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ABSTRACT

The deployment of Reinforcement Learning (RL) in real-world applications is
constrained by its failure to satisfy safety criteria. Existing Safe Reinforcement
Learning (SafeRL) methods, which rely on cost functions to enforce safety, often
fail to achieve zero-cost performance in complex scenarios, especially vision-only
tasks. These limitations are primarily due to model inaccuracies and inadequate
sample efficiency. The integration of the world model has proven effective in
mitigating these shortcomings. In this work, we introduce SafeDreamer, a novel
algorithm incorporating Lagrangian-based methods into world model planning
processes within the superior Dreamer framework. Our method achieves nearly
zero-cost performance on various tasks, spanning low-dimensional and vision-only
input, within the Safety-Gymnasium benchmark, showcasing its efficacy in balanc-
ing performance and safety in RL tasks. Further details can be found in the code
repository: https://github.com/PKU-Alignment/SafeDreamer.

1 INTRODUCTION

A challenge in the real-world deployment of RL agents is to prevent unsafe situations (Feng et al.,
2023; Ji et al., 2023a). SafeRL proposes a practical solution by defining a constrained Markov
decision process (CMDP) (Altman, 1999) and integrating an additional cost function to quantify
potential hazardous behaviors. In this process, agents aim to maximize rewards while maintaining
costs below predefined constraint thresholds. Several remarkable algorithms have been developed on
this foundation (Achiam et al., 2017; Yang et al., 2022; Dai et al., 2023; Guan et al., 2024).

However, with the cost threshold nearing zero, existing Lagrangian-based methods often fail to
meet constraints or meet them but cannot complete the tasks. Conversely, by employing an internal
dynamics model, an agent can effectively plan action trajectories that secure high rewards and
nearly zero costs (González et al., 2015). This underscores the significance of dynamics models
and planning in such contexts. However, obtaining a ground-truth dynamics model for planning in
complex scenarios like vision-only autonomous driving is impractical (Li et al., 2022). Additionally,
the high expense of long-horizon planning forces optimization over a finite horizon, yielding locally
optimal and unsafe solutions. To fill such gaps, we aim to answer the following question:

How can we develop a safety-aware world model to balance long-term rewards and costs of agent?

Autonomous Intelligence Architecture (LeCun, 2022) introduces a world model and incorporates costs
that reflect the agent’s level of discomfort. Subsequently, Hogewind et al. (2022); As et al. (2022);
Jayant & Bhatnagar (2022) offer solutions to ensure cost and reward balance via the world model.
However, these methods fail to realize nearly zero-cost performance across several environments due
to inaccuracies in modeling the agent’s safety in current or future states. In this work, we introduce
SafeDreamer (see Figure 1a), which integrates safety planning and the Lagrangian method within a
world model to balance errors between cost models and critics. A detailed comparison with various
algorithms can be found in Table 1. In summary, our contributions are:

• We present the online safety-reward planning algorithm (OSRP) (as shown in Figure 1b) and
substantiate the feasibility of using online planning within the world model to satisfy constraints in
∗Equal Contribution. �Corresponding Author. Work done when Weidong Huang visited Peking University.
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Figure 1: The Architecture of SafeDreamer. (a) illustrates all components of SafeDreamer, which
distinguishes costs as safety indicators from rewards and balances them using the Lagrangian method
and a safe planner. The OSRP (b) and OSRP-Lag (c) variants execute online safety-reward planning
(OSRP) within the world model for action generation, especially OSRP-Lag integrates online planning
with the Lagrangian approach to balance long-term rewards and costs. The BSRP-Lag variant of
SafeDreamer (d) employs background safety-reward planning (BSRP) via the Lagrangian method
within the world model to update a safe actor.

vision-only tasks. In particular, we employ the Constrained Cross-Entropy Method (Wen & Topcu,
2018) in the planning process.

• We integrate Lagrangian methods with the safety-reward online and background planning within
the world model to balance long-term reward and cost. This gives rise to two algorithms, OSRP-Lag
and BSRP-Lag, as depicted in Figure 1c and 1d.

• SafeDreamer handles both low-dimensional and visual input tasks, achieving nearly zero-cost per-
formance in the Safety-Gymnasium benchmark. We further illustrate that SafeDreamer outperforms
competing model-based and model-free methods within this benchmark.

2 RELATED WORK

Safe Reinforcement Learning SafeRL aims to manage optimization objectives under constraints
(Altman, 1999). Achiam et al. (2017) introduced a general-purpose policy search algorithm focusing
on iterative adherence to constraints, albeit with high computational costs due to second-order
methods. Yang et al. (2022) deliver superior results by mitigating approximation errors inherent
in Taylor approximations and inverting high-dimensional Fisher information matrices. Sootla et al.
(2022b) introduces Sauté MDPs, which eliminate safety constraints by incorporating them into the
state-space and reshaping the objective. This approach satisfies the Bellman equation and advances
us toward solving tasks with constraints that are almost surely met. Tasse et al. (2023) investigated
optimizing policies based on the expected upper bound of rewards in unsafe states. However, due
to the inherent lack of robustness in the policies, these SafeRL methods struggle to cope with the
randomness of the environment and fail to achieve zero violations, even when the cost limit is set to
zero. He et al. (2023) proposed AutoCost that automatically identifies well-defined cost functions
crucial for achieving zero violation performance. From the perspective of energy functions, Ma
et al. (2022a) simultaneously synthesizes energy-function-based safety certificates and learns safe
control policies, without relying on prior knowledge of control laws or perfect safety certificates.
Despite these advances, our experiments reveal that the convergence of safe model-free algorithms
still requires substantial interaction with the environment, and model-based methods can effectively
boost sample efficiency. Recently, SafeRL has been widely used in the safety alignment of large
language models (e.g., Safety Layer (Ji et al., 2024a), PPO-Lagrangian (Dai et al., 2024)).

Safe Model-based RL Model-based RL approaches (Polydoros & Nalpantidis, 2017) serve
as promising alternatives for modeling environment dynamics, categorizing into online plan-
ning—utilizing the world model for action selection (Hafner et al., 2019b; Hansen et al., 2022), and
background planning—leveraging the world model for policy updates (Hafner et al., 2019a). Notably,
methods like MPC exemplify online planning by ensuring safety action generation (Camacho et al.,
2007; Koller et al., 2018; Wabersich & Zeilinger, 2021; Liu et al., 2020; Zwane et al., 2023), though
this can lead to short-sighted decisions due to the limited scope of planning and absence of critics.
Recent progress seeks to embed terminal value functions into online model planning, fostering
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Table 1: Comparison to prior works. We compare key components of SafeDreamer to prior
model-based and model-free algorithms. Predominantly, contemporary algorithms are tailored for
low-dimensional input, while only a subset supports vision input. Our approach accommodates
both input modalities. Moreover, Lagrangian-based and planning-based constitute two predominant
strands of SafeRL algorithms, which we consolidate into a unified framework.

Method Vision Input Low-dimensional Input Lagrangian-based Online Planning Background Planning

CPO (Achiam et al., 2017) X ✓ ✓ X X
PPO-Lag (Ray et al., 2019) X ✓ ✓ X X
TRPO-Lag (Ray et al., 2019) X ✓ ✓ X X
MBPPO-Lag (Jayant & Bhatnagar, 2022) X ✓ ✓ X ✓
LAMBDA (As et al., 2022) ✓ X ✓ X ✓
SafeLOOP (Sikchi et al., 2022) X ✓ X ✓ X
Safe SLAC (Hogewind et al., 2022) ✓ X ✓ X X
DreamerV3 (Hafner et al., 2023) ✓ ✓ X X ✓

SafeDreamer (ours) ✓ ✓ ✓ ✓ ✓

consideration of long-term rewards (Sikchi et al., 2022; Moerland et al., 2023), but not addressing
long-term safety. On the other hand, background planning methods like those in Jayant & Bhatnagar
(2022); Thomas et al. (2021) employ ensemble Gaussian models and safety value functions to update
policy with PPO (Schulman et al., 2017) and SAC (Haarnoja et al., 2018), respectively. However,
challenges remain in adapting these methods to tasks that require processing vision input. In this
regard, LAMBDA (As et al., 2022) extends the DreamerV1 (Hafner et al., 2019a) with principles
from the Lagrangian and Bayesian methods. However, the constraints intrinsic to DreamerV1 limit
its efficacy due to disregarding necessary adaptive modifications to reconcile variances in signal
magnitudes and ubiquitous instabilities within all model elements (Hafner et al., 2023). This original
framework’s misalignment with online planning engenders suboptimal results and a deficiency in low-
dimensional input tasks, thereby greatly reducing the benefits of the world model. Meanwhile, Safe
SLAC (Hogewind et al., 2022) integrates the Lagrangian mechanism into SLAC (Lee et al., 2020),
achieving comparable performance to LAMBDA on vision-only tasks. Yet, it does not maximize the
potential of the world model to augment safety, overlooking online or background planning.

3 PRELIMINARIES

Constrained Markov Decision Process (CMDP) SafeRL is often formulated as a CMDPM =
(S,A,P, R, C, µ, γ) (Altman, 1999). The state and action spaces are S andA, respectively. Transition
probability P(s′|s, a) refers to transitioning from s to s′ under action a. R(s′|s, a) stands for the
reward acquired upon transitioning from s to s′ through action a. The cost function set C =
{(Ci, bi)}mi=1 encompasses cost functions Ci : S × A → R and cost thresholds bi, i = 1, · · · ,m.
The initial state distribution and the discount factor are denoted by µ(·) : S → [0, 1] and γ ∈ (0, 1),
respectively. A stationary parameterized policy πθ represents the action-taking probability πθ(a|s)
in state s. All stationary policies are represented as Πθ = {πθ : θ ∈ Rp}, where θ is the learnable
network parameter. We define the infinite-horizon reward function and cost function as JR(πθ) and
JCi (πθ), respectively, as follows:

JR(πθ) = Es0∼µ,at∼πθ

[ ∞∑
t=0

γtR(st+1|st, at)
]
, JCi (πθ) = Es0∼µ,at∼πθ

[ ∞∑
t=0

γtCi(st+1|st, at)
]
.

The goal of CMDP is to achieve the optimal policy:

π⋆ = argmax
πθ∈ΠC

JR(πθ), (1)

where ΠC = Πθ ∩ {∩mi=1J
C
i (πθ) ≤ bi} denotes the feasible set of policies.
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Figure 2: Safety-reward planning process. The agent acquires an observation and employs the encoder
to distill it into a latent state s1. Subsequently, the agent generates action trajectories via policy and
executes them within the world model, predicting latent rollouts of the model state and a reward,
cost, reward value, and cost value with each latent state. We employ TD(λ) (Hafner et al., 2020) to
estimate reward and cost return for each trajectory that are used to update the policy.

Safe Model-based RL Problem We formulate a Safe Model-based RL problem as follows:

max
πθ∈Πθ

JRϕ (πθ) s.t. JCϕ (πθ) ≤ b, where (2)

JRϕ (πθ) = E
[ ∞∑
t=0

γtR(st+1|st, at)|s0 ∼ µ, st+1 ∼ Pϕ(·|st, at), at ∼ πθ
]
, (3)

JCϕ (πθ) = E
[ ∞∑
t=0

γtC(st+1|st, at)|s0 ∼ µ, st+1 ∼ Pϕ(·|st, at), at ∼ πθ
]
. (4)

In the above, Pϕ(·|st, at) is a ϕ-parameterized world model, we assume the initial state s0 is sampled
from the true initial state distribution µ and st+1 ∼ Pϕ(·|st, at),∀t > 0. We would use the world
model Pϕ to roll out imaginary trajectories and then estimate their reward and cost returns required
for policy optimization algorithms. Without loss of generality, we will restrict our discussion to the
case of one constraint with a cost function C and a cost threshold b.

4 METHODS

In this section, we introduce SafeDreamer, a framework for integrating safety-reward planning of the
world model with the Lagrangian methods to balance rewards and costs. The world model is trained
through a replay buffer of past experiences as the agent interacts with the environment. Meanwhile,
we elucidate the notation for our safe model-based agent, assuming access to the learned world model,
which generates latent rollouts for online or background planning, depicted in Figure 2. The design
and training objectives of these models are described in Section 5.

4.1 MODEL COMPONENTS

SafeDreamer includes the world model and actor-critic models. At each time step, the world
model receives an observation ot and an action at. The observation is condensed into a discrete
representation zt. Then, zt, along with the action, are used by the sequence model to predict the next
representation ẑt+1. We represent the model state st = {ht, zt} by concatenating ht and zt, where
ht is a recurrent state. Decoders employ st to predict observations, rewards, and costs. Meanwhile,
st serves as the input of the actor-critic models to predict reward value vrt , cost value vct , and action
at. Our model components are as follows:
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Observation encoder: zt ∼ Eϕ (zt | ht, ot)
Observation decoder: ôt ∼ Oϕ (ôt | st)
Reward decoder: r̂t ∼ Rϕ (r̂t | st)
Cost decoder: ĉt ∼ Cϕ (ĉt | st)

Sequence model: ht, ẑt = Sϕ (ht−1, zt−1, at−1)
Actor: at ∼ πθ(at | st)
Reward critic: v̂rt ∼ Vψr (v̂rt | st)
Cost critic: v̂ct ∼ Vψc(v̂ct | st)

4.2 ONLINE SAFETY-REWARD PLANNING (OSRP) VIA WORLD MODEL

Algorithm 1: Online Safety-Reward Planning.
1 Input: current model state st, planning horizon H ,
2 num sample/policy/safe trajectories NπN , Nπθ , Ns,
3 Lagrangian multiplier λp, cost limit b, µ0, σ0 forN
4 for j ← 1 to J do
5 Init. empty safe/candidate/elite actions set

As, Ac, Ae

6 Sample NπN +Nπθ traj. {si, ai, si+1}t+H
i=t

usingN (µj−1, (σj−1)2I), πθ within Sϕ with
st as the initial state

7 for all NπN +Nπθ trajectories do
8 Init. trajectory cost JC,H

ϕ (π)← 0

9 for t← H to 1 do
10 Compute Rλ(st), C

λ(st) via
Equation (6)

11 JC,H
ϕ ← γJC,H

ϕ + Cϕ(st)

12 end
13 JR

ϕ , JC
ϕ ← Rλ(s1), Cλ(s1)

14 JC′
ϕ ← (JC,H

ϕ /H)L

15 if JC′
ϕ < b then

16 As ← As ∪ {at:t+H}
17 end
18 end
19 Select sorting key Ω, candidate action set Ac

20 Select the top-k action trajectories with highest
Ω values among Ac as elite actions Ae

21 µj , σj = MEAN(Ae), STD (Ae)
22 end
23 Return: a ∼ N (µJ , (σJ)2I)

SafeDreamer (OSRP) We introduce online
safety-reward planning (OSRP) through the
world model, depicted in Algorithm 1. The on-
line planning procedure is conducted at every
decision time t, generating state-action trajecto-
ries from the current state st within the world
model. Each trajectory is evaluated by learned
reward and cost models, along with their crit-
ics, and the optimal safe action trajectory is se-
lected for execution in the environment. Specif-
ically, we adopt the Constrained Cross-Entropy
Method (CCEM) (Wen & Topcu, 2018) for plan-
ning. To commence this process, we initial-
ize (µ0, σ0)t:t+H , with µ0, σ0 ∈ R|A|, which
represent a sequence of action mean and stan-
dard deviation spanning over the length of plan-
ning horizon H . Following this, we indepen-
dently sample NπN state trajectories using the
current action distribution N (µj−1, σj−1) at it-
eration j − 1 within the world model. Addi-
tionally, we sample Nπθ

state trajectories using
a reward-driven actor, similar to Hansen et al.
(2022); Sikchi et al. (2022), accelerating the
convergence of planning. Afterward, we esti-
mate the reward return JRϕ and cost return JCϕ
of each trajectory, as detailed in lines 9 - 14 of
Algorithm 1. The estimation of JRϕ is obtained
using the TD(λ) value of reward, denoted as
Rλ, which balances the bias and variance of the
critics through bootstrapping and Monte Carlo

value estimation (Hafner et al., 2023). The total cost over H steps, denoted as JC,Hϕ , is computed

using the cost model Cϕ: JC,Hϕ =
∑t+H
t γtCϕ(st). We use TD(λ) value of cost Cλ to estimate

JCϕ and define JC
′

ϕ = (JC,Hϕ /H)L as an alternative estimation for avoiding errors of the cost critic,
where L signifies the episode length. Concurrently, we set the criterion for evaluating whether a
trajectory satisfies the cost threshold b as JC

′

ϕ < b. We use |As| to denote the number of trajectories
that meet the cost threshold and represent the desired number of safe trajectories as Ns. Upon this
setup, one of the following two conditions will hold:

1. If |As| < Ns: We employ −JC′

ϕ as the sorting key Ω. The complete set of sampled action

trajectories {at:t+H}NπN +Nπθ
i=1 serves as the candidate action set Ac.

2. If |As| ≥ Ns: We adopt JRϕ as the sorting key Ω for SafeDreamer (OSRP), and JRϕ − λpJCϕ for
SafeDreamer (OSRP-Lag), respectively, with further discussion in Section 4.3. The safe action
trajectory set As is selected as the candidate actions set Ac.

We select the top-k action trajectories, those with the highest Ω values, from the candidate action
set Ac to be the elite actions Ae. Subsequently, we obtain new parameters uj and σj at iteration j:

µj = 1
k

∑k
i=1A

i
e, σ

j =
√

1
k

∑k
i=1(A

i
e − uj)2. The planning process is concluded after reaching a
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predetermined number of iterations J . An action trajectory is sampled from the final distribution
N (µJ , (σJ)2I). Subsequently, the first action from this trajectory is executed in the real environment.

4.3 LAGRANGIAN METHOD WITH THE WORLD MODEL PLANNING

The Lagrangian method stands as a general solution for SafeRL, and the commonly used ones are
Augmented Lagrangian (Dai et al., 2023) and PID Lagrangian (Stooke et al., 2020). However, it has
been observed that employing Lagrangian approaches for model-free SafeRL results in suboptimal
performance under low-cost threshold settings, attributable to inaccuracies in the critic’s estimation.
This work integrates the Lagrangian method with online and background planning to balance errors
between cost models and critics. By adopting the relaxation technique of the Lagrangian method
(Nocedal & Wright, 2006), the Equation (2) is transformed into an unconstrained safe model-based
optimization problem, where λp is the Lagrangian multiplier:

max
πθ∈Πθ

min
λp≥0

JRϕ (πθ)− λp
(
JCϕ (πθ)− b

)
. (5)

SafeDreamer (OSRP-Lag) We introduced the PID Lagrangian method (Stooke et al., 2020) into
our online safety-reward planning, yielding SafeDreamer (OSRP-Lag), as shown in Figure 1c. In the
online planning process, the sorting key Ω is determined by JRϕ − λpJCϕ when |As| ≥ Ns, where JCϕ
is approximated using the TD(λ) value of cost, denoted as Cλ, computed with Vψc

and Cϕ:

Cλ(st) =

{
Cϕ(st) + γ

(
(1− λ)Vψc

(st+1) + λCλ(st+1)
)

if t < H

Vψc (st) if t = H
. (6)

The intuition of OSRP-Lag is to optimize a conservative policy under comparatively safe conditions,
considering long-term risks. The process for updating the Lagrangian multiplier remains consistent
with Stooke et al. (2020) and depends on the episode cost encountered during the interaction between
agent and environment. Refer to Algorithm 3 for additional details.

SafeDreamer (BSRP-Lag) Due to the time-consuming property of online planning, in order to
meet the real-time requirements of certain scenarios, we extend our algorithm to support background
planning. We use the Lagrangian method in background safety-reward planning (BSRP) for the safe
actor training, which is referred to as SafeDreamer (BSRP-Lag), as shown in Figure 1d. During
the actor training, we produce imagined latent rollouts of length T = 15 within the world model
in the background. We begin with observations from the replay buffer, sampling actions from the
actor, and observations from the world model. The world model also predict rewards and costs, from
which we compute TD(λ) value Rλ(st) and Cλ(st). These values are then utilized in stochastic
backpropagation (Hafner et al., 2023) to update the safe actor, a process we denominate as background
safety-reward planning. The training loss in this process guides the safe actor to maximize expected
reward return and entropy while minimizing cost return, utilizing the Augmented Lagrangian method
(Simo & Laursen, 1992; As et al., 2022):

L(θ) = −
T∑
t=1

sg
(
Rλ(st)

)
+ ηH [πθ (at | st)]−Ψ

(
sg(Cλ(st)), λ

k
p, µ

k
)
, (7)

where sg(·) represents the stop-gradient operator, µk = max(µk−1(ν + 1.0), 1.0) represents a non-
decreasing term that corresponds to the current gradient step k, ν > 0. Define ∆ =

(
Cλ(st)− b

)
.

The update rules for the penalty term in the training loss and the Lagrangian multiplier are as follows:

Ψ
(
sg(Cλ(st)), λ

k
p, µ

k
)
, λk+1
p =

λkp∆+ µk

2 ∆2, λkp + µk∆ if λkp + µk∆ ≥ 0

− (λk
p)

2

2µk , 0 otherwise.
(8)

5 PRACTICAL IMPLEMENTATION

Leveraging the framework above, we develop SafeDreamer, a safe model-based RL algorithm that
extends the architecture of DreamerV3 (Hafner et al., 2023).
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World Model Implementation The world model, trained via a variational auto-encoding (Kingma
& Welling, 2013; Yang et al., 2024), transforms observations ot into latent representations zt. These
representations are used in reconstructing observations, rewards, and costs, enabling the evaluation
of reward and safety of action trajectories during planning. The representations zt are regularized
towards a prior by a regularization loss, ensuring the representations are predictable. We utilize
the predicted distribution over ẑt from the sequence model as this prior. Meanwhile, we utilize
representation zt as a posterior, and the future prediction loss trains the sequence model to leverage
historical information from times before t to construct a prior approximating the posterior at time t.
These models are trained by optimizing the log-likelihood and KL divergence:

L(ϕ) =
T∑
t=1

αq KL [zt ∥ sg(ẑt)]︸ ︷︷ ︸
regularization loss

+αpKL [sg(zt) ∥ ẑt]︸ ︷︷ ︸
future prediction loss

− βo lnOϕ (ot | st)︸ ︷︷ ︸
observation loss

−βr lnRϕ (rt | st)︸ ︷︷ ︸
reward loss

−βc lnCϕ (ct | st)︸ ︷︷ ︸
cost loss

.

(9)

Here, sg(·) is the stop-gradient operator. The world model are based on the Recurrent State Space
Model (RSSM) (Hafner et al., 2019b), utilizing GRU (Cho et al., 2014) for sequence modeling.

The SafeDreamer algorithm. Algorithm 2 illustrates how the introduced components interrelate
to build a safe model-based agent. We sample a batch of B sequences of length L from a replay
buffer to train the world model during each update. In SafeDreamer (OSRP), the reward-driven
actor is trained by minimizing Equation (10), aiming to maximize both the reward and entropy. The
reward-driven actor serves to guide the planning process, which avoids excessively conservative
policy. In OSRP-Lag, the cost return of each episode is utilized to update the Lagrangian multiplier
λp via Algorithm 3. Specifically, SafeDreamer (BSRP-Lag) update the safe actor and Lagrangian
multiplier λp via Equation (7) and Equation (8), respectively. Subsequently, the safe actor is employed
to generate actions during exploration, which speeds up decision-making and avoids the requirement
for online planning. See Appendix A for the design of critics and additional details.

6 EXPERIMENTAL RESULTS

We use different robotic agents in Safety-Gymnasium1 (Ji et al., 2023b). The goal in the environments
is to navigate robots to predetermined locations while avoiding collisions with other objects. We
evaluate algorithms using five fundamental environments (refer to Appendix C.4). Performance is
assessed using metrics from Ray et al. (2019):

• Average undiscounted reward return over E episodes: Ĵ(π) = 1
E

∑E
i=1

∑Tep
t=0 rt.

• Average undiscounted cost return over E episodes: Ĵc(π) = 1
E

∑E
i=1

∑Tep
t=0 ct.

• Average cost throughout the entire training phase, namely the cost rate: Given a total of T
interaction steps, we define the cost rate ρc(π) =

∑T
t=0 ct
T .

We calculate Ĵ(π) and Ĵc(π) by averaging episode costs and rewards over E = 10 episodes, each of
length Tep = 1000, without network updates. Unlike other metrics, ρc(π) is calculated using costs
incurred during training, not evaluation.

Baseline algorithms. The baselines include: (1). PPO-Lag, TRPO-Lag (Ray et al., 2019) (Model-
free): Lagrangian versions of PPO and TRPO. (2). CPO (Achiam et al., 2017) (Model-free): A policy
search algorithm with near-constraint satisfaction guarantees. (3). Sauté PPO, TRPO (Sootla et al.,
2022a) (Model-free): Eliminates safety constraints into the state-space and reshape the objective
function. (4). Safe SLAC (Hogewind et al., 2022) (Model-based): Combines SLAC (Lee et al.,
2020) with the Lagrangian methods. (5). LAMBDA (As et al., 2022) (Model-based): Implemented
in DreamerV1, combines Bayesian and Lagrangian methods. (6). MPC:sim (Wen & Topcu, 2018;
Liu et al., 2020) (Model-based): Employs CCEM for MPC with a ground-truth simulator, termed

1https://github.com/PKU-Alignment/safety-gymnasium
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Figure 3: Experimental results from the five vision tasks for the model-based methods. The results
are recorded after the agent completes the 2M training steps. We normalize the metrics following Ray
et al. (2019) and utilize the rliable library (Agarwal et al., 2021) to calculate the median, inter-quartile
mean (IQM), and mean estimates for normalized reward and cost returns.

MPC:sim. (7). MBPPO-Lag (Jayant & Bhatnagar, 2022) (Model-based): Trains the policy through
ensemble Gaussian models and Lagrangian method. (8). DreamerV3 (Hafner et al., 2023) (Model-
based): Integrates practical techniques and excels across domains. For further hyperparameter
configurations, refer to Appendix B.

The results of experiments. In Safety-Gymnasium tasks, the agent begins in a safe region at
episode reset without encountering obstacles. A trivial feasible solution apparent to humans is to keep
the agent stationary, preserving its position. However, even with this simplistic policy, realizing zero-
cost with the prior algorithms either demands substantial updates or remains elusive in some tasks. As
shown in Figure 3, SafeDreamer (BSRP-Lag) attains rewards similar to model-based RL methods like
LAMBDA, with a substantial 94.3% reduction in costs. The training curves of experiments are shown
in Figure 4 and Figure 5, and each experiment is conducted across 5 runs. SafeDreamer achieves
nearly zero-cost performance and surpasses existing model-free and model-based algorithms.

Dual objective realization: balancing enhanced reward with minimized cost. As depicted in
Figure 3, SafeDreamer uniquely attains minimal costs while achieving higher rewards in the five
visual-only safety tasks. In contrast, model-based algorithms such as Safe SLAC attain a cost limit
beyond which further reductions are untenable due to the inaccuracies of the world model. On the
other hand, in environments with denser or more dynamic obstacles, such as SafetyPointButton1,
MPC struggles to ensure safety due to the absence of a cost critic within a limited online planning
horizon. From the beginning of training, our algorithms demonstrate safety behavior, ensuring
extensive safe exploration. Specifically, in the SafetyPointGoal1 and SafetyPointPush1 environments,
SafeDreamer matches the performance of DreamerV3 in reward while preserving nearly zero cost.

Mastering in visual and low-dimensional tasks. We conducted evaluations within two low-
dimensional input environments, namely SafetyPointGoal1 (vector) and SafetyCarGoal1 (vector)
(refer to Figure 5). Although model-free algorithms can decrease costs, they struggle to achieve
higher rewards. This challenge stems from their reliance on learning a policy purely through trial-
and-error, devoid of world model assistance, which hampers optimal solution discovery with limited
data samples. Meanwhile, the reward of MBPPO-Lag ceases to increase once the cost decreases to a
relatively low level. SafeDreamer surpasses them regarding both rewards and costs.

Discussion and ablation study. In the SafetyPointButton1, which requires the agent to navigate
around dynamically moving obstacles, OSRP outperformed BSRP-Lag in terms of rewards. This
may be attributed to its use of the world model for online planning, enabling it to predict dynamic
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Figure 4: Comparing SafeDreamer to model-based baselines across five image-based safety tasks.

environmental changes in real time. In the SafetyPointPush1, the optimal policy involves the agent
learning to wedge its head in the middle gap of the box to push it quickly. We noticed that BSRP-Lag
could converge to this optimal policy, whereas OSRP and OSRP-Lag had difficulty discovering it
during online planning. This may be due to the limited length and number of planning trajectories,
making it hard to search for dexterous strategies within a finite time. BSRP’s significant advantage in
this environment suggests it might be better suited for static environments that require more precise
operations. In the SafetyPointGoal2, with more obstacles in the environment, OSRP-Lag, which
introduces a cost critic to estimate cost return, tends to be more conservative than OSRP. Through the
ablation experiments, we found that factors like the reconstruction loss of the world model and the
size of its latent hidden states greatly impact SafeDreamer’s ability to reduce cost. This indicates that
when the world model accurately predicts safety-related states, it is more likely to contribute to safety
improvements, thereby achieving zero cost. For more experimental results, refer to Appendix C.

7 CONCLUSION
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Figure 5: Results in low-dimensional input tasks.

In this work, we tackle the issue of zero-cost
performance within SafeRL, to find an optimal
policy while satisfying safety constraints. We
introduce SafeDreamer, a safe model-based RL
algorithm that utilizes safety-reward planning
of world models and the Lagrangian methods to
balance rewards and costs. To our knowledge,
SafeDreamer is the first algorithm to achieve
nearly zero-cost in final performance, utiliz-
ing vision-only input in the Safety-Gymnasium
benchmark. However, SafeDreamer trains each
task independently, incurring substantial costs
with each task. Future research should leverage
offline data from multiple tasks to pre-train the world model, examining its ability to facilitate the
safety alignment of new tasks. Considering the various constraints that robots must adhere to in the
real world, utilizing a world model for effective environmental modeling and deploying it in robots to
accomplish tasks safely is a potential direction (Chen et al., 2022; Zhang et al., 2023). Another future
work that can be explored is how to enhance the safety of large language models from the perspective
of LLMs as World Models, through constrained optimization (Ji et al., 2024b; Dai et al., 2024).
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9 REPRODUCIBILITY STATEMENT

To advance open-source science, we release 80+ model checkpoints along with the code for
training and evaluating SafeDreamer agents. These resources are accessible at: https:
//github.com/PKU-Alignment/SafeDreamer. All SafeDreamer agents are trained on
one Nvidia 3090Ti GPU each and experiments are conducted utilizing the Safety-Gymnasium 2,
MetaDrive3 and Gymnasium benchmark4. We implemented the baseline algorithms based on the
following code repository: LAMBDA5, Safe SLAC6, MBPPO-Lag7, and Dreamerv38, respectively.
We further included additional baseline algorithms: CPO, TRPO-Lag, PPO-Lag, Sauté PPO and Sauté
TRPO, sourced from the Omnisafe (Ji et al., 2023c)9. For additional hyperparameter configurations
and experiments, please refer to Appendix B and Appendix C.
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A DETAILS OF SAFEDREAMER TRAINING PROCESS

A.1 THE TRAINING PROCESS OF SAFEDREAMER

Algorithm 2: SafeDreamer.
Input: batch length T , batch size B, episode length L, initial Lagrangian multiplier λp

1 Initialize the world model parameters ϕ, actor-critic parameters θ, Vψr
, Vψc

;
2 Initialize dataset D using a random policy;
3 while not converged do
4 Sample B trajectories {ot, at, ot+1, rt+1, ct+1}t:t+T ∼ D ;
5 Update the world model via minimize Equation (9) ;
6 Condense ot:t+T into st:t+T via the world model;
7 Generate latent rollouts using the actor within the world model with st:t+T as the initial state;
8 Update the reward and cost critics via minimize Equation (11);
9 Update the actor and Lagrangian multiplier λp;

10 JC ← 0;
11 for t = 1 to L do
12 Condense ot into latent state via st ∼ Sϕ(ot, st−1, at−1);
13 Sample at from the safe actor or Online Safety-Reward Planner;
14 Execute action at, observe ot+1, rt+1, ct+1 returned from the environment;
15 Update dataset D ← D ∪ {ot, at, ot+1, rt+1, ct+1};
16 JC ← JC + ct+1;
17 end
18 end

A.2 THE PROCESS OF PID LAGRANGIAN

Algorithm 3: PID Lagrangian (Stooke et al., 2020).
Input: Proportional coefficient Kp, integral coefficient Ki, differential coefficient Kd

1 Initialize previous integral item: I0 ← 0;
2 Initialize previous episode cost: J0

C ← 0;
3 while iteration k continues do
4 Receive cost JkC ;
5 P ← JkC − d;
6 D ← max(0, JkC − Jk−1

C );
7 Ik ← max(0, Ik−1 +D);
8 λp ← max(0,KpP +KiI

k +KdD);
9 Return Lagrangian multiplier λp;

10 end

PID Lagrangian with Planning The safety planner might fail to ensure zero-cost when the re-
quired hazard detection horizon surpasses the planning horizon, in accordance with the constraint
(JC,Hϕ /H)L < b during planning. To overcome this limitation, we introduced the PID Lagrangian
method (Stooke et al., 2020) into our planning scheme for enhancing the safety of exploration,
yielding SafeDreamer (OSRP-Lag).

Cost Threshold Settings Our empirical studies show that for all SafeDreamer variations, a cost
threshold of 2.0 leads to consistent convergence towards nearly zero cost in vision tasks. The reason
we did not set the cost threshold to zero is due to potential errors in the trained cost model and cost
value model. Therefore, even in a completely safe state, the estimated cost return by these models
might not be zero but a very small positive value. This implies that any trajectory in the planning
process may not meet the constraints based on these estimations, making online planning overly
conservative and unable to converge. In contrast, SafeDreamer (BSRP-Lag) manages to operate with
a zero-cost threshold on some tasks but requires more data samples to achieve convergence. For the
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low-dimensional input tasks, we evaluate the cost via observation reconstruction and do not directly
use the cost model, so we set the cost threshold at zero for our method.

Reward-driven Actor A reward-driven actor is trained to guide the planning process, enhancing
reward convergence. The actor loss aims to balance the maximization of expected reward and entropy.
The gradient of the reward term is estimated using stochastic backpropagation (Hafner et al., 2023),
whereas that of the entropy term is calculated analytically:

L(θ) = −
T∑
t=1

sg
(
Rλ(st)

)
+ ηH [πθ (at | st)] (10)

Reward and Cost Critics The sparsity and heterogeneous distribution of costs within the environment
complicate the direct regression of these values, thereby presenting substantial challenges for the
learning efficiency of the cost critic. Leveraging the methodology from (Hafner et al., 2023), we
employ a trio of techniques for critic training: discrete regression, twohot encoded targets (Bellemare
et al., 2017; Schrittwieser et al., 2020), and symlog smoothing (Hafner et al., 2023; Webber, 2012):

Lreward critic(ψr) = −
T∑
t=1

sg
(
twohot

(
symlog

(
Rλ

)))T
ln pψr (· | st) (11)

where the critic network output the Twohot softmax probability pψ (bi | st) and

twohot(x)i =

 |bk+1 − x| / |bk+1 − bk| if i = n
|bk − x| / |bk+1 − bk| if i = n+ 1
0 else

, n =

|B|∑
j=1

1(bj<x), B = [−20 . . . 20]

We define the bi-symmetric logarithm function (Webber, 2012) as symlog(x) = sign(x) ln(|x|+ 1)
and its inverse function, as symexp(x) = sign(x)(exp(|x|)− 1). The cost critic loss, represented
as Lcost critic(ψc), is calculated similarly, using TD(λ) value of cost Cλ. Additionally, extending
the principle of Onehot encoding to continuous values, Twohot encoding allows us to reconstruct
target values after encoding:vψ (st) = symexp

(
pψ (· | st)T B

)
. For further details, please refer to

(Hafner et al., 2023).
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B HYPERPARAMETERS

The SafeDreamer experiments were executed utilizing Python3 and Jax 0.3.25, facilitated by CUDA
11.7, on an Ubuntu 20.04.2 LTS system (GNU/Linux 5.8.0-59-generic x86 64) equipped with 40
Intel(R) Xeon(R) Silver 4210R CPU cores (operating at 240GHz), 251GB of RAM, and an array of 8
GeForce RTX 3090Ti GPUs.

Table 2: Hyperparameters for SafeDreamer. When addressing other safety tasks, we suggest tuning the
initial Lagrangian multiplier, proportional coefficient, integral coefficient, and difference coefficient
at various scales.

Name Symbol Value Description
World Model

Number of laten 48
Classes per laten 48
Batch size B 64
Batch length T 16
Learning rate 10−4

Coefficient of kl divergence in loss αq , αp 0.1, 0.5
Coefficient of decoder in loss βo, βr, βc 1.0, 1.0, 1.0

Planner

Planning horizon H 15
Number of samples NπN 500
Mixture coefficient M 0.05/0.0 Nπθ

= M ∗ NπN , different for vec-
tor/visual input

Number of iterations J 6
Initial variance σ0 1.0

PID Lagrangian

Proportional coefficient Kp 0.1
Integral coefficient Ki 0.01
Differential coefficient Kd 0.01
Initial Lagrangian multiplier λ0p 0.0
Lagrangian upper bound 0.1 Maximum of λp

Augmented Lagrangian

Penalty term ν 5−9

Initial Penalty multiplier µ0 1−6

Initial Lagrangian multiplier λ0p 0.01

Actor Critic

Sequence generation horizon 15
Discount horizon γ 0.997
Reward lambda λr 0.95
Cost lambda λc 0.95
Learning rate 3 · 10−5

General

Number of other MLP layers 5
Number of other MLP layer units 512
Train ratio 512
Action repeat 4

MPC:sim. We apply CCEM to MPC using a ground-truth simulator, denoted as MPC:sim, omitting
the use of a value function, thus establishing a non-parametric baseline. We restrict the number of
sample trajectories to 150, with a planning horizon of 15 and 6 iterations, due to the computational
demands of simulator-based planning.
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Table 3: Hyperparameters for Safe SLAC. We set the hyperparameters for Safe SLAC following
Hogewind et al. (2022). We maintain the original hyperparameters unchanged, with the exception
of the action repeat, which we adjust from its initial value of 2 to 4. This adjustment is driven by
our empirical observation that employing a more rapid update rate in visual environments yields
advantages for both LAMBDA and our approach. Furthermore, we increase the length of sampled
sequences from 10 to 15 and reduce the cost limit from 25.0 to 2.0 to ensure a fair comparison with
our method.

Name Value
Length of sequences sampled from replay buffer 15
Discount factor 0.99
Cost discount factor 0.995
Replay buffer size 2 ∗ 105
Latent model update batch size 32
Actor-critic update batch size 64
Latent model learning rate 1 ∗ 10−4

Actor-critic learning rate 2 ∗ 10−4

Safety Lagrange multiplier learning rate 2e− 4
Action repeat 4
Cost limit 2.0
Initial value for α 4 ∗ 10−3

Initial value for λ 2 ∗ 10−2

Warmup environment steps 60 ∗ 103
Warmup latent model training steps 30 ∗ 103
Gradient clipping max norm 40
Target network update exponential factor 5 ∗ 10−3

Table 4: Hyperparameters for LAMBDA. We evaluate our approach against the official implementa-
tion presented by As et al. (2022). We employ a sequence generation horizon of 15, in line with our
algorithm’s configuration. Additionally, we have modified the cost limit from 25.0 to 2.0 to assess its
convergence under a lower cost limit setting.

Name Value
Sequence generation horizon 15
Sequence length 50
Learning rate 1e-4
Burn-in steps 500
Period steps 200
Models 20
Decay 0.8
Cyclic LR factor 5.0
Posterior samples 5
Safety critic learning rate 2e-4
Initial penalty 5e-9
Initial Lagrangian 1e-6
Penalty power factor 1e-5
Safety discount factor 0.995
Update steps 100
Critic learning rate 8e-5
Policy learning rate 8e-5
Action repeat 4
Discount factor 0.99
TD(λ) factor 0.95
Cost limit 2.0
Batch size 32
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Table 5: Hyperparameters for MBPPO-Lag. We utilize the official implementation provided by
Jayant & Bhatnagar (2022) and include a listing of its hyperparameters for the sake of completeness.

Name Value
Number of models in ensemble 8
Hidden layers in single ensemble NN 4
Hidden layers in single ensemble NN : [200, 200, 200, 200]
Hidden layers in Actor NN 2
Hidden layers in Actor NN [64, 64]
Hidden layers in Critic NN 2
Hidden layers in Critic NN [64, 64]
Gradient descent algorithm Adam
Actor learning rate 3e-4
Critic learning rate 1e-3
Lagrange multiplier learning rate 5e-2
Initial Lagrange multiplier value 1
Cost limit 2.0
Activation function tanh
Discount factor 0.99
GAE parameter 0.95
Validation dataset/Train dataset 10%/90%
PR threshold 66%
β used in (29) 0.02

Table 6: Hyperparameters for model-free algorithms. We list the most important hyperparameters for
the model-free baselines. This enumeration encompasses the salient hyperparameters essential for the
model-free baselines. It is imperative to note that our approach closely adheres to the implementation
presented by Ji et al. (2023c), with certain enhancements. Specifically, we have elevated the hidden
layer sizes of the MLP from 64 to 512 and augmented the number of hidden layers from 2 to 4,
ensuring a fair comparison with model-based algorithms. In our experiments, we found that the cost
discount factor has a substantial impact on the efficacy of Sauté RL methods, and setting it to 0.999
resulted in better performance in the Safety-Gymnasium. Moreover, it is noteworthy that our chosen
cost limit is set at 2.0, as opposed to the conventional value of 25.0, which is the standard practice in
Ji et al. (2023b); Ray et al. (2019). This discrepancy highlights a challenge inherent in model-free
algorithms, especially in situations with tight budget constraints.
Name CPO PPO-Lag TRPO-Lag Sauté TRPO Sauté PPO
Batch size 128 64 128 128 64
Target KL 0.01 0.02 0.01 0.01 0.02
Max gradient norm 40.0 40.0 40.0 40.0 40.0
Critic norm coefficient 0.001 0.001 0.001 0.001 0.001
Discount factor 0.99 0.99 0.99 0.99 0.99
Cost discount factor 0.99 0.99 0.99 0.999 0.999
Lambda for gae 0.95 0.95 0.95 0.95 0.95
Lambda for cost gae 0.95 0.95 0.95 0.95 0.95
Advantage estimation method gae gae gae gae gae
Unsafe reward None None None -0.2 -0.2

Actor-critic
MLP hidden sizes [512, 512, 512, 512] [512, 512, 512, 512] [512, 512, 512, 512] [512, 512, 512, 512] [512, 512, 512, 512]
Activation tanh tanh tanh tanh tanh
Learning rate 0.001 0.0003 0.001 0.001 0.0003
Cost limit 2.0 2.0 2.0 2.0 2.0

Lagrange
Initial Lagrange Multiplier value None 0.001 0.001 None None
Lagrange learning rate None 0.035 0.035 None None
Lagrange optimizer None Adam Adam None None

18



Published as a conference paper at ICLR 2024

C EXPERIMENTS

C.1 EXPERIMENTS ON METADRIVE

(a) Safe (b) Unsafe

Figure 6: The MetaDrive benchmark. The objective for the car is to navigate successfully to a
predetermined destination. During this process, the vehicle incurs a cost penalty in instances of
collision with obstacles or other vehicles, as well as when deviating from the designated roadway.

MetaDrive (Li et al., 2022) stands as a comprehensive, effective simulation environment for au-
tonomous vehicle research. It features designed environments optimized for developing safe policies.
The observation in MetaDrive combines vector input and first-person view input. The cost function
in this setting is defined as follows:

C(s, a) =

{
1, if collides or out of the road
0, otherwise

Table 7: Results on Metadrive.
Arrival Rate Episode Cost Return

Ours (BSRP-Lag) 1.0 ± 0.0 2.2 ± 0.1
PPO-Reward Shaping 0.72 ± 0.1 14.1 ± 6.2

We maintained a consistent environment by conducting both training and testing on the identical
roadway. To augment the complexity, vehicle positions were randomized at the beginning of each
episode reset. As illustrated in Table 7, SafeDreamer successfully achieved a 100% rate in 10
evaluation tests after engaging in 4M steps of environmental interaction. Notably, in comparison
to PPO-Reward Shaping, SafeDreamer demonstrated enhanced efficiency in cost reduction. We
observed that SafeDreamer has adopted a safe policy. Specifically, it pauses to monitor traffic flow
when encountering dense vehicle presence ahead, resuming forward progression only when the
vehicular density diminishes.
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(a) Safe (b) Unsafe

Figure 7: The Car-Racing task, introduced by Brockman et al. (2016), involves a 2D image-based
racing simulation with tracks that vary in each episode. The observation comprises a 64×64×3 pixel
top-down view of the car. The action space is continuous and three-dimensional, encompassing
steering, acceleration, and braking actions.

C.2 EXPERIMENTS ON CAR-RACING

We utilize the Car-Racing environment from OpenAI Gym’s gymnasium.envs.box2d inter-
face, as established by Brockman et al. (2016). Our adaptation involves augmenting this environment
with a cost function analogous to the one described in Ma et al. (2022b). A cost of 1 per step is
assigned for any instance of wheel skid due to excessive force:

C(s, a) =

{
1, if any wheel of the car skids
0, otherwise
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Figure 8: Training curve on Car-Racing.

Table 8: Results on Car-Racing.
Average Reward Return Average Cost Return

Ours (BSRP-Lag) 763.1 ± 1.34 0.04 ± 0.01
DreamerV3 775.1 ± 0.56 580.1 ± 2.35

As depicted in Figure 8 and Table 8. SafeDreamer demonstrates rapid convergence, achieving near
zero-cost within 0.2M steps. Compared to DreamerV3, SafeDreamer significantly reduces vehicle
slippage, thereby enhancing driving robustness.
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C.3 FORMULAONE

(a) Environment map (b) First-person perspective

Figure 9: The FormulaOne benchmark.

We utilized the visual environment FormulaOne from Ji et al. (2023b), where the agent receives
64x64x3 image input, as illustrated in Figure 9. The environment’s complexity and visual aspects
significantly increase the demands on the algorithm. We employed Level 1 of FormulaOne, which
requires the agent to reach the goal while avoiding barriers and racetrack fences. Each episode begins
with the agent randomly placed at one of seven checkpoints.

As illustrated in Figure 10 and Table 9, SafeDreamer attains nearly zero-cost after 1.5M training steps
and demonstrates efficient obstacle avoidance in task completion. This indicates that SafeDreamer
can achieve convergence and accomplish nearly zero-cost even in complex visual environments.
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Figure 10: Results on FormulaOne.

Table 9: Results on FormulaOne.
Average Reward Return Average Cost Return

DreamerV3 32.2 ± 1.22 56.36 ± 2.32
Ours (BSRP-Lag) 25.3 ± 0.51 0.43 ± 0.08
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C.4 EXPERIMENTS ON SAFETY-GYMNASIUM

Safety-Gymnasium is an environment library specifically designed for SafeRL. This library
builds on the foundational Gymnasium API (Brockman et al., 2016; Foundation, 2022), utilizing the
high-performance MuJoCo engine (Todorov et al., 2012). We conducted experiments in five different
environments, namely, SafetyPointGoal1, SafetyPointGoal2, SafetyPointPush1, SafetyPointButton1,
and SafetyCarGoal1, as illustrated in Figure 11. Following Ji et al. (2023b), we adjusted the
arrangement of the cameras to provide more information to planning-based algorithms in processing
visual inputs compared to Ray et al. (2019), as shown in Figure 12. Following Liu et al. (2020);
Jayant & Bhatnagar (2022); Sikchi et al. (2022), we modified the state representation to facilitate
model learning better. All experiments utilize identical settings.

(a): SafetyPointGoal1 (b): SafetyPointGoal2 (c): SafetyPointPush1 (d): SafetyPointButton1 (e): SafetyCarGoal1

Figure 11: The tasks in Safety-Gymnasium.

Global view Forward view Rear view

Figure 12: Different views in the Safety-Gymnasium.

C.4.1 AGENT SPECIFICATION

We consider three robots: Point, Car and Racecar (as shown in Figure 13). To potentially enhance
learning with neural networks, we maintain all actions as continuous and linearly scaled to the range
of [-1, +1]. Detailed descriptions of the robots are provided as follows:

(a) Point (b) Racecar (c) Car

Figure 13: Robots in the Safety-Gymnasium.
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Point. The Point robot, functioning in a 2D plane, is controlled by two distinct actuators: one
governing rotation and another controlling linear movement. This separation of controls significantly
eases its navigation. A small square, positioned in the robot’s front, assists in visually determining
its orientation and crucially supports Point in effectively manipulating boxes encountered during
tasks.

Car. The Car robot apparatus operating within a three-dimensional space. It is equipped with two
independently powered wheels positioned in parallel, complemented by a rear wheel that rolls freely.
This configuration necessitates a coordinated manipulation of the dual propulsion systems to achieve
both navigational steering and linear movement in the forward and reverse directions. Although
this robot exhibits characteristics akin to those of a rudimentary Point robot, it introduces additional
complexities due to its design.

Racecar. The Racecar robot exhibits realistic car dynamics, operating in three dimensions, and
controlled by a velocity and a position servo. The former adjusts the rear wheel speed to the target,
and the latter fine-tunes the front wheel steering angle. The dynamics model is informed by the widely
recognized MIT Racecar project. To achieve the designated goal, it must appropriately coordinate the
steering angle and speed, mirroring human car operation.

C.4.2 TASK REPRESENTATION

Tasks within Safety-Gymnasium are distinct and are confined to a single environment each, as shown
in Figure 14.

(a) Goal (b) Button (c) Push

Figure 14: Tasks in the Safety-Gymnasium.

Goal: The task requires a robot to navigate towards multiple target positions. Upon each successful
arrival, the robot’s goal position is randomly reset, retaining the global configuration. Attaining a
target location, signified by entering the goal circle, provides a sparse reward. Additionally, a dense
reward encourages the robot’s progression through proximity to the target.

Push: The task requires a robot to manipulate a box towards several target locations. Like the goal
task, a new random target location is generated after each successful completion. The sparse reward
is granted when the box enters the designated goal circle. The dense reward comprises two parts: one
for narrowing the agent-box distance, and another for advancing the box towards the final target.

Button: The task requires the activation of numerous target buttons distributed across the environment.
The agent navigates and interacts with the currently highlighted button, the goal button. Upon pressing
the correct button, a new goal button is highlighted, while maintaining the overall environment. The
sparse reward is issued upon successfully activating the current goal button, with the dense reward
component encouraging progression toward the highlighted target button.

C.4.3 CONSTRAINT SPECIFICATION

Pillars: These are used to symbolize substantial cylindrical obstacles within the environment,
typically incurring costs upon contact.

Hazards: These are integrated to depict risky areas within the environment that induce costs when
an agent navigates into them.
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Vases: Exclusively incorporated for Goal tasks, vases denote static and delicate objects within the
environment. Contact or displacement of these objects yields costs for the agent.

Gremlins: Specifically employed for Button tasks, gremlins signify dynamic objects within the
environment that can engage with the agent. Contact with these objects yields costs for the agent.

C.4.4 EVALUATION METRICS

In our experiments, we employed a specific definition of finite horizon undiscounted return and
cumulative cost. Furthermore, we unified all safety requirements into a single constraint (Ray et al.,
2019). The safety assessment of the algorithm was conducted based on three key metrics: average
episodic return, average episodic cost, and the cost rate. These metrics served as the fundamental
basis for ranking the agents, and their utilization as comparison criteria has garnered widespread
recognition within the SafeRL community (Achiam et al., 2017; Zhang et al., 2020; As et al., 2022).

• Any agent that fails to satisfy the safety constraints is considered inferior to agents that meet
these requirements or limitations. In other words, meeting the constraint is a prerequisite for
considering an agent superior.

• When comparing two agents, A and B, assuming both agents satisfy the safety constraints
and have undergone the same number of interactions with the environment, agent A is
deemed superior to agent B if it consistently outperforms agent B in terms of return. Simply
put, if agent A consistently achieves higher rewards over time, it is considered superior to
agent B.

• In scenarios where both agents satisfy the safety constraint and report similar rewards,
their relative superiority is determined by comparing the convergence speed of the average
episodic cost. This metric signifies the rate at which the policy can transition from an
initially unsafe policy to a feasible set. The importance of this metric in safe RL research
cannot be overstated.

C.4.5 SAFEDREAMER TRAINING RESULTS WITHIM 8M STEPS
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Figure 15: The SafeDreamer training results within 8M environment steps.
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C.4.6 VIDEO PREDICTION

Using the past 25 frames as context, our world model predicts the next 45 steps in Safety-Gymnasium
based solely on the given action sequence, without intermediate image access.
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Figure 16: The video predictions in the tasks of the Point agent. In SafetyPointGoal1, the model
leverages observed goals to forecast subsequent ones in future frames. In SafetyPointGoal2, the
oncoming rightward navigational movement of the robot to avoid an obstacle is predicted by the
model. In the SafetyPointButton1, the model predicts the robot’s direction toward the green goal. For
SafetyPointButton2, the model anticipates the robot’s trajectory, bypassing the yellow sphere on its
left. In the SafetyPointPush1, the model foresees the robot’s intention to utilize its head to mobilize
the box. Finally, in SafetyPointPush2, the model discerns the emergence of hitherto unseen crates in
future frames, indicating the model’s prediction ability of environmental transition dynamics.
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Figure 17: The video predictions of the racecar agent. In SafetyRacecargoal1, the world model
anticipates the adjustment of agent direction towards a circular obstacle. Similarly, within the
SafetyRacecargoal2, the model predicts the Racecar’s incremental deviation from a vase. In Safe-
tyRacecarButton1, the world model predicts the Racecar’s nuanced navigation to avoid a right-side
obstacle. In SafetyRacecarButton2, the model predicts the Racecar’s incremental distance toward
a circular obstacle. In SafetyRacecarPush1 and SafetyRacecarPush2 tasks, the model predicts the
emergence of the box and predicts the Racecar’s direction towards a box, respectively.
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C.4.7 SAFEDREAMER VS DREAMERV3

Env Steps (×10!) Env Steps (×10!)

Figure 18: The comparison of SafeDreamer (BSRP-Lag) with DreamerV3 in the task of Point agent.
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Env Steps (×10!) Env Steps (×10!)

Figure 19: The comparison of SafeDreamer (BSRP-Lag) with DreamerV3 in the task of Car.
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Env Steps (×10!) Env Steps (×10!)

Figure 20: The comparison of SafeDreamer (BSRP-Lag) with DreamerV3 in the task of Racecar.
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C.5 ABLATION STUDIES

0 2 4 6 8

0

10

20

30

0 2 4 6 8

0

4

8

12

Average Reward Return Average Cost Return

Env Steps (×10!) Env Steps (×10!) Env Steps (×10!)

Cost Limit=0.01Cost Limit=1.0 Cost Limit=0.1

0 2 4 6 8
0.00

0.02

0.04

0.06

0.08
Cost Rate

Figure 21: Ablation studies on the cost limit in SafetyPointGoal1. We run BSRP-Lag on SafetyPoint-
Goal1 for 8M steps, and we observe that a lower cost limit leads to the cost approaching closer to
zero. Additionally, we notice that a lower cost limit tends to result in a decrease in the reward.
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Figure 22: Ablation studies on the cost limit in SafetyPointGoal1. We run SafeDreamer (BSRP-Lag)
on SafetyPointGoal2 for 4M steps and observe that a lower cost limit enables the cost to approach
closer to zero. This experimental outcomes is consistent with our finding on SafetyPointGoal1.
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Figure 23: Ablation studies on the selection of the world model’s state zt in SafetyPointGoal2. Our
analysis indicates that in the world model, a larger stochastic hidden state zt corresponds to a more
substantial decrease in cost. This observation highlights the impact of the perception module on the
predictive capabilities of the cost model, particularly in complex visual environments.
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Figure 24: Ablation studies on the design and configuration of the SafeDreamer’s world model in
SafetyPointGoal1. We observed that upon removing the reconstruction loss, the convergence speed
of the reward slowed down, and the cost failed to decrease. This suggests a correlation between the
predictive ability of the cost model and the reconstruction capability of the observation. More precise
reconstruction of the observation may lead to increased accuracy in the cost model’s predictions.
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Figure 25: Ablation studies on the weight of the cost model loss in SafetyPointGoal1. We run
SafeDreamer (BSRP-Lag) for 1M steps on SafetyPointGoal1. We find that applying different weights
to the unsafe interactions in the cost model’s loss has varying effects on the cost’s convergence.
A higher weight might aid in the cost’s reduction. We hypothesize that this effect is due to the
unbalanced distribution of cost in the environment. Different weights can mitigate this imbalance,
thereby accelerating the convergence of the cost model.
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Figure 26: Ablation studies on the weight of the cost model loss in SafetyPointGoal2. We run
SafeDreamer (BSRP-Lag) for 2M steps on SafetyPointGoal2. The experimental results were similar
to those on SafetyPointGoal1, but we suggest fine-tuning this hyperparameter based on the cost
distribution in different environments.
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