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Abstract

The ball milling synthesis of perovskite materials involves exploring a complex,
high-dimensional parameter space, where conventional trial-and-error approaches
are inefficient. For novel systems, large-scale prior datasets are often unavailable
and may introduce bias if over-relied upon. In perovskite synthesis, the
representation of process parameters and precursor descriptors plays a decisive
role in the performance of predictive models and optimization strategies.
To address this challenge, we propose a machine learning (ML)-guided
Bayesian optimization (BO) framework for adaptive experimental design to
accelerate the optimization of perovskite synthesis parameters. The framework
integrates physicochemical descriptors of precursor elements with ball-milling
and heat-treatment variables to construct a crystallite-size prediction model, which
is embedded into a BO loop to dynamically guide experiments toward target
crystallite sizes. This enables systematic control and fine-tuning of crystallite
size, representing a performance-oriented reverse design paradigm. Preliminary
results show that the framework converges to optimal conditions within only a
few experimental iterations, significantly outperforming traditional trial-and-error
methods. Combining ML with BO effectively reduces the experimental search
space, lowers costs, and accelerates materials synthesis. The proposed framework
provides a promising pathway for intelligent, data-driven synthesis of perovskites
and complex inorganic materials, laying the methodological foundation for future
self-driving experimental work.

1 Introduction

Recently, machine learning (ML) has emerged as a powerful tool for materials synthesis
optimization, enabling complex numerical modelling that substantially accelerates the discovery
of novel perovskite catalysts, their performance prediction, and process optimization. Bayesian
optimization (BO), as an efficient strategy for exploring high-dimensional parameter spaces
under limited experimental budgets, has been increasingly applied to molecular screening and
self-driving laboratory work, and is now regarded as one of the core approaches for accelerating
materials discovery and synthesis [1–3]. However, the efficiency of BO critically depends on the
representation of features, which must be sufficiently informative to capture essential material and
process information while remaining compact enough to avoid the curse of dimensionality [4, 5].
In the synthesis of complex inorganic materials, constructing suitable feature vectors and achieving
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dynamic optimization under data-scarce conditions remain pressing challenges. ABX3 perovskites,
owing to their tunable crystal structures and broad energy-related applications, represent an ideal
platform for validating AI-driven synthesis optimization strategies. Their performance is highly
sensitive to crystallite size [6, 7], which is itself governed by the multidimensional coupling of
ball milling parameters (e.g., ball-to-powder ratio, rotational speed, milling duration, and ball type)
together with subsequent heat treatments [8, 9]. Conventional trial-and-error optimization not only
suffers from inefficiency but also fails to enable goal-oriented inverse design. Notably, previous
studies have explicitly argued that crystallite size is not strictly controllable during synthesis and
therefore should not be considered as a suitable feature or optimization target [10]. In contrast, the
present study deliberately sets crystallite size as the optimization objective and employs an ML-BO
framework to iteratively approach the desired value.

2 Adaptive Learning Bayesian Optimization Framework for Perovskite
Synthesis

The Adaptive Learning Bayesian Optimization (ALBO) workflow is designed to efficiently predict
and optimize the synthesis parameters of ABX3 perovskites with crystallite size as the target
property, while minimizing costly experiments or simulations, as shown in Figure 1. The closed-loop
optimization cycle includes data updating and labelling, surrogate model training and refinement,
and the selection of subsequent experiments through an acquisition function. Similar to conventional
Bayesian optimization, this framework relies on surrogate models capable of uncertainty-aware
predictions and acquisition functions that balance exploration and exploitation.

Figure 1: Closed-loop workflow for perovskite synthesis optimization. Literature-derived data and
elemental descriptors are used to train ML models for crystallite size prediction, while Bayesian
optimization proposes candidate conditions that are experimentally validated and fed back to expand
the dataset.

In the model construction, bootstrap resampling was employed to repeatedly sample and evaluate
the training data, thereby mitigating the impact of data scarcity and heterogeneity while enabling
robust comparison across multiple regression models. The best-performing model identified through
this procedure was then applied to imput missing crystallite size values in the database, ensuring
completeness and reliability of the dataset. This model was subsequently retrained on the completed
dataset to establish a stable mapping between synthesis parameters and crystallite size. To support
model training, this study systematically curated approximately 330 experimental records from
more than 94 peer-reviewed publications over the past two decades. Each record includes detailed
synthesis information such as precursor composition, ball milling parameters (e.g., ball-to-powder
ratio, rotational speed, and milling time, etc.), subsequent heat-treatment conditions, as well as
crystalline structural outcomes including crystallite size, lattice parameters, space group, and phase.
To further enrich the chemical representation, this dataset was integrated with a self-constructed
library of physicochemical descriptors of elements, categorized into five groups: (i) periodic table
position, (ii) atomic and ionic radii, (iii) electronic properties, (iv) thermochemical properties, and
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(v) molar volume and ionic size–related descriptors [11]. By combining process-level parameters
with element-level descriptors, a multidimensional feature space was established that simultaneously
captures experimental conditions and the intrinsic chemistry of precursors. Importantly, all
databases employed in this study are openly accessible, ensuring transparency and reproducibility
in scientific research.

For feature representation, the ALBO framework incorporates the physicochemical descriptors of
precursor elements (expressed as mean and standard deviation) together with key process variables
[11]. This combined representation not only reflects the intrinsic chemical nature of the precursors
but also accounts for the synthesis conditions. During the optimization stage, the trained model
was coupled with Bayesian Optimization, employing the Expected Improvement (EI) acquisition
function to inversely predict synthesis parameters that approach the predefined crystallite size target.

2.1 Experimental Validation Material

In this study, lanthanum ferrite (LaFeO3) was selected as the validation material for the Adaptive
Learning Bayesian Optimization (ALBO) framework. LaFeO3 is an orthorhombic perovskite oxide
that has attracted significant attention due to its broad functional applications. It has demonstrated
excellent performance as a cathode material in solid oxide fuel cells, as a sensing material, and
across numerous catalytic domains [12, 13]. Its structural stability, ease of achieving high phase
purity, strong dependence of catalytic activity on crystallite size, and substantial representation
in the dataset make it an ideal candidate for validating synthesis optimization strategies. These
characteristics originate from its crystal structure, where La3+ ions occupy the A-site, Fe3+
ions reside at the B-site, and oxygen forms an interconnected octahedral network. Moreover,
the structural flexibility of LaFeO3, together with the possibility of tuning its properties through
A-site or B-site substitution (or both), further enhances its multifunctionality in diverse applications
[13]. Its broad relevance in energy conversion and catalysis further underscores its suitability and
representativeness as a benchmark compound for validating AI-driven synthesis frameworks.

3 Results

Through bootstrap resampling, multiple regression models were evaluated for their ability to predict
crystallite size. The comparison revealed clear differences in performance, with the Random Forest
Regressor model achieving an initial prediction accuracy of approximately 54%, making it the most
stable candidate among the tested models. This model was subsequently employed to imput the
missing crystallite size values in the dataset and retrained on the completed dataset. After retraining,
the model reached an accuracy of about 75% on the testing set (shown in Figure 2(a)), representing
a significant improvement over the initial stage and demonstrating its capability to reliably capture
the relationship between synthesis parameters and crystallite size.

As shown in Figure 2(b), the XRD patterns compare the samples obtained under identical synthesis
conditions but with different milling durations (2 h, 6 h, and 19 h). It can be observed that, under
the Bayesian optimization-recommended synthesis parameters, all three conditions successfully
yielded a high-purity orthorhombic (Pnma) LaFeO3 perovskite phase, with diffraction peaks in good
agreement with the Materials Project ID mp-22590 [14]. The corresponding lattice parameters are
summarized in Table 1.

Table 1: Lattice parameters and crystallite sizes of synthesized LaFeO3 samples. Experimental
crystallite size was calculated using the Scherrer equation.

Sample a (Å) b (Å) c (Å) Experimental size (nm) Target size (nm)

1 5.424 7.807 5.445 21.02 31
2 5.424 7.807 5.445 18.95 31
3 5.424 7.807 5.445 17.85 31

A closer comparison reveals that the sample milled for 6 h prior to calcination exhibited the strongest
diffraction peak intensities, indicating the highest crystallinity, with a crystallite size slightly smaller
than the target value. In contrast, the 19 h-milled sample did not display any fundamental structural
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difference, but its crystallite size further decreased without a significant improvement in crystallinity.
On the other hand, the 2 h-milled sample produced a crystallite size closer to the predefined target,
yet its weaker diffraction peaks suggested a lower degree of crystallinity compared to the 6 h-milled
sample. Overall, the first set of Bayesian optimization-recommended parameters consistently

(a) Performance of the Random Forest Regressor
(RFR) model. Training (blue) vs testing (green).

(b) X-ray diffraction (XRD) patterns of LaFeO3

perovskite at different milling times.

Figure 2: (a) RFR model performance; (b) XRD patterns of LaFeO3 perovskite.

enabled the synthesis of high-purity LaFeO3 perovskite across different milling times, with the
most favourable balance achieved under the 6 h milling and 1h calcination conditions. It is worth
noting that, although the long milling duration (19 h) resulted in the largest deviation from the
target crystallite size, feeding the entire set of experimental results back into the original database
and retraining the model to refine the mapping between synthesis parameters and structural features
is a critical step of adaptive learning. This iterative feedback strategy ensures continuous model
improvement and further validates the effectiveness of the ALBO workflow in guiding crystallite
size optimization within a limited number of experimental iterations.

4 Conclusion

In this work, we propose an Adaptive Learning Bayesian Optimization (ALBO) workflow designed
to achieve closed-loop optimization of ABX3 perovskite synthesis parameters with crystallite size
as the target property. The framework employs bootstrap resampling to enable robust model
selection and mitigate biases arising from data scarcity and heterogeneity. At the same time, it
integrates Bayesian Optimization (BO) to realize inverse design, allowing the crystallite size to
be systematically controlled and precisely tuned to approach predefined targets. Under limited
data conditions, this method establishes a reliable mapping between synthesis parameters and
crystallite size. By combining the physicochemical descriptors of precursor elements with key
process variables, the feature representation captures both the intrinsic chemical nature of the
precursors and the experimental synthesis conditions, ensuring that the model learns physically
and chemically meaningful relationships rather than mere statistical correlations. Experimental
validation demonstrated that the BO-recommended synthesis parameters successfully produced a
high-purity perovskite phase with a crystallite size close to the predefined target, fully confirming
the feasibility and accuracy of the workflow. The results indicate that the ALBO framework can
efficiently guide solid-state synthesis under limited experimental budgets and achieve directional
control of crystallite size to meet specific performance requirements. This performance-oriented
reverse design strategy breaks through the traditional forward-thinking paradigm of predicting
performance from process parameters, establishing a new framework for intelligent, data-driven
materials synthesis. Ongoing iterative experiments and model refinement aim to further enhance
the workflow and validate its applicability and generalizability to more complex perovskite and
alternative synthesis routes.
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Data Availability

All data and source code supporting this study are openly available on GitHub at
https://github.com/Linhao-Liu/ALBO.git
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