al. (2024b),
and Gaussian Process Regression Bonilla et al. (2007) on two toy datasets: blast (left) and circle
(right). ProFITi is inconsistent with respect to the marginals of the second variable y2, while moses
is consistent with the marginals of both y1 and y2. moses(D) indicates D mixture components.
Gaussian Process Regression (GPR) is marginalization consistent but predicts incorrect distributions.
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Figure 3: Computing Marginalization Incon-
sistency of a prediction model. ∣Q∣ = 2.

For models p̂ that can predict both: (i) The univari-
ate marginals p̂(yk ∣ Qk,X), for k = 1, . . . ,K, (ii)
The joint distribution p̂(y ∣ Q,X), we can eval-
uate the marginalization inconsistency by com-
paring the predicted marginals p̂(yk ∣ Qk,X) to
the marginals computed from the joint distribution
p̂MAR(yk ∣ Qk,X). These computed marginals are
obtained by integrating the joint distribution over all
variables except yk, i.e.,

p̂MAR(yk ∣ Qk,X) ∶= ∫
R
p̂(y ∣ Q,X) dy−k

Sampling from p̂(yk ∣ Qk,X) is straightforward, but
sampling from the marginal p̂MAR(yk ∣ Qk,X) is
more challenging due to integration. To address this,
we sample from the joint distribution p̂(y ∣ Q,X) and treat the k-th dimension as a sample from
the marginal distribution p̂MAR(yk ∣ Qk,X). We demonstrate this in Figure 3. The marginalization
inconsistency MI is then defined as the average Wasserstein distance between the predicted marginals
and the computed marginals, across all variables k:

MI(p̂(y ∣X,Q)) ∶= 1

K

K

∑
k=1

WDr(p̂(yk ∣ Qk,X), p̂MAR(yk ∣ Qk,X)) (17)

In experiments, we set r = 2 and approximate (17) using the Wasserstein distance using 1000 samples.

7 EXPERIMENTS

Toy experiment. We show that moses maintains marginalization consistency using two simple
bivariate distributions (Figure 4). The equations to create these distributions are in Appendix B.
The goal is to estimate unconditional probability distribution. moses accurately predicts both joint
and marginal distributions, and also marginalization consistent. ProFITi correctly predicts joint
distributions for the blast dataset and nearly correct ones for the circle dataset, but fails in predicting
the marginal distribution for the second variable in both cases. This is because ProFITi learn joint
distribution in such a way that the second variable always depend on the first. On the other hand, the
Gaussian Process Regression model is consistent with marginalization but cannot predict accurately.

Main experiment. We use four real-world datasets: the climate dataset USHCN and three physio-
logical datasets: PhysioNet2012, MIMIC-III, and MIMIC-IV. Following previous works (Yalavarthi
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Table 1: Comparing njNLL values for probabilistic forecasting of irregularly sampled time series.
Lower the better, best results in bold, second best in italics. For all four datasets moses is the best
guaranteed consistent model.

Model USHCN PhysioNet2012 MIMIC-III MIMIC-IV

inconsistent ProFITi -3.226 ± 0.225 -0.647 ± 0.078 -0.377 ± 0.032 -1.777 ± 0.066
Tactis-2 -0.600 ± 0.082 0.017 ± 0.001 0.005 ± 0.001 -0.012 ± 0.001

GRU-ODE 0.766 ± 0.159 0.501 ± 0.001 0.961 ± 0.064 0.823 ± 0.318
consistent NeuralFlows 0.775 ± 0.152 0.496 ± 0.001 0.998 ± 0.177 0.689 ± 0.087
univariate CRU 0.761 ± 0.191 1.057 ± 0.007 1.234 ± 0.076 OOM

Tripletformer+ 4.632 ± 8.179 0.519 ± 0.112 1.051 ± 0.141 0.686 ± 0.115

consistent
multivariate

GPR 2.011 ± 1.376 1.367 ± 0.074 3.146 ± 0.359 2.789 ± 0.057
GMM 1.050 ± 0.031 1.063 ± 0.002 1.160 ± 0.020 1.076 ± 0.003

moses (ours) -3.357 ± 0.176 -0.491 ± 0.041 -0.305 ± 0.027 -1.668 ± 0.097

et al., 2024b; Biloš et al., 2021), we observe the first 36h and predict the next 3 time steps for
the physiological datasets, and observe 3 years and forecast the next 3 time steps for the USHCN
dataset. Basic statistics of the datasets are provided in Appendix B. Although we predict the next 3
time steps, the number of observations N and queries K vary (see Table 3). We split the data into
Train, Validation, and Test sets in a 70 ∶ 10 ∶ 20 ratio. We trained moses using Adam optimizer,
with learning rate 0.001 and batch size of 64. We search for hyperparameters, including the num-
ber of mixture components D ∈ {1,2,5,7,10}, attention heads ∈ {1,2,4}, and latent embedding
M,F ∈ {16,32,64,128}. All models are implemented in PyTorch and run on GeForce RTX 3090
and GTX 1080 Ti GPUs.

Baselines. As baseline models, we use NeuralFlows (Biloš et al., 2021), GRU-ODE (De Brouwer
et al., 2019), CRU (Schirmer et al., 2022), GPR (Dürichen et al., 2015), ProFITi (Yalavarthi et al.,
2024b) and TACTiS-2 (Ashok et al., 2024). Our encoder is similar to Tripletformer, predicting
marginal distributions. Hence, we predict the mean and variance of a Gaussian distribution for h̃k,
calling the model Tripletformer+. NeuralFlows, GRU-ODE, CRU, and Tripletformer+ predict only
marginals and are marginalization consistent, as their joint distribution is the product of marginals.
GPR is also marginalization consistent. We also compare with Gaussian Mixture Model (GMM)
which is the moses without the flows attached to highlight the advantage of flows in moses.

Evaluation metric for multivariate distribution. We use normalized joint negative log-likelihood
(njNLL) (Yalavarthi et al., 2024b) as the evaluation metric (15). njNLL generalizes the joint neg-
ative log-likelihood of varying number of variables. We note that CRPS, widely used metric for
probabilistic univariate forecasting, cannot be applied for multivariate distributions. Also, sampling
based metrics for multivariate distributions like Energy Score not only suffers from the curse of
dimensionality but also cannot evaluate the forecasts properly (Marcotte et al., 2023). On the other
hand, another metric CRPS-sum (Rasul et al., 2021) was shown to provide misleading indication of
the performance (Koochali et al., 2022). In their study CRPS-sum cannot distinguish the predictions
of a state-of-the-art model from random noise. Hence, we evaluate using njNLL in our experiments.

Results for predicting joint distribution. We compare moses with the published results
from (Yalavarthi et al., 2024b) in Table 1. moses performs better than all the marginalization
consistent models and comparable to non-marginalization consistent model ProFITi. Figure 5 shows
njNLL vs marginal inconsistency (MI). moses not only achieves similar likelihoods as ProFITi, its
MI is close to 0 where ProFITi is up to an order of magnitude larger. Smaller values of MI for moses
is due to sampling. We rounded the smaller MI to 0.1. TACTiS, despite not providing consistency
guarantees, turns out to be the most consistent model among those without such guarantees. We
hypothesize that TACTiS may just learn a (for each query size) constant copula that actually does not
depend on the queries; we leave this analysis to future research on copula models.

Comparing for marginals: demonstrating the importance of marginalization consistency. We
evaluate the models using marginal Negative Log-Likelihood (mNLL), a common metric in prior

9
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Table 2: Trained for njNLL and evaluate for Marginal Negative Log-likelihood (mNLL), lower the
better. Demonstrates the advantage of marginalization consistency.

USHCN PhysioNet’12 MIMIC-III MIMIC-IV

GRU-ODE 0.776 ± 0.172 0.504 ± 0.061 0.839 ± 0.030 0.876 ± 0.589
Neural-Flows 0.775 ± 0.180 0.492 ± 0.029 0.866 ± 0.097 0.796 ± 0.053
CRU 0.762 ± 0.180 0.931 ± 0.019 1.209 ± 0.044 OOM
ProFITi-marg -3.324 ± 0.206 -0.016 ± 0.085 0.408 ± 0.030 0.500 ± 0.322

moses (ours) -3.355 ± 0.156 -0.271 ± 0.028 0.163 ± 0.026 -0.634 ± 0.017

work (Biloš et al., 2021; Schirmer et al., 2022). Given test data DTEST, mNLL is the average NLL of
future values (marginals). Table 2 shows results for the top models in each category from Table 1.
ProFITi-marg refers to ProFITi querying one variable (k = 1) in a single pass, requiring K = 5 runs
for a 5-variable series. Notably, moses outperforms all baselines, including ProFITi-marg, in mNLL,
despite ProFITi offering superior njNLL, due to the marginalization inconsistency of ProFITi.

Computational Complexity. The scalability of our model is determined by multiple factors: the
number of mixture components D, the number of query points K, and the dimensionality of the latent
space M . By design, the normalizing flows are separable and therefore have diagonal Jacobians,
hence can be computed in O(MK). The main bottleneck of the method is computing the density of
the multivariate base distribution, which requires computing the determinant of the K ×K matrices
Σd, as well as a quadratic term yTΣ−1d y. Generally, this costs O(K3), however, thanks to the low
rank representation Σd = IK+UdU

T
d in (13b), it can be done inO(M2K), as shown in Appendix A.5.

Hence, the overall model complexity is O(M2KD), i.e. linear in the query length K.

CONCLUSIONS

In this work, we propose, moses: marginalization consistent mixture of separable flows, a novel
model for probabilistic forecasting of irregular time series. We showed how to parametrize various
components of moses such that it is decomposable and marginalization consistent. Our experimental
results on 4 real-world irregularly sampled time series datasets show that moses not only performs
similar to state-of-the-art ProFITi model but unlike ProFITi moses is marginalization consistent.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, an implementation of moses in PyTorch is publicly available at
https://anonymous.4open.science/r/seperable_flows-BACC. Detailed proofs
for all lemmas introduced in the paper can be found in the Appendix.

moses ProFITi CRU NerualFlows GRU-ODE GMM TACTiS-2
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N
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USHCN (MI↓) PhysioNet’12 (MI↓) MIMIC-III (MI↓) MIMIC-IV (MI↓)

Figure 5: njNLL vs. MI. The Marginalization Inconsistency (17) compares predicted marginal
distributions of individual queries to the numerically integrated joint distribution. moses is marginal-
ization consistent within sampling error, where small values arise from sampling.
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Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan
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A THEORY

A.1 PROOF OF LEMMA 1

Proof. Since X is a common conditional to all the marginals, we can ignore it. So, assume that f is
a separable transformation:

f(z ∣ Q) = (ϕ(z1 ∣ Q1), . . . , ϕ(zK ∣ QK)) (18)

and that p̂Z(z ∣ Q) is marginalization consistent model. Then, the predictive distribution is

p̂(y ∣ Q) = p̂Z(f−1(y ∣ Q) ∣ Q) ⋅ ∣det
df−1(y ∣ Q)

dy
∣ (19)
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Since f is separable, it follows that the Jacobian is diagonal:

df−1(y ∣ Q)
dy

=
d (ϕ−1(y1 ∣ Q1), . . . ϕ−1(y1 ∣ Q1))

d(y1, . . . , yK)
(20)

= diag(dϕ
−1(y1 ∣ Q1)

dy1
, . . . ,

dϕ−1(yK ∣ QK)
dyK

) (21)

Hence, the determinant of the Jacobian is the product of the diagonal elements:

∣det df
−1(y ∣ Q)
dy

∣ = ∏
k=1∶K

∣det dϕ
−1(yk ∣ Qk)

dyk
∣ = ∏

k=1∶K
∣dϕ

−1(yk ∣ Qk)
dyk

∣ (22)

Using this fact, we can integrate the joint density over yk to get the marginal density:

∫ p̂(y ∣ Q)dyk = ∫ p̂Z(f−1(y ∣ Q) ∣ Q) ⋅ ∣det
df−1(y ∣ Q)

dy
∣dyk ⊳ (7)

= ∫ p̂Z(f−1(y ∣ Q) ∣ Q) ⋅ ∏
k=1∶K

∣dϕ
−1(yk ∣ Qk)

dyk
∣dyk ⊳ (22)

= (∏
l≠k
∣dϕ

−1(yk ∣ Qk)
dyk

∣) ⋅ ∫ p̂Z(f−1(y ∣ Q) ∣ Q) ⋅ ∣
dϕ−1(yk ∣ Qk)

dyk
∣dyk

= (∏
l≠k
∣dϕ

−1(yk ∣ Qk)
dyk

∣) ⋅ ∫ p̂Z(z ∣ Q)dzk ⊳ transf.-thm

= (∏
l≠k
∣dϕ

−1(yk ∣ Qk)
dyk

∣) p̂Z(z−k ∣ Q−k) ⊳ (5)

= p̂Z(z−k ∣ Q−k) ∣det
df−1(y−k ∣ Q−k)

dy−k
∣ ⊳ (22)

= p̂(y−k ∣ Q−k) ⊳ (7)

A.2 PROOF OF LEMMA 2

Proof. Consider a mixture model of the form

p̂(y ∣ Q,X) ∶=
D

∑
d=1

wd(X)p̂d(y ∣ Q,X) (23)

satisfying the conditions from Lemma 2, i.e. the component models p̂d satisfy the requirements R1-R3
and the weight function w∶Seq(X )→∆D is permutation invariant with respect to X .

1. p̂ satisfies R1: By construction of the mixture model, it has the same domain and codomain
as the component models.

2. p̂ satisfies R2: Let π ∈ S∣Q∣ and τ ∈ S∣X ∣, then

p̂(y ∣ Qπ,Xτ) =
D

∑
d=1

wd(Xτ)p̂d(y ∣ Qπ,Xτ)

=
D

∑
d=1

wd(X)p̂d(y ∣ Q,X) ⊳ permutation invariance of w and p̂d

= p̂(y ∣ Q,X)
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3. p̂ satisfies R3:

∫ p̂(y ∣ Q,X)dyk = ∫
D

∑
d=1

wd(X)p̂d(y ∣ Q,X)dyk

=
D

∑
d=1

wd(X)∫ pd(y ∣ Q,X)dyk

=
D

∑
d=1

wd(X)pd(y−k ∣ Q−k,X) ⊳ p̂d is marginalization consistent

= pY (y−k ∣ Q−k,X)

A.3 PROOF OF THEOREM 2

Proof. Due to Lemma 1, it is sufficient to show that all the component models satisfy the require-
ments R1-R3. Since we use Gaussian Processes as the base distribution, Lemma 1 ensures that each
component model is marginalization consistent, establishing R3. Requirement R1 is by construction.
Finally, permutation invariance R2 can be seen as follows:

First, note that, by Equation (12), it follows that if hOBS is permutation equivariant with respect to
X , and h̃ and h are both permutation equivariant with respect to Q and permutation invariant with
respect to X . Now, let π ∈ S∣Q∣ and τ ∈ S∣X ∣, then, for the d-th component model p̂Yd

(y ∣ Q,X). In
particular, the flow satisfies f−1d (yπ,Qπ,Xτ) = f−1(yπ,hπ

d) = zπ . Therefore:

p̂Yd
(yπ ∣ Qπ,Xτ) = p̂Zd

(f−1(yπ,Qπ,Xτ) ∣ Qπ,Xτ) ⋅ ∣det df
−1(yπ,Qπ,Xτ)

dyπ
∣

= N (f−1(yπ,hπ
d) ∣ µ(hπ

d),Σ(hπ
d)) ⋅ ∣det

df−1(yπ,hπ)
dyπ

∣ ⊳ by remark above

= N (zπ ∣ µ(hπ
d),Σ(hπ

d)) ⋅ ∣det
df−1(yπ,hπ)

dyπ
∣

= N (z ∣ µ,Σ) ⋅ ∣det df
−1(yπ,hπ)
dyπ

∣ ⊳ by permutation invariance of GP

= N (z ∣ µ,Σ) ⋅ ∣det df
−1(y,h)
dy

∣ ⊳ by (22)

= p̂Yd
(y ∣ Q,X)

A.4 LINEAR RATIONAL SPLINES

Linear Rational Splines (LRS) are computationally efficient spline functions Dolatabadi et al. (2020).
Formally, given a set of monotonically increasing points {(um, vm)}m=1∶M called knots, that is
um < um+1 and vm < vm+1, along with their corresponding derivatives {∆m > 0}m=1∶M , then the
LRS transformation ϕ(u) within a bin u ∈ [um, um+1] is:

ϕ(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

αmvm(λm−ũ)+ᾱmv̄mũ
αm(λm−ũ)+ᾱmũ

∶ 0 ≤ ũ ≤ λm

ᾱmv̄m(1−ũ)+αm+1vm+1(ũ−λm)
ᾱm(1−ũ)+αm+1(ũ−λm) ∶ λm ≤ ũ ≤ 1

where ũ = u − um

um+1 − um
∈ [0,1] (24)

Here, λm ∈ (0,1) signifies the location of automatically inserted virtual knot between um and um+1
with value v̄m. The values of λm, αm, ᾱm and v̄m are all automatically derived from the original
knots and their derivatives Dolatabadi et al. (2020). For a conditional LRS ϕ(zk;hd,k, θ), the function
parameters such as width and height of each bin, the derivatives at the knots, and λ are computed
from the conditioning input hd,k and some model parameters θ. θ helps to project hd,k to the function
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Table 3: Statistics of the datasets used in our experiments. Sparsity means the percentage of missing
observations in the time series. N is the total number of observations and K is the number of queries
in our experiments in Section 7.

Name #Samples #Channels Sparsity N K

USHCN 1100 5 77.9% 8 − 322 3 − 6
PhysioNet’12 12,000 37 85.7% 3 − 519 1 − 53
MIMIC-III 21,000 96 94.2% 4 − 709 1 − 85
MIMIC-IV 18,000 102 97.8% 1 − 1382 1 − 79

parameters, and is common to all the variables z1∶K so that the transformation ϕ can be applied for
varying number of variables K. Additionally, we set θ common to all the components as well. Since,
each component has separate embedding for a variable zk (hd,k), we achieve different transformations
in different components for same variable.

In summary, the conditional flow model is separable across the query size f = f1 ×⋯ × fK with

fd(y) ∶= f(y ∣ hd) = (ϕ(y1,hd,1), . . . , ϕ(yK ,hd,K)) (25)

A.5 EFFICIENT COMPUTATION OF GAUSSIAN WITH LOW RANK PERTURBATION

Lemma 3. Given a multivariate Normal distributionN (µ,Σ), where Σ = IK+UUT with U ∈ RK×M ,
and K ≥M , the density of the distribution can be computed in O(M2K) time.

Proof. The density of the distribution is given by:

p(z) = 1

(2π)K/2∣Σ∣1/2 exp(−1
2
(z − µ)TΣ−1(z − µ))

By the matrix determinant lemma, also known as Weinstein–Aronszajn identity, we have det(IK +
UUT ) = det(IM +UTU), and since the determinant of a n × n matrix can be computed in O(n3)
time, we can compute the determinant of Σ in O(M3) ⪯ O(M2K) time.

Moreover, the quadratic term yTΣ−1y can also be computed in O(M2K) as follows: First, by the
matrix inversion lemma, also known as Woodbury identity, (IK+UUT )−1 = IK−U(IM+UTU)−1UT .
Hence

yTΣ−1y = yT (IK −U(IM +UTU)−1UT )y = ∥y∥2 − vT (IM +UTU)−1v
where v = UT y ∈ RM costs O(M ⋅ K), the reduced matrix Σ′ = IM + UTU can be created in
O(M2K) and the quadratic term vT (Σ′)−1v can be computed in O(M3).

B DATASETS

4 real-world datasets are used in the experiments.

USHCN Menne et al. (2015). This is a climate dataset consisting of 5 climate variables such as
daily temperatures, precipitation and snow measured over 150 years at 1218 meteorological stations
in the USA. Following De Brouwer et al. (2019); Yalavarthi et al. (2024b), we selected 1114 stations
and an observation window of 4 years from 1996 until 2000.

PhysioNet2012 Silva et al. (2012). This physiological dataset consists of the medical records of
12,000 patients who are admitted into ICU. 37 vitals are recorded for 48 hrs. Following the protocol
of Yalavarthi et al. (2024a); Che et al. (2018), dataset consists of hourly observations in each series.

MIMIC-III Johnson et al. (2016). This is also a physiological dataset. It is a collection of readings
of the vitals of the patients admitted to ICU at Beth Israeli Hospital. Dataset consists of 18,000
instances and 96 variables are measured for 48 hours. Following De Brouwer et al. (2019); Biloš
et al. (2021); Yalavarthi et al. (2024b) observations are rounded to 30 minute intervals.
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Table 4: Comparing models w.r.t. CRPS score on marginals. Lower the better.

Model USHCN PhysioNet’12 MIMIC-III MIMIC-IV

GRU-ODE 0.313 ± 0.012 0.278 ± 0.001 0.308 ± 0.005 0.281 ± 0.004
Neural-flows 0.306 ± 0.028 0.277 ± 0.003 0.308 ± 0.004 0.281 ± 0.004
CRU 0.247 ± 0.010 0.363 ± 0.002 0.410 ± 0.005 OOM
TACTiS-2 0.200 ± 0.023 0.363 ± 0.005 0.410 ± 0.009 0.366 ± 0.008
ProFITi 0.183 ± 0.009 0.268 ± 0.002 0.295 ± 0.002 0.226 ± 0.002
ProFITi-marg 0.182 ± 0.007 0.271 ± 0.003 0.319 ± 0.003 0.279 ± 0.012

moses (ours) 0.220 ± 0.019 0.260 ± 0.002 0.296 ± 0.005 0.245 ± 0.010

Table 5: Comparing models w.r.t. MSE. Lower the better.

Model USHCN PhysioNet’12 MIMIC-III MIMIC-IV

GRU-ODE 0.410 ± 0.106 0.329 ± 0.004 0.479 ± 0.044 0.365 ± 0.012
Neural-Flows 0.424 ± 0.110 0.331 ± 0.006 0.479 ± 0.045 0.374 ± 0.017
CRU 0.290 ± 0.060 0.475 ± 0.015 0.725 ± 0.037 OOM
GraFITi 0.256 ± 0.027 0.286 ± 0.001 0.401 ± 0.028 0.233 ± 0.005
Tripletformer+ 0.349 ± 0.131 0.293 ± 0.018 0.547 ± 0.068 0.369 ± 0.030
TACTiS-2 0.381 ± 0.127 0.474 ± 0.006 0.759 ± 0.071 0.578 ± 0.034
ProFITi 0.321 ± 0.041 0.299 ± 0.007 0.495 ± 0.075 0.268 ± 0.007
ProFITi-marg 0.308 ± 0.061 0.305 ± 0.007 0.548 ± 0.063 0.389 ± 0.015

moses (ours) 0.411 ± 0.099 0.307 ± 0.006 0.517 ± 0.057 0.342 ± 0.028

MIMIC-IV Johnson et al. (2021). The successor of the MIMIC-III dataset. Here, 102 variables
from patients admitted to ICU at a tertiary academic medical center in Boston are measured for 48
hours. Following De Brouwer et al. (2019); Biloš et al. (2021); Yalavarthi et al. (2024b) observations,
are rounded to 1 minute intervals.

Blast distribution (toy dataset). Blast distribution is a bivariate distribution which is created as
follows:

z ∼ N ([0
0
] , [1 1

1 2
])

y = sign(z)⊙ z ⊙ z

Circle (toy dataset). Circle is also a bi-variate distribution.

z ∼ N (0, I2)

y = z

∥z∥2
+ 0.05 ⋅N (0, I2)

C ADDITIONAL EXPERIMENTS

C.1 COMPARING FOR MARGINALS IN TERMS OF CRPS

We compare with CRPS score in Table 4, a widely used evaluation metric in time series forecasting.
We see that moses outperforms all the consistent models. It performs better than ProFITi-marg in 3
out of 4 dataset. For ProFITi, ProFITi-marg and moses, we sampled 1000 instances and computed
the CRPS. Due to marginal inconsistency in ProFITi, the CRPS scores of ProFITi are vastly different
from that of ProFITi-marg in PhysioNet’12, MIMIC-III and MIMIC-IV datasets.

C.2 COMPARING FOR POINT FORECASTING

Here, we would like to see how the models compare with point forecasting. We use mean squared
error as the evaluation metric. Here, we also compare with GraFITi Yalavarthi et al. (2024a), state-of-
the-art point forecasting model for irregularly sampled time series. Results are presented in Table 5.
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Table 6: Experiment on varying observation and forecast horizons. Evaluation metric-njNLL, Lower
the better

36/12 24/24 12/36

NeuralFlows 0.709 ± 0.483 1.097 ± 0.044 1.436 ± 0.187
ProFITi -0.768 ± 0.041 -0.355 ± 0.243 -0.291 ± 0.415

moses -0.315 ± 0.016 -0.298 ± 0.027 -0.063 ± 0.049

Table 7: Comparing for Energy Score. Lower the better

USHCN PhysioNet’12 MIMIC-III MIMIC-IV

NeuralFlows 0.661 ± 0.059 1.691 ± 0.001 1.381 ± 0.033 0.982 ± 0.009
ProFITi 0.452 ± 0.044 0.879 ± 0.303 1.606 ± 0.168 0.808 ± 0.003

moses 0.552 ± 0.044 1.599 ± 0.013 1.353 ± 0.033 0.906 ± 0.029

While GraFITi continues to be the best, ProFITi is the second best. moses has similar performance
as ProFITi in PhysioNet’12 and MIMIC-III datasets. Both GraFITi and ProFITi are inconsistent
models.

Interesting to observe that moses is significantly better than Tripletformer+ in MIMIC-III and
MIMIC-IV datasets and have similar results in USHCN and PhysioNet’12 datasets. Also, it is better
than existing consistent models GRU-ODE De Brouwer et al. (2019), Neural Flows Biloš et al. (2021)
and CRU Schirmer et al. (2022). Note that, it is often observed in the literature that models for
uncertainty quantification quite often suffer from somewhat worse point forecasts (Lakshminarayanan
et al., 2017; Seitzer et al., 2021).

C.3 EXPERIMENT ON VARYING OBSERVATION AND FORECAST HORIZONS

We would like to see if moses is scalable to long observationa and forecast horizons. For, we
performed an experiment on varying length observation and forecasting horizons on Physionet’12
dataset and compared against the published results from (Yalavarthi et al., 2024b) in Table 6. The
observation and forecasting horizons are: {(36h, 12h), (24h, 36h), (12h, 26h)}. We see that moses
performs better than best consistent model Neural Flows for all the observation and forecasting
horizons. However, ProFITi is the best performing model.

We stress that ensuring that a model is marginalization-consistent and allows for tractable marginals
imposes significant restrictions on the modeling, which may lead to a slight decrease in performance
when predicting the joint distribution.

C.4 COMPARING FOR ENERGY SCORE

The Energy Score between the ground truth y and predicted distribution p̂Y is computed as:

ES(y, p̂Y ) ∶= E
y′∼p̂Y

∥y − y′∥p2 −
1

2
E

y′,y′′∼p̂Y

∥y′ − y′′∥p2, (26)

where ∥ ⋅ ∥2 denotes the Euclidean norm and p ∈ (0,2) is a parameter. In our evaluation, we set p = 1.
Marcotte et al. (2023) demonstrated that the Energy Score is not a reliable metric for evaluating
multivariate distributions. Additionally, it suffers from the curse of dimensionality, as it requires NK

samples, where K is the number of variables and N is the number of samples required to accurately
estimate a univariate distribution.

However, since many regularly sampled, fully observed multivariate time series probabilistic forecast-
ing models use the Energy Score as an evaluation metric, we examine how moses compares to the
best-performing inconsistent multivariate probabilistic model, ProFITi, and the consistent univariate
probabilistic model, NeuralFlows in Table 7. Our results show that moses outperforms NeuralFlows
across all datasets. As shown by the njNLL metric in Table 1, ProFITi is the best-performing model,
outperforming moses in 3 out of 4 datasets.
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Table 9: Comparing NLL values for density estimation of tabular data. Lower the better, best results
in bold, second best in italics.

Model power gas miniboone hepmass

MADE Germain et al. (2015) 3.08 ± 0.03 -3.56 ± 0.04 15.59 ± 0.50 20.98 ± 0.02
Real NVP Dinh et al. (2017) 0.02 ± 0.01 -4.78 ± 1.80 13.55 ± 0.49 19.62 ± 0.02
MAF Papamakarios et al. (2017) -0.14 ± 0.01 -9.07 ± 0.02 11.75 ± 0.44 17.70 ± 0.02

EinsumNet Sidheekh et al. (2023) -0.20 ± 0.01 -3.57 ± 0.08 35.93 ± 0.06 22.79 ± 0.05
Einsum+LRS Sidheekh et al. (2023) -0.36 ± 0.01 -4.79 ± 0.04 34.21 ± 0.01 22.46 ± 0.01

moses -0.10 ± 0.01 -5.87 ± 0.27 22.66 ± 2.08 23.95 ± 0.20

C.5 ABLATION STUDY.

Table 8: Ablation study on PhysioNet2012

Model njNLL (↓)

moses -0.491 ± 0.041
moses–f 1.063 ± 0.002
moses–COV -0.308 ± 0.024
moses–w -0.451 ± 0.038
moses (1) -0.493 ± 0.029

Using PhysioNet2012, we show the importance of different model components. As summarized in
Table 8, the performance is reduced by removing the flows (moses − f ) which is same as GMM. It
is expected that normalizing flows are more expressive compared to simple mixture of Gaussians.
On the other hand, by using only isotropic Gaussian as the base distribution (moses − COV) model
performance worsened. Similarly, parameterizing the components weights have a slight advantage
over fixing them to 1/D with D being the number of components. One interesting observation is even
using single component (moses(1)) gives similar results compared to mixture of such components.
This could be because the dataset we have may not require multiple components. We note that we
have D = 1 in our hyperparameter space, and we select the best D based on validation dataset.

C.6 RESULTS FOR UNCONDITIONAL DENSITY ESTIMATION ON TABULAR DATA

A family of models known as Probabilistic Circuits (Choi et al., 2020) has been shown to support both
marginal tractability and marginalization consistency, making them suitable for density estimation
with a fixed number of variables. Therefore, comparing moses against these models is interesting
for evaluating its effectiveness on similar tasks.

Specifically, we compare moses with two circuit-based models—EinsumNet (Choi et al., 2020)
and EinsumNet+LRS (Sidheekh et al., 2023)—as well as with other well-known density estimation
models. Unlike the above models, moses is not restricted to a fixed number of variables.

The comparison uses published results from (Sidheekh et al., 2023) across four tabular datasets:
power, gas, miniboone, and hepmass. We follow the same data-splitting protocol used in previous
work (Papamakarios et al., 2017; Sidheekh et al., 2023). Since this is not conditional density
estimation, trainable parameters include univariate transformations, mixture weights w, and the base
distribution parameters (µ,Σ).
Table 9 shows the Negative Log-Likelihood (NLL) results for all models. While MAF achieves the
best overall performance, moses outperforms Real NVP on 2 out of the 4 datasets and exceeds
the best decomposable circuit model, EinsumNet+LRS, on another 2 datasets. This demonstrates
moses’s competitive performance, especially given that it is not restricted to a fixed variable count,
unlike the other models.
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D SIMPLEQUATIONS

log-likelihood-term = (α − 1) log(y) + (β − 1) log(1 − y)
norm factor = log(γ(α)) + log(γ(β)) − log(γ(α + β))

loss = log-likelihood-term − norm factor

log-likelihood-term = −(logit(y) − µ)2
2σ2

norm factor = 0.5 (log(2π) + log(σ2)) + log(y) + log(1 − y)
loss = log-likelihood-term − norm factor

weighted log-likelihood = ∑
N
kw=1 clicks(kw) ⋅ log p̂CNR(cnr ∣ kw)

∑N
kw=1 clicks(kw)

(27)

log-likelihood-term = −(log(y) − µ)2
2σ2

norm factor = 0.5 (log(2π) + log(σ2)) + log(y)
loss = log-likelihood-term − norm factor

log-likelihood-term = −(y − µ)
2

2σ2

norm factor = 0.5 (log(2π) + log(σ2))
loss = log-likelihood-term − norm factor

∑N
kw=1 clicks(kw) ⋅ (cnr log( ˆcnr) + (1 − cnr) log(1 − ˆcnr))

∑N
kw=1 clicks(kw)

(28)

¿
ÁÁÀ∑

N
kw=1 clicks(kw) ⋅ (cnr − ˆcnr)2

∑N
kw=1 clicks(kw)

(29)
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