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Drug-drug interactions (DDIs) for emerging drugs offer possibilities
for treating and alleviating diseases, and accurately predicting these

with computational methods canimprove patient care and contribute

to efficient drug development. However, many existing computational
methods require large amounts of known DDl information, whichis scarce
foremerging drugs. Here we propose EmerGNN, a graph neural network
that can effectively predict interactions for emerging drugs by leveraging
the richinformation in biomedical networks. EmerGNN learns pairwise
representations of drugs by extracting the paths between drug pairs,
propagating information from one drug to the other, and incorporating the
relevant biomedical concepts on the paths. The edges of the biomedical
network are weighted to indicate the relevance for the target DDI prediction.
Overall, EmerGNN has higher accuracy than existing approachesin
predictinginteractions for emerging drugs and can identify the most
relevantinformation on the biomedical network.

Scientific advances and regulatory changes have led to the develop-
ment of numerous emerging drugs worldwide, in particular for rare,
severe or life-threateningillnesses'?. These drugs are novel substances
with unknown or unpredictable risks, as they have not been exten-
sively regulated or used before. For example, although hundreds of
COVID-19 drugs have been developed, only six have been recommended
by the Food and Drug Administration as of October 2023 (for example,
dexamethasone and hydrocortisone). Clinical deployment of new
drugs is cautious and slow, making it crucial to identify drug-drug
interactions (DDIs) for these emerging drugs. To speed up the discovery
of potential DDIs, computational techniques, particularly machine
learning approaches, have been developed® . However, with limited
clinical trial information, unexpected polypharmacy or side effects
can be severe and difficult to detect™.

Early DDI prediction methods used fingerprints’ or hand-
designed features*'° to indicate interactions based on drug proper-
ties. Although these methods can work directly on emerging drugs

inacold-start setting'®", they can lack expressiveness and ignore the
mutual information between drugs. DDI facts can naturally be repre-
sented as a graph where nodes represent drugs and edges represent
interactions between a pair of drugs. Graph learning methods can
learn drug embeddings for prediction', but they rely on historical
interactions and thus struggle with the problem of scarce interaction
dataforemerging drugs.

Incorporatinglarge biomedical networks as side information for
DDI prediction is an alternative to learning solely from DDI interac-
tions**", These biomedical networks, such as HetioNet'®, organize
facts into a directed multi-relational graph, recording relationships
between biomedical concepts, such as genes, diseases and drugs.
Tanvirand colleagues used hand-designed meta-paths from abiomedi-
cal network®, while Karim and colleagues learned embeddings from
the network and used a deep network to perform DDI prediction™.
Graph neural networks'** can obtain expressive node embeddings
by aggregating topological structure and drug embeddings, but the
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Fig.1|Overview of EmerGNN. a, Problem formulation: given a DDI network

of existing drugs Vp and alarge biomedical network N that provides side
information for the drugs, the task is to predict the interaction type between an
emerging drug (such as 4, in dark blue) and an existing drug (such as v, in purple)
inthe S1setting, or the interaction type between two emerging drugs (suchasuin
darkblueand winlightblue) in the S2 setting. b, Augmented network V. The DDI
network and biomedical network are integrated, and edges with inverse types
areincorporated to obtain an augmented network V. The augmentation brings
better communication among drugs and entities in both the interaction and
biomedical networks. ¢, Path-based subgraph. Given a drug pair (u, v) to be
predicted, all the paths from u to v with length no larger than L are extracted to

constructa path-based subgraph G . d, Flow-based GNN g(-; ) with parameters
0.The network flows the initial drug features h,(,?,), = f, over essential information
in G4 , for L steps. It uses different attention weights a’ to weight the importance
of the different edges. After L steps, a pairwise representation hfﬂ, betweenuand
visobtained as the subgraph representation of G ,. e, Interaction predictor p(-).
Asimplelinear classifier p(h,(f,l) outputs adistribution I(u, v), where each
dimensionindicates aninteractiontype i € R between uandv.f, The different
relation and interaction types are indicated by arrows with different colors. Edges
withinverse types are indicated by dashed arrows of the corresponding color.

Theicons represent biomedical concepts: drugs, genes and diseases.

existing methods®">"*"7 do not specially consider emerging drugs,
leading to poor performance when predicting DDIs for them.

Inthis Article we propose to use alarge biomedical network to pre-
dict DDIs for emerging drugs by learning from the biomedical concepts
connectingtarget drug pairs. Although emerging drugs may not have
sufficient interactions in the DDI network, they often share the same
biochemical concepts as used in the drug development of existing
drugs, such as targeted genes or diseases. We thus exploit related paths
from the biomedical networks for given drug pairs. However, properly
utilizing these networks can be challenging, as they were not developed
foremerging drugs, and the mismatch of objectives canlead machine
learning models to learn distracting knowledge.

Toaccurately and interpretably predict DDIs for emerging drugs,
here we introduce EmerGNN, a graph neural network (GNN) method
that learns pairwise drug representations by integrating the biomedical
entitiesand relations connecting them. A flow-based GNN architecture
extracts paths connecting drug pairs, traces from an emerging drug
to an existing drug, and integrates information about the biomedical
concepts along the paths. This approach utilizes shared information
in the biomedical and interaction networks. To enable the extrac-
tion of relevant information, we weight different types of relation on
the biomedical network, such that edges with larger weights on the
pathsare helpful for interpretation. Compared with other GNN-based
methods, EmerGNN propagates on the local subgraph around the drug
pairtobe predicted, and better discovers directional information flow

within the biomedical network. In summary, our main contributions
are as follows:

« Building on a biomedical network, we develop an effective deep
learning method that accurately predictsinteractions for emerg-
ing drugs.

« Wepropose EmerGNN, a GNN-based method thatlearns pairwise
representations of drug pairs to predict DDIs for emerging drugs
by integrating the relevant biomedical concepts connecting them.

 Extensive experiments show that EmerGNN s effective in predict-
inginteractions foremerging drugs. The conceptslearned onthe
biomedical network are interpretable.

« EmerGNN'’s strong prediction ability has the potential to clini-
cally improve patient care and contribute to more efficient drug
development processes.

Results

EmerGNN, encoding pairwise representations with flow-based
GNN for emerging drugs

Here we focus ontwo DDI prediction task settings for emerging drugs
10121 (Fig 1aand Methods): the S1setting, determining the interaction
type between an emerging drug and an existing drug, and the S2 set-
ting, determining the interaction type between two emerging drugs.
To connect emerging and existing drugs, we use a large biomedical
network, HetioNet'®, which contains entities and relations related to
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Fig.2| Complexity analysis of different GNN-based methods in the S1setting. a, Comparison of training curves on the DrugBank dataset. b, Comparison of training
curves on the TWOSIDES dataset. ¢, Comparison of GPU memory footprint usage on the two datasets in megabytes. d, Comparison of the number of trainable model

parameters on the two datasets.

biomedical concepts. We assume that all the emerging drugs are con-
nected to entities in the biomedical network, allowing us to infer their
properties from existing drugs and the biomedical network.

Given a DDI network and a biomedical network (Fig. 1a), we first
integrate the two networks to enable communication between existing
and emerging drugs thatare connected by biomedical concepts, such
as proteins, diseases or other drugs, and then add inverse edges by
introducing inverse types for each relation and interaction type. The
two steps generate an augmented network in which the drugs and
biomedical entities can communicate better (Fig. 1b). For atarget drug
pair to be predicted (for example, anemerging drug u and an existing
drugv), we extract all the paths with length no longer than L between
them, and combine the paths to form a path-based subgraph g% ,
(Fig.1c). Thevalue of Lisa hyperparameter to be tuned (Supplementary
Table 2). A flow-based GNN g(-; 8) with parameters 8 (Fig.1d) is applied
on g4 , to trace drug features h,(f,), =f, (like fingerprints) along
the biomedical edges and integrate essential information along the
path. In each iteration ¢, the GNN flows to drug-specific entities
that are ¢ steps away from drug u and (L - #) steps away from drugvin
the augmented network. An attention mechanism is applied on the
edges in G4 , to adjust their importance. The GNN iterates L steps to
return the pairwise representation hfﬂ, Finally, hE,LL is fed to alinear
classifier p(-) to predict the interaction type between u and v (Fig. 1e).

Comparison of EmerGNN to baseline methods in DDI prediction
Two public datasets, DrugBank”> and TWOSIDES*, were used. The origi-
nal drug set was split into three parts in the ratio of 7:1:2 for training,

validation and testing (Methods). The drugsin the validation and test-
ing sets were considered emerging drugs for validation and testing,
respectively. For the DrugBank dataset, there was at most one interac-
tion type between any drug pair, and the task was to predict the exact
typeinamulti-type classification setting. Macro F1-score, accuracy and
Cohen’s kappa® were used as performance metrics, with F1-score the
primary metric. For the TWOSIDES dataset, there may be multipleinter-
actiontypes between adrug pair, and the task was to predict whether
a pair of drugs would have a certain interaction type under a binary
classification setting. The area under the curve of precision-recall (PR-
AUC), theareaunder the curve of the receiver operating characteristic
(ROC-AUC) and accuracy were used to evaluate the performance, with
PR-AUC being the primary metric.

In the S1 setting, methods that learn drug embeddings (Emb
types), particularly multidirectional semantics transmit embedding,
poorly predict emerging drugs because their embeddings are not
updated during training. KG-DDI performs better as it updates the
drugembeddings withinformationin the biomedical network. Of the
methods that use drug features of target drug pairs (DF-type methods),
CSMDDIand STNN-DDI outperform MLP on the DrugBank dataset with
their designed training schemesin a cold-start setting, but they do not
perform well on TWOSIDES, with more interaction types. HIN-DDI, a
method that uses graph features inthe biomedical network (a GF-type
method), outperforms MLP, indicating that the graph features froma
biomedical network can benefit DDI prediction. Deep GNN-based meth-
ods may not performbetter than DF methods on DrugBank because the
GNN-based methods may not effectively capture the crucial property
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Table 1| Performance of EmerGNN and other DDI prediction methods

S1setting: DDI prediction between an emerging drug and an existing drug®

Datasets DrugBank TWOSIDES
Type Methods F1-score Accuracy Kappa PR-AUC ROC-AUC Accuracy
DF MLP? 211+0.8 46.6+21 33.4+25 81.5+15 81.2+1.9 76.0£21
Similarity” 43.0+5.0 51.3+3.5 44.8+3.8 56.2+0.5 55.7+0.6 53.9+0.4
CSMDDI" 455+1.8 62.6+2.8 55.0+3.2 73.2+2.6 74.2+2.9 69.9+2.2
STNN-DDI”! 39.7+1.8 56.7+£2.6 46.5+3.4 68.9+2.0 68.3+2.6 65.3+1.8
GF HIN-DDI*® 37.3+2.9 58.9+1.4 476+1.8 81.9+0.6 83.8+0.9 79.3+11
Emb MSTE" 7.0+0.7 51.4+1.8 37.4+2.2 641+11 62.3+11 58.7+0.7
KG-DDI** 26.1+0.9 46.7+1.9 35.2+2.5 791£0.9 777£1.0 60.2+2.2
GNN CompGCN*#® 26.8+2.2 487+3.0 376+2.8 80.3+3.2 79.4+4.0 7.4+31
Decagon*® 24.3+4.5 474+4.9 35.8+5.9 79.0+2.0 78.5+2.3 69.7+2.4
KGNN*'® 231+3.4 51.4£19 40.3+2.7 78.5+0.5 79.8+0.6 72.3+0.7
SumGNN*® 35.0+4.3 48.8+8.2 11+47 80.3%1.1 81.4+1.0 73.0£1.4
DeepLGF*" 39.7£2.3 60.7+2.4 51.0+2.6 81.4+21 82.2+2.6 72.8+2.8
EmerGNN* 62.0+2.0 68.6+3.7 62.4+4.3 90.6+0.7 91.5+1.0 84.6+0.7
Pvalue 8.9x10 0.02 0.02 1.6x107® 6.0x10°® 3.5%10°®
S2 setting: DDI prediction between two emerging drugs
Datasets DrugBank TWOSIDES
Type Methods F1-score Accuracy Kappa PR-AUC ROC-AUC Accuracy
DF csmpDI" 19.8+3.1 37.3+4.8 22.0+4.9 55.8+4.9 57.0+6.1 55.1+5.2
GF HIN-DDI*® 8.8+1.0 276+2.4 13.8+2.4 64.8+2.3 58.5+1.6 59.8+1.4
Emb KG-DDI** 1101 32.2+3.6 0.0+0.0 53.9+3.9 47.0+5.5 50.0+0.0
GNN DeepLGF*" 4.8+19 31.9+37 8.2+2.3 59.4+87 547+5.9 54.0+6.2
EmerGNN* 25.0+2.8 46.3+3.6 31.9+3.8 81.4+74 79.6+7.9 73.0+8.2
Pvalue 0.02 0.01 0.01 1.4x107° 3.9x10™ 7.8x107°

Four types of DDI prediction methods are compared: (1) methods that use drug features of target drug pairs (DF)**"'; (2) methods that use graph features in the biomedical network (GF)°; (3)
methods that learn drug embeddings (Emb)'*"*; (4) methods that model with GNNs (GNN)®'*'6"%2¢_2A[|l methods are run five times on fivefold datasets, with mean value and s.d. reported for the
testing data. The evaluation metrics are presented as a percentage (%), with a larger value indicating better performance. Bold numbers indicate the best values and underlined numbers the
second best. P values are computed by two-sided t-testing of EmerGNN over the second-best baselines. Methods leveraging a biomedical network are indicated by an asterisk.

of similarity for emerging drug prediction (Fig. 3a,b). Of these, Com-
pGCN, Decagon and KGNN perform comparably due to their similar
GNN architecture design, and SumGNN constrains message passingin
the enclosing subgraph between drug pairs, making information more
focused. DeepLGF is the best GNN-based baseline, as it fuses informa-
tion from multiple sources and incorporates the advantages of both
drug features and graph features. EmerGNN significantly outperforms
allthese compared methods, asindicated by the small Pvalues obtained
from two-sided t-testing of statistical significance. First, by learning
paths between emerging and existing drugs, it can capture the graph
features, the importance of which was verified using the GF method
HIN-DDI. Second, unlike CompGCN, Decagon, KGNN and DeepLGF,
the importance of edges can be weighted such that it can implicitly
learn the similarity properties (Fig. 3a,b). Third, with the designed
path-based subgraph and flow-based GNN architecture, EmerGNN
captures more relevantinformation from the biomedical network, thus
outperforming CompGCN and SumGNN as well (Supplementary Fig. 4).

We evaluated the top-performing modelsin each typein the more
challenging S2 setting (Table 1), where both drugs are new, with sparser
information. Although KG-DDI and DeepLGF performed well in the S1
setting, they struggled in the S2 setting because they need to learn
representations of both drugs effectively. Conversely, CSMDDI and
HIN-DDI performed more consistently, with CSMDDI ranking second on
DrugBank and HIN-DDI ranking second on TWOSIDES. This may be due
to their simple models but effective features. EmerGNN significantly

outperforms all the baselines under two-sided ¢-testing of statistical
significance by aggregating essential information fromthe biomedical
network. We also provide results for the SO setting (Supplementary
Table 3), which predicts interactions between existing drugs. In the
following, we thoroughly investigate why EmerGNN has superior per-
formance for DDI prediction.

Analysis of druginteraction typesin the learned subgraph
EmerGNN uses attention weights to measure the importance of edges
in the subgraph for predicting the DDIs of emerging drugs. Here
we analyze what is captured by the attention weights by checking
the correlations between the predicted interaction types and inter-
actions and relations in the path-based subgraphs (Fig. 3).

We first analyzed the correlations between the interaction type
ipreq to be predicted and interaction types obtained in the selected
paths. The dominant diagonal elements in the heatmap (Fig. 3a)
suggest that, when predicting a target interaction i,..q for (u, v), paths
with larger attention weights in the subgraph g% , are likely to go
throughanother drug (forinstance, u;) that hasinteraction i, = i, With
theexisting drug v. We suppose that drugs like u; may have properties
similar to those of emerging drug u. To demonstrate this point, we
grouped these cases of drug pairs (u, u;) as Group 1 and other pairs
(u, u,) (with random drug u,) as Group 2. The distributions of drug
fingerprint similarities show that Group 1 contains a larger quantity of
highly similar drug pairs (>0.5) than Group 2 (Fig. 3b), demonstrating
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Fig.3| Analysis of relation types on the selected paths on the DrugBank
dataset. We first extract the top five paths fromutovand fromvtou,
respectively, for each triplet (u, i,.q, V) in testing, based on the average attention
weights of edges in each path, using abeam search algorithm (algorithm2in
Supplementary Section 1). Next, we count how many times an interaction type

i € Rjandarelationtype r € Rgappear onthe selected edges given iy eq
(Supplementary Fig. 3). a, Heatmap of the correlation between interaction i to
be predicted and interaction types iin the selected paths. Yellow circles indicate
the threeinteraction pairs outside the diagonal (Supplementary Table 5).b,
Histogram distribution of fingerprint similarities in Group 1 (a drug u with

Variants of V with selected edges

another drug u,, which connects to v withinteraction type i) and Group 2
(adruguwith arandom drug u,). ¢, Heatmap of the correlation between
interaction i, to be predicted and biomedical relations rin the selected paths.
d, Performance of the modified biomedical networks with selected relations.
Leftmost is the performance of EmerGNN with a full biomedical network. The
next three parts are EmerGNN with top-1(CrC, with 0.4% edges), top-3 (CrC, CbG,
CsSE, with 9.3% edges) and top-5 (CrC, CtD, CvG, PCiC, CsSE, with 9.4% edges)
attended relations in the biomedical network. The rightmost three parts show
the performance of EmerGNN with randomly sampled 10%, 30% and 50% edges
from the biomedical network.

the crucial role of similar drugsin predicting DDIs for emerging drugs,
and our method can implicitly search for these drugs. Apart from the
diagonal values in the heatmap, there are strongly correlated pairs of
interactions. This happens, for example, when the emerging drug u
finds some connections with another drug u; whose intersection i,
with the existing drug v is correlated with i,.q. In these cases, we find
strongly correlated pairs like ‘increasing constipating activity’ and
‘decreasing analgesic activity’ (Fig.3aand Supplementary Table 5), as
verified by Liu and others®.

We then analyzed the biomedical relation types in the selected
paths by visualizing the correlations between the interaction to be
predicted i,.; and biomedical relation types in the selected paths. A
few relationtypes were consistently selected when predicting different

interaction types (Fig. 3¢). In particular, the most frequent relation
type is the drug resembling relation CrC, which again verifies the
importance of similar drugs for emerging drug prediction. Other
frequently selected types are related to diseases (CrD), genes (CbG),
pharmacologic classes (PCiC) and side effects (CsSE). To analyze their
importance, we compared the performance of EmerGNN with the full
biomedical network and networks with only relations having top-1,
top-3 or top-5 correlation values with all the interaction types (the
middle part of Fig. 3d). As a comparison, we randomly sampled 10%,
30% and 50% of edges from the biomedical performance, and the
corresponding performances are shown in the right part of Fig. 3d.
Keeping the top-1, top-3 and top-5 relations in the biomedical net-
work leads to comparable performance as when using a full network.
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Fig. 4| Visualization of drug pairs. a,b, Two cases of subgraphs containing the
top ten paths according to the average of the edge attention weights on each path
(explanations are provided in Supplementary Table 6). The drug pairs to be
predicted are highlighted as stars, and dashed lines indicate reverse types. CrC,
CbG, CtD are biomedical relations; #39, #5, #85 are interaction types; ‘other
types’in gray edges mean the interaction types aside from the given ones.
a,DB06204 (tapentadol), in the blue star, is an existing drug, and DBO0757
(dolasetron), inthe red star, is an emerging drug. The target interaction type is
‘#Drugl may decrease the analgesic activities of #Drug?2’ (#52). b, DBO0598
(labetalol), in the blue star, is an emerging drug, and DB0O0610 (metaraminol),
intheredstar, is an existing drug. The target interaction type is ‘#Drugl may
decrease the vasoconstricting activities of #Drug2’ (#5). c-e, t-distributed

stochastic neighbor embedding visualization” of the representations learned for
the drug pairs by CompGCN (c), SumGNN (d) and EmerGNN (e). As CompGCN
embeds each entity separately, we concatenate embeddings of the two drugs’
representations for agiven drug pair. SUmGNN encodes the enclosing subgraphs
of (u, v) for interaction prediction, so we take the representation of the enclosing
subgraph as the drug pair representation. The drug pair representation of
EmerGNN is directly given by hﬁ, Because there are too many interaction types
and drug pairsin NVp_s, 8 interaction types and 64 drug pairs were randomly
sampled for eachinteraction type. The legends in these figures specify the
identities of the interaction type to be predicted. Each dot denotes a DDI sample
(u, i,v),and the different colors in dots indicate the interaction type i that the
drug pairs (u, v) have.

However, the performance substantially deteriorates when edges
are randomly dropped. These experiments show that EmerGNN
selects important and relevant relations in the biomedical network
for DDI prediction.

Case study on drug pairs

Here we examine cases of selected paths from the subgraphs by select-
ing the top ten paths between uand vbased onthe average of the edge
attention weights on each path (Fig. 4a,b). In the first case (Fig. 4a),
there are interpretable paths supporting the target prediction (Sup-
plementary Table 6). For example, there are paths connecting the two
drugs through the binding protein Gene::1565 (CYP2D6), which is a
P450 enzyme that plays akey role in drug metabolism?. Another path
finds asimilar drug DB00424 (hyoscyamine) for DB00757 (dolasetron)
through the resemble relation (CrC), and concludes that DB06204
(tapentadol) may potentially decrease the analgesic activity of DBO0757
(dolasetron) due to the correlation between constipating and analge-
sic activities (Fig. 3a). In the second case (Fig. 4b), we make similar
observations (Supplementary Table 6). In particular, a path finds a
similar drug DB00421 (spironolactone) for DBO0598 (labetalol), which

may decrease the vasoconstricting activity of DBO0610 (metaraminol),
providing ahint that labetalol may also decrease the vasoconstricting
activity of metaraminol. Compared with the original subgraphs g% ,,
which have tens of thousands of edges (Supplementary Fig. 1), the
learned subgraphs are much smaller and more relevant to the target
prediction. More examples with detailed interpretations of the paths
support that EmerGNN finds important paths that indicate relevant
interaction types and biomedical entities for emerging drug prediction
(Supplementary Fig.5).

Next, we visualized the drug pair representations obtained by
CompGCN, SumGNN and EmerGNN (Fig. 4c-e). As shown, drug pairs
with the sameinteraction are more densely gathered in EmerGNN than
CompGCN and SumGNN. This means that the drug pair representations
of EmerGNN can better separate the different interaction types. As a
result, EmerGNNis able to learnbetter representations than other GNN
methods such as CompGCN and SUmGNN.

Analysis of computational complexity
Because EmerGNN learns pairwise representations for each drug pair,
its computation complexity is higher than that of the other GNN-based
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b, Performance comparison for adding interaction edges for emerging drugs
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set Np_es; are randomly sampled for each emerging drugin Vp_es;, and moved
to the training set, Np_rain- €, Performance comparison for the GNN-based
methods onvarying depth L. Specifically, L is the number of GNN layers in
Decagon and DeepLGF, the depth of the enclosing subgraph in SumGNN, and the
depth of the path-based subgraph in EmerGNN. d, Performance comparison for
the different techniques used in designing EmerGNN (Supplementary Table 7).

methods. However, EmerGNN can achieve higher accuracy than
those methods in just a few hours, and alonger training time has the
potential to achieve even better performance (Fig. 2a,b). Among the
baseline GNN methods, Decagon is the most efficient, as it only uses
informationrelated to drug, proteinand disease in the biomedical net-
work. SumGNN and EmerGNN are slower than Decagon and DeepLGF,
as they need to learn specific subgraph representations for different
drug pairs. Given that the clinical development of a typical innova-
tive drug usually takes years?, the computation time for EmerGNN
is acceptable. We also compared the graphics processing unit (GPU)
memory footprint (Fig. 2c) and the number of parameters (Fig. 2d)
of these GNN-based models. It is clear that EmerGNN is memory-
and parameter-efficient. First, its subgraphs for DDI prediction are
much smaller than the biomedical network (Supplementary Fig. 1).
Second, EmerGNN mainly relies on the biomedical concepts instead
of the drugs’ embeddings to carry out predictions, resulting in a
small number of parameters. In comparison, DeepLGF requires a
large number of model parameters to learn embeddings from the
biomedical network.

Ablation studies

We compared the performances of the top-performing models accord-
ing to the frequency of interaction types to analyze the different
models’ abilities (Fig. 5a). EmerGNN outperformed the baselines for all
frequencies. For the high-frequency relations (-1-20%), all the meth-
ods, except for KG-DDI, gave a good performance. For extremely low-
frequency relations (-81-100%), all the methods worked poorly. The
performances of all the methods deteriorated in general for relations
with alower frequency. However, the relative performance gain of
EmerGNN tends to be larger, especially in the range ~61-80%. These
results indicate EmerGNN'’s strengths in generalization and the abil-
ity to extract essential information from the biomedical network for
predicting rare drugs and interaction types.

The main experiments (Table 1) study the scenario of emerging
drugs without any interaction with existing drugs. In practice, we may
have a few known interactions between the emerging and existing
drugs, often obtained from limited clinical trials. Hence, we analyze
how different models perform if adding a few interactions for each
emerging drug (Fig. 5b). We can see that the performance of shallow
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models such as CSMDDIand HIN-DNN does not change much, because
the features they use are unchanged. However, methods learning drug
embeddings, such as KG-DDI and DeepLGF, enjoy more substantial
improvement when additional knowledge is provided. Incomparison,
EmerGNN has increased performance with more interactions added
and still performs best compared with all the other methods.

The value of L determines the maximum number of hops of neigh-
boring entities that the GNN-based models can visit. We studied the
impact of changing L for these methods (Fig. 5¢). The performance
of Decagon and DeepLGF gets worse as L becomes larger. As Decagon
and DeepLGF work on the full biomedical network, too much irrel-
evant information will be involved in the representation learning,
leading to worse performance. DeepLGF runs out-of-memory when
L >3.SumGNN and EmerGNN performworst with L =1, asitis hard for
the information to be passed from the emerging drug to the existing
drug. SumGNN can leverage the drug features for prediction, and thus
outperforms Decagon. In comparison, EmerGNN benefits to a large
extent from therelevantinformation on the biomedical network when
Lincreases from1to3.However, the performance decreaseswhen L > 3.
Intuitively, the path-based subgraph contains too much irrelevant
information when the length is longer, increasing the learning dif-
ficulty. Hence,amoderate pathlength, L = 3, is optimal for EmerGNN,
when considering the effectiveness and computation efficiency.

We conducted experiments to analyze the main techniques used
in designing EmerGNN (Fig. 5d). First, we evaluated the performance
when using undirected edges without introducing inverse edges
(denoted ‘undirected edges without inverse’). It is clear that using
undirected edges has a negative effect as the directional information
on the biomedical network is lost. We then designed a variant
that learns a subgraph representation as SumGNN upon 9%,
(denoted ‘subgraph representation’), and another variant that only
learns on the uni-directional computing (Methods) from direction u
tovwithout considering the direction vto u (denoted as ‘uni-directional
pairwise representation’). Comparing subgraph representation
withuni-directional pairwise representation, we observe that the flow-
based GNN architecture is more effective than the GNN used in
SumGNN. Even though uni-directional pairwise representation can
achieve better performance compared with all the baselines in the S1
setting (Table 1), learning bi-directional representations can help to
further improve the prediction ability by balancing the bi-directional
communications between drugs.

Discussion

Predicting DDIs for emerging drugs is a crucial issue in biomedical
computational science as it offers possibilities for treating and alle-
viating diseases. Recent advances have been made in DDI prediction
accuracy through the use of deep neural networks>**71°2° put these
methods require a large amount of known DDI information, which
is often scarce for emerging drugs. Additionally, some approaches
designed for DDI prediction only leverage shallow features, limiting
their expressiveness in this task.

One limitation of EmerGNN is that the emerging drug to be
predicted should be included in the biomedical network. Building
connections between emerging drugs and existing drugs through
molecular formulas or properties may help address thisissue. Although
we demonstrate the effectiveness of EmerGNN for DDI prediction in
this Article, EmerGNN is a general approach that can be applied to
other biomedical applications, such as predicting protein—-protein
interactions, drug-targetinteractions and disease-gene interactions.
We anticipate that the paths selected according to the attention values
onedges by EmerGNN canenhance the accuracy and interpretability of
these predictions. We hope that our open-source EmerGNN canserve
asastrong deep learning tool to advance biomedicine and healthcare,
by enabling practitioners to exploit the rich knowledge in existing large
biomedical networks for low-data scenarios.

Methods

Topredict theinteractions between emerging drugs and existing drugs,
it isimportant to leverage relevant information in the biomedical
network. Our framework has four main elements: (1) constructing
an augmented network by integrating the DDI network with the
biomedical network and adding inverse edges; (2) extracting all paths
with length no longer than L from u to v to construct a path-based
subgraph gt ,; (3) encoding the pairwise subgraph representation
hﬁ, by a flow-based GNN with an attention mechanism such that the
information can flow from u over the important entities and edges in
gL ,tou; (4) predicting the interaction type based on the bi-directional
pairwise subgraph representations. The overall framework is shown
inFig.1.

Augmented network

Giventhe DDInetwork N\, = {(u, i, v) : u, v € 1}, i € ®;Jand the biomedi-
cal network Ng = {(h, r, t) : h, t € W, r € Rg} (N is specified as Np_irain
/ Mo_vaiid/ Mo—test iN the training/validation/testing stages, respectively),
we integrate the two networks into

N =MuMN={ere) ee=V,reR}

with v’ =%, uand ®’ = R, U Rg. Theintegrated network N’ connects
the existing and emerging drugs by concepts in the biomedical net-
work. Because the relation types are directed, we follow common
practicesinknowledge graph learning®*®to add inverse types. Specifi-
cally, we add r;,, for each r € ®’ and create a set of inverse types %},
which subsequently leads to aninverse network

Npw =1(€, riny, ) 2 (6,1, €) €N}

Notethat theinverse relations will not influence the informationinthe
original biomedical network as we can transform any inverse edge
(¢, rinv, e)backtothe original edge (e, r, ¢'). Semantically, theinverse
relations can be regarded as a kind of active voice versus passive
voice in linguistics, for instance includes_inv can be regarded as
‘being included’ and causes_inv can be regarded as ‘being caused’. By
adding the inverse edges, the paths can blg:2 smoothly organized in
sirrllgle;zqisections. Forexample, apath a — b < c canbe transformed to
a—b =" c,whichis more computational friendly.
After the above two steps, we obtain the augmented network
N=NUN

inv

={le.r.e):ee eV, reRr}

withentityset v = V' = 1, u 13and relationset ® = ®' U R/,,,.
Path-based subgraph formulation
Inspired by the path-based methods in knowledge graph learning
we were motivated to extract the paths connecting existing and emerg-
ingdrugs, and predict the interaction type based on the paths.

Given a drug pair (u, v) to be predicted, we extract the set %%, of
all the paths with length up to L. Each pathin %}, has the form

29,30
’

n n e
€€ > > €

withe,=u,e,=vand (e;_, r;, ;) € N,i=1, ..., L. Theintermediate entities
ey, ..., €,_; € V can be drugs, genes, diseases, side effects, symptoms,
pharmacologic class and soon, and ry, ..., r; € ® are the interactions
or relations between the biomedical entities. To preserve the local
structures, we merge the pathsin %, to asubgraph g , such that the
same entities are merged to a single node. The detailed steps of path
extraction and subgraph generation are provided in Supplementary
Section1.

Unlike the subgraph structures used for link prediction on general
graphs®®*?, the edges in g , are pointed away from u and towards v.
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Our objectiveistolearna GNNg(-) with parameters @ that predicts the
DDIbetween uand vbased on the path-based subgraph g, ,, that s

DDI(u, v) = g(G% ,: 6) @

The link prediction problem on the DDI network is then transformed
asawhole graph learning problem.

Flow-based GNN architecture

Given g% ,, we would like to integrate essential information in it to
predict the target interaction type. Note that the edges in g% , are
from the paths %%, connecting from u to v. We aim to design a special
GNN architecture such that the information can flow from drug u
tov, viaintegrating entities and relationsin g ,..

Denote v{,, ¢ =0, ..., L, as the set of entities that can be visited
inthe ¢th flow step fromu (like the four ellipsesin g(4s ,; 6)inFig.1).In
particular, we have v?, = {u} as the starting point and v}, = {v} as the
end point.Inthe fthiteration, the visible entitiesin 1/, contain entities
that are ¢ steps away from drug u and (L - ¢)-steps away from drug v
in the augmented network . We use the fingerprint features’ of
drug u as the input representation of u, namely h{’) = f,. We then
conduct message flow for L steps with the function

b =6(WOY, e (WD + 02" 0O)) ) @)

for entities e € 17¢,, where W € R%d js a learnable weighting matrix
for step ¢, hff;,” is the pairwise representation of entity e’ € v/}, ris
therelation fype between e'and e, h" e R?is the learnable represen-
tation with dimension d of rin the £th step, ¢(., -) : (R4, R?) - R? is
the function combining the two vectors, and §(-) is the activation
function ReLU*.

Because the biomedical network is not specially designed for the
DDI prediction task, we need to control the importance of different
edgesin g% ,. We use a drug-dependent attention weight for function
@(-, -). Specifically, we design the message function for each edge
(e', r, e)during the £th propagation step as

ohl20, h) = o (h," o h?) 6)

where ©is an element-wise dot product of vectorsand a'”is the atten-
tion weight controlling the importance of messages. We design the
attention weight depending on the edges’ relation type as

a? = oW 85 1,1)

where the relation weight w'> € R is multiplied by the fingerprints

[f; f,] € R2? of drugs to be predicted, and o(-) is a sigmoid function
returningavaluein (0, 1).

After iterating for L steps, we can obtain the representation
h(ﬁ, that encodes the important paths up to length L between drugs
uandv.

Objective and training

Inpractice, theinteraction types can be symmetric, for example #Drugl
and #Drug2 may have the side effect of headache if used together, or
asymmetric, for example #Drugl may decrease the analgesic activities
of #Drug2. Furthermore, the emerging drug can appear in either the
source (drugu) or target (drug v). We extract thereverse subgraph g ,
and encode it with the same parameters in equation (2) to obtain the
reverse pairwise representation hilz, Thebi-directional representations
are then concatenated to predict the interaction type with

I, v) = W, [0); 1Y, “@

Here, the transformation matrix W, € R*®1*2¢jsused to map the pair-
wise representations into prediction logits /(u, v) of the |®,|interaction
types. Theithlogit [(u, v) indicates the plausibility of interaction type
i being predicted. The full algorithm and implementation details of
equation (4) are provided in Supplementary Section 1.

Because we have two kinds of task that are multi-class (on the
DrugBank dataset) and multi-label (on the TWOSIDES dataset) inter-
action predictions, the training objectives are different.

For DrugBank, there exists at most one interaction type between
two drugs. Given two drugs u and v, once we obtain the prediction
logits l(u, v) of different interaction types, we use a softmax function
to compute the probability of each interaction type, namely

exp ({i(u, v

I,'(ll, ’)) = M
T e, &b (44 V)

Denote y(u, v) € R*®ilas the ground-truthindicator of the target inter-

action type, where y(u, v) =1if (u, i, v) € Np, otherwise zero. We mini-

mize the following cross-entropy loss to train the model parameters:

Lpg =— Z

(U, i, 0)END_train

Yi(u, v)logli(u, v). (5)

For TWOSIDES, there may be multiple interactions between two
drugs. The objective is to predict whether there is an interaction p
between two drugs. Given two drugs u, v and the prediction logits
I(u, v), we use the sigmoid function

1

w0y = 1+ exp(={i(u, v)

to compute the probability of interaction type i. Unlike the multi-class
taskin DrugBank, we use the binary cross-entropy loss

Lrs=— >,

(U, i, )END_train

(Iog U, v+ Y,

log (11w, U’))) (6)

W, v)eN;

where %;is the set of drug pairs that do not have theinteraction typei.
We use the stochastic gradient optimizer Adam®* to optimize the

model parameters

e ¢
0= {Wrel’{ww)’ hf ), WE )}€=1,.4.,L,rejt}

by minimizing the loss functionin equation (5) for the DrugBank data-
set or equation (6) for the TWOSIDES dataset.

DDI network
Following refs. 6,13, we used two benchmark datasets, DrugBank?*
and TWOSIDES?, as the interaction network 2, (Supplementary
Table 1). When predicting DDIs for emerging drugs, namely the
S1 and S2 settings, we randomly split %, into three disjoint sets
With % =% _train U Wovalia Ub—tese @Nd W_grain N W-valia N Wo—test = D »
where % _.in is the set of existing drugs used for training, 1,_yaiq iS
the set of emerging drugs for validation, and %,_. is the set of emerg-
ing drugs for testing. The interaction network for training is defined
AS Mp_train = {(W, i, V) ENp * U, U € W_train}-

Inthe S1setting, we set

No—valid = {(u’ iLv)e No * U € Wo_train, V € VD—valid} Uiy, i,v)e M :

ue 1’{)—valids ve VD—train}

asvalidation samples, and
Mo—test = {(U, L, V) €Np U € Vptrain U W-valid)> ¥ € W—test} U

{(u, i) V) € % ‘ue DD—test’ ve (VD—train U VD—valid)} as
testing samples.

Inthe S2 setting, we set

No—vatid = {(U, i, V) € Np : u, v € W_yaiq} as validation samples, and

Moy—test =1(U, I, U) €Ny : U, U € W_esr} AS testing samples.
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We followed ref. 6 to randomly sample one negative sample
for each (u, i, v) € Mp_yaiiq U Mp_test t0 fOrm the negative set »; for the
TWOSIDES dataset inthe evaluation phase. Specifically, if uis an emerg-
ing drug, we randomly sample an existing drug v’ € 1_.,i, and make
sure that the new interaction does not exist, namely (u, i, v’) ¢ M. If v
isanemerging drug, we randomly sample an existing drug u’ € % _qain
and make sure that the new interaction does not exist, namely
W', i, v) & Np.

Biomedical network

Here, as for the DDI network, we use different variants of the biomedical
network A for training, validation and testing. The well-constructed
biomedical network HetioNet'® was used here. We denote 14, Ry, N
as the set of entities, relations and edges, respectively, in the full
biomedical network. When predicting interactions between existing
drugsinthe SO setting, allthe edgesin A; are used for training, valida-
tion and testing. When predicting interactions between emerging
drugs and existing drugs (S1 and S2 settings), we use different parts
of the biomedical networks.

To guarantee that the emerging drugs are connected with some
existing drugs through the biomedical entities, we constrain the split
of drugs tosatisfy the conditions %,_,,iq € 1and % _cs C % Meanwhile,
we also guarantee that the emerging drugs will not be seen in the
biomedical network during training. To achieve this goal, the edges for
training are in the set Mg—train = {(h’ rte M h,t & (W)—valid U VD—test)}r
theedgesforvalidationareintheset Ng_yaiig = {(h, r, ) € Ng : h, t & Wy_rest)
,and the testing network is the original network, namely N\_iec = M.

In addition, we plotted the size distribution (measured by the
number of edges in G5 ,) as histograms (Supplementary Fig. 1). We
observe that both datasets follow long-tailed distributions. Many
subgraphs have tens of thousands of edges on DrugBank, but hundreds
of thousands of edges on TWOSIDES, because the DDI network is
denser. However, compared with the augmented networks, which
have sizes of 3,657,114 for DrugBank and 3,567,059 for TWOSIDES,
the sizes of the subgraphs are quite small.

Evaluation metrics

Assuggested by ref. 6, thereis, at most, one interaction between a pair
of drugs in the DrugBank dataset®. Hence, we evaluated the perfor-
manceinamulti-class setting, which estimates whether the model can
correctly predict the interaction type for a pair of drugs. We considered
the following metrics:

1 . s
Fl(macro) = oo Yies, e where P;and R; are the precision and

recall for interaction type i, respectively. Macro F1 aggregates
the fractions over different interaction types.

« Accuracy, the percentage of correctly predicted interaction type
compared with the ground-truth interaction type.

« Cohen’skappa®, k = ’%, where A, is the observed agreement

2P,-R;

(accuracy) and A, is the probability of randomly seeing each class.

In the TWOSIDES dataset?, there may be multiple interactions
between a pair of drugs, such as anemia, nausea and pain. Hence, we
modeled and evaluated the performance inamulti-label setting, where
each type of side effect is modeled as abinary classification problem.
Following refs. 13,23, we sample one negative drug pair for each
(4, i, v) € My_ese and evaluate the binary classification performance
with the following metrics:

« ROC-AUC, the area under the curve of receiver operating
characteristics, measured by ¥, _, TP,AFP, , where (TP,, FP,) is
the true-positive and false-positive of the kth operating point.

*  PR-AUC, the area under curve of precision-recall, measured
according to 22:1 Py AR, ,where (P, R)) is the precision and recall
of the kth operating point.

« Accuracy, the average precision of drug pairs for each side effect.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The resplit dataset® in DrugBank, TWOSIDES and HetioNet for the
S1and S2 settings is publicly available at https://doi.org/10.5281/
zenodo.10016715. Source data are provided with this paper.

Code availability
The code for EmerGNN?* is available at https://github.com/
LARS-research/EmerGNN.
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