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Abstract

Building accurate and generalizable world models requires aligning an agent’s
inductive biases with the structure of the environments it inhabits. Realistic envi-
ronments are inherently multi-task, containing both shared global dynamics and
context-specific variations that differ across tasks. We argue that a world model
should reflect this structure by efficiently separating context-specific dynamics
while integrating shared regularities that support generalization. As a first step
towards this, we introduce Context-Aware World Models (CaWM), which align
the agent’s world model with the multi-task structure of the environment. In con-
trast to existing model-based approaches that assume access to ground-truth task
labels, CaWM learns to infer latent task contexts directly from its interactions with
the environment via a self-supervised objective, and uses these inferred contexts
to modulate the world-model representations, enabling task-agnostic control. To
benchmark CaWM, we present Multi-FoE, a multi-task visual foraging environment
with egocentric partial observations and boundary-free task switching. Empirically,
CaWM achieves higher performance and success rate compared to context-free
baselines, and approaches the performance of an oracle with ground-truth task
labels.

1 Introduction

Building world models that generalize across tasks remains a central challenge in model-based control
and reinforcement learning. Most existing approaches implicitly assume that the agent operates in
a single-task environment or that the identity of the underlying task is externally provided through
ground-truth labels or oracle embeddings [Kanitscheider et al.,[2021} [Hansen et al.,[2023| [Hafner
et al.l 2025]]. Yet realistic environments rarely provide such supervision. Instead, they exhibit latent
structure: stable global dynamics shared across tasks, intertwined with context-dependent variations
that must be inferred directly from interaction [Wang et al.| 2017, |Duan et al., 2016} Rakelly et al.,
2019]. World models that conflates these sources of variation risk to either overfit to individual
patterns within individual tasks or collapse into an averaged dynamics model that fails to adapt to
context-specific changes [Humplik et al., 2019, |Yu et al., [2020].

We argue that world models that are effective in task-agnostic control must explicitly model latent
context. In particular, the agent should autonomously infer the task context from its own interaction
trajectory and use this inferred context to modulate both its internal state dynamics and its control
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Figure 1: (a) Context-Aware World Model (CaWM); context inference module infers a task context via self-
supervised learning and guides context-aware learning trained with a self-supervised prediction loss, an intrinsic
reward, and an external task reward (if available). (b) lllustration of an example MultiFoE task. The red frame
depicts the foveated observation centered on the agent’s current gaze location (red dot). The blue frame shows the
subsequent observation following the selected next action (blue dot). The purple square outlines the egocentric
action set available to the agent. The green dot indicates the hidden target zone the agent must discover. (c-d)
Comparative results for CaWM and baseline models.

policy. This mirrors how biological systems flexibly adjust predictions and strategies when envi-
ronmental conditions shift 2010]|. Building on this motivation, we propose Context-Aware
World Models (CaWM), that infer task contexts through self-supervised learning on its interaction
data to enable context-aware world modeling and task-agnostic control.

To evaluate CaWM, we introduce Multi-FoE, a visual foraging benchmark environment consisting of
20 distinct visual foraging tasks. Empirically, CaWM consistently surpasses context-free baseline
and approaches the performance of an oracle with access to ground-truth task labels, highlighting its
ability to achieve reliable task-agnostic control.

2 Method

Our model architecture (Figure[T]a) consists of two components: a context inference module and an
context-aware world model.

Context Inference Module: At the beginning of each episode, the context encoder receives the
initial observation (0g) and infers a latent embedding of the task context. This embedding is used as a
top-down prior that conditions the world model. Note that many task structures cannot be separated
from a single observation alone, in which case, information about dynamics, e.g., (0¢, a¢, 74, 0441)
(potentially sampled from a replay buffer), should be provided to the context inference module.
The context inference module can be trained via a joint-embedding self-supervised learning (SSL)
algorithm [Chen et all, 2020, [Grill et al., Bardes et al., 2022} [Caron et al.}[2021]]. Such SSL algorithms
require pairs of data points with invariant features (i.e., “positive” pairs). In our setup, the pairs
are (0o, 00,;) where i and j denote two different episode trajectories. To obtain these (0g i, 00,;)
pairs, we leverage the parallel rollouts naturally generated by proximal-policy optimization (PPO)

Schulman et all,[2017], the RL algorithm we employ for learning a policy.

Specifically, we use DINO [Caron et al,[2021] as our SSL algorithm, which projects the context
encoder outputs to cluster prototypes and minimizes a self-distillation cluster-contrastive objective




[Caron et al.,[2021]] to enforce invariances to the pair of representations corresponding to the same
task:
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where m and n correspond to indices of two episode trajectories from a shared task, Pyygent and
Preacher are probability assignments over a set of learned cluster prototypes, and H (-, -) denotes
cross-entropy.

Context-Aware World Model: This module consists of a recurrent predictive world model (WM)
based on BYOL-Explore [|Guo et al.,[2022] conditioned on inferred context c;,s;. At each step t, it
updates its belief state using current latent observations z;, actions a., and the task context c;qsk:

bi = ho(bi—1, ar, 2t Crask)
which is passed to the task policy. From b,, the WM also performs open-loop rollouts of latent

dynamics of length K using its context-conditioned dynamics model, with predictions (2;) trained
via a BYOL-style SSL loss against encoder targets (EMA (2;4)):
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Following BYOL-Explore [[Guo et al., 2022], we define the world model uncertainty at step ¢ as the
sum of open-loop prediction errors for all predictions that include the transition (o¢, at, 0p41):

Et = Z ES’SL,t+1<paq)7

pg=t+1

which accumulates all the losses corresponding to the world-model uncertainties relative to the
observation o 1. The intrinsic reward is proportional to ¢, and we follow the reward normalization
scheme of |Guo et al.|[2022]] to normalize it.

We use PPO to train the task policy and maximize the combined reward:

re =1+ rz’WM, 3)

. . i WM . . . ..
where r§* is the external task reward (when available) and ;" is the normalized intrinsics reward.

Additional implementation details of the architecture and its components are provided in Appendix

3 Experiments

3.1 Multi-FoE Benchmark

To evaluate CaWM in a multi-task control setting, we desing Multi-task Foveated Observation
Environment (Multi-FoE), which is a multi-task visual foraging setup inspired by primate studies
[Csorba et al.,2022]. The environment consists of 20 distinct task contexts (see Appendix [B]for all
task contexts and corresponding target zones), each defined by a 1200 x 800 pixels natural scene
discretized into a 22 x 33 spatial grid (an example task setup is shown in Figure[T]b). Within each
scene, a hidden target zone is placed at a grid location. At every time step, the agent receives an
84 x 84 pixels foveated image centered on its current gaze location (red frame) and selects its next
fixation (blue frame) from a 9 x 9 grid surrounding its center of gaze (purple square). The chosen
saccadic action ( referred to as the action) corresponds to the displacement between consecutive gaze
centers, enabling the agent to explore the scene through sequential, gaze-contingent observations that
approximate the dynamics of active visual foraging in primates.

This setup also imposes a strict interaction budget per episode (25 steps, corresponding to ~ 5
seconds of visual search in humans [Najemnik and Geisler, 2008[]). The limited horizon requires



the agent to actively select informative view points, and learn a control policy efficiently. Episodes
terminate when the hidden target is located or the interaction budget is exhausted. Importantly,
in this benchmark, task contexts alternate unpredictably between episodes without boundary cues,
eliminating explicit supervision and requiring on-the-fly context inference for effective adaptation.
Together, Multi-FoE brings core principles of embodied active vision into a controlled multi-task
environment and offers a benchmark for evaluating agents under biologically grounded, realistic
constraints. Complete details are provided in Appendix [B]

3.2 Baselines and Evaluation Protocol

To isolate the contribution of our context inference mechanism, we compare CaWM against three
baselines (Figure[Tlc): (1) BYOL-Explore, which serves as a context-independent WM baseline,
(2) an oracle variant, where ground-truth task labels are embedded as context, (3) CaWM variant
that replaces the context embeddings with random Gaussian noise. Each seed was trained for 4, 000
episodes, with each episode capped at 25 saccadic steps, consistent with the baseline setting. At
the beginning of each episode, the gaze was initialized at a random location on the spatial grid. An
episode is terminated either when the agent saccades through the hidden target zone or when the
maximum number of saccades is reached. Performance is quantified using two behavioral metrics: the
average number of steps required to locate the target zone (efficiency) and the success rate (proportion
of episodes in which the target was found). To calculate these metrics, we evaluated the model on
all 20 task contexts every 10 episodes and also at the end of training. We report our results over six
random seeds.

3.3 Results

Figure [T}d shows the evaluation performance throughout learning and Figure [TIjc provides the
evaluation results after 4, 000 learning episodes. Across all 20 task contexts, CaWM consistently
outperforms the two baselines, achieving higher efficiency and success rate in locating hidden target
zones. Notably, CaWM’s performance matches that of the oracle model, demonstrating that it can
infer task context solely from its own experience and without any supervision. Taken together, tthese
findings show that CaWM offers a principled approach to context-aware world modeling, enabling
agents to infer latent task structure from raw interaction and adjust their internal dynamics to support
generalizable multi-task control.

4 Conclusion

We introduced Context-Aware World Models (CaWM), a framework for task-agnostic control that
learns to infer latent task context directly from interaction and uses this context to modulate its latent
dynamics for multi-task control. Our model departs from conventional world-model pipelines by
explicitly decomposing environment structure into shared dynamics and latent task-specific variations,
learned entirely through self-supervision. To evaluate this capability, we proposed Multi-FoE, a
biologically inspired active-vision benchmark with boundary-free task switching, strict interaction
limits and ego-centric partial observations. Across all tasks, CaWM consistently outperforms context-
free world models and approaches oracle performance, demonstrating that reliable context inference
is achievable without external supervision. Looking ahead, promising future directions include
equipping CaWM with latent-planning and task-transfer capabilities, as well as scaling it to larger,
more diverse multi-task benchmarks to evaluate its adaptability and robustness at greater scale.
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A CaWM Implementation Details

For DINO, we use a ResNet-18 encoder pre-trained on ImageNet-100, and an MLP projector with
512-1024-1024 dimensions and RelLU activations and batch normalization.

For BYOL-Explore, we use a non-pretrained ResNet-18, a learnable affine action embedding of
128-d, and an LSTM with a hidden size of 512-d. For policy head, we use PPO [Schulman et al.;
2017] with linear actor and critic heads that receive LSTM hidden states as inputs. For PPO training,
we use 5 PPO training epochs, yppo = 0.99, clip ratio of 0.2, value function coefficient of 0.5,
target KL divergence of 0.015, Agar = 0.95, and entropy coefficient of 0.01. The sequence length
is set to 16 with a batch size of 128. For training, we use AdamW optimizer with a learning rate of
3e — 4 and a weight decay of 0.0001 for all components.

B Multi-FoE Benchmark Details

B.1 Benchmark Design and Biological Motivation

Multi-FoE combines concepts from embodied active vision with the core constraints of real-world
learning. Its design is directly inspired by primate studies of visual foraging [Chukoskie et al.|
2013 |Csorba et al., [2022]], and reflects four key principles fundamental to natural intelligence —
active perception, context inference, goal inference, and sample-efficient learning — each of which
introduces specific challenges that current models struggle with. Below, we outline these principles
and their neuroscientific grounding to highlight the biological plausibility and task realism that
Multi-FoE brings to multi-task agent evaluation.

Active perception. In biological agents, perception is not a passive process but an active form
of learning. Primates reduce uncertainty about their environment by selectively sampling sensory
inputs that are most informative for their goals, a core idea in active learning theory [Findlay and
Gilchrist, 2003} |Gottlieb and Oudeyer, 2018]]. Rather than processing the world holistically, agents
continuously decide what to observe next, shaping how they learn and what they learn from.

In primate embodied vision, this principle is realized through foveation and saccadic eye movements
[Hayhoe and Ballard, 2005, |Yarbus, 2013]]. Because high-acuity vision is confined to a small region
of the retina (the fovea), primates construct a coherent understanding of their surroundings by actively
moving their eyes to sample the world. Each fixation captures a small, high-resolution snapshot of the
scene, while rapid saccades shift gaze to new locations. Over time, the visual system integrates these
successive glimpses into a coherent representation [Melcher and Colby} 2008, [Friston et al., 2012].
This process effectively turns perception into a form of sequential inference, where each movement
reflects a prediction about which observation will be most useful next.

Multi-FoE captures this principle by restricting agents to foveated, egocentric observations and short-
range saccade actions. Success therefore depends on learning how to look: selecting informative
viewpoints, integrating partial observations over time, and constructing coherent internal world
models from sparse, sequential glimpses. This tests active perception capabilities that conventional
pixel-based RL benchmarks ignore.

Boundary-free task switching and context inference. Real-world tasks rarely announce when
one task ends and another begins; instead, contextual changes must be inferred from subtle shifts
in sensory observations. For example, while foraging for food in a cluttered scene, a primate can
abruptly switch goals if a predator appears or a conspecific competes for the same resource. In such
moments, survival depends on the capacity to detect context transitions on the fly and adapt behavior
without explicit external signals.

Multi-FoE reproduces this boundary-free multi-task setting by randomly interleaving tasks without
any explicit signal to the agent. To perform well, an agent must infer the current task from its
interactions alone, maintain task-specific knowledge over episodes, and flexibly adapt its strategy.

Unknown goal states. Biological agents frequently pursue goals whose exact appearance is un-
known. For example, when humans search for “the keys” or “something edible,” they rely on abstract
descriptions and must actively test hypotheses about what might constitute the target. This type of



goal-directed search where the agent is uncertain about what success looks like, is widespread in
natural behavior but largely absent from standard RL tasks.

Multi-FoE operationalizes similar principle. Each task defines a hidden target zone, but the agent
is never given a direct template of the target state. Instead, it must efficiently explore under strict
interaction budgets to discover the target and obtain reward. The problem therefore becomes not
simply where to search, but what to search for.

Sample-efficient learning. Biological agents learn under strict interaction limits. Humans and
animals rarely experience identical situations repeatedly; instead, they must generalize from sparse,
one-shot, or few-shot exposures. Children, for example, can learn new visual categories from just a
handful of examples [Lake et al., 2015, and primates rapidly adapt their gaze strategies quickly when
goals change [Hayhoe and Ballard, 2005]]. In contrast, artificial agents typically require millions of
interaction steps and extensive repeated exposure to the same environments.

Multi-FoE enforces sample efficiency by imposing strict limits on both the number of steps per
episode, thereby constraining the agent’s exposure to each task.

B.2 Benchmark Formalization
We formalize our benchmark as a partially observable Markov decision process (POMDP).

Observations. At time step ¢, the agent occupies a location ¢, on a discretized 33 x 22 grid over a
natural image. The observation function returns a local 84 x 84 crop centered at ¢;:

O = O(Snft)’

where s; is the underlying image state. This enforces egocentric partial observability, as the agent
never receives the full image in a single step.

The discretization of the image was defined such that each grid cell precisely corresponds to the target
zone size employed in the human experiment. The images used and their corresponding target zones
are shown in Figure 2]

Actions. The action space consists of short-range egocentric movements defined on a 9 x 9
neighborhood centered on the current location:

ar € A= {(—4,—4),...,(0,0),..., (4,4},

where each action shifts the agent’s gaze within the image grid. This mirrors saccadic eye movements
in primates.

Rewards. Each task 7 defines a hidden target zone z, corresponding to a single grid cell. A reward
is given if the agent’s movement from location ¢; to ;11 passes through the target zone:

r - —|—1, if Line(ﬁt, ét.}rl) Nzr 7é @,
1700,  otherwise.

That is, the agent is rewarded not only when its new location lands inside the target zone, but also if
the straight-line trajectory of its action intersects it. Episodes terminate immediately upon receiving a
reward.

Transition dynamics. Given s; = (7,4;) and a; = (Ax, Ay) € A, the next location is ¢;11 =
IIg(¢; + at), where Ilg clips to the grid boundaries. The task 7 remains fixed within an episode
and changes only between episodes according to the interleaving policy described below. Thus
P(St+1 | 8¢, a) is deterministic over ¢;; and constant in 7 within an episode.

Boundary-free task interleaving and step budget During training, episodes are randomly sampled
from a pool of 20 tasks with no boundary cues or signals indicating when the active task has changed.
The agent must infer the current task context entirely from ongoing interaction. Each training episodes
are limited to 25 environment steps. This corresponds to roughly 5 seconds of visual search time
[Najemnik and Geisler, 2008]].



Figure 2: All of the task context scenes used in the benchmark and their corresponding hidden target zones (red
dots).
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