
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Auto DragGAN: Editing the Generative Image Manifold in an
Autoregressive Manner

Anonymous Author(s)
Submission Id: 471

User Edit DragGAN Ours User Edit DragGAN Ours

Figure 1: Users are able to specify handle points (marked as red) and target points (marked as blue) on any GAN-generated
images, and our method will precisely move the handle points to reach their corresponding target points, thereby achieving the
desired drag effect on the image.We compare DragGAN [29] with our proposed Auto DragGAN, where ourmethod demonstrates
superior drag performance.

ABSTRACT
Pixel-level fine-grained image editing remains an open challenge.
Previous works fail to achieve an ideal trade-off between control
granularity and inference speed. They either fail to achieve pixel-
level fine-grained control, or their inference speed requires opti-
mization. To address this, this paper for the first time employs a
regression-based network to learn the variation patterns of Style-
GAN latent codes during the image dragging process. This method
enables pixel-level precision in dragging editing with little time
cost. Users can specify handle points and their corresponding tar-
get points on any GAN-generated images, and our method will
move each handle point to its corresponding target point. Through
experimental analysis, we discover that a short movement distance
from handle points to target points yields a high-fidelity edited
image, as the model only needs to predict the movement of a small
portion of pixels. To achieve this, we decompose the entire move-
ment process into multiple sub-processes. Specifically, we develop

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

a transformer encoder-decoder based network named ’Latent Pre-
dictor’ to predict the latent code motion trajectories from handle
points to target points in an autoregressive manner. Moreover, to
enhance the prediction stability, we introduce a component named
’Latent Regularizer’, aimed at constraining the latent code motion
within the distribution of natural images. Extensive experiments
demonstrate that our method achieves state-of-the-art (SOTA) in-
ference speed and image editing performance at the pixel-level
granularity.

CCS CONCEPTS
• Computing methodologies → Computer vision; Image ma-
nipulation.

KEYWORDS
GANs, Image Editing, Autoregressive Model

1 INTRODUCTION
Significant advances [12, 15, 23, 45] in the field of image generation
have also fostered research in image editing. Images obtained by
generative models [18–20, 35] can now satisfy the needs of most
users, yet they lack flexible and free control. Editing [21, 29] im-
ages generated by these models can provide users with the flexible
and free control they desire, thereby enabling them to obtain im-
ages that meet their specific requirements. Image editing methods
based on generative models have attracted widespread attention

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anon. Submission Id: 471

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

among researchers. However, fine-grained control in image editing
remains an open challenge, especially at the pixel level. Previous
research [3, 14, 21, 27, 29, 31, 34] has failed to achieve an ideal trade-
off between control granularity and inference time. They either
failed to achieve pixel-level fine-grained control, or their inference
speed required optimization. Numerous methods [14, 21, 27, 31]
enable image editing based on text prompts, with editing opera-
tions including replacing image subjects, modifying subject poses,
and altering image styles. Additionally, PTI [34] leverages attribute
labels to guide StyleGAN [17–20] in modifying specific attributes
of images, such as facial expressions, face orientations, and the age
of persons. Due to the limitations of text prompts and attribute
labels in delivering fine-grained information, these methods are re-
stricted to coarse-grained control. Currently, most research focuses
on coarse-grained control, thus fine-grained image editing still has
many problems to be investigated and solved.

The user can annotate a StyleGAN [17–20] image with locations
they want to move and specifies a movement direction by mouse
dragging. From these user inputs and initial latent codes, UserCon-
trollableLT [8] estimates the output latent codes, which are fed to
the StyleGAN [17–20] generator to obtain a result image. While
UserControllableLT [8] provides users with significantly greater
editing flexibility compared to previous methods, it still fails to
achieve pixel-level control.

Recently, DragGAN [29] has achieved an interactive image edit-
ing method based on pixel manipulation for the first time, which
allows users to drag the image subject. This method has resulted
in astonishing drag editing effects with pixel-level precision. How-
ever, the principal idea of DragGAN [29] is the iterative reverse
optimization of latent codes in the StyleGAN [17–20] space, which
requires enhancement in computational efficiency.

Overall, previous research has failed to achieve an ideal trade-
off between control granularity and inference speed. They either
fail to achieve pixel-level fine-grained control, or their inference
speed requires optimization. To do this, this paper introduces a
regression based network for learning the variation patterns of
latent codes within the StyleGAN [17–20] space during the image
dragging process, thereby achieving pixel-level precision in drag
editing with little time cost. Compared to UserControllableLT [8],
our method achieves pixel-level fine-grained control. In comparison
with DragGAN [29], our approach achieves a comparable level
of fine-grained control while significantly reducing the required
inference time. As illustrated in Figure 2, our method achieves an
ideal trade-off between control granularity and inference speed.
Extensive experiments demonstrate that our method achieves state-
of-the-art (SOTA) inference speed and image editing performance
at the pixel-level granularity.

We develop a transformer encoder-decoder based network named
’Latent Predictor’ to predict the latent code motion trajectories from
handle points to target points in an autoregressive manner. More-
over, to enhance the prediction stability, we introduce a component
named ’Latent Regularizer’, aimed at constraining the latent code
motion within the distribution of natural images.

Specifically, we propose a two-stage training strategy. In the
first stage, we introduce the Latent Regularizer to constrain the
latent code motion, ensuring that the latent code remains within
the reasonable distribution of the StyleGAN [17–20] latent space to

Figure 2: The comparison between UserControllableLT [8],
DragGAN [29], FreeDrag [26] and our proposed Stable Drag-
GAN in terms of key performance indicators. Inference time
(seconds) ↓ and image fidelity (FID) ↓were both tested in the
face landmark manipulation experiment under the settings
described in Section 4.3.1, based on the ’one point’ setting.

enhance the stability of the Latent Predictor. By introducing random
noise to the latent codes, we generate outlier latent codes that fall
outside the reasonable distribution of the StyleGAN [17–20] latent
space. Subsequently, we train the Latent Regularizer utilizing an
attention mechanism to learn the internal structural information
within the latent code, thereby correcting outlier latent codes back
within the reasonable distribution of the StyleGAN [17–20] latent
space.

In the second stage of training, we have developed a network
based on the transformer encoder-decoder architecture, which we
refer to as the ’Latent Predictor’. This network effectively converts
the image drag problem [29] into a latent code motion sequences
regression task. It is jointly trained with the Latent Regularizer to
regularize the prediction results. Initially, to obtain pseudo-labels
for training, we introduce continuous and slight random noise into
the randomly sampled latent codes to generate latent code motion
sequences. These motion sequences simulate a ’pseudo-process’
to approximate the actual dragging process. The Latent Predictor
autoregressively predicts this ’pseudo-process’, employing a cross-
attention mechanism to learn the motion trajectories from handle
points to target points, thereby precisely moving the handle points
to their corresponding target points.

In summary, the three principal contributions of this paper are
as follows: (1) For the first time, we present a regression-based
network that achieves pixel-level fine-grained image editing; (2)
We convert the image dragging problem into a regression problem
of latent code motion sequences for the first time and propose a
Latent Regularizer as well as a Latent Predictor based on a trans-
former encoder-decoder architecture; (3) Extensive experiments
demonstrate the effectiveness and efficiency of our method, which
achieves an ideal trade-off between control granularity and infer-
ence speed. Extensive experiments demonstrate that our method
achieves state-of-the-art (SOTA) inference speed and image editing
performance at the pixel-level granularity.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Auto DragGAN: Editing the Generative Image Manifold in an Autoregressive Manner ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2 RELATEDWORK
2.1 Generative Models
GANs. Generative Adversarial Networks (GANs) are a class of
generative models that function by transforming low-dimensional,
randomly sampled latent vectors into realistic images. These mod-
els employ adversarial learning for training and have been demon-
strated to be capable of generating high-resolution, lifelike images
[6, 12, 17–20]. However, most GAN models, such as StyleGAN [17–
20], do not support direct and controllable editing of the generated
images in their original design. To overcome this limitation, several
methods have been proposed to condition Generative Adversarial
Networks (GANs). In these approaches, the network receives not
only randomly sampled latent vectors but also conditional inputs,
such as segmentation maps [16, 30] or 3D variables [7, 11], to gen-
erate realistic images. EditGAN [25] achieves image editing by first
modeling the joint distribution of images and segmentation maps,
followed by computing a new image corresponding to the edited
segmentation map.

Diffusion Models. Recently, diffusion models [41] have been
demonstrated to be capable of high-quality image synthesis [15,
42, 43]. These models iteratively denoise randomly sampled noise
to create realistic images. The latest models have shown the po-
tential for expressive image synthesis conditioned on text inputs
[33, 35, 36]. However, natural language inputs lack the ability to
finely control the spatial attributes of images, thus limiting all text-
conditioned methods to high-level semantic editing. Additionally,
current diffusion models are slower in synthesizing images due to
their requirement for multiple denoising steps. Despite progress in
efficient sampling, Generative Adversarial Networks (GANs) still
hold an advantage in terms of efficiency.

2.2 Generative Models for Interactive Content
Creation

Several methods have been proposed for editing unconditional Gen-
erative Adversarial Networks (GANs) by manipulating the input
latent vectors. Some approaches rely on supervised learning from
manually annotated or existing 3D models to discover meaningful
latent directions [1, 24, 32, 37, 44]. Others identify significant se-
mantic directions in the latent space in an unsupervised manner
[13, 37, 38, 49]. Recently, control over the coarse positioning of ob-
jects has been achieved by introducing intermediate "blobs" [9] or
heatmaps [47]. All these methods allow for the editing of semantic
attributes in images, such as appearance, or coarse geometric prop-
erties, like object positioning and pose. Although Editing-in-Style
[5] has demonstrated some capability in spatial attribute editing, it
achieves this solely through the transfer of local semantics between
different samples.

2.3 Points-based for Interactive Content
Creation

UserControllableLT [8] and DragGAN [29] are point-based editing
methods that have been previously proposed. Particularly, Drag-
GAN [29] allows users to input handle points and target points,
enabling the dragging manipulation of images. Concurrent to our

& Edit

Figure 3: The outlier latent codes. The shortestmotion path in
theW+ space between the latent code𝑤0 and its edited result
𝑤𝑛 is depicted as the blue dashed line in the figure, while the
green dashed line represents themotion trajectory learned by
our model.𝑤

′
𝑛 and𝑤

′′
𝑛 are the outlier latent codes, predicted

by the model without the use of the Latent Regularizer.

work are FreeDrag [26] and DragDiffusion [39]. FreeDrag [26] pro-
poses a novel point-tracking-free paradigm to enhance DragGAN
[29]. DragDiffusion [39] extends the editing framework of Drag-
GAN [29] to diffusion models. DragGAN [29], FreeDrag [26], and
DragDiffusion [39] are all methods based on the optimization of
latent codes. Our proposed method differs significantly from all of
these approaches.

3 METHOD
In this paper, we propose a novel regression-based network ar-
chitecture that achieves fine-grained image editing at the pixel
level. Given a source image and its handle points and target points,
the network predicts the motion trajectories in the StyleGAN la-
tent space to make the handle points reach their corresponding
target point positions in image space. Initially, in Section 3.1, we
briefly introduce the preliminaries of StyleGAN. Subsequently, in
Section 3.2, we introduce the Latent Regularizer, aimed at constrain-
ing the latent code motion within a reasonable range. In Section 3.3,
the Latent Predictor, which is employed to predict the latent code
motion sequences, is discussed.

3.1 Preliminaries of StyleGAN
In StyleGAN2 [20], the mapping network takes a 512-dimensional
latent code 𝑧 from a normal distribution and maps it to an inter-
mediate latent code 𝑤 in a 512-dimensional space. This space is
referred to as theW space. The generator network then uses𝑤 , ei-
ther a single value or multiple distinct values for different layers, to
produce the output image. The process involves copying𝑤 several
times, sending it to various generator layers, thereby controlling

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anon. Submission Id: 471

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Latent
R

egularizer

Mapping
Network

frozen trainable
Mapping
Network

Latent
Predictor

Latent
R

egularizer

Synthesis
Network

...

Synthesis
Network

C
onv.

C

... ...

mask noise
randomly sampled
latent code

(a)

(b)
C

element mul
element sum
concatenation

Figure 4: The overview of our proposed Auto DragGAN. (a)
corresponds to the first stage of training, namely the pre-
training of the Latent Regularizer. (b) represents the second
stage of training, which is the joint training of the Latent
Predictor and the Latent Regularizer.

different image attributes. The dimension of𝑤 can be extended to
𝑙 × 512 in the W+ space, where 𝑙 is the number of layers, offering
more expressiveness. This advanced architecture allows for more
precise control over the generated images, enhancing the quality
and reducing artifacts. For a detailed technical explanation, please
refer to the original paper on StyleGAN2 [20]. Our work is based
on theW+ space.

3.2 Latent Regularizer
Our training process is divided into two distinct stages. The first
stage is dedicated to the pre-training of the Latent Regularizer,
followed by the second stage which focuses on the joint training of
both the Latent Predictor and the Latent Regularizer. This section
will detail the training conducted during the first stage as well as
the proposed Latent Regularizer.

As illustrated in Figure 3, due to the complex distribution of
the W+ space, even minor inference errors can generate outlier
latent codes that fall outside the reasonable distribution of theW+

space. This can lead to a significant degradation in the fidelity of
the generated images, which is manifested as artifacts or incorrect
dragging in the pixel space. Therefore, we need to train an additional
Latent Regularizer to ensure that the latent code motion remains
within the reasonable distribution of theW+ space. This assists the
Latent Predictor in more stably forecasting the latent code motion
sequences.

Figure 5: Reconstruction of the outlier latent codes. For each
set of images, the first, second, and third columns correspond
to the initial random sampled latent code𝑤 , the outlier latent
code𝑤 ′, and the reconstructed �̂� , respectively.

As illustrated in Figure 4 (a), the mapping network of StyleGAN2
[20] randomly samples a 512-dimensional latent code 𝑧 from a nor-
mal distribution and maps it to a latent code𝑤 of dimension 𝑙 × 512,
where 𝑙 represents the number of layers in the generator network.
These mapped latent codes serve as training samples for the La-
tent Regularizer. UserControllableLT [8] finds that manipulating
latent codes on deep layers enables spatial control, such as pose
and orientation. DragGAN [29] considers the feature maps after
the 6th block of StyleGAN2 [20], which performs the best among
all features due to a good trade-off between resolution and discrimi-
nativeness. Inspired by UserControllableLT [8] and DragGAN [29],
our work is based on the editing of the first six layers of the latent
code𝑤 .

To obtain the outlier latent code, we introduce random noise to
the randomly sampled latent code𝑤 . In the first stage of training, we
initially add noise to the first six layers of𝑤 . Specifically, we perform
a masking operation on the first six layers of𝑤 , randomly setting
the vector values of these layers to zero with a 25% probability,
followed by the addition of Gaussian noise.

𝑤 ′ = (𝑤 ⊙ 𝑀) + 𝑁 (1)

where𝑤 ′ represents the outlier latent code, ⊙ denotes theHadamard
product,𝑀 is the masking vector with elements being 0 or 1, and
𝑁 is the noise sampled from a Gaussian distribution.

Prior work [8, 17–20, 29] finds that manipulating the first six
layers of the latent codes enables spatial control, such as pose and
orientation. Thus,𝑤 ′ is divided into two sets of vectors: the noisy
vectors𝑤

′
1 from the first six layers and the remaining clean vectors

𝑤
′
2.
Given that𝑤

′
1 is more closely associated with local features, and

𝑤
′
2 predominantly relates to global features [8, 17–20, 29], we aim

to restore the noise-added local features𝑤
′
1 by leveraging the clean

global features𝑤
′
2.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Auto DragGAN: Editing the Generative Image Manifold in an Autoregressive Manner ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 6: Visualization of the latent code motion sequence.
Given an initial latent code𝑤0, a sequence𝑤0,𝑤1, ...,𝑤5 can
be generated through the perturbation process described by
Equation (7), where 𝑖 = 1, 2, 3, 4, 5.

The Latent Regularizer structure adopts a standard transformer
architecture, with 𝑤

′
1 serving as the key and value for the cross-

attention mechanism, while 𝑤
′
2, after being mapped through an

MLP to reduce token length, acts as the query for the cross-attention
mechanism. The output of the cross-attention mechanism, serving
as the restored local features, is concatenated with the clean global
features𝑤

′
2 to form the reconstructed latent code �̂� .

𝑞 = 𝑄 · (𝑀𝐿𝑃 (𝑤
′
2) ⊕ 𝑃𝐸) (2)

𝑘 = 𝐾 ·𝑀𝐿𝑃 (𝑤
′
1) (3)

𝑣 = 𝑉 ·𝑀𝐿𝑃 (𝑤
′
1) (4)

�̂� = [(𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑞 · 𝑘𝑇) · 𝑣),𝑤
′
2] (5)

where 𝑃𝐸 denotes the position embedding, ⊕ denotes element-wise
sum, and [,] indicates the concatenation operation.

The Latent Regularizer learns to recover clean latent codes from
noisy latent codes through a reconstruction task. The reconstruc-
tion loss is chosen to be the 𝐿1 𝐿𝑜𝑠𝑠 , with the latent code𝑤 serving
as the label.

L𝑟𝑒𝑔 = E𝑤∼𝑝 (𝑧) ∥�̂� −𝑤 ∥1 (6)
As illustrated in Figure 5, the Latent Regularizer is capable of elimi-
nating the random noise introduced into the latent codes, thereby
correcting the outlier latent codes back into the reasonable distri-
bution of theW+ space. Indeed, through the reconstruction task,
the Latent Regularizer learns to (i) infer latent codes from their
internal structure, and (ii) restore erroneous and missing data. This
process facilitates the Latent Regularizer in learning the mapping
representations of natural image prior distributions in the W+

space.

3.3 Latent Predictor
This section will elaborate on the proposed Latent Predictor, as
well as the joint training of the Latent Predictor and the Latent
Regularizer.

As illustrated in Figure 4 (b), the mapping network of StyleGAN2
[20] randomly samples a 512-dimensional latent code 𝑧 from a
normal distribution and maps it to a latent code𝑤0 of dimension
𝑙 × 512, where 𝑙 represents the number of layers in the generator
network. Subsequently, we slightly perturb the first six layers of
𝑤0 to obtain 𝑤1, and then similarly perturb the first six layers of
𝑤1 to acquire𝑤2, and so forth. By repeating this process of minor

random perturbations n times, we generate a sequence of latent
codes𝑤0,𝑤1,𝑤2, . . . ,𝑤𝑛 . The perturbation process is as follows:

𝑤𝑖 = 𝑤𝑖−1 − 𝜆 · (𝑤∗ −𝑤𝑖−1) (7)

where 𝜆 is a constant,𝑤∗ is an independently sampled latent code
unrelated to𝑤0, and 𝑖 = 1, 2, . . . , 𝑛.

Prior work [8, 17–20, 29] finds that manipulating the first six
layers of the latent codes enables spatial control, such as pose, ori-
entation and shape. Our perturbation process does not affect other
styles, such as color and texture. Therefore, our perturbation facil-
itates the preservation of identity information during the image
dragging process. As illustrated in Figure 6, our perturbation pro-
cess of latent codes in the StyleGAN2 [20] latent space corresponds
to spatial variations in the pixel space of images, such as pose, ori-
entation, and shape. Therefore, the sequence 𝑤0,𝑤1, . . . ,𝑤𝑛 is a
latent code motion sequence. By utilizing this motion sequence as
a training sample, the image dragging problem can be decomposed
into multiple sequential sub-problems. Between two consecutive
sub-problems, the majority of pixels in the images before and af-
ter dragging remain consistent, requiring the model to predict the
movement of only a small portion of pixels, thereby significantly
reducing the complexity of the problem.

The Latent Predictor employs a straightforward teacher-forcing
cross-attention Transformer Decoder [46] for motion sequence pre-
diction. The latent codes 𝑤0 and 𝑤𝑛 are processed through the
StyleGAN2 generator network [20] to produce the synthesized
images 𝐼0 and 𝐼𝑛 , respectively. An off-the-shelf feature matching
algorithm [2] is applied to 𝐼0 and 𝐼𝑛 , with matching points whose
pixel distance exceeds 50 selected as training sample points. The
matching points of 𝐼0 are designated as handle points (for instance,
the red point of 𝐼0 in Figure 4 (b)), and those of 𝐼𝑛 as target points
(for instance, the blue point of 𝐼𝑛 in Figure 4 (b)). DragGAN [29]
focuses on the feature maps from the 6th block of StyleGAN2 [20],
as they offer an optimal balance between resolution and discrimina-
tive power, outperforming other features in effectiveness. Inspired
by DragGAN [29], we use the feature map obtained after passing
𝑤0 through the 6th block of the StyleGAN2 [20] generator net-
work as the intermediate feature map 𝐹0 in our work. Subsequently,
we extract small patches corresponding to the positions of handle
points and target points on 𝐹0. After 𝐹0 undergoes convolution
to extract spatial information, it is concatenated with the small
patches to serve as the key and value for the cross-attention mech-
anism. The sequence composed of 𝑤0,𝑤1, . . . ,𝑤𝑛−1 is combined
with position embeddings through element-wise addition, serving
as the query for the cross-attention mechanism. During training,
teacher forcing is employed to predict �̂�1, �̂�2, . . . , �̂�𝑛 . The final
output is connected via skip connection to the Latent Regularizer,
to constrain the predicted latent code motion sequences within the
reasonable distribution of theW+ space.

𝑘 = 𝐾 ·𝑀𝐿𝑃 ([𝑀𝐿𝑃 (𝐹𝑠𝑒𝑞), 𝑀𝐿𝑃 (𝑃𝑠𝑒𝑞)]) (8)

𝑣 = 𝑉 ·𝑀𝐿𝑃 ([𝑀𝐿𝑃 (𝐹𝑠𝑒𝑞), 𝑀𝐿𝑃 (𝑃𝑠𝑒𝑞)]) (9)
𝑞 = 𝑄 · (𝑀𝐿𝑃 ([𝑤0;𝑤1; . . . ;𝑤𝑛−1]) ⊕ 𝑃𝐸) (10)

[�̂�1; �̂�2; . . . ; �̂�𝑛] = 𝐷 (𝑀𝐿𝑃 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑞 · 𝑘𝑇) · 𝑣)) (11)
where 𝐹𝑠𝑒𝑞 denotes the sequence of feature vectors extracted from
the intermediate feature 𝐹0 after spatial convolution to gather in-
formation, and 𝑃𝑠𝑒𝑞 represents the 7x7 patches at the positions

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anon. Submission Id: 471

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

...

StyleGAN

Generator

Network

...

StyleGAN

Generator

Network

Figure 7: Drag Loss. The Drag loss supervises the patches of
intermediate features to guide the handle points towards the
target points.

corresponding to the handle points and target points on 𝐹0, and 𝑃𝐸
denotes the position embedding. The notation [;] is used to rep-
resent the formation of a latent code sequence, while [,] indicates
the concatenation operation.

The Latent Predictor aims to learn the state transition path from
𝑤0 to𝑤𝑛 , with the L1 loss function employed as the loss function.

L𝑝𝑟𝑒𝑑 = E𝑤∼𝑝 (𝑧) ∥�̂�𝑠𝑒𝑞 −𝑤𝑠𝑒𝑞 ∥1 (12)

where �̂�𝑠𝑒𝑞 denotes the set consisting of 𝑤0, �̂�1, �̂�2, . . . ; �̂�𝑛 , and
𝑤𝑠𝑒𝑞 represents the set containing𝑤0,𝑤1, . . . ,𝑤𝑛−1,𝑤𝑛 .

Furthermore, we apply a drag loss to the intermediate feature
maps to guide the handle points towards the target points. Specif-
ically, we use the feature of the handle patch before dragging as
supervision for the feature of the target patch after dragging.

L𝑑𝑟𝑎𝑔 =

𝑛−1∑︁
𝑖=0

𝑚𝑖∑︁
𝑗=1

∑︁
ℎ𝑖,𝑗 ∈Ω (𝐻𝑖,𝑗)
𝑡𝑖,𝑗 ∈Ω (𝑇𝑖,𝑗)

∥𝐹𝑖 (ℎ𝑖, 𝑗) − 𝐹𝑖+1 (𝑡𝑖, 𝑗)∥1 (13)

where 𝑛 represents the length of the latent code motion sequence,
and𝑚𝑖 is the number of matching points between the generated
images 𝐼𝑖 and 𝐼𝑖+1 corresponding to𝑤𝑖 and𝑤𝑖+1, with onlymatching
points exceeding a pixel distance of 30 being selected. The matching
points on 𝐼𝑖 are designated as handle points 𝐻𝑖, 𝑗 (the red point of
𝐼𝑖 in Figure 7), and those on 𝐼𝑖+1 are designated as target points
𝑇𝑖, 𝑗 (the blue point of 𝐼𝑖+1 in Figure 7). We use Ω(𝐻𝑖, 𝑗) to represent

User Edit DragGAN Ours User Edit DragGAN Ours

Figure 8: A qualitative comparison of the image editing per-
formance between our method and DragGAN [29].

the pixels within a 7x7 patch centered at 𝐻𝑖, 𝑗 . 𝐹𝑖 and 𝐹𝑖+1 are the
intermediate feature maps of 𝑤𝑖 and �̂�𝑖+1, respectively. 𝐹 (ℎ𝑖, 𝑗)
denotes the feature values of 𝐹 at pixel ℎ𝑖, 𝑗 . This loss function
encourages the handle points to move towards the target points.

Finally, the overall loss function is defined as:

L = 𝛼L𝑝𝑟𝑒𝑑 + 𝛽L𝑑𝑟𝑎𝑔 (14)

where 𝛼 and 𝛽 are coefficients to balance the two loss functions,
with 𝛼 set to 0.1 and 𝛽 set to 1 by default in our experiments.

4 EXPERIMENT
4.1 Training And Inference
Following the setup of DragGAN [29], we utilized the StyleGAN2
[20] pre-trained on the following datasets (the resolution of the
pretrained StyleGAN2 [20] is shown in brackets): FFHQ (512) [19],
AFHQCat (512) [4], SHHQ (512) [10], LSUNCar (512) [48], LSUNCat
(256) [48], Landscapes HQ (256) [40] and self-distilled dataset from
Self-distilled stylegan [28] including Lion (512) [28], Dog (1024)
[28], and Elephant (512) [28].

The Latent Regularizer employs a standard transformer architec-
ture, consisting of a self-attention mechanism with 6 transformer
encoder layers, and a cross-attentionmechanismwith 6 transformer
decoder layers [46]. The Latent Predictor consists of a self-attention
mechanismwith 6 transformer encoder layers, and a cross-attention
mechanism with 16 transformer decoder layers [46].

In the first stage of training, only Latent Regularizer requires
training, with its learning rate set to 1×10−3. In the second stage of
training, both Latent Regularizer and Latent Predictor require joint
training. The learning rate for Latent Regularizer is set at 1 × 10−5,
while Latent Predictor employs a cosine annealing decay for its
learning rate, with an initial value set at 1× 10−5, a minimum value
at 1 × 10−7, and a decay period of 30. The first stage of training
requires 50 epochs. The second stage of training requires 150 epochs.
The mapping network and generator network of StyleGAN2 [20]
are both frozen.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Auto DragGAN: Editing the Generative Image Manifold in an Autoregressive Manner ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Ours

DragGAN

Ours

DragGAN

Running
Time 0.00s 0.01s 0.02s 0.03s 0.04s 0.00s 0.01s 0.02s 0.04s 2.00s

Figure 9: A qualitative comparison between our method and DragGAN [29] in terms of inference speed and image editing
performance.

The user inputs handle points and target points on the initial
image, which are then processed through the Latent Predictor and
the Latent Regularizer, resulting in the edited image.

4.2 Qualitative Evaluation
Figure 1 illustrates the comparison between our method and Drag-
GAN [29] under complex editing scenarios, while Figure 8 displays
the comparison in simple editing scenarios. Figure 9 shows a com-
prehensive comparison of editing speed and image editing perfor-
mance between our method and DragGAN [29]. Our method all
outperforms DragGAN [29].

4.3 Quantitative Evaluation
Following the setup of DragGAN [29], we conducted a quantitative
evaluation of our method, encompassing facial landmark manipu-
lation and paired image reconstruction.

4.3.1 Face Landmark Manipulation. Following the setup of Drag-
GAN [29], we employed an off-the-shelf tool, Dlib-ml [22], for
facial landmark detection. Subsequently, we utilized a StyleGAN2
[20] pre-trained on the FFHQ [19] dataset to randomly generate
two facial images, upon which we performed landmark detection.
Our objective is to manipulate the landmarks of the first facial im-
age to align them with the landmarks of the second facial image.
Subsequently, we calculate the mean distance (MD) between the
landmarks of the two images. The results are derived from an av-
erage of 2000 tests using the same set of test samples to evaluate
all methods. In this manner, the final Mean Distance (MD) score
reflects the efficacy of the method in moving the landmarks to the
target positions. Evaluations were conducted with varying numbers
of landmarks, including 1, 5, and 68. Additionally, we report the
Frechet Inception Distance (FID) scores between the edited images
and the initial images.

Table 1: Quantitative evaluation on face landmark manip-
ulation. We calculate the mean distance (MD) between the
landmarks of the two images. The FID and Time are reported
based on the ‘1 point’ setting. Red font indicates the best
performance, while blue signifies the second best.
Method 1 point 5 points 68 points FID Time (s)
No edit 14.76 12.39 15.27 - -
UserControllableLT 11.64 10.41 10.15 25.32 0.03
FreeGAN 1.45 3.03 4.17 7.67 2.0
DragGAN 1.62 3.23 4.32 8.30 1.9
Ours w/o Latent Regularizer 3.75 5.79 11.14 17.23 0.12
Ours w/o Latent Predictor 4.94 12.78 25.63 26.34 0.15
Ours 1.33 3.02 3.56 6.46 0.04

The results are provided in Table 1. Our method achieves perfor-
mance comparable to DragGAN [29] under different numbers of
points. According to the FID scores, the image quality post-editing
with our approach is superior. In terms of speed, our method signifi-
cantly surpasses DragGAN [29]. Overall, our results are comparable
to DragGAN [29], but with a faster execution speed.

4.3.2 Paired Image Reconstruction. In our study, both our method
and DragGAN [29] were evaluated using the same settings as those
employed in UserControllableLT [8]. In this study, we begin with a
latent code 𝑤1 and apply random perturbations to it in the same
manner as described in UserControllableLT [8], thereby generating
another latent code 𝑤2. Subsequently, we use these two latent
codes to generate StyleGAN2 [20] images 𝐼1 and 𝐼2, respectively.
Following this, we calculate the optical flow between 𝐼1 and 𝐼2 and
randomly select 32 pixel points from the flow field as user input 𝑈 .
Our research objective is to reconstruct image 𝐼2 using only 𝐼1 and𝑈 .
The results are provided in Table 2. In most datasets, our approach
demonstrates superior performance compared to DragGAN [29].

4.3.3 Ablation Study and Analysis Experiment. In this context, we
investigate the roles of the Latent Regularizer and Latent Predictor

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anon. Submission Id: 471

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 10: A comparative analysis of the Mean Distance Decay between Auto DragGAN and DragGAN [29] across various
datasets. Auto DragGAN demonstrates faster convergence compared to DragGAN [29]. The convergence point at 2s indicates
that both methods have comparable abilities in dragging the handle points to the target points.

in influencing the performance of the model. The results are pro-
vided in Table 1 and Table 2. ‘Ours w/o Latent Regularizer’ denotes
the scenario where the Latent Regularizer is not utilized for the
restoration of the latent codes. ‘Ours w/o Latent Predictor’ denotes
the scenario where the length of latent code motion sequence, 𝑛,
equals 1. Additionally, we discuss the impact of 𝑛 on the effective-
ness of the model trained in the final stage. The results are provided
in Table 3.

4.3.4 Mean Distance Decay. We introduce a new metric, Mean
Distance Decay (MDD), to assess the speed performance of drag
editing. MDD represents the ratio of the current mean distance
between the handle points and the target points to the initial mean
distance. A smaller value indicates a closer proximity between the
handle points and the target points. The formula is as follows:

𝑀𝐷𝐷 =
𝑀𝐷𝑐𝑢𝑟

𝑀𝐷𝑖𝑛𝑖𝑡
(15)

where𝑀𝐷𝑐𝑢𝑟 represents the mean distance at the current moment,
while𝑀𝐷𝑖𝑛𝑖𝑡 denotes the initial mean distance.

As illustrated in the Figure 10, our approach demonstrates faster
convergence in drag operations across various datasets compared
to DragGAN [29]. Our method begins to converge at approximately
0.04s across various datasets, whereas DragGAN [29] starts to
converge around 2s. The calculation of Mean Distance Decay
(MDD) is based on selecting only a single pair of handle point and
target point. We calculated the Mean Distance Decay (MDD) on
each dataset. We selected a handle point and a target point on the
initial image, and then performed a drag operation to calculate the
Mean Distance Decay (MDD) for both methods. As illustrated in
the Figure 10, the final experimental results indicate that ourmethod
converges more rapidly than DragGAN [29], while maintaining a
comparable dragging capability with DragGAN [29].

Table 2: Quantitative evaluation on paired image reconstruc-
tion.We follow the evaluation in UserControllableLT [8] and
report MSE (×102)↓ and LPIPS (×10)↓ scores. Red font indi-
cates the best performance, while blue signifies the second
best.

Dataset Lion LSUN Cat Dog LSUN Car
Metric MSE LPIPS MSE LPIPS MSE LPIPS MSE LPIPS
UserControllableLT 1.82 1.14 1.25 0.87 1.23 0.92 1.98 0.85
DragGAN 0.52 0.70 0.88 0.86 0.39 0.42 1.75 0.77
FreeGAN 0.48 0.67 0.79 0.96 0.38 0.37 1.64 0.64
Ours w/o Latent Regularizer 1.52 1.38 1.33 0.83 0.94 0.83 2.01 0.94
Ours w/o Latent Predictor 1.74 1.12 1.51 0.95 1.97 0.93 2.13 0.98
Ours 0.42 0.58 0.70 0.63 0.31 0.32 1.53 0.58

Table 3: Effects of 𝑛. Paired image reconstruction on Dog
dataset. We follow the evaluation in UserControllableLT [8]
and report MSE (×102)↓ score.
𝑛 1 2 3 4 5 7 9 10
MSE 1.97 1.18 0.68 0.54 0.37 0.39 0.39 0.38

5 CONCLUSION
We propose Auto DragGAN, which, unlike DragGAN [29], Free-
Drag [26], and DragDiffusion [39] that optimize latent vectors, is an
autoregression-based model we have developed to learn the move-
ment paths of latent codes within the latent space. Our method
benefits from learning the variation patterns of latent codes during
the image dragging process, and it significantly outperforms other
methods [26, 29, 39] in handling complex dragging scenarios. This
approach not only matches but slightly exceeds the effectiveness
of DragGAN [29] while significantly boosting processing speed.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Auto DragGAN: Editing the Generative Image Manifold in an Autoregressive Manner ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Rameen Abdal, Peihao Zhu, Niloy J Mitra, and Peter Wonka. 2021. Styleflow:

Attribute-conditioned exploration of stylegan-generated images using condi-
tional continuous normalizing flows. ACM Transactions on Graphics (ToG) 40, 3
(2021), 1–21.

[2] JiaWang Bian, Wen-Yan Lin, Yasuyuki Matsushita, Sai-Kit Yeung, Tan-Dat
Nguyen, and Ming-Ming Cheng. 2017. Gms: Grid-based motion statistics for
fast, ultra-robust feature correspondence. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 4181–4190.

[3] Tim Brooks, Aleksander Holynski, and Alexei A Efros. 2023. Instructpix2pix:
Learning to follow image editing instructions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 18392–18402.

[4] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. 2020. Stargan v2:
Diverse image synthesis for multiple domains. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 8188–8197.

[5] Edo Collins, Raja Bala, Bob Price, and Sabine Susstrunk. 2020. Editing in style:
Uncovering the local semantics of gans. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 5771–5780.

[6] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa
Sengupta, and Anil A Bharath. 2018. Generative adversarial networks: An
overview. IEEE signal processing magazine 35, 1 (2018), 53–65.

[7] YuDeng, Jiaolong Yang, Dong Chen, FangWen, and Xin Tong. 2020. Disentangled
and controllable face image generation via 3d imitative-contrastive learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
5154–5163.

[8] Yuki Endo. 2022. User-Controllable Latent Transformer for StyleGAN Image
Layout Editing. In Computer Graphics Forum, Vol. 41. Wiley Online Library,
395–406.

[9] Dave Epstein, Taesung Park, Richard Zhang, Eli Shechtman, and Alexei A Efros.
2022. Blobgan: Spatially disentangled scene representations. In European Confer-
ence on Computer Vision. Springer, 616–635.

[10] Jianglin Fu, Shikai Li, Yuming Jiang, Kwan-Yee Lin, Chen Qian, Chen Change
Loy, WayneWu, and Ziwei Liu. 2022. Stylegan-human: A data-centric odyssey of
human generation. In European Conference on Computer Vision. Springer, 1–19.

[11] Partha Ghosh, Pravir Singh Gupta, Roy Uziel, Anurag Ranjan, Michael J Black,
and Timo Bolkart. 2020. Gif: Generative interpretable faces. In 2020 International
Conference on 3D Vision (3DV). IEEE, 868–878.

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014).

[13] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. 2020.
Ganspace: Discovering interpretable gan controls. Advances in neural information
processing systems 33 (2020), 9841–9850.

[14] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel
Cohen-Or. 2022. Prompt-to-prompt image editing with cross attention control.
arXiv preprint arXiv:2208.01626 (2022).

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020), 6840–6851.

[16] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-
image translation with conditional adversarial networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 1125–1134.

[17] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and
Timo Aila. 2020. Training generative adversarial networks with limited data.
Advances in neural information processing systems 33 (2020), 12104–12114.

[18] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko
Lehtinen, and Timo Aila. 2021. Alias-free generative adversarial networks.
Advances in Neural Information Processing Systems 34 (2021), 852–863.

[19] Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator ar-
chitecture for generative adversarial networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 4401–4410.

[20] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. 2020. Analyzing and improving the image quality of stylegan. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
8110–8119.

[21] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel,
Inbar Mosseri, and Michal Irani. 2023. Imagic: Text-based real image editing
with diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 6007–6017.

[22] Davis E King. 2009. Dlib-ml: A machine learning toolkit. The Journal of Machine
Learning Research 10 (2009), 1755–1758.

[23] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[24] Thomas Leimkühler and George Drettakis. 2021. Freestylegan: Free-view editable
portrait rendering with the camera manifold. arXiv preprint arXiv:2109.09378
(2021).

[25] Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim, Antonio Torralba, and
Sanja Fidler. 2021. Editgan: High-precision semantic image editing. Advances in

Neural Information Processing Systems 34 (2021), 16331–16345.
[26] Pengyang Ling, Lin Chen, Pan Zhang, Huaian Chen, and Yi Jin. 2023. Freedrag:

Point tracking is not you need for interactive point-based image editing. arXiv
preprint arXiv:2307.04684 (2023).

[27] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. 2023.
Null-text inversion for editing real images using guided diffusion models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
6038–6047.

[28] Ron Mokady, Omer Tov, Michal Yarom, Oran Lang, Inbar Mosseri, Tali Dekel,
Daniel Cohen-Or, and Michal Irani. 2022. Self-distilled stylegan: Towards gen-
eration from internet photos. In ACM SIGGRAPH 2022 Conference Proceedings.
1–9.

[29] Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie Liu, Abhimitra Meka,
and Christian Theobalt. 2023. Drag your gan: Interactive point-based manipu-
lation on the generative image manifold. In ACM SIGGRAPH 2023 Conference
Proceedings. 1–11.

[30] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. 2019. Semantic
image synthesis with spatially-adaptive normalization. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2337–2346.

[31] Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and
Jun-Yan Zhu. 2023. Zero-shot image-to-image translation. In ACM SIGGRAPH
2023 Conference Proceedings. 1–11.

[32] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski.
2021. Styleclip: Text-driven manipulation of stylegan imagery. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2085–2094.

[33] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
2022. Hierarchical text-conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125 1, 2 (2022), 3.

[34] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel Cohen-Or. 2022. Pivotal
tuning for latent-based editing of real images. ACM Transactions on graphics
(TOG) 42, 1 (2022), 1–13.

[35] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
10684–10695.

[36] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L
Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim
Salimans, et al. 2022. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in Neural Information Processing Systems 35
(2022), 36479–36494.

[37] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. 2020. Interpreting the latent
space of gans for semantic face editing. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 9243–9252.

[38] Yujun Shen and Bolei Zhou. 2021. Closed-form factorization of latent semantics
in gans. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 1532–1540.

[39] Yujun Shi, Chuhui Xue, Jiachun Pan, Wenqing Zhang, Vincent YF Tan, and
Song Bai. 2023. DragDiffusion: Harnessing Diffusion Models for Interactive
Point-based Image Editing. arXiv preprint arXiv:2306.14435 (2023).

[40] Ivan Skorokhodov, Grigorii Sotnikov, and Mohamed Elhoseiny. 2021. Aligning
latent and image spaces to connect the unconnectable. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 14144–14153.

[41] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
2015. Deep unsupervised learning using nonequilibrium thermodynamics. In
International conference on machine learning. PMLR, 2256–2265.

[42] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising diffusion
implicit models. arXiv preprint arXiv:2010.02502 (2020).

[43] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano
Ermon, and Ben Poole. 2020. Score-based generative modeling through stochastic
differential equations. arXiv preprint arXiv:2011.13456 (2020).

[44] Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj, Florian Bernard, Hans-Peter
Seidel, Patrick Pérez, Michael Zollhofer, and Christian Theobalt. 2020. Sty-
lerig: Rigging stylegan for 3d control over portrait images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 6142–6151.

[45] Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016. Pixel
recurrent neural networks. In International conference onmachine learning. PMLR,
1747–1756.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[47] Jianyuan Wang, Ceyuan Yang, Yinghao Xu, Yujun Shen, Hongdong Li, and Bolei
Zhou. 2022. Improving gan equilibrium by raising spatial awareness. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
11285–11293.

[48] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianx-
iong Xiao. 2015. Lsun: Construction of a large-scale image dataset using deep
learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015).

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anon. Submission Id: 471

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[49] Jiapeng Zhu, Ceyuan Yang, Yujun Shen, Zifan Shi, Bo Dai, Deli Zhao, and Qifeng
Chen. 2023. Linkgan: Linking gan latents to pixels for controllable image synthe-
sis. In Proceedings of the IEEE/CVF International Conference on Computer Vision.

7656–7666.

10

	Abstract
	1 Introduction
	2 Related work
	2.1 Generative Models
	2.2 Generative Models for Interactive Content Creation
	2.3 Points-based for Interactive Content Creation

	3 Method
	3.1 Preliminaries of StyleGAN
	3.2 Latent Regularizer
	3.3 Latent Predictor

	4 Experiment
	4.1 Training And Inference
	4.2 Qualitative Evaluation
	4.3 Quantitative Evaluation

	5 Conclusion
	References

