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Emerging drug interaction prediction 
enabled by a flow-based graph neural 
network with biomedical network

Yongqi Zhang1, Quanming Yao    2 , Ling Yue    2, Xian Wu3, Ziheng Zhang3, 
Zhenxi Lin3 & Yefeng Zheng3

Drug–drug interactions (DDIs) for emerging drugs offer possibilities 
for treating and alleviating diseases, and accurately predicting these 
with computational methods can improve patient care and contribute 
to efficient drug development. However, many existing computational 
methods require large amounts of known DDI information, which is scarce 
for emerging drugs. Here we propose EmerGNN, a graph neural network 
that can effectively predict interactions for emerging drugs by leveraging 
the rich information in biomedical networks. EmerGNN learns pairwise 
representations of drugs by extracting the paths between drug pairs, 
propagating information from one drug to the other, and incorporating the 
relevant biomedical concepts on the paths. The edges of the biomedical 
network are weighted to indicate the relevance for the target DDI prediction. 
Overall, EmerGNN has higher accuracy than existing approaches in 
predicting interactions for emerging drugs and can identify the most 
relevant information on the biomedical network.

Scientific advances and regulatory changes have led to the develop-
ment of numerous emerging drugs worldwide, in particular for rare, 
severe or life-threatening illnesses1,2. These drugs are novel substances 
with unknown or unpredictable risks, as they have not been exten-
sively regulated or used before. For example, although hundreds of  
COVID-19 drugs have been developed, only six have been recommended 
by the Food and Drug Administration as of October 2023 (for example, 
dexamethasone and hydrocortisone). Clinical deployment of new 
drugs is cautious and slow, making it crucial to identify drug–drug 
interactions (DDIs) for these emerging drugs. To speed up the discovery 
of potential DDIs, computational techniques, particularly machine 
learning approaches, have been developed3–6. However, with limited 
clinical trial information, unexpected polypharmacy or side effects 
can be severe and difficult to detect7,8.

Early DDI prediction methods used fingerprints9 or hand- 
designed features4,10 to indicate interactions based on drug proper-
ties. Although these methods can work directly on emerging drugs 

in a cold-start setting10,11, they can lack expressiveness and ignore the 
mutual information between drugs. DDI facts can naturally be repre-
sented as a graph where nodes represent drugs and edges represent 
interactions between a pair of drugs. Graph learning methods can 
learn drug embeddings for prediction12, but they rely on historical 
interactions and thus struggle with the problem of scarce interaction 
data for emerging drugs.

Incorporating large biomedical networks as side information for 
DDI prediction is an alternative to learning solely from DDI interac-
tions5,6,13–17. These biomedical networks, such as HetioNet18, organize 
facts into a directed multi-relational graph, recording relationships 
between biomedical concepts, such as genes, diseases and drugs.  
Tanvir and colleagues used hand-designed meta-paths from a biomedi-
cal network5, while Karim and colleagues learned embeddings from  
the network and used a deep network to perform DDI prediction14. 
Graph neural networks19,20 can obtain expressive node embeddings 
by aggregating topological structure and drug embeddings, but the 
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within the biomedical network. In summary, our main contributions 
are as follows:

•	 Building on a biomedical network, we develop an effective deep 
learning method that accurately predicts interactions for emerg-
ing drugs.

•	 We propose EmerGNN, a GNN-based method that learns pairwise 
representations of drug pairs to predict DDIs for emerging drugs 
by integrating the relevant biomedical concepts connecting them.

•	 Extensive experiments show that EmerGNN is effective in predict-
ing interactions for emerging drugs. The concepts learned on the 
biomedical network are interpretable.

•	 EmerGNN’s strong prediction ability has the potential to clini-
cally improve patient care and contribute to more efficient drug 
development processes.

Results
EmerGNN, encoding pairwise representations with flow-based 
GNN for emerging drugs
Here we focus on two DDI prediction task settings for emerging drugs 
10,11,21 (Fig. 1a and Methods): the S1 setting, determining the interaction 
type between an emerging drug and an existing drug, and the S2 set-
ting, determining the interaction type between two emerging drugs. 
To connect emerging and existing drugs, we use a large biomedical 
network, HetioNet18, which contains entities and relations related to 

existing methods6,13,15–17 do not specially consider emerging drugs, 
leading to poor performance when predicting DDIs for them.

In this Article we propose to use a large biomedical network to pre-
dict DDIs for emerging drugs by learning from the biomedical concepts 
connecting target drug pairs. Although emerging drugs may not have 
sufficient interactions in the DDI network, they often share the same 
biochemical concepts as used in the drug development of existing 
drugs, such as targeted genes or diseases. We thus exploit related paths 
from the biomedical networks for given drug pairs. However, properly 
utilizing these networks can be challenging, as they were not developed 
for emerging drugs, and the mismatch of objectives can lead machine 
learning models to learn distracting knowledge.

To accurately and interpretably predict DDIs for emerging drugs, 
here we introduce EmerGNN, a graph neural network (GNN) method 
that learns pairwise drug representations by integrating the biomedical 
entities and relations connecting them. A flow-based GNN architecture 
extracts paths connecting drug pairs, traces from an emerging drug 
to an existing drug, and integrates information about the biomedical 
concepts along the paths. This approach utilizes shared information 
in the biomedical and interaction networks. To enable the extrac-
tion of relevant information, we weight different types of relation on  
the biomedical network, such that edges with larger weights on the 
paths are helpful for interpretation. Compared with other GNN-based 
methods, EmerGNN propagates on the local subgraph around the drug 
pair to be predicted, and better discovers directional information flow 
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Fig. 1 | Overview of EmerGNN. a, Problem formulation: given a DDI network  
of existing drugs 𝒩𝒩D and a large biomedical network 𝒩𝒩B that provides side 
information for the drugs, the task is to predict the interaction type between an 
emerging drug (such as u, in dark blue) and an existing drug (such as v, in purple) 
in the S1 setting, or the interaction type between two emerging drugs (such as u in 
dark blue and w in light blue) in the S2 setting. b, Augmented network 𝒩𝒩 . The DDI 
network and biomedical network are integrated, and edges with inverse types  
are incorporated to obtain an augmented network 𝒩𝒩 . The augmentation brings 
better communication among drugs and entities in both the interaction and 
biomedical networks. c, Path-based subgraph. Given a drug pair (u, v) to be 
predicted, all the paths from u to v with length no larger than L are extracted to 

construct a path-based subgraph 𝒢𝒢L
u, v. d, Flow-based GNN g(⋅; θ) with parameters 

θ. The network flows the initial drug features h(0)u,u = fu over essential information 
in 𝒢𝒢L

u, v for L steps. It uses different attention weights α′ to weight the importance 
of the different edges. After L steps, a pairwise representation h(L)u, v between u and 
v is obtained as the subgraph representation of 𝒢𝒢L

u, v. e, Interaction predictor p(⋅). 
A simple linear classifier p(h(L)u, v) outputs a distribution I(u, v), where each 
dimension indicates an interaction type i ∈ ℛI between u and v. f, The different 
relation and interaction types are indicated by arrows with different colors. Edges 
with inverse types are indicated by dashed arrows of the corresponding color. 
The icons represent biomedical concepts: drugs, genes and diseases.
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biomedical concepts. We assume that all the emerging drugs are con-
nected to entities in the biomedical network, allowing us to infer their 
properties from existing drugs and the biomedical network.

Given a DDI network and a biomedical network (Fig. 1a), we first 
integrate the two networks to enable communication between existing 
and emerging drugs that are connected by biomedical concepts, such 
as proteins, diseases or other drugs, and then add inverse edges by 
introducing inverse types for each relation and interaction type. The 
two steps generate an augmented network in which the drugs and 
biomedical entities can communicate better (Fig. 1b). For a target drug 
pair to be predicted (for example, an emerging drug u and an existing 
drug v), we extract all the paths with length no longer than L between 
them, and combine the paths to form a path-based subgraph 𝒢𝒢L

u, v   
(Fig. 1c). The value of L is a hyperparameter to be tuned (Supplementary 
Table 2). A flow-based GNN g(⋅; θ) with parameters θ (Fig. 1d) is applied 
on 𝒢𝒢L

u, v  to trace drug features h(0)u,u = fu  (like fingerprints) along  
the biomedical edges and integrate essential information along the 
path. In each iteration ℓ, the GNN flows to drug-specific entities  
that are ℓ steps away from drug u and (L − ℓ) steps away from drug v in 
the augmented network. An attention mechanism is applied on the 
edges in 𝒢𝒢L

u, v to adjust their importance. The GNN iterates L steps to 
return the pairwise representation h(L)u, v. Finally, h(L)u, v is fed to a linear 
classifier p(⋅) to predict the interaction type between u and v (Fig. 1e).

Comparison of EmerGNN to baseline methods in DDI prediction
Two public datasets, DrugBank22 and TWOSIDES23, were used. The origi-
nal drug set was split into three parts in the ratio of 7:1:2 for training, 

validation and testing (Methods). The drugs in the validation and test-
ing sets were considered emerging drugs for validation and testing, 
respectively. For the DrugBank dataset, there was at most one interac-
tion type between any drug pair, and the task was to predict the exact 
type in a multi-type classification setting. Macro F1-score, accuracy and 
Cohen’s kappa24 were used as performance metrics, with F1-score the 
primary metric. For the TWOSIDES dataset, there may be multiple inter-
action types between a drug pair, and the task was to predict whether 
a pair of drugs would have a certain interaction type under a binary 
classification setting. The area under the curve of precision-recall (PR-
AUC), the area under the curve of the receiver operating characteristic 
(ROC-AUC) and accuracy were used to evaluate the performance, with 
PR-AUC being the primary metric.

In the S1 setting, methods that learn drug embeddings (Emb 
types), particularly multidirectional semantics transmit embedding, 
poorly predict emerging drugs because their embeddings are not 
updated during training. KG-DDI performs better as it updates the 
drug embeddings with information in the biomedical network. Of the 
methods that use drug features of target drug pairs (DF-type methods), 
CSMDDI and STNN-DDI outperform MLP on the DrugBank dataset with 
their designed training schemes in a cold-start setting, but they do not 
perform well on TWOSIDES, with more interaction types. HIN-DDI, a 
method that uses graph features in the biomedical network (a GF-type 
method), outperforms MLP, indicating that the graph features from a 
biomedical network can benefit DDI prediction. Deep GNN-based meth-
ods may not perform better than DF methods on DrugBank because the 
GNN-based methods may not effectively capture the crucial property 
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of similarity for emerging drug prediction (Fig. 3a,b). Of these, Com-
pGCN, Decagon and KGNN perform comparably due to their similar 
GNN architecture design, and SumGNN constrains message passing in 
the enclosing subgraph between drug pairs, making information more 
focused. DeepLGF is the best GNN-based baseline, as it fuses informa-
tion from multiple sources and incorporates the advantages of both 
drug features and graph features. EmerGNN significantly outperforms 
all these compared methods, as indicated by the small P values obtained 
from two-sided t-testing of statistical significance. First, by learning 
paths between emerging and existing drugs, it can capture the graph 
features, the importance of which was verified using the GF method 
HIN-DDI. Second, unlike CompGCN, Decagon, KGNN and DeepLGF, 
the importance of edges can be weighted such that it can implicitly 
learn the similarity properties (Fig. 3a,b). Third, with the designed 
path-based subgraph and flow-based GNN architecture, EmerGNN 
captures more relevant information from the biomedical network, thus 
outperforming CompGCN and SumGNN as well (Supplementary Fig. 4).

We evaluated the top-performing models in each type in the more 
challenging S2 setting (Table 1), where both drugs are new, with sparser 
information. Although KG-DDI and DeepLGF performed well in the S1 
setting, they struggled in the S2 setting because they need to learn 
representations of both drugs effectively. Conversely, CSMDDI and 
HIN-DDI performed more consistently, with CSMDDI ranking second on 
DrugBank and HIN-DDI ranking second on TWOSIDES. This may be due 
to their simple models but effective features. EmerGNN significantly 

outperforms all the baselines under two-sided t-testing of statistical 
significance by aggregating essential information from the biomedical 
network. We also provide results for the S0 setting (Supplementary 
Table 3), which predicts interactions between existing drugs. In the 
following, we thoroughly investigate why EmerGNN has superior per-
formance for DDI prediction.

Analysis of drug interaction types in the learned subgraph
EmerGNN uses attention weights to measure the importance of edges 
in the subgraph for predicting the DDIs of emerging drugs. Here  
we analyze what is captured by the attention weights by checking  
the correlations between the predicted interaction types and inter-
actions and relations in the path-based subgraphs (Fig. 3).

We first analyzed the correlations between the interaction type 
ipred to be predicted and interaction types obtained in the selected 
paths. The dominant diagonal elements in the heatmap (Fig. 3a)  
suggest that, when predicting a target interaction ipred for (u, v), paths 
with larger attention weights in the subgraph 𝒢𝒢L

u, v  are likely to go 
through another drug (for instance, u1) that has interaction i1 = ipred with 
the existing drug v. We suppose that drugs like u1 may have properties 
similar to those of emerging drug u. To demonstrate this point, we 
grouped these cases of drug pairs (u, u1) as Group 1 and other pairs 
(u, u2) (with random drug u2) as Group 2. The distributions of drug 
fingerprint similarities show that Group 1 contains a larger quantity of 
highly similar drug pairs (>0.5) than Group 2 (Fig. 3b), demonstrating 

Table 1 | Performance of EmerGNN and other DDI prediction methods

S1 setting: DDI prediction between an emerging drug and an existing druga

Datasets DrugBank TWOSIDES

Type Methods F1-score Accuracy Kappa PR-AUC ROC-AUC Accuracy

DF MLP9 21.1 ± 0.8 46.6 ± 2.1 33.4 ± 2.5 81.5 ± 1.5 81.2 ± 1.9 76.0 ± 2.1

Similarity4 43.0 ± 5.0 51.3 ± 3.5 44.8 ± 3.8 56.2 ± 0.5 55.7 ± 0.6 53.9 ± 0.4

CSMDDI11 45.5 ± 1.8 62.6 ± 2.8 55.0 ± 3.2 73.2 ± 2.6 74.2 ± 2.9 69.9 ± 2.2

STNN-DDI21 39.7 ± 1.8 56.7 ± 2.6 46.5 ± 3.4 68.9 ± 2.0 68.3 ± 2.6 65.3 ± 1.8

GF HIN-DDI*5 37.3 ± 2.9 58.9 ± 1.4 47.6 ± 1.8 81.9 ± 0.6 83.8 ± 0.9 79.3 ± 1.1

Emb MSTE12 7.0 ± 0.7 51.4 ± 1.8 37.4 ± 2.2 64.1 ± 1.1 62.3 ± 1.1 58.7 ± 0.7

KG-DDI*14 26.1 ± 0.9 46.7 ± 1.9 35.2 ± 2.5 79.1 ± 0.9 77.7 ± 1.0 60.2 ± 2.2

GNN CompGCN*28 26.8 ± 2.2 48.7 ± 3.0 37.6 ± 2.8 80.3 ± 3.2 79.4 ± 4.0 71.4 ± 3.1

Decagon*13 24.3 ± 4.5 47.4 ± 4.9 35.8 ± 5.9 79.0 ± 2.0 78.5 ± 2.3 69.7 ± 2.4

KGNN*16 23.1 ± 3.4 51.4 ± 1.9 40.3 ± 2.7 78.5 ± 0.5 79.8 ± 0.6 72.3 ± 0.7

SumGNN*6 35.0 ± 4.3 48.8 ± 8.2 41.1 ± 4.7 80.3 ± 1.1 81.4 ± 1.0 73.0 ± 1.4

DeepLGF*17 39.7 ± 2.3 60.7 ± 2.4 51.0 ± 2.6 81.4 ± 2.1 82.2 ± 2.6 72.8 ± 2.8

EmerGNN* 62.0 ± 2.0 68.6 ± 3.7 62.4 ± 4.3 90.6 ± 0.7 91.5 ± 1.0 84.6 ± 0.7

P value 8.9 × 10−7 0.02 0.02 1.6 × 10−6 6.0 × 10−8 3.5 × 10−5

S2 setting: DDI prediction between two emerging drugs

Datasets DrugBank TWOSIDES

Type Methods F1-score Accuracy Kappa PR-AUC ROC-AUC Accuracy

DF CSMDDI11 19.8 ± 3.1 37.3 ± 4.8 22.0 ± 4.9 55.8 ± 4.9 57.0 ± 6.1 55.1 ± 5.2

GF HIN-DDI*5 8.8 ± 1.0 27.6 ± 2.4 13.8 ± 2.4 64.8 ± 2.3 58.5 ± 1.6 59.8 ± 1.4

Emb KG-DDI*14 1.1 ± 0.1 32.2 ± 3.6 0.0 ± 0.0 53.9 ± 3.9 47.0 ± 5.5 50.0 ± 0.0

GNN DeepLGF*17 4.8 ± 1.9 31.9 ± 3.7 8.2 ± 2.3 59.4 ± 8.7 54.7 ± 5.9 54.0 ± 6.2

EmerGNN* 25.0 ± 2.8 46.3 ± 3.6 31.9 ± 3.8 81.4 ± 7.4 79.6 ± 7.9 73.0 ± 8.2

P value 0.02 0.01 0.01 1.4 × 10−3 3.9 × 10−4 7.8 × 10−3

Four types of DDI prediction methods are compared: (1) methods that use drug features of target drug pairs (DF)4,9,11,21; (2) methods that use graph features in the biomedical network (GF)5; (3) 
methods that learn drug embeddings (Emb)12,14; (4) methods that model with GNNs (GNN)6,13,16,17,28. aAll methods are run five times on fivefold datasets, with mean value and s.d. reported for the 
testing data. The evaluation metrics are presented as a percentage (%), with a larger value indicating better performance. Bold numbers indicate the best values and underlined numbers the 
second best. P values are computed by two-sided t-testing of EmerGNN over the second-best baselines. Methods leveraging a biomedical network are indicated by an asterisk.
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the crucial role of similar drugs in predicting DDIs for emerging drugs, 
and our method can implicitly search for these drugs. Apart from the 
diagonal values in the heatmap, there are strongly correlated pairs of 
interactions. This happens, for example, when the emerging drug u 
finds some connections with another drug u3 whose intersection i3  
with the existing drug v is correlated with ipred. In these cases, we find 
strongly correlated pairs like ‘increasing constipating activity’ and 
‘decreasing analgesic activity’ (Fig. 3a and Supplementary Table 5), as 
verified by Liu and others26.

We then analyzed the biomedical relation types in the selected 
paths by visualizing the correlations between the interaction to be 
predicted ipred and biomedical relation types in the selected paths. A 
few relation types were consistently selected when predicting different 

interaction types (Fig. 3c). In particular, the most frequent relation 
type is the drug resembling relation CrC, which again verifies the 
importance of similar drugs for emerging drug prediction. Other 
frequently selected types are related to diseases (CrD), genes (CbG), 
pharmacologic classes (PCiC) and side effects (CsSE). To analyze their 
importance, we compared the performance of EmerGNN with the full 
biomedical network and networks with only relations having top-1, 
top-3 or top-5 correlation values with all the interaction types (the 
middle part of Fig. 3d). As a comparison, we randomly sampled 10%, 
30% and 50% of edges from the biomedical performance, and the  
corresponding performances are shown in the right part of Fig. 3d. 
Keeping the top-1, top-3 and top-5 relations in the biomedical net-
work leads to comparable performance as when using a full network. 
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Fig. 3 | Analysis of relation types on the selected paths on the DrugBank 
dataset. We first extract the top five paths from u to v and from v to u, 
respectively, for each triplet (u, ipred, v) in testing, based on the average attention 
weights of edges in each path, using a beam search algorithm (algorithm 2 in 
Supplementary Section 1). Next, we count how many times an interaction type 
i ∈ ℛI and a relation type r ∈ ℛB appear on the selected edges given ipred 
(Supplementary Fig. 3). a, Heatmap of the correlation between interaction ipred to 
be predicted and interaction types i in the selected paths. Yellow circles indicate 
the three interaction pairs outside the diagonal (Supplementary Table 5). b, 
Histogram distribution of fingerprint similarities in Group 1 (a drug u with 

another drug u1, which connects to v with interaction type ipred) and Group 2  
(a drug u with a random drug u2). c, Heatmap of the correlation between 
interaction ipred to be predicted and biomedical relations r in the selected paths. 
d, Performance of the modified biomedical networks with selected relations. 
Leftmost is the performance of EmerGNN with a full biomedical network. The 
next three parts are EmerGNN with top-1 (CrC, with 0.4% edges), top-3 (CrC, CbG, 
CsSE, with 9.3% edges) and top-5 (CrC, CtD, CvG, PCiC, CsSE, with 9.4% edges) 
attended relations in the biomedical network. The rightmost three parts show 
the performance of EmerGNN with randomly sampled 10%, 30% and 50% edges 
from the biomedical network.
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However, the performance substantially deteriorates when edges  
are randomly dropped. These experiments show that EmerGNN  
selects important and relevant relations in the biomedical network 
for DDI prediction.

Case study on drug pairs
Here we examine cases of selected paths from the subgraphs by select-
ing the top ten paths between u and v based on the average of the edge 
attention weights on each path (Fig. 4a,b). In the first case (Fig. 4a), 
there are interpretable paths supporting the target prediction (Sup-
plementary Table 6). For example, there are paths connecting the two 
drugs through the binding protein Gene::1565 (CYP2D6), which is a 
P450 enzyme that plays a key role in drug metabolism27. Another path 
finds a similar drug DB00424 (hyoscyamine) for DB00757 (dolasetron) 
through the resemble relation (CrC), and concludes that DB06204 
(tapentadol) may potentially decrease the analgesic activity of DB00757 
(dolasetron) due to the correlation between constipating and analge-
sic activities (Fig. 3a). In the second case (Fig. 4b), we make similar 
observations (Supplementary Table 6). In particular, a path finds a 
similar drug DB00421 (spironolactone) for DB00598 (labetalol), which 

may decrease the vasoconstricting activity of DB00610 (metaraminol), 
providing a hint that labetalol may also decrease the vasoconstricting 
activity of metaraminol. Compared with the original subgraphs 𝒢𝒢L

u, v, 
which have tens of thousands of edges (Supplementary Fig. 1), the 
learned subgraphs are much smaller and more relevant to the target 
prediction. More examples with detailed interpretations of the paths 
support that EmerGNN finds important paths that indicate relevant 
interaction types and biomedical entities for emerging drug prediction 
(Supplementary Fig. 5).

Next, we visualized the drug pair representations obtained by 
CompGCN, SumGNN and EmerGNN (Fig. 4c–e). As shown, drug pairs 
with the same interaction are more densely gathered in EmerGNN than 
CompGCN and SumGNN. This means that the drug pair representations 
of EmerGNN can better separate the different interaction types. As a 
result, EmerGNN is able to learn better representations than other GNN 
methods such as CompGCN and SumGNN.

Analysis of computational complexity
Because EmerGNN learns pairwise representations for each drug pair, 
its computation complexity is higher than that of the other GNN-based 
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Fig. 4 | Visualization of drug pairs. a,b, Two cases of subgraphs containing the 
top ten paths according to the average of the edge attention weights on each path 
(explanations are provided in Supplementary Table 6). The drug pairs to be 
predicted are highlighted as stars, and dashed lines indicate reverse types. CrC, 
CbG, CtD are biomedical relations; #39, #5, #85 are interaction types; ‘other 
types’ in gray edges mean the interaction types aside from the given ones.  
a, DB06204 (tapentadol), in the blue star, is an existing drug, and DB00757 
(dolasetron), in the red star, is an emerging drug. The target interaction type is 
‘#Drug1 may decrease the analgesic activities of #Drug2’ (#52). b, DB00598 
(labetalol), in the blue star, is an emerging drug, and DB00610 (metaraminol),  
in the red star, is an existing drug. The target interaction type is ‘#Drug1 may 
decrease the vasoconstricting activities of #Drug2’ (#5). c–e, t-distributed 

stochastic neighbor embedding visualization37 of the representations learned for 
the drug pairs by CompGCN (c), SumGNN (d) and EmerGNN (e). As CompGCN 
embeds each entity separately, we concatenate embeddings of the two drugs' 
representations for a given drug pair. SumGNN encodes the enclosing subgraphs 
of (u, v) for interaction prediction, so we take the representation of the enclosing 
subgraph as the drug pair representation. The drug pair representation of 
EmerGNN is directly given by h(L)u, v. Because there are too many interaction types 
and drug pairs in 𝒩𝒩D−test, 8 interaction types and 64 drug pairs were randomly 
sampled for each interaction type. The legends in these figures specify the 
identities of the interaction type to be predicted. Each dot denotes a DDI sample 
(u, i, v), and the different colors in dots indicate the interaction type i that the 
drug pairs (u, v) have.
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methods. However, EmerGNN can achieve higher accuracy than  
those methods in just a few hours, and a longer training time has the 
potential to achieve even better performance (Fig. 2a,b). Among the 
baseline GNN methods, Decagon is the most efficient, as it only uses 
information related to drug, protein and disease in the biomedical net-
work. SumGNN and EmerGNN are slower than Decagon and DeepLGF, 
as they need to learn specific subgraph representations for different 
drug pairs. Given that the clinical development of a typical innova-
tive drug usually takes years25, the computation time for EmerGNN 
is acceptable. We also compared the graphics processing unit (GPU) 
memory footprint (Fig. 2c) and the number of parameters (Fig. 2d) 
of these GNN-based models. It is clear that EmerGNN is memory- 
and parameter-efficient. First, its subgraphs for DDI prediction are  
much smaller than the biomedical network (Supplementary Fig. 1).  
Second, EmerGNN mainly relies on the biomedical concepts instead 
of the drugs’ embeddings to carry out predictions, resulting in a  
small number of parameters. In comparison, DeepLGF requires a  
large number of model parameters to learn embeddings from the  
biomedical network.

Ablation studies
We compared the performances of the top-performing models accord-
ing to the frequency of interaction types to analyze the different  
models’ abilities (Fig. 5a). EmerGNN outperformed the baselines for all 
frequencies. For the high-frequency relations (~1–20%), all the meth-
ods, except for KG-DDI, gave a good performance. For extremely low-
frequency relations (~81–100%), all the methods worked poorly. The 
performances of all the methods deteriorated in general for relations 
with a lower frequency. However, the relative performance gain of 
EmerGNN tends to be larger, especially in the range ~61–80%. These 
results indicate EmerGNN’s strengths in generalization and the abil-
ity to extract essential information from the biomedical network for 
predicting rare drugs and interaction types.

The main experiments (Table 1) study the scenario of emerging 
drugs without any interaction with existing drugs. In practice, we may 
have a few known interactions between the emerging and existing 
drugs, often obtained from limited clinical trials. Hence, we analyze 
how different models perform if adding a few interactions for each 
emerging drug (Fig. 5b). We can see that the performance of shallow 
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Fig. 5 | Ablation studies on the DrugBank dataset. a, Performance comparison 
of the interaction groups based on interaction frequency. The five groups are 
formed by grouping the interaction types based on their frequency in the 
dataset, and the average macro F1 performance is shown for each group.  
b, Performance comparison for adding interaction edges for emerging drugs 
into the training set, 𝒩𝒩D−train. Specifically, 1/3/5 interaction edges in the testing 

set 𝒩𝒩D−test are randomly sampled for each emerging drug in 𝒱𝒱D−test, and moved 
to the training set, 𝒩𝒩D−train. c, Performance comparison for the GNN-based 
methods on varying depth L. Specifically, L is the number of GNN layers in 
Decagon and DeepLGF, the depth of the enclosing subgraph in SumGNN, and the 
depth of the path-based subgraph in EmerGNN. d, Performance comparison for 
the different techniques used in designing EmerGNN (Supplementary Table 7).
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models such as CSMDDI and HIN-DNN does not change much, because 
the features they use are unchanged. However, methods learning drug 
embeddings, such as KG-DDI and DeepLGF, enjoy more substantial 
improvement when additional knowledge is provided. In comparison, 
EmerGNN has increased performance with more interactions added 
and still performs best compared with all the other methods.

The value of L determines the maximum number of hops of neigh-
boring entities that the GNN-based models can visit. We studied the 
impact of changing L for these methods (Fig. 5c). The performance 
of Decagon and DeepLGF gets worse as L becomes larger. As Decagon 
and DeepLGF work on the full biomedical network, too much irrel-
evant information will be involved in the representation learning, 
leading to worse performance. DeepLGF runs out-of-memory when 
L ≥ 3. SumGNN and EmerGNN perform worst with L = 1, as it is hard for 
the information to be passed from the emerging drug to the existing 
drug. SumGNN can leverage the drug features for prediction, and thus 
outperforms Decagon. In comparison, EmerGNN benefits to a large 
extent from the relevant information on the biomedical network when 
L increases from 1 to 3. However, the performance decreases when L > 3. 
Intuitively, the path-based subgraph contains too much irrelevant 
information when the length is longer, increasing the learning dif-
ficulty. Hence, a moderate path length, L = 3, is optimal for EmerGNN, 
when considering the effectiveness and computation efficiency.

We conducted experiments to analyze the main techniques used 
in designing EmerGNN (Fig. 5d). First, we evaluated the performance 
when using undirected edges without introducing inverse edges 
(denoted ‘undirected edges without inverse’). It is clear that using 
undirected edges has a negative effect as the directional information 
on the biomedical network is lost. We then designed a variant  
that learns a subgraph representation as SumGNN upon 𝒢𝒢L

u, v   
(denoted ‘subgraph representation’), and another variant that only 
learns on the uni-directional computing (Methods) from direction u 
to v without considering the direction v to u (denoted as ‘uni-directional 
pairwise representation’). Comparing subgraph representation  
with uni-directional pairwise representation, we observe that the flow-
based GNN architecture is more effective than the GNN used in 
SumGNN. Even though uni-directional pairwise representation can 
achieve better performance compared with all the baselines in the S1 
setting (Table 1), learning bi-directional representations can help to 
further improve the prediction ability by balancing the bi-directional 
communications between drugs.

Discussion
Predicting DDIs for emerging drugs is a crucial issue in biomedical 
computational science as it offers possibilities for treating and alle-
viating diseases. Recent advances have been made in DDI prediction 
accuracy through the use of deep neural networks5,13,14,17,19,20, but these 
methods require a large amount of known DDI information, which 
is often scarce for emerging drugs. Additionally, some approaches 
designed for DDI prediction only leverage shallow features, limiting 
their expressiveness in this task.

One limitation of EmerGNN is that the emerging drug to be 
predicted should be included in the biomedical network. Building 
connections between emerging drugs and existing drugs through 
molecular formulas or properties may help address this issue. Although 
we demonstrate the effectiveness of EmerGNN for DDI prediction in 
this Article, EmerGNN is a general approach that can be applied to 
other biomedical applications, such as predicting protein–protein 
interactions, drug–target interactions and disease–gene interactions. 
We anticipate that the paths selected according to the attention values 
on edges by EmerGNN can enhance the accuracy and interpretability of 
these predictions. We hope that our open-source EmerGNN can serve 
as a strong deep learning tool to advance biomedicine and healthcare, 
by enabling practitioners to exploit the rich knowledge in existing large 
biomedical networks for low-data scenarios.

Methods
To predict the interactions between emerging drugs and existing drugs, 
it is important to leverage relevant information in the biomedical 
network. Our framework has four main elements: (1) constructing  
an augmented network by integrating the DDI network with the  
biomedical network and adding inverse edges; (2) extracting all paths 
with length no longer than L from u to v to construct a path-based 
subgraph 𝒢𝒢L

u, v; (3) encoding the pairwise subgraph representation  
h(L)u, v by a flow-based GNN with an attention mechanism such that the 
information can flow from u over the important entities and edges in 
𝒢𝒢L
u, v to v; (4) predicting the interaction type based on the bi-directional 

pairwise subgraph representations. The overall framework is shown 
in Fig. 1.

Augmented network
Given the DDI network 𝒩𝒩D = {(u, i, v) ∶ u, v ∈ 𝒱𝒱D, i ∈ ℛI} and the biomedi-
cal network 𝒩𝒩B = {(h, r, t) ∶ h, t ∈ 𝒱𝒱B, r ∈ ℛB}  (𝒩𝒩D is specified as 𝒩𝒩D−train
/𝒩𝒩D−valid/𝒩𝒩D−test in the training/validation/testing stages, respectively), 
we integrate the two networks into

𝒩𝒩′ = 𝒩𝒩D ∪𝒩𝒩B = {(e, r, e′) ∶ e, e′ = 𝒱𝒱′, r ∈ ℛ′}

with 𝒱𝒱′ = 𝒱𝒱D ∪ 𝒱𝒱B and ℛ′ = ℛI ∪ ℛB. The integrated network 𝒩𝒩′ connects 
the existing and emerging drugs by concepts in the biomedical net-
work. Because the relation types are directed, we follow common 
practices in knowledge graph learning6,28 to add inverse types. Specifi-
cally, we add rinv for each r ∈ ℛ′ and create a set of inverse types ℛ′

inv, 
which subsequently leads to an inverse network

𝒩𝒩′
inv = {(e′, rinv, e) ∶ (e, r, e′) ∈ 𝒩𝒩′}

Note that the inverse relations will not influence the information in the 
original biomedical network as we can transform any inverse edge 
(e′, r_inv, e) back to the original edge (e, r, e′). Semantically, the inverse 
relations can be regarded as a kind of active voice versus passive  
voice in linguistics, for instance includes_inv can be regarded as  
‘being included’ and causes_inv can be regarded as ‘being caused’. By 
adding the inverse edges, the paths can be smoothly organized in  
single directions. For example, a path a

r1
→b

r2
← c can be transformed to 

a
r1
→b

r2_inv
→ c, which is more computational friendly.

After the above two steps, we obtain the augmented network

𝒩𝒩 = 𝒩𝒩′ ∪𝒩𝒩′
inv = {(e, r, e′) ∶ e, e′ ∈ 𝒱𝒱, r ∈ ℛ}

with entity set 𝒱𝒱 = 𝒱𝒱′ = 𝒱𝒱D ∪ 𝒱𝒱B and relation set ℛ = ℛ′ ∪ ℛ′
inv.

Path-based subgraph formulation
Inspired by the path-based methods in knowledge graph learning29,30, 
we were motivated to extract the paths connecting existing and emerg-
ing drugs, and predict the interaction type based on the paths.

Given a drug pair (u, v) to be predicted, we extract the set 𝒫𝒫L
u, v of  

all the paths with length up to L. Each path in 𝒫𝒫L
u, v has the form

e0
r1→ e1

r2→⋯
rL→ eL

with e0 = u, eL = v and (ei−1, ri, ei) ∈ 𝒩𝒩, i = 1, …, L. The intermediate entities 
e1, … , eL−1 ∈ 𝒱𝒱  can be drugs, genes, diseases, side effects, symptoms, 
pharmacologic class and so on, and r1, … , rL ∈ ℛ are the interactions 
or relations between the biomedical entities. To preserve the local 
structures, we merge the paths in 𝒫𝒫L

u, v to a subgraph 𝒢𝒢L
u, v such that the 

same entities are merged to a single node. The detailed steps of path 
extraction and subgraph generation are provided in Supplementary 
Section 1.

Unlike the subgraph structures used for link prediction on general 
graphs6,31,32, the edges in 𝒢𝒢L

u, v are pointed away from u and towards v. 
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Our objective is to learn a GNN g(⋅) with parameters θ that predicts the 
DDI between u and v based on the path-based subgraph 𝒢𝒢L

u, v, that is

DDI(u, v) = g (𝒢𝒢L
u, v; θ) (1)

The link prediction problem on the DDI network is then transformed 
as a whole graph learning problem.

Flow-based GNN architecture
Given 𝒢𝒢L

u, v, we would like to integrate essential information in it to 
predict the target interaction type. Note that the edges in 𝒢𝒢L

u, v  are  
from the paths 𝒫𝒫L

u, v connecting from u to v. We aim to design a special 
GNN architecture such that the information can flow from drug u  
to v, via integrating entities and relations in 𝒢𝒢L

u, v.
Denote 𝒱𝒱ℓ

u, v, ℓ = 0, … , L, as the set of entities that can be visited  
in the ℓth flow step from u (like the four ellipses in g(𝒢𝒢L

u, v; θ) in Fig. 1). In 
particular, we have 𝒱𝒱0u, v = {u} as the starting point and 𝒱𝒱L

u, v = {v} as the 
end point. In the ℓth iteration, the visible entities in 𝒱𝒱ℓ

u, v contain entities 
that are ℓ steps away from drug u and (L − ℓ)-steps away from drug v  
in the augmented network 𝒩𝒩 . We use the fingerprint features9 of  
drug u as the input representation of u, namely h(0)u,u = fu . We then  
conduct message flow for L steps with the function

h(ℓ)u, e = δ (W(ℓ) ∑
e′∈𝒱𝒱ℓ−1

u, v
(h(ℓ−1)u, e + ϕ(h(ℓ−1)u, e′ , h

(ℓ)
r )) ) (2)

for entities e ∈ 𝒱𝒱ℓ
u, v, where W(ℓ) ∈ ℝd×d  is a learnable weighting matrix 

for step ℓ, h(ℓ−1)u, e′  is the pairwise representation of entity e′ ∈ 𝒱𝒱ℓ−1
u, v , r is  

the relation type between e′ and e, h(ℓ)r ∈ ℝd  is the learnable represen-
tation with dimension d of r in the ℓth step, ϕ(⋅, ⋅) ∶ (ℝd, ℝd) → ℝd  is  
the function combining the two vectors, and δ(⋅) is the activation  
function ReLU33.

Because the biomedical network is not specially designed for the 
DDI prediction task, we need to control the importance of different 
edges in 𝒢𝒢L

u, v. We use a drug-dependent attention weight for function 
ϕ(⋅, ⋅). Specifically, we design the message function for each edge 
(e′, r, e) during the ℓth propagation step as

ϕ(h(ℓ−1)u, e′ , h
(ℓ)
r ) = α(ℓ)r ⋅ (h(ℓ−1)u, e′ ⊙ h(ℓ)r ) (3)

where ⊙ is an element-wise dot product of vectors and α(ℓ)r  is the atten-
tion weight controlling the importance of messages. We design the 
attention weight depending on the edges’ relation type as

α(ℓ)r = σ ((w(ℓ)
r )

⊤
[fu; fv])

where the relation weight w(ℓ)
r ∈ ℝ2d  is multiplied by the fingerprints 

[fu; fv] ∈ ℝ2d  of drugs to be predicted, and σ(⋅) is a sigmoid function 
returning a value in (0, 1).

After iterating for L steps, we can obtain the representation  
h(L)u, v that encodes the important paths up to length L between drugs  
u and v.

Objective and training
In practice, the interaction types can be symmetric, for example #Drug1 
and #Drug2 may have the side effect of headache if used together, or 
asymmetric, for example #Drug1 may decrease the analgesic activities 
of #Drug2. Furthermore, the emerging drug can appear in either the 
source (drug u) or target (drug v). We extract the reverse subgraph 𝒢𝒢L

v,u 
and encode it with the same parameters in equation (2) to obtain the 
reverse pairwise representation h(L)v,u. The bi-directional representations 
are then concatenated to predict the interaction type with

l(u, v) = Wrel [h(L)u, v; h
(L)
v,u] (4)

Here, the transformation matrix Wrel ∈ ℝ|ℛI |×2d  is used to map the pair-
wise representations into prediction logits l(u, v) of the |ℛI| interaction 
types. The ith logit li(u, v) indicates the plausibility of interaction type 
i being predicted. The full algorithm and implementation details of 
equation (4) are provided in Supplementary Section 1.

Because we have two kinds of task that are multi-class (on the  
DrugBank dataset) and multi-label (on the TWOSIDES dataset) inter-
action predictions, the training objectives are different.

For DrugBank, there exists at most one interaction type between 
two drugs. Given two drugs u and v, once we obtain the prediction 
logits l(u, v) of different interaction types, we use a softmax function 
to compute the probability of each interaction type, namely

Ii(u, v) =
exp (li(u, v))

∑j∈ℛI
exp (lj(u, v))

Denote y(u, v) ∈ ℝ|ℛI | as the ground-truth indicator of the target inter-
action type, where yi(u, v) = 1 if (u, i, v) ∈ 𝒩𝒩D, otherwise zero. We mini-
mize the following cross-entropy loss to train the model parameters:

ℒDB = − ∑
(u, i, v)∈𝒩𝒩D−train

yi(u, v) log Ii(u, v). (5)

For TWOSIDES, there may be multiple interactions between two 
drugs. The objective is to predict whether there is an interaction p 
between two drugs. Given two drugs u, v and the prediction logits 
l(u, v), we use the sigmoid function

Ii(u, v) =
1

1 + exp(−li(u, v))

to compute the probability of interaction type i. Unlike the multi-class 
task in DrugBank, we use the binary cross-entropy loss

ℒTS = − ∑
(u, i, v)∈𝒩𝒩D−train

(log (Ii(u, v)) + ∑
(u′ , v′)∈𝒩𝒩i

log (1 − Ii(u′, v′))) (6)

where 𝒩𝒩i  is the set of drug pairs that do not have the interaction type i.
We use the stochastic gradient optimizer Adam34 to optimize the 

model parameters

θ = {Wrel, {W(ℓ), h(ℓ)r , w(ℓ)
r }ℓ=1,…, L, r∈ℛ}

by minimizing the loss function in equation (5) for the DrugBank data-
set or equation (6) for the TWOSIDES dataset.

DDI network
Following refs. 6,13, we used two benchmark datasets, DrugBank22  
and TWOSIDES23, as the interaction network 𝒩𝒩D (Supplementary  
Table 1). When predicting DDIs for emerging drugs, namely the  
S1 and S2 settings, we randomly split 𝒱𝒱D into three disjoint sets  
with 𝒱𝒱D = 𝒱𝒱D−train ∪ 𝒱𝒱D−valid  ∪𝒱𝒱D−test  and 𝒱𝒱D−train ∩ 𝒱𝒱D−valid ∩ 𝒱𝒱D−test = ∅ ,  
where 𝒱𝒱D−train  is the set of existing drugs used for training, 𝒱𝒱D−valid  is  
the set of emerging drugs for validation, and 𝒱𝒱D−test is the set of emerg-
ing drugs for testing. The interaction network for training is defined 
as 𝒩𝒩D−train = {(u, i, v) ∈ 𝒩𝒩D ∶ u, v ∈ 𝒱𝒱D−train}.

In the S1 setting, we set
𝒩𝒩D−valid = {(u, i, v) ∈ 𝒩𝒩D ∶ u ∈ 𝒱𝒱D−train, v ∈ 𝒱𝒱D−valid} ∪ {(u, i, v) ∈ 𝒩𝒩D ∶

u ∈ 𝒱𝒱D−valid, v ∈ 𝒱𝒱D−train}  
as validation samples, and

𝒩𝒩D−test = {(u, i, v) ∈ 𝒩𝒩D ∶ u ∈ (𝒱𝒱D−train ∪ 𝒱𝒱D−valid), v ∈ 𝒱𝒱D−test} ∪
{(u, i, v) ∈ 𝒩𝒩D ∶ u ∈ 𝒟𝒟D−test, v ∈ (𝒱𝒱D−train ∪ 𝒱𝒱D−valid)}  as 

testing samples.
In the S2 setting, we set
𝒩𝒩D−valid = {(u, i, v) ∈ 𝒩𝒩D ∶ u, v ∈ 𝒱𝒱D−valid} as validation samples, and
𝒩𝒩D−test = {(u, i, v) ∈ 𝒩𝒩D ∶ u, v ∈ 𝒱𝒱D−test} as testing samples.
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We followed ref. 6 to randomly sample one negative sample  
for each (u, i, v) ∈ 𝒩𝒩D−valid ∪𝒩𝒩D−test  to form the negative set 𝒩𝒩i  for the 
TWOSIDES dataset in the evaluation phase. Specifically, if u is an emerg-
ing drug, we randomly sample an existing drug v′ ∈ 𝒱𝒱D−train and make 
sure that the new interaction does not exist, namely (u, i, v′) ∉ 𝒩𝒩D. If v 
is an emerging drug, we randomly sample an existing drug u′ ∈ 𝒱𝒱D−train 
and make sure that the new interaction does not exist, namely 
(u′, i, v) ∉ 𝒩𝒩D.

Biomedical network
Here, as for the DDI network, we use different variants of the biomedical 
network 𝒩𝒩B for training, validation and testing. The well-constructed 
biomedical network HetioNet18 was used here. We denote 𝒱𝒱B, ℛB, 𝒩𝒩B  
as the set of entities, relations and edges, respectively, in the full  
biomedical network. When predicting interactions between existing 
drugs in the S0 setting, all the edges in 𝒩𝒩B are used for training, valida-
tion and testing. When predicting interactions between emerging 
drugs and existing drugs (S1 and S2 settings), we use different parts  
of the biomedical networks.

To guarantee that the emerging drugs are connected with some 
existing drugs through the biomedical entities, we constrain the split 
of drugs to satisfy the conditions 𝒱𝒱D−valid ⊂ 𝒱𝒱B and 𝒱𝒱D−test ⊂ 𝒱𝒱B. Meanwhile, 
we also guarantee that the emerging drugs will not be seen in the  
biomedical network during training. To achieve this goal, the edges for 
training are in the set 𝒩𝒩B−train = {(h, r, t) ∈ 𝒩𝒩B ∶ h, t ∉ (𝒱𝒱D−valid ∪ 𝒱𝒱D−test)} , 
the edges for validation are in the set 𝒩𝒩B−valid = {(h, r, t) ∈ 𝒩𝒩B ∶ h, t ∉ 𝒱𝒱D−test}
, and the testing network is the original network, namely 𝒩𝒩B−test = 𝒩𝒩B.

In addition, we plotted the size distribution (measured by the 
number of edges in 𝒢𝒢L

u, v) as histograms (Supplementary Fig. 1). We 
observe that both datasets follow long-tailed distributions. Many 
subgraphs have tens of thousands of edges on DrugBank, but hundreds 
of thousands of edges on TWOSIDES, because the DDI network is 
denser. However, compared with the augmented networks, which  
have sizes of 3,657,114 for DrugBank and 3,567,059 for TWOSIDES,  
the sizes of the subgraphs are quite small.

Evaluation metrics
As suggested by ref. 6, there is, at most, one interaction between a pair 
of drugs in the DrugBank dataset22. Hence, we evaluated the perfor-
mance in a multi-class setting, which estimates whether the model can 
correctly predict the interaction type for a pair of drugs. We considered 
the following metrics:

•	 F1(macro) = 1
∥ℐD∥

∑i∈ℐD
2Pi⋅Ri

Pi+Ri

, where Pi and Ri are the precision and 

recall for interaction type i, respectively. Macro F1 aggregates 
the fractions over different interaction types.

•	 Accuracy, the percentage of correctly predicted interaction type 
compared with the ground-truth interaction type.

•	 Cohen’s kappa24, κ = Ap−Ae

1−Ae

, where Ap is the observed agreement 

(accuracy) and Ae is the probability of randomly seeing each class.

In the TWOSIDES dataset23, there may be multiple interactions 
between a pair of drugs, such as anemia, nausea and pain. Hence, we 
modeled and evaluated the performance in a multi-label setting, where 
each type of side effect is modeled as a binary classification problem. 
Following refs. 13,23, we sample one negative drug pair for each 
(u, i, v) ∈ 𝒩𝒩D−test  and evaluate the binary classification performance 
with the following metrics:

•	 ROC-AUC, the area under the curve of receiver operating 
characteristics, measured by , where (TPk, FPk) is 
the true-positive and false-positive of the kth operating point.

•	 PR-AUC, the area under curve of precision-recall, measured 
according to , where (Pk, Rk) is the precision and recall 
of the kth operating point.

•	 Accuracy, the average precision of drug pairs for each side effect.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The resplit dataset35 in DrugBank, TWOSIDES and HetioNet for the 
S1 and S2 settings is publicly available at https://doi.org/10.5281/
zenodo.10016715. Source data are provided with this paper.

Code availability
The code for EmerGNN36 is available at https://github.com/
LARS-research/EmerGNN.
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