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Abstract

Vision–Language–Action (VLA) models show promise in embodied reasoning,
yet remain far from true generalists—they often require task-specific fine-tuning,
incur high compute costs, and generalize poorly to unseen tasks. We propose
MetaVLA, a unified, backbone-agnostic post-training framework for efficient and
scalable alignment. MetaVLA introduces Context-Aware Meta Co-Training, which
consolidates diverse target tasks into a single fine-tuning stage while leveraging
structurally diverse auxiliary tasks to improve in-domain generalization. Unlike
naive multi-task SFT, MetaVLA integrates a lightweight meta-learning mecha-
nism—derived from Attentive Neural Processes—to enable rapid adaptation from
diverse contexts with minimal architectural change or inference overhead. On the
LIBERO benchmark, MetaVLA with six auxiliary tasks outperforms OpenVLA
by up to 8.0% on long-horizon tasks, reduces training steps from 240K to 75K,
and cuts GPU time by ∼76%. These results show that scalable, low-resource
post-training is achievable, paving the way to general-purpose embodied agents.

1 Introduction

Recent years have seen rapid progress in embodied Vision–Language–Action (VLA) modeling driven
by supervised fine-tuning (SFT) or reinforcement learning (RL) of large language models to perform
new embodiment task transfer. In these pipelines, a pretrained VLA backbone is adapted to decode
action tokens autoregressive by training on annotated video or image demonstrations with instructions
on the new embodiment tasks Kim et al. [2024], Brohan et al. [2022, 2023], O’Neill et al. [2024].

Despite these gains, SFT-based VLA methods face practical limits on benchmarks with scarce per-task
data. Current practice Kim et al. [2024] fine-tunes each embodiment task independently, increasing
total training cost and preventing transfer across related tasks. Such task-specific schedules are brittle:
many gradient steps are needed before stable action sequences emerge, raising overfitting risks and
slowing adaptation to new variants or limited context. For example, training all four LIBERO suites
requires 240K steps, with long-horizon tasks like LIBERO Long further dominating iterations and
becoming the bottleneck OpenVLA Team [2024].

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Space in Vision,
Language, and Embodied AI.



While recent work Black et al. [2024], Intelligence et al. [2025], Qu et al. [2025] expands datasets
and explores backbone or pretraining innovations, we approach the problem from an orthogonal
perspective—post-training. Starting with a vanilla multi-task co-training baseline across the LIBERO
suites, we observe reduced GPU hours and improved success rates. However, naive inclusion of
auxiliary tasks with diverse domains slows convergence and degrades performance. We attribute this
to the heterogeneous optimization instability, where misalignments in both the feature space (e.g.,
camera views) and action space (e.g., degrees of freedom) hinder the benefits of co-training.

Building on these ideas, we propose MetaVLA, a unified framework that fills a critical gap in
VLA post-training by introducing auxiliary tasks without the inefficiencies of per-task SFT or the
performance drop of naive multi-task SFT. MetaVLA trains a single model across target tasks (e.g.,
LIBERO suites) to harness cross-task gradients, while auxiliary tasks are incorporated through
Meta-Action-Reasoner (MAR) that injects out-of-domain information gain without disrupting target
optimization, enabling scalable and robust adaptation. Experiments show that MetaVLA with six
auxiliary tasks outperforms the OpenVLA baseline by 4.4% and its joint-task SFT counterpart by
3.7% on average. On LIBERO Long, gains reach 8.0% and 5.1%, respectively. Moreover, MetaVLA
reduces model count to one and cuts total training steps from 240K to 75K. In summary, this work
explores an underexamined direction: enhancing post-training efficiency and generalization by
incorporating diverse auxiliary tasks with minimal optimization overhead. MetaVLA offers a plug-in
module and training recipe for scalable, backbone-agnostic adaptation with strong generalization,
and extensive experiments demonstrate that it achieves superior performance and efficiency.

2 Related Work

2.1 Embodiment VLA

Recent VLA progress stems from supervised fine-tuning (SFT) of pretrained language and multi-
modal backbones to map visual context and instructions to action sequences. Large systems (e.g.,
OpenVLA Kim et al. [2024]) show strong generalist policies via pretraining and SFT, but high-
light key limitations: SFT typically requires per-task tuning and high compute. Benchmarks like
LIBERO Liu et al. [2023] emphasize transfer and lifelong learning across related tasks, motivating
more compute-efficient, cross-task training approaches.

2.2 Meta-Learning

Meta-learning trains models to rapidly adapt using few-shot context, often via episodic training Finn
et al. [2017], Koch [2015], Santoro et al. [2016], Ravi and Larochelle [2016]. In VLA, both gradient-
based (fast fine-tuning) and inference-based (context-to-prediction mapping) approaches are used.
Attentive Neural Processes (ANP) Kim et al. [2019] are amortized meta-learners that use attention
to produce context-conditioned predictions. For VLA, ANP is appealing due to its task-invariance,
ability to focus on relevant demonstrations, and avoidance of direct context optimization during
adaptation. This simplifies cross-domain training and promotes stability—crucial for achieving strong
results with auxiliary data, as shown later.
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Figure 1: MetaVLA architecture: VLA backbone married with ANP-based Meta-Learning
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3 Method

3.1 Meta-Learning with VLA

To improve convergence and generalization in low-data task adaptation, we base our architecture on
Attentive Neural Processes (ANP) Kim et al. [2019]—a meta-learner inspired by Gaussian Processes
that models a distribution over functions conditioned on both context and target representations.
These latent codes capture global and task-specific semantics, aggregated via self-attention and
cross-attention Vaswani et al. [2023], respectively.

We introduce a compact module, Meta-Action-Reasoner (MAR), integrated into the Llama2 Touvron
et al. [2023] action decoder. Following the original ANP formulation, MAR first applies self-attention
across context examples to extract a global prior, which is then fused with target queries through
cross-attention to form task-aware hybrid representations. Formally, given the target feature xT ,
contextual feature-action pairs (xCi, yCi) ∈ (xC , yC), MAR models the conditional distribution of
functions over target action yT given global and task-specific observations:

p(yT |xT ,xC ,yC) :=

∫
p(yT |xT , rT , z) q(z |̄sC) dz (1)

Here, rCi ∈ rC and sCi ∈ sC are per-context representations aggregated from all contexts data pairs
(xC , yC) through self-attention. rT is the cross-attention output of query xT with context keys xCi

and values rCi. s̄C is the mean of all sCi, while z is a stochastic latent drawn from the approximate
posterior q(z |̄sC) computed over the context. During training, an additional condensed target
representation s̄T is produced by the same self-attention and mean process as for s̄C , with ground
truth pair (xT , yT ). By reparameterizing the Gaussian latent z, the training objective maximizes a
variational lower bound:

log p(yT |xT ,xC ,yC) ≥ Eq(z|sT )[log p(yT |xT , rT , z)]−DKL(q(z |̄sT ) ∥ q(z |̄sC)) (2)

This formulation enables MetaVLA to reconstruct target actions, regularized by a KL divergence that
prevents the target distribution from drifting too far from the context distribution.

Unlike standard ANP, which uses smaller-scale neural networks, we integrate a pretrained Llama-
2 Touvron et al. [2023] backbone from OpenVLA. MAR generates both stochastic and deterministic
contextual latent vectors, which are concatenated with the Llama hidden states before the final output
layer. The combined representations are then passed through the LM head to produce output logits,
enabling end-to-end training via standard Llama decoding. See Figure 1 for a framework overview

3.2 Adding Auxiliary Tasks

To increase context diversity and strengthen meta-learning, we add auxiliary tasks NVIDIA et al.
[2025] NVIDIA [2025] into context set. First, GR00T is entirely unseen during OpenVLA pretraining,
making it a valuable source of additional information gain. Second, it offers partial domain rele-
vance to LIBERO while differing structurally—striking a balance between familiarity and diversity.
Examples of task difference among these three types are showing in Figure 8 and Section A.2.

Unlike Zhao et al. [2025], which carefully select tasks highly similar to LIBERO, our method is less
strict in data varieties, leading to a more scalable adaption framework. Ablation study on the effect of
auxiliary task selection is presented in Section 4.2.

4 Experiments

4.1 Main Results of MetaVLA

As shown in Table 1, MetaVLA—with or without auxiliary tasks—outperforms all baselines, includ-
ing OpenVLA and SFT-4LIBERO, across all LIBERO tasks and on average. With six auxiliary tasks,
it improves over OpenVLA by 4.4% and SFT-4LIBERO by 3.7%, notably on LIBERO-Long, with
gains of +8.0% and +5.1%, respectively. Moreover, MetaVLA reduces model count to one and cuts
training steps from 240K to 75K, reducing GPU time by 76%, from ~100 hours to ~24 hours.
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Model Training Steps Goal (%) Spatial (%) Object (%) Long (%) Average (%)
Diffusion Policy Chi et al. [2023], Kim et al. [2024] - 68.3 78.3 92.5 50.5 72.4
ATM Wen et al. [2023] - 77.8 68.5 68.0 39.3 63.4
OpenVLA Kim et al. [2024] 240K 76.2 84.7 87.0 51.8 74.9

SFT-4LIBERO

75K

77.8 84.8 87.4 54.7 76.2
SFT-4LIBERO+1single+1bimanual 59.7 68.0 65.2 30.0 55.7
SFT-4LIBERO+3single 24.6 16.8 9.7 1.5 13.2
SFT-4LIBERO+5single+1bimanual 15.2 5.6 12.0 1.6 8.6
MetaVLA-Pretrained-Context-ONLY 74.4 85.4 85.4 52.3 74.4
MetaVLA (ours) 78.9 88.5 88.5 55.3 77.8
MetaVLA+Stochastic (ours) 78.9 88.9 88.5 53.0 77.3
MetaVLA+1single+1bimanual (ours) 78.5 89.0 87.4 59.0 78.5
MetaVLA+3single (ours) 78.0 88.0 87.2 59.7 78.2
MetaVLA+5single+1bimanual (ours) 78.7 89.9 88.9 59.8 79.3

Table 1: Comparison with prior methods. All MetaVLA variants are single models trained for
75k steps. MetaVLA excludes stochastic latent, while MetaVLA+Stochastic includes them. SFT-
4LIBERO baselines are single models without meta-learning. OpenVLA baselines are four LIBERO
fine-tuned models with over 200k steps. On average, MetaVLA with six auxiliary tasks excels
OpenVLA by 4.4%, SFT-4LIBERO by 3.7%, and on LIBERO-Long by 8.0% and 5.1%, respectively.

4.2 Ablation Study

Effect of Auxiliary Task Selection As shown in Table 1, MetaVLA with all three auxiliary settings
outperforms its SFT-4-LIBERO counterparts, demonstrating robust generalization to changes in
camera views, action spaces, and the number of context tasks.

Effect of Context Batch Size As shown in Figure 2, a context batch size of 32 yields the best
performance, with success rates increasing monotonically with batch size under our setting. Larger
sizes remain unexplored due to GPU memory limits and are left for future work.
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Figure 2: Comparison of context batch sizes across LIBERO. Baseline is the OpenVLA released
SFT models, and SFT-4LIBERO are baseline single models trained without meta-learning. Within
GPU memory limits, larger context batches lead to higher success rates.

Parameter Change and Efficiency Our method adds only 10% more trainable parameters. An abla-
tion with pretrained-only contexts (MetaVLA-Pretrained-Context-ONLY) performs worse (Table 1),
confirming the gains come from meta-learning rather than parameter increase. Moreover, MetaVLA
matches OpenVLA in LIBERO simulation latency (Figure 7), adding no computational overhead.

4.3 Why Our Method Works?

Joint training promotes knowledge sharing across in-domain tasks, while MAR leverages diverse
auxiliary data and mitigates gradient conflicts from diverse auxiliary tasks. Section A.1 (Appendix)
shows convergence trends for three MetaVLA variants from Table 1, supporting this design. Table 1
further shows that MetaVLA+Stochastic improves over MetaVLA on Spatial, performs similarly on
Goal and ObJect, but degrades on Long—likely due to its higher complexity and precision demands.
We leave deeper analysis to future work due to computational constraints.

5 Conclusion and Limitation

We introduced MetaVLA, a meta-learning framework that trains a single unified VLA model for
efficient cross-task transfer and out-of-the-box generalization. Using Attentive Neural Processes, it
adapts to diverse tasks without per-task tuning, boosting sample efficiency, long-horizon performance,
and stability. MetaVLA removes the need for multiple models, reducing compute and enabling carbon
savings. On LIBERO, it outperforms baselines in both success and convergence. More rigorous
equal-step comparisons for auxiliary-task models are left to future work due to compute limits.
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Figure 3: Training convergence comparison for models trained with 75K steps. Training Accuracy,
Imitation Loss, and L1 Loss are compared between MetaVLA variants and SFT-4LIBERO under
different auxiliary-task settings. All MetaVLA variants consistently converges to superior performance
across all three metrics, while SFT-4LIBERO fails to adapt effectively—highlighting the robustness
and scalability of our approach.

Figure 4: Training convergence of MetaVLA with six auxiliary tasks (one bimanual and five single-
arm) trained with 187.5K steps. All three metrics—Accuracy, Imitation Loss, and L1 Loss—converge
to suboptimal levels.

A.2 Context Task Details

We use the LIBERO dataset Liu et al. [2023] as both target and context tasks, and GR00T NVIDIA
[2025] as auxiliary context tasks only. A detailed breakdown of the datasets is provided in Table 2.
Example tasks from LIBERO and GR00T are visualized in Figures 5 and 6, respectively.
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Dataset Tasks

LIBERO Liu et al. [2023]

LIBERO-Goal
LIBERO-Spatial
LIBERO-Object
LIBERO-Long

GR00T NVIDIA [2025]

bimanual_panda_gripper.Threading
single_panda_gripper.CoffeeServeMug

single_panda_gripper.OpenDrawer
single_panda_gripper.PnPCabToCounter

single_panda_gripper.PnPCounterToMicrowave
single_panda_gripper.TurnSinkSpout

Table 2: Summary of datasets and tasks used in the experiments.

LIBERO-Spatial

LIBERO-Goal

Turn on the 
stove

Pick up the black 
bowl on the 

wooden cabinet 
and place it on 

the plate

Put the yellow 
and white mug in 

the microwave 
and close it

Pick up the 
alphabet soup 
and place it in 

the basket

LIBERO-Object

LIBERO-Long

Figure 5: LIBERO examples. Each suite example includes a frame from the primary camera view
together with its task instruction.
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bimanual_panda_gripper.Threading

Pick the thread 
and insert it into 

the ring

Open the right 
drawer

Pick the corn 
from the counter 

and place it in 
the microwave

Turn the sink 
spout to the right

Pick the lime 
from the cabinet 
and place it on 

the counter

Pick the mug 
from under the 
coffee machine 
dispenser and 
place it on the 

counter

single_panda_gripper.CoffeeServeMug

single_panda_gripper.PnPCabToCountersingle_panda_gripper.OpenDrawer

single_panda_gripper.PnPCounterToMicrowave single_panda_gripper.TurnSinkSpout

Figure 6: GR00T examples. Each task example includes a frame from the primary camera view
paired with its task instruction.
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A.3 Model Architecture and Training Details

Model Architecture We build on OpenVLA-7B Kim et al. [2024] as the base model, integrating
MAR, a lightweight, memory-based meta-learning module. In MAR, global prior representations are
encoded via self-attention, while cross-attention Vaswani et al. [2023] fuses target and context to
produce a final hybrid latent representation. Each attention block is followed by Layer Normalization
and a final MLP projection.

Training Settings We trained all MetaVLA variants with LoRA Hu et al. [2021] on 8 A100-80
GB GPUs with 75K training steps, taking approximately 24 GPU hours, using 8 x 80GB VRAM.
Training hyperparameters are in Table 3.

Hyperparameter Value
Shuffle Buffer Size 100000
FlashAttention-2 Enabled

LoRA Rank 32
LoRA Dropout 0.0

Total Batch Size 128
Gradient Accumulation Steps 1

Learning Rate 5e-4
Context Batch Size 32

MAR Latent Dimension 2048
Table 3: Training Hyperparameters. Total batch size is computed as 16 samples per GPU across 8
GPUs. Context batch size refers to the batch size used for each individual context task.

A.4 Experiment Details

A.4.1 Inference Efficiency

Our method is engineering-friendly and computationally lightweight. We measure both token
throughput and latency of the model end-to-end, on one 24GB RTX-4090 GPU against OpenVLA Kim
et al. [2024]. All environments and packages are kept the same throughout the experiment to
ensure fair comparison. Our efficiency results are shown in Figure 7. Our MAR module introduces
approximately 5.5% more latency compared to OpenVLA, making MetaVLA an ideal practical
choice for achieving a higher success rate.
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Figure 7: Efficiency Metrics. Our lightweight module only adds negligible overhead to inference
cost, making MetaVLA practical for deployment and usage.
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LIBERO

Front View, 7 DoF, Single Arm Side View, 7 DoF, Single Arm Front View, 14 DoF, Two Arms

Auxiliary Training Data
Figure 8: Comparison between auxiliary tasks and LIBERO evaluation benchmark. LIBERO
tasks use third-person front-view images and 7-DoF actions for a single-arm robot. In contrast, our
auxiliary data from GR00T introduces variation through side-view observations and a two-arm robot
with 14-DoF actions. MetaVLA benefits from this data diversity, while OpenVLA struggles with the
domain mismatch.

A.4.2 Effect of Context Batch Size

Table 4 shows the success rates of MetaVLA across different LIBERO tasks using different context
batch sizes. The performance scales up as we introduce more contextual data.

Method Goal Spatial Object Long Average

OpenVLA Kim et al. [2024] 76.2 84.7 87.0 51.8 74.9
SFT-4LIBERO 77.8 84.8 87.4 54.7 76.2
MetaVLA(bC = 4) 75.0 82.2 85.0 50.4 73.2
MetaVLA(bC = 8) 75.4 85.5 86.8 51.4 74.8
MetaVLA(bC = 16) 76.8 87.8 88.0 54.3 76.7
MetaVLA(bC = 32) 78.9 88.5 88.5 55.3 77.8

Table 4: Effect of different context batch sizes across different LIBERO task suites.

A.5 Auxiliary Task Comparisons

We show an example from each of the three data types in Figure 8

A.6 Success Cases in LIBERO Simulation

Figures 9, 10, 11, and 12 demonstrate example execution sequences of MetaVLA successfully
completing one task from each LIBERO suite in its simulation: Goal, Spatial, Object, and Long.
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Figure 9: MetaVLA Execution Sequence Example on LIBERO-Goal. Instruction: Open the
middle drawer of the cabinet
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Figure 10: MetaVLA Execution Sequence Example on LIBERO-Spatial. Instruction: Pick up the
black bowl between the plate and the ramekin and place it on the plate
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Figure 11: MetaVLA Execution Sequence Example on LIBERO-Object. Instruction: Pick up the
cream cheese and place it in the basket
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Figure 12: MetaVLA Execution Sequence Example on LIBERO-Long. Instruction: Put the black
bowl in the bottom drawer of the cabinet and close it
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims are summarized in Figure 1 and Table 1, and detailed in
Section 3 and Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in the final part of Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This is not a theoretical paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided our experiment settings in Section 3, 4 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18



Answer: [No]
Justification: While our codebase is not yet ready for public release at the time of sub-
mission, we provide detailed implementation and hyperparameter descriptions to support
reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided our experiment settings in Section 3, 4 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide standard errors in the results in Appendix A.3 and Table 2, with
an average of over three random seeds. All of the MetaVLA series models fall within
the provided error bound. We haven’t shown errors for all training curves due to high
computation cost.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided them in Section A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We are convinced that we comply with NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work focuses on small-scale vision language action model training. It does
not pose broader societal impact beyond advancing our understanding of specific aspects of
deep learning.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not have such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We’ve credited and cited the references and codebases appropriately in the
paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We don’t release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our paper only uses the LLM for writing, editing, or formatting purposes and
does not impact the core methodology, scientific rigorousness, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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