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Figure 1: Results of our UniTransfer. These qualitative results exhibit the superior performance of our
approach in transferring various reference components, including characters, garments, backgrounds,
and motions, to synthesize the new target videos.

Abstract

Recent advancements in video generation models have enabled the creation
of diverse and realistic videos, with promising applications in advertising and
film production. However, as one of the essential tasks of video generation
models, video concept transfer remains significantly challenging. Existing
methods generally model video as an entirety, leading to limited flexibility
and precision when solely editing specific regions or concepts. To mitigate
this dilemma, we propose a novel architecture UniTransfer, which introduces
both spatial and diffusion timestep decomposition in a progressive paradigm,
achieving precise and controllable video concept transfer. Specifically, in terms
of spatial decomposition, we decouple videos into three key components: the
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foreground subject, the background, and the motion flow. Building upon this
decomposed formulation, we further introduce a dual-to-single-stream DiT-based
architecture for supporting fine-grained control over different components in the
videos. We also introduce a self-supervised pretraining strategy based on random
masking to enhance the decomposed representation learning from large-scale
unlabeled video data. Inspired by the Chain-of-Thought reasoning paradigm, we
further revisit the denoising diffusion process and propose a Chain-of-Prompt
(CoP) mechanism to achieve the timestep decomposition. We decompose the
denoising process into three stages of different granularity and leverage large
language models (LLMs) for stage-specific instructions to guide the generation
progressively. We also curate an animal-centric video dataset called OpenAnimal to
facilitate the advancement and benchmarking of research in video concept transfer.
Extensive experiments demonstrate that our method achieves high-quality and
controllable video concept transfer across diverse reference images and scenes,
surpassing existing baselines in both visual fidelity and editability. Web Page:
https://yu-shaonian.github.io/UniTransfer-Web/

1 Introduction

Recent years, the rapid advancement of generative Al technologies [13} 36} 33] has greatly reformed
the community of video editing, opening up new potentials for diverse, fine-grained, and user-
controllable content manipulation tasks. Video Concept Transfer (VCT) is one of the most important
downstream tasks in video editing, aiming to substitute various user-specified target concepts in a
video, such as objects, characters, backgrounds, or subject motions, to enable personalized content
manipulation. Its applications span across diverse areas such as film production, game development,
virtual reality, efc. , drawing increasing attention from both academia and industry.

Despite its potential, achieving high-quality video concept transfer is still challenging as it requires
seamless integration of different components, preservation of the identity of the target object, and
visual fidelity of the generated videos. Some recent approaches rely on text-based guidance to control
the transfer [10} 4} 41]. However, the inherent ambiguity of natural language descriptions often
results in imprecise manipulation of object attributes and behaviors, restricting their application
scenarios. In contrast, image-guided methods offer a more accurate way to encode the appearance
and identity of target objects. For example, methods like AnimateAnyone2[15]] and MIMO [29]
have demonstrated the ability to replace human subjects in videos with specific reference images.
However, these existing approaches mainly focus on human transfer and struggle to generalize to
broader editing tasks [25] involving arbitrary objects, backgrounds, garments or motion patterns.
VideoSwap [11] and AnyV2V [20] rely on personalized modeling or image editing techniques to
address this dilemma. But the ability of their foundation models limits their scalability and flexibility
in complex videos.

This paper focuses on image-based video concept transfer, including animals, characters, backgrounds,
and motions. This task inherently involves manipulations and integrations of different components
within a video, which often exhibit substantial variation in terms of visual appearance, motion pattern,
or semantic attributes. However, most existing approaches [23} 141} 11}, 120] 28|] generally model the
video as a unified whole without considering the heterogeneous nature of its constituents, which
may introduce undesired artifacts. MIMO [29] introduced spatial decomposed modeling to VCT
by decomposing a video into three predefined components: human, scene, and occlusion. It helps
improve the quality of video character replacement. However, MIMO only decomposes videos in
the spatial dimension, which is not sufficient for high-quality video generation, as it takes all the
timesteps in the denoising process equally. Motivated by ProSpect [53], diffusion models actually
generate images in the progressive order of “layout — content — texture”, and this work also exhibits
that different stages in the diffusion models require guidance at different granularities.

In this work, we propose UniTransfer, a Diffusion Transformer (DiT) based video concept transfer
framework via progressive decomposition of both the spatial dimension and the denoising process. In
the spatial dimension, we decompose videos into three core components: foreground, background,
and motion dynamics, enabling our model to adapt to general concept transfer flexibly. To achieve
this, we allow the model to learn the decomposition from coarse foreground masks to detailed
ones. Specifically, we first introduce a random masking-based self-supervised pretraining strategy to


https://yu-shaonian.github.io/UniTransfer-Web/

strengthen the decomposed representation learning, which enables the model to capture disentangled
features without requiring fine-grained annotations. Then we design a dual-to-single-stream Dit
architecture to realize further decomposition with delicate semantic annotations. In this stage,
individual branches are responsible for encoding different video components, and their features are
later integrated into a unified representation through a single-stream network. This design enhances
the model’s capacity to manipulate different objects and maintain the temporal consistency.

In the denoising process, we decompose the timestep into coarse-grained, mid-grained, and fine-
grained stages instead of modeling it equally. Inspired by the Chain-of-Thought (CoT) strategy,
we develop a Chain-of-Prompt (CoP) mechanism and leverage Large Language Models (LLMs) to
produce hierarchical prompts at different granularities and utilize them to guide the generation,
enabling progressive refinement from noise to detailed textures. The main contributions are
summarized as follows:

* We propose a DiT-based image-guided video concept transfer framework UniTransfer, which
incorporates progressive spatial and timestep decomposition.

* We introduce a self-supervised pretraining strategy based on randomized masking to enhance
the disentangled representation learning and design a dual-to-single-stream architecture to
achieve spatial decomposition.

* We further introduce an LLMs-guided chain-of-prompt mechanism to achieve the timestep
decomposition. This progressive prompting strategy guides the generation process with
stage-specific instructions, improving the VCT generation quality.

* We collect an animal-centric video dataset called OpenAnimal to facilitate the training and
benchmarking of research in video concept transfer. Extensive experiments demonstrate that
our method outperforms state-of-the-art methods in various video concept transfer scenarios.

2 Related Work

Text-driven Video Editing. Video editing has witnessed remarkable advances in conditional content
synthesis and manipulation through diffusion-based architectures [27]. Recently, video editing
typically relies on textual prompts to control object attributes or behaviors [[10} 4} [1]]. Video-P2P [23|
32] achieves preservation of motion dynamics through attention modulation. RF-Edit [41]] preserves
structural integrity and temporal consistency by rectified flow ODE solving with reduced error.
MotionDirector [S5]] requires separate training for each motion type. When adapting to new scenarios,
it only supports text-guided scene transitions, which significantly limits its flexibility. VMC [[18]]
also needs seperate training for different scenes. However, due to the inherent ambiguity and
underspecification of natural language, such methods often struggle to achieve fine-grained and
accurate control over video content.

Image-guided Video Editing. To overcome these limitations, researchers introduce additional
reference images to guide the editing process of the video subject. MIMO [29] and MovieCharac-
ter [34]] decompose the video into elements such as foregrounds and preprocessed backgrounds, and
perform character transfer through video composition techniques. AnimateAnyone2 [15]] proposes
a framework to animate characters while considering environmental affordances. Despite their
effectiveness, they are designed for character video editing, which limits the application scenarios.

In contrast, VideoSwap [11]] pioneers a more general approach to image-guided concept transfer
through semantic correspondence learning, enabling more versatile and accurate video edits beyond
character animation. Yet critically, its reliance on multi-image concept anchoring introduces semantic
abstraction, achieving category-level consistency (e.g., kitten, airplane) but failing to preserve instance-
specific attributes. AnyV2V [20] leverages arbitrary image editing tools [3} 42} [7] to modify the first
frame of a video and then propagates the modifications to subsequent frames, enabling instance-based
object-driven editing and identity manipulation. However, the two-stage pipeline heavily depends
on the results of off-the-shelf image editing techniques, and the temporal consistency can not be
guaranteed. To address these limitations, we propose a novel framework that does not rely on external
image editing tools. Instead, our method decomposes the video into three disentangled components:
foreground, background, and motion. Integrating with a carefully-tailored network architecture in
conjunction with a large language model (LLM)-based chain-of-thought reasoning mechanism, our
method can achieve precise and flexible video concept transfer.
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Figure 2: Our progressive spatial and timestep decomposition modeling.

Chain-of-Thought Prompting [19] aims to substantially improve the reasoning capabilities of
large language models (LLMs) [6]. It provides a framework for complex multi-step inference
through explicit intermediate reasoning steps. The CoT concept evolves into CoX [44], where
X denotes swappable nodes (e.g. intermediates [19, 56) 21, 40], augmentation [12} |49 (9} [52],
feedback [46l 24} 2| [8]], and models [47, 15} |45])) for task-specific adaptation. We further propose
Chain-of-Prompt (CoP), which shifts the CoX paradigm to the iterative denoising steps of diffusion
models. This systematic approach decomposes the video generation into sequential coarse-to-fine
steps, where hierarchical prompt guidance progressively refines temporal features through successive
diffusion iterations.

3 Method

In this section, we present UniTransfer, a DiT-based image-guided video concept transfer framework
with progressive decomposed video modeling. Our goal is to generate high-quality videos with
user-specified concepts in the referenced images, including objects, characters, animals, backgrounds,
or motion dynamics. To achieve this, we decompose the video both in the spatial and the timestep
dimension. The overview of the proposed framework is illustrated in Figure 2]

3.1 Spatial Decomposition

Existing video generation methods typically treat the video as a holistic entity and attempt to model
it under the guidance of text prompts or reference images. Although such strategies are effective
for general video synthesis, they fall short in the context of video concept transfer, which requires
compositional control over different parts of the video, including foreground objects, background
scenes, and motion dynamics. Encoding the entire video into a single latent space makes it difficult
to independently manipulate these components during generation. As a result, existing image-based
video object transfer methods are often limited to transferring only the main subject, instead of
manipulating different components, including background appearance or motion dynamics.

To achieve more flexible and controllable video concept transfer, we propose to spatially disentangle
the video generation process. Specifically, a video can be decomposed into three distinct components:
the foreground M, the background B, and the corresponding motion flow F'. In general, the
foreground component may consist of different objects (e.g., characters, animals, or objects). Under
this setting, we redefine the video denoising process as follows:
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Figure 3: The architecture of our UniTransfer.

where T is the condition of text prompts, i = (M, B, F'). This decomposition enables us to treat
each component independently and recombine them flexibly in the generation pipeline, laying the
foundation for video concept transfer.

Building upon this decomposed formulation, we propose a progressive learning scheme that enables
the model to effectively capture and utilize the decomposed components for video generation.
To achieve this, we design two modules: (1) a random masking-based self-supervised learning
mechanism to model the coarse relationships between the foregrounds and the backgrounds without
delicate semantic annotations. (2) a carefully designed dual-to-single stream architecture, UniTransfer,
tailored to learn detailed interactions of three different components. In the following, we will introduce
them respectively.

3.1.1 The Architecture of UniTransfer

In this stage, we propose a DiT-based architecture named UniTransfer to decompose the video into
three components: the foreground appearance, the background scene, and the motion dynamics to
enable flexible and fine-grained control over VCT. Unlike previous approaches that treat the video as
a monolithic entity, UniTransfer is designed to disentangle and recompose these components in a
controllable diffusion-based generation process.

In the training process, given the input video V', we first randomly sample a single frame to serve as a
reference image I. A pretrained semantic segmentation model is then utilized to predict a foreground

mask M € {0, I}HXW, which partitions the reference frame into a foreground region F' = I © M
and a background region B = I ® (1 — BBox(M)), where ® represents element-wise multiplication
and BBoxz(M) means all the pixels in the bounding box are setting to 1. With the unaligned masks,
we force the model to learn shape-agnostic interactions between the foreground and the background.
Meanwhile, motion dynamics are extracted from the entire video using a pretrained optical flow model
RAFT [39], which captures the temporal dynamics independent of appearance content. UniTransfer
takes F, B, O along with the video description 7 as guidance and iteratively denoises from a randomly
sampled Gaussian noise map to generate a new video V. Figure 3|illustrates the framework of the
network, which is in a dual-to-single-stream paradigm consisting of three collaborative branches: a
foreground branch, a background branch, and a fusion branch.

The foreground and background branches are built based on the CogVideoX architecture[48]. Each
of them is composed of an image VAE encoder to project F' and B into latent codes zy and z,
a text encoder to provide shared high-level text embedding z., and a stack of N DiT blocks for
temporal feature modeling. In the background branch, a random Gaussian noise vector z; of the
timestep ¢ is concatenated with z; and z., and the combined representation is passed through the

DiT blocks h{, fori = 1,...,N. In contrast, the foreground branch is treated as a conditional
stream with no noise input. It adopts a symmetric structure and produces intermediate feature maps
for each DiT block hzf, fori: = 1,..., N. Afterwards, we design a feature injection module that

introduces foreground features into the background stream inspired by ControlNet [S1]. Specifically,
the foreground feature map is processed by a zero-initialized convolutional projection layer and then
element-wise added to the corresponding layer in the background branch at each DiT block. It allows
the model to inject spatially aligned foreground appearance into the generative path.

Moreover, the enhanced background features are combined with the motion dynamics in the fusion
branch, which consists of a motion encoder to project the optical flow to a latent code z,, and N



DiT blocks for further feature fusion. The flow encoder adopts four symmetrically arranged stages,
aligning with the structure in 3D VAE encoder [48]]. Inspired by Tora[54]], we also design an adaptive
norm layer before adding it to the dit block. To enable the model to handle the misalignments between
the motion and the input images and improve the generalization ability, we inject random noise into
the input optical flow. z, is fused with the background stream through element-wise addition in each
fusion DiT block h?, fori = 1, ..., N.. The model outputs the predicted noise at a given denoising
timestep t as follows:

€9 = h[ZConv(hs(zf ® 27)) B hp(2t © 2 © 27) B 20) )

where ZConv represents the zero-initialized convolution. © and @ represent the concatenation
operation and element-wise addition, respectively.

3.1.2 Self-Supervised Pre-Training via Random Masking

Learning robust video representations for concept-aware generation typically requires large-scale
datasets with annotated semantic masks or motions. However, existing video datasets rarely provide
sufficient annotations. Relying on small-scale annotated datasets is not enough to directly learn
spatially decoupled representations for video concept transfer. To address this limitation, we follow
LMD [26]] to introduce a random masking strategy before training with fine-grained annotations. It
leverages large-scale unlabeled video datasets for learning initial disentangled representations. In
this stage, we only learn the foreground and background decomposition for coarse initialization.

In this stage, the binary foreground mask M € {0, I}HXW is generated through random masking
to arbitrarily partition the reference image I into two regions F' and B. The mask is initialized as
an all-zero matrix and is iteratively updated by randomly drawing rectangles of random size and
position on it. The pixels inside each rectangle are set to 1, and the process continues until the
foreground coverage exceeds 50% of the image area. This masking strategy ensures spatial diversity
and balance between foreground and background regions. Then the reference frame is partitioned
into a foreground region F' = I ® M and a background region B = I ® (1 — Dilate(M)), where
Dilate(M) represents the morphological dilation operation to enable the model to learn the boundary
interactions. Then F' and B are fed into the foreground branch and a background branch, which
inject the features into the denoising network independently. This allows the model to learn how to
reconstruct coherent video content from partial and spatially isolated cues, without requiring ground-
truth foreground-background labels. Through extensive self-supervised training on large-scale data,
our model acquires strong prior knowledge, enabling efficient adaptation to downstream tasks via
precise supervised fine-tuning.

3.2 Timestep Decompostion

Revisiting the preliminary of diffusion models reveals another limitation in current video generation
pipelines: the same conditioning prompt is applied across all timesteps during the denoising process.
it is difficult to generate grained texture corresponding to the grained prompts at the initial stage.
Inspired from ProSpect [53]], the role of each timestep varies significantly in the generation process.
In the early stages of denoising, the model focuses primarily on recovering the global structure and
semantic layout of the video. In contrast, the later stages are responsible for learning fine-grained
details such as textures, colors, and subtle appearance attributes. Applying a static, single-level
prompt across all timesteps ignores this progression in modeling focus. For instance, using overly
complex or fine-grained textual prompts during early timesteps may misguide the model, leading to
the omission of some semantic attributes or misalignments between the generated content and the
input prompt.

To address this, we introduce a timestep decomposition mechanism named Chain-of-Prompt (CoP)
inspired by the Chain-of-Thought reasoning paradigm in large language models. Specifically, we
decompose the denoising timesteps into three granularity levels—coarse, medium, and fine—and
leverage a large language model (LLM) to automatically generate three levels of prompts that
progressively reflect the abstraction and detail required at different denoising stages. These prompts
are then injected into the diffusion model in a stage-aware manner, ensuring that early timesteps
receive high-level, structural guidance, while later steps benefit from detailed, appearance-level
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control. Then the denoising loss can be defined as follows:
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where T¢rs, Tmid, Trine are coarse-grained, mid-grained and fine-grained text prompts, respectively.
t. and ¢y are the end points of the corresponding stages. 1" is the total timestep of the diffusion process.
In our paper, as the dataset provides detailed video descriptions, we utilize them as the fine-grained
prompts. Then we employ an LLM Qwen-QWQ-32B [38] to summarize Tfine tO Ters, Tmid. This
decomposition strategy helps to align the complexity of text guidance with the focus of the generation
phase, improving both semantic consistency and visual fidelity in the final video output.

4 Experiments

To better demonstrate the strengths of our approach, we conduct experiments to validate foreground
transfer, background transfer, and optical flow transfer across videos. The implementation details can
be referred to the appendix.

4.1 Animal-centric Dataset

To promote the broader applicability of video editing models, we introduced a new dataset
OpenAnimal, which focused on single-animal video sequences across a wide range of species
and diverse motion patterns. While following a similar structure to human-centric datasets (e.g.,
TikTok, UBC), OpenAnimal is specifically tailored for animal subjects with 10000 video clips.

4.2 Comparison and Analysis

As current state-of-the-art methods are primarily trained on human datasets, they often struggle
to generalize to non-human scenarios, such as animal motion transfer or object-level editing in
nature-based scenes. For fair comparison, we conducted qualitative and quantitative experiments on
UBC[30] and TikTok[17] to evaluate the video character transfer performance. Besides, to further
evaluate our model’s ability to generalize to other concepts, we also demonstrate qualitative results of
animal transfer, cloth transfer, background transfer, and motion transfer.

4.2.1 Video Character Transfer

To evaluate the effectiveness of our method in video character transfer, we compare it with state-of-
the-art character animation and video editing baselines, including Animate Anyone [[14], Champ [57],



Table 1: Quantitative comparison of video quality for video character transfer.

TikTok UBC

LPIPS| PSNRt SSIM{ FID| FVD| LPIPS| PSNRf SSIMt FID| FVD]
MRAA 0513 2531 0425 13423 634 0589 2332 0537 89.13 438
DisCo 0674 2156 0532 11224 571 0467 2345 0412 9415 483

MagicAnimate 0.259 24.56 0.657 89.23 428 0.143 27.08 0.742  48.19 391
Animate Anyone  0.198 25.89 0.713 79.18 398 0.132 26.54 0.798  44.18 378

Champ 0.241 26.57 0.787 67.14 401 0.159 27.03 0811  41.02 324
UniAnimate 0.191 24.34 0.724 58.19 378 0.127 27.09 0.798  43.24 334
Ours 0.152 26.78 0.803 46.74 345 0.125 27.12 0.814  39.73 312

Table 2: Video consistency quality comparison. SubC: Subject Consistency; BkgC: Background
Consistency; MoS: Motion Smoothness; AesQ: Aesthetic Quality; DyaD: Dynamic Degree.
TikTok UBC
SubCt BkgCT MoST AesQT DyaDT SubCtT BkgCt MoST AesQf DyaD?

Video-P2P 0.842 0853  0.782  0.443 0.710 0.813 0.867  0.734  0.497 0.371
ControlVideo  0.712 0419  0.747 0519 0.823 0.814 0.773  0.895  0.624 0.241

RF-Editor 0.911 0.873  0.581 0.423 0.765 0.825 0.648  0.789  0.434 0.627
MotionClone  0.784 0.865  0.891  0.651 0.830 0.924 0943  0.871  0.613 0.679
CogVideoX 0.927 0904 0926  0.557 0.842 0.911 0917 0911 0.663 0.902
Mofa-Video 0.923 0917  0.962  0.593 0.837 0.923 0.879 0957 0.612 0.829
Ours 0.945 0.931 0.962  0.651 0.903 0.939 0942 0.971 0.664 0.911

UniAnimate [43]], AnyV2V [20], Video-P2P [23]], efc. . Qualitative results are presented in Figure@
Given an input video, these existing approaches typically modify or replace objects based on textual
or image-based prompts. As illustrated in Figured] the text-guided transfer methods fail to transfer
the reference image to the video, while the image-guided baselines struggle to preserve the structural
features or maintain the appearance of the backgrounds. In contrast, our approach leverages reference
image guidance and incorporates a progressive spatial and timestep decomposition, which aligns
more naturally with real-world editing workflows. Our approach can achieve better preservation of
the reference appearance, higher visual quality of the video, and greater inter-frame consistency than
all baselines. These improvements are attributed to our novel decomposition strategy, which enables
fine-grained control and more structured video generation.

Besides, we perform further quantitative evaluation from two perspectives: video quality and
temporal consistency. As shown in Table[T]and Table[2] our method achieves superior performance
across multiple metrics, including FID, LPIPS, and subject consistency, aesthetic quality, efc. from
vbench[16]], significantly outperforming the compared baselines. This demonstrates the robustness
and generalization ability of our approach in complex video character transfer tasks.

4.2.2 Adaptation to Various Video Concept Transfer Tasks.

Our proposed decomposition-based modeling and random masking pre-training mechanism enable
our framework to effectively isolate and manipulate individual visual factors within a video, which
can generalize beyond conventional foreground transfer. In this section, we provide more diverse
qualitative results of a wide range of video concept transfer tasks, including motion transfer,
background transfer, animal transfer, and regional foreground transfer, such as clothing replacement.
These results demonstrate the flexibility and adaptability of our approach in handling diverse
transformations, which are typically challenging for conventional video editing methods.

Motion transfer. Our framework supports motion transfer by applying the motion dynamics
extracted from a driving video onto a reference image, similar to pioneer works[37]. To evaluate
the effectiveness of our method on this task, we conduct comparisons with state-of-the-art motion-
guided video generation approaches, including AnyV2V [20], MotionClone [22], MotionI2V [37],
AnyV2V [20] and Mofa-Video [31]. The results are shown in Figure[5] As illustrated, MotionI2V
struggles with maintaining the video consistency as time progresses, often introducing noticeable
artifacts or drift in later frames. AnyV2V fails to preserve the appearance of the reference image.
MotionClone primarily relies on text guidance for controlling video appearance, which limits its
ability to precisely align the generated content with the reference image. Mofa-Video may generate
blurry results. In contrast, our method produces videos that not only maintain high visual fidelity but
also exhibit coherent and realistic motion consistent with the driving video. This advantage stems
from our explicit spatial decomposition and motion-conditioned generation design, which enables
better disentanglement and control over appearance and temporal dynamics.
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Table 3: Ablation study.

Visual Quality Video Smoothness

LPIPS| PSNR{ SSIMt FID| FVD] SubCt BkgC?
Early Motion Injection 0.234 25.16 0.743 56.79 374 0.871 0.736
w/o Flow Noise Injection 0.293 2431 0.659 69.31 391 0915 0.893

w/o Self-Supervised Pre-training 0.498 19.87 0.546  101.34 487 0.735 0.892
w/o dual-stream decomposition 0.341 23.12 0.694 78.13 423 0.894 0.639
w/o CoP Timestep Decomposition ~ 0.192 25.87 0.712 51.32 357 0.881 0.924
Full Model 0.152 26.78 0.803 46.74 345 0.945 0.931

Foreground transfer. Our framework enables flexible foreground transfer, including part-level
object replacement, such as garment transfer. It poses significant challenges due to the need
to selectively modify localized visual regions while preserving the subject’s identity and overall
video harmonization. This is particularly important in fashion, virtual try-on, and personalization
applications. As shown in Figure[7] our model successfully replaces the clothing items in the target
videos, with the referenced garments, without disrupting the consistency of facial features, body
motion, or background. These results highlight the strength of our decomposition framework in
enabling precise and high-quality object-level modifications within complex video generation tasks.

Background transfer. In most video editing approaches, modifications are typically limited to
the main subject or local elements. In contrast, our method supports background replacement by
leveraging the spatial disentanglement. As illustrated in Figure [7} our framework enables users
to seamlessly replace the entire background of a video. Our approach ensures that background
changes—such as scene transitions from indoor to outdoor—are consistent across all frames, while
the foreground subject remains temporally coherent and unaffected in terms of identity and motion.

4.3 Ablation Study.

To verify the effectiveness of the components in our video generation pipeline, we designed several
sets of ablation experiments on TikTok[17]. Specifically, we evaluate the following configurations:
(1) Early Motion Injection: Instead of injecting motion in the intermediate network layers, we
input motion information alongside the foreground and background features in the early layers,
and apply attention-based fusion within the denoising branch. (2) Feature Fusion (w/o dual-
stream decomposition): We directly concatenate foreground and background features and feed
them into the denoising module. (3) Without Self-Supervised Pre-training. (4) Without CoP Timestep
Decomposition. (5) Without Flow Noise Injection. The ablation study results are shown in Table

From the first two rows, we can see the superiority of the design of our motion branch, where the
added noise improves the generalization ability and the injection strategy provides more accurate
guidance. The third row emphasizes that the self-supervised training is critical for enhancing the



decomposed representation learning. The last two rows illustrate that our modeling of the spatial and
timestep decomposition both are essential for flexible and high-quality video concept manipulation.

5 Conclusion

In this work, we present a novel framework for controllable video concept transfer by introducing
a progressive spatial and timestep decomposition modeling strategy. Unlike existing methods that
treat the video as a holistic entity, our approach explicitly disentangles the video into foreground,
background, and motion components, and further decomposes the denoising process into hierarchical
stages via chain-of-prompt guidance. This design allows for more fine-grained control over video
synthesis, enabling diverse video concept transfer tasks, such as character transfer, motion transfer,
background transfer, and garment-level editing. We also incorporate a self-supervised pretraining
scheme based on random masking to support robust learning under no additional supervision, which
effectively bootstraps spatial disentanglement using large-scale unlabeled video data. Besides, we
curate a new dataset featuring animal subjects to advance research in video generation. Extensive
experiments on different transfer tasks demonstrate that our method significantly outperforms state-
of-the-art baselines in terms of visual quality, consistency, and controllability.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately reflect our paper’s
contribution and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitation of the method proposed is discussed in the supplemental
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used
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an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.
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Answer: [NA]
Justification: The paper does not include theoretical results.
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* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the Section[3]and Section[d] we have provided sufficient information for the
experimental results reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all

submissions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [Yes]

Justification: We are happy to release our code for the reproduction. Due to time constraints,
we plan to organize and disclose the code upon completion of the paper submission process.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]
Justification: We have provided the training and test details in Section {f.T] of the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the significant computational resources required for multiple repeated
execution of all experiments, we have not reported error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]
Justification: We have reported the information on the computer resources in the Section 4}
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and confirm that the research in this
article fully complies with its content.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper has discussed both potential positive social impacts and negative
societal impacts of the work performed in the supplemental material.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the original paper that provided the code and dataset used in the
paper.
Guidelines:
* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Video Diffusion Model Preliminary

Video diffusion models generalize the concept of image diffusion probabilistic models [[13] to the
temporal domain. Formally, let zy € V/*"*wx¢ represent a video latent variable, where f denotes
the number of frames, with h X w dimension, ¢ channels. The forward diffusion process is defined as
a Markov chain that gradually corrupts the original video into Gaussian noise:

2t = \/aztfl + v 1- O, €~ N(O7I)7 (4)
where t € {1,...,T} indexes the diffusion timestep, &; controls the noise intensity, and € represents
standard Gaussian noise. In the reverse process, a denoising network is used to estimate the noise
from z;_1 to z, typically called a Diffusion Model . The training objective minimizes the following
loss function:

L(O)=E.cce[lle—éalz.Ct)|3] S

where C represents conditioning information such as text prompts or reference images.

B Implementation Details

In this paper, we focus on image-guided video concept transfer, where the foregrounds, backgrounds,
or motion dynamics can be manipulated. We perform experiments including character, animal, object,
background and motion transfer to evaluate our approach. The weights of the model are initialized
from a pretrained CogVideoX-5B [48]]. The experiments are conducted on a server equipped with
8x NVIDIA Tesla H100 80G GPUs. In our paper, we generate 49-frame videos at the resolution of
720 x 480.

Our training pipeline consists of two stages: a large-scale self-supervised pretraining phase and
a supervised fine-tuning phase. In the pre-training phase, we trained our model on the OpenVid
dataset[30]], a large-scale collection of approximately 12 million videos covering a wide range of
categories including humans, animals, vehicles, and diverse backgrounds. The training used a learning
rate of 1 x 10~* and ran for 200, 000 iterations. The OpenVid dataset comprises approximately 12
million samples.

In the supervised training phase, we adapt the pretrained model to specific video concept transfer
scenarios. For the human-centric editing task, we fine-tune the model on a combination of the
TikTok [17] and UBC Fashion [50] datasets, which include rich annotations for character-level
transfer tasks. The model is finetuned for 10, 000 iterations with a learning rate of 5 x 10~5. For the
animal-centric task, we performed an additional 10, 000 fine-tuning iterations on OpenAnimal using
the same learning rate.

C More Details about Self-Supervised Pretraining

In practice, obtaining large amounts of high-quality annotated data remains challenging. Although
efficient segmentation tools like SAM2[35]] are available, they still require extensive manual
interactions, such as point prompts, bounding boxes, or object-specific filtering. To address this
limitation and reduce the reliance on manual annotations, we introduce a self-supervised pretraining
approach, the detailed algorithmic pipeline of which is outlined below Algorithm [T]and Figure [6]

D More Details about CoP Guidance

The detailed algorithmic pipeline of our Chain-of-Prompt (CoP) guidance is demonstrated in
Algorithm 2]

To assess the effectiveness of CoP, we conducted ablation experiments comparing it with static
prompts, including: (i) All Coarse Prompt: using a coarse prompt across all timesteps, and (ii) All
Detailed Prompt: using a detailed prompt across all timesteps. The results demonstrate that the all-
coarse setting tends to produce results lacking fine-grained appearance fidelity and exhibiting texture
degradation, while the all-detailed setting often introduces misguidance during early denoising steps,
leading to distorted structures. In contrast, our CoP strategy, which progressively schedules coarse-to-
fine prompts, strikes a balance between structural stability and appearance precision, achieving better
performance. The quantitative evaluation can be referred to in Table 4]
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Figure 6: Self-supervised Pretraining.

E More Results

Our framework enables flexible foreground and background transfer, including part-level object
replacement, such as garment transfer. The results of different transfer tasks are shown
in Figure Figure [T} Figure [12] Figure [7] Our curated animal-centric dataset OpenAnimal
is demonstrated in Figure[T3]
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Figure 7: More UniTransfer results of different transfer tasks.

F Limitation

Although our model can achieve subject transfer and background replacement in videos, there are
still cases where the subject and background appear with artifacts. This issue might be due to current
segmentation models cannot fully separate foreground and background elements, leading to imperfect
composite results in the final output. In the future, we plan to address this by leveraging large-scale
models for enhanced video scene understanding, further improving the quality of generated videos.

For scenes involving multiple moving entities, we can fuse their individual optical flows into a
composite representation and sequentially condition the network on each object through multiple
inference passes. For interacting subjects, our method remains effective when the occlusion or
overlap between them is relatively small, as each subject’s region can still be identified and modeled
with reasonable independence. However, cases with large overlapping areas or complex physical
interactions pose challenges to our models due to ambiguity in motion attribution and visual
entanglement. Joint modeling of interacting subjects is an interesting direction for future work.
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Algorithm 1: The pipeline of our self-supervised pretraining.

Input: image: input image
coverage: target coverage ratio (default: 0.5)
min_block_size: minimum block size (default: 320)
mazx_block_size: maximum block size (default: 640)
Output: foreground: processed image with coverage
background: inverse masked image
Function random_white_blocks(image, coverage, min_block_size, max_block_size)
if image is None then
L raise ValueError("Input image is empty");

if image is grayscale then

| result + convert image to BGR color space;
else

| result < copy of image;

(h,w) < height and width of result;

total_area + h X w;

covered_area < 0;

target_area < total_area X coverage;

mask < zero matrix of size (h, w);

result_2 < gray matrix (127.5) with same size as result;

max_iter < 500;

while covered_area < target_area and max_iter > 0 do

max_iter < max_iter — 1;

block_size < random integer between min_block_size and max_block_size;

x < random integer between 0 and w — block_size;

y < random integer between 0 and h — block_size;

if maskly : y + block_size,x : x + block_size] contains any 1 then
L continue;

> Special overlapping effect result_2[y : y + block_size — 5, x :
x + block_size — 5] < result[y : y + block_size — 5, x : x + block_size — 5];
result[y : y + block_size + 5, x : x + block_size + 5] + [127.5,127.5,127.5];
mask[y : y + block_size, x : x + block_size] + 1;
covered_area < covered_area + block_size X block_size;
if covered_area > 1.1 X target_area then
L break;

| return foreground, background;

Table 4: CoP mechanism with different level prompts.

Visual Quality Video Smoothness
LPIPS| PSNRT SSIMtT FID|] FVDJ] SubCt BkgCTt

All Coarse Prompt 0.174 23.15 0.701 72.46 433 0.714 0.865
All Detailed Prompt ~ 0.165 24.62 0.734 49.26 367 0.832 0.901
Full Model 0.152 26.78 0.803 46.74 345 0.945 0.931

G Social Impact

Our research decouples video generation into foreground, background, and their corresponding
motion. This technology will enhance the efficiency of video production, drive innovation in industries
such as film and gaming, and enable more immersive entertainment and educational experiences.
However, as this technology becomes more widespread, society may face ethical and legal challenges,
including concerns over the authenticity of video content, characters, and backgrounds. Therefore,
establishing appropriate regulatory frameworks to ensure responsible use of this technology is a
critical task that demands our attention.
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Algorithm 2: Chain-of-Prompt-Guided Video Denoising

Input: initial_noisy_video: Initial noisy video
base_prompt: Original text description
total_steps: Total denoising steps (default: 50)
T'1,T2: Stage transition steps
Output: generated_video: Final generated video
Function hierarchical_denoising(initial_noisy_video, base_prompt, total_steps = 50)
// Phase partitioning (all steps) 71 < 35 ; // First phase
T2 + 15; // Second phase
// Generate hierarchical prompts using LLM
prompts < QwQ32B_GenerateHierarchicalPrompts(base_prompt) ;
// Returns: {’stagel’:coarse, ’stage2’:detailed, ’stage3’:fine}
current_video < initial_noisy_video;
for step < total_steps to 1 do

if step > T'1 then
guidance_prompt < prompts[ stagel’] ; // Coarse prompt
guidance_weight < 1.5 ; // Strong guidance

else if step > T2 then
guidance_prompt < prompts[ stage2'] ; // Detailed prompt
guidance_weight < 2.0;

else
guidance_prompt < prompts[ stage3'] ; // Fine prompt
guidance_weight < 1.0;

/I Execute denoising step current_video <—

DenoiseStep(current_video, guidance_prompt, guidance_weight, step);

return current_video;

Ref Video Ours AnyV2v Video-p2p Control-Video  AnimateAnyone Champ UniAnimate MagicAnimate

Figure 8: More results compared with other methods.
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Figure 9: More Visual Results (Left is reference video, middle is reference image, right is output).

Figure 10: More Visual Results.(Left is reference video, middle is reference image, right is output)
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Figure 11: More Visual Results.(Left is reference video, middle is reference image, right is output)

Figure 12: Animal Motion Transfer.(Left is reference video, right is output)
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Figure 13: OpenAnimals Datasets.
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