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Auto DragGAN: Editing the Generative Image Manifold in an
Autoregressive Manner
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User Edit DragGAN Ours User Edit DragGAN Ours

Figure 1: Users are able to specify handle points (marked as red) and target points (marked as blue) on any GAN-generated
images, and our method will precisely move the handle points to reach their corresponding target points, thereby achieving the
desired drag effect on the image.We compare DragGAN [29] with our proposed Auto DragGAN, where ourmethod demonstrates
superior drag performance.

ABSTRACT
Pixel-level fine-grained image editing remains an open challenge.
Previous works fail to achieve an ideal trade-off between control
granularity and inference speed. They either fail to achieve pixel-
level fine-grained control, or their inference speed requires opti-
mization. To address this, this paper for the first time employs a
regression-based network to learn the variation patterns of Style-
GAN latent codes during the image dragging process. This method
enables pixel-level precision in dragging editing with little time
cost. Users can specify handle points and their corresponding tar-
get points on any GAN-generated images, and our method will
move each handle point to its corresponding target point. Through
experimental analysis, we discover that a short movement distance
from handle points to target points yields a high-fidelity edited
image, as the model only needs to predict the movement of a small
portion of pixels. To achieve this, we decompose the entire move-
ment process into multiple sub-processes. Specifically, we develop
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a transformer encoder-decoder based network named ’Latent Pre-
dictor’ to predict the latent code motion trajectories from handle
points to target points in an autoregressive manner. Moreover, to
enhance the prediction stability, we introduce a component named
’Latent Regularizer’, aimed at constraining the latent code motion
within the distribution of natural images. Extensive experiments
demonstrate that our method achieves state-of-the-art (SOTA) in-
ference speed and image editing performance at the pixel-level
granularity.

CCS CONCEPTS
• Computing methodologies → Computer vision; Image ma-
nipulation.

KEYWORDS
GANs, Image Editing, Autoregressive Model

1 INTRODUCTION
Significant advances [12, 15, 23, 45] in the field of image generation
have also fostered research in image editing. Images obtained by
generative models [18–20, 35] can now satisfy the needs of most
users, yet they lack flexible and free control. Editing [21, 29] im-
ages generated by these models can provide users with the flexible
and free control they desire, thereby enabling them to obtain im-
ages that meet their specific requirements. Image editing methods
based on generative models have attracted widespread attention

1
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among researchers. However, fine-grained control in image editing
remains an open challenge, especially at the pixel level. Previous
research [3, 14, 21, 27, 29, 31, 34] has failed to achieve an ideal trade-
off between control granularity and inference time. They either
failed to achieve pixel-level fine-grained control, or their inference
speed required optimization. Numerous methods [14, 21, 27, 31]
enable image editing based on text prompts, with editing opera-
tions including replacing image subjects, modifying subject poses,
and altering image styles. Additionally, PTI [34] leverages attribute
labels to guide StyleGAN [17–20] in modifying specific attributes
of images, such as facial expressions, face orientations, and the age
of persons. Due to the limitations of text prompts and attribute
labels in delivering fine-grained information, these methods are re-
stricted to coarse-grained control. Currently, most research focuses
on coarse-grained control, thus fine-grained image editing still has
many problems to be investigated and solved.

The user can annotate a StyleGAN [17–20] image with locations
they want to move and specifies a movement direction by mouse
dragging. From these user inputs and initial latent codes, UserCon-
trollableLT [8] estimates the output latent codes, which are fed to
the StyleGAN [17–20] generator to obtain a result image. While
UserControllableLT [8] provides users with significantly greater
editing flexibility compared to previous methods, it still fails to
achieve pixel-level control.

Recently, DragGAN [29] has achieved an interactive image edit-
ing method based on pixel manipulation for the first time, which
allows users to drag the image subject. This method has resulted
in astonishing drag editing effects with pixel-level precision. How-
ever, the principal idea of DragGAN [29] is the iterative reverse
optimization of latent codes in the StyleGAN [17–20] space, which
requires enhancement in computational efficiency.

Overall, previous research has failed to achieve an ideal trade-
off between control granularity and inference speed. They either
fail to achieve pixel-level fine-grained control, or their inference
speed requires optimization. To do this, this paper introduces a
regression based network for learning the variation patterns of
latent codes within the StyleGAN [17–20] space during the image
dragging process, thereby achieving pixel-level precision in drag
editing with little time cost. Compared to UserControllableLT [8],
our method achieves pixel-level fine-grained control. In comparison
with DragGAN [29], our approach achieves a comparable level
of fine-grained control while significantly reducing the required
inference time. As illustrated in Figure 2, our method achieves an
ideal trade-off between control granularity and inference speed.
Extensive experiments demonstrate that our method achieves state-
of-the-art (SOTA) inference speed and image editing performance
at the pixel-level granularity.

We develop a transformer encoder-decoder based network named
’Latent Predictor’ to predict the latent code motion trajectories from
handle points to target points in an autoregressive manner. More-
over, to enhance the prediction stability, we introduce a component
named ’Latent Regularizer’, aimed at constraining the latent code
motion within the distribution of natural images.

Specifically, we propose a two-stage training strategy. In the
first stage, we introduce the Latent Regularizer to constrain the
latent code motion, ensuring that the latent code remains within
the reasonable distribution of the StyleGAN [17–20] latent space to

Figure 2: The comparison between UserControllableLT [8],
DragGAN [29], FreeDrag [26] and our proposed Stable Drag-
GAN in terms of key performance indicators. Inference time
(seconds) ↓ and image fidelity (FID) ↓were both tested in the
face landmark manipulation experiment under the settings
described in Section 4.3.1, based on the ’one point’ setting.

enhance the stability of the Latent Predictor. By introducing random
noise to the latent codes, we generate outlier latent codes that fall
outside the reasonable distribution of the StyleGAN [17–20] latent
space. Subsequently, we train the Latent Regularizer utilizing an
attention mechanism to learn the internal structural information
within the latent code, thereby correcting outlier latent codes back
within the reasonable distribution of the StyleGAN [17–20] latent
space.

In the second stage of training, we have developed a network
based on the transformer encoder-decoder architecture, which we
refer to as the ’Latent Predictor’. This network effectively converts
the image drag problem [29] into a latent code motion sequences
regression task. It is jointly trained with the Latent Regularizer to
regularize the prediction results. Initially, to obtain pseudo-labels
for training, we introduce continuous and slight random noise into
the randomly sampled latent codes to generate latent code motion
sequences. These motion sequences simulate a ’pseudo-process’
to approximate the actual dragging process. The Latent Predictor
autoregressively predicts this ’pseudo-process’, employing a cross-
attention mechanism to learn the motion trajectories from handle
points to target points, thereby precisely moving the handle points
to their corresponding target points.

In summary, the three principal contributions of this paper are
as follows: (1) For the first time, we present a regression-based
network that achieves pixel-level fine-grained image editing; (2)
We convert the image dragging problem into a regression problem
of latent code motion sequences for the first time and propose a
Latent Regularizer as well as a Latent Predictor based on a trans-
former encoder-decoder architecture; (3) Extensive experiments
demonstrate the effectiveness and efficiency of our method, which
achieves an ideal trade-off between control granularity and infer-
ence speed. Extensive experiments demonstrate that our method
achieves state-of-the-art (SOTA) inference speed and image editing
performance at the pixel-level granularity.

2
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2 RELATEDWORK
2.1 Generative Models
GANs. Generative Adversarial Networks (GANs) are a class of
generative models that function by transforming low-dimensional,
randomly sampled latent vectors into realistic images. These mod-
els employ adversarial learning for training and have been demon-
strated to be capable of generating high-resolution, lifelike images
[6, 12, 17–20]. However, most GAN models, such as StyleGAN [17–
20], do not support direct and controllable editing of the generated
images in their original design. To overcome this limitation, several
methods have been proposed to condition Generative Adversarial
Networks (GANs). In these approaches, the network receives not
only randomly sampled latent vectors but also conditional inputs,
such as segmentation maps [16, 30] or 3D variables [7, 11], to gen-
erate realistic images. EditGAN [25] achieves image editing by first
modeling the joint distribution of images and segmentation maps,
followed by computing a new image corresponding to the edited
segmentation map.

Diffusion Models. Recently, diffusion models [41] have been
demonstrated to be capable of high-quality image synthesis [15,
42, 43]. These models iteratively denoise randomly sampled noise
to create realistic images. The latest models have shown the po-
tential for expressive image synthesis conditioned on text inputs
[33, 35, 36]. However, natural language inputs lack the ability to
finely control the spatial attributes of images, thus limiting all text-
conditioned methods to high-level semantic editing. Additionally,
current diffusion models are slower in synthesizing images due to
their requirement for multiple denoising steps. Despite progress in
efficient sampling, Generative Adversarial Networks (GANs) still
hold an advantage in terms of efficiency.

2.2 Generative Models for Interactive Content
Creation

Several methods have been proposed for editing unconditional Gen-
erative Adversarial Networks (GANs) by manipulating the input
latent vectors. Some approaches rely on supervised learning from
manually annotated or existing 3D models to discover meaningful
latent directions [1, 24, 32, 37, 44]. Others identify significant se-
mantic directions in the latent space in an unsupervised manner
[13, 37, 38, 49]. Recently, control over the coarse positioning of ob-
jects has been achieved by introducing intermediate "blobs" [9] or
heatmaps [47]. All these methods allow for the editing of semantic
attributes in images, such as appearance, or coarse geometric prop-
erties, like object positioning and pose. Although Editing-in-Style
[5] has demonstrated some capability in spatial attribute editing, it
achieves this solely through the transfer of local semantics between
different samples.

2.3 Points-based for Interactive Content
Creation

UserControllableLT [8] and DragGAN [29] are point-based editing
methods that have been previously proposed. Particularly, Drag-
GAN [29] allows users to input handle points and target points,
enabling the dragging manipulation of images. Concurrent to our

& Edit

Figure 3: The outlier latent codes. The shortestmotion path in
theW+ space between the latent code𝑤0 and its edited result
𝑤𝑛 is depicted as the blue dashed line in the figure, while the
green dashed line represents themotion trajectory learned by
our model.𝑤

′
𝑛 and𝑤

′′
𝑛 are the outlier latent codes, predicted

by the model without the use of the Latent Regularizer.

work are FreeDrag [26] and DragDiffusion [39]. FreeDrag [26] pro-
poses a novel point-tracking-free paradigm to enhance DragGAN
[29]. DragDiffusion [39] extends the editing framework of Drag-
GAN [29] to diffusion models. DragGAN [29], FreeDrag [26], and
DragDiffusion [39] are all methods based on the optimization of
latent codes. Our proposed method differs significantly from all of
these approaches.

3 METHOD
In this paper, we propose a novel regression-based network ar-
chitecture that achieves fine-grained image editing at the pixel
level. Given a source image and its handle points and target points,
the network predicts the motion trajectories in the StyleGAN la-
tent space to make the handle points reach their corresponding
target point positions in image space. Initially, in Section 3.1, we
briefly introduce the preliminaries of StyleGAN. Subsequently, in
Section 3.2, we introduce the Latent Regularizer, aimed at constrain-
ing the latent code motion within a reasonable range. In Section 3.3,
the Latent Predictor, which is employed to predict the latent code
motion sequences, is discussed.

3.1 Preliminaries of StyleGAN
In StyleGAN2 [20], the mapping network takes a 512-dimensional
latent code 𝑧 from a normal distribution and maps it to an inter-
mediate latent code 𝑤 in a 512-dimensional space. This space is
referred to as theW space. The generator network then uses𝑤 , ei-
ther a single value or multiple distinct values for different layers, to
produce the output image. The process involves copying𝑤 several
times, sending it to various generator layers, thereby controlling

3
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Figure 4: The overview of our proposed Auto DragGAN. (a)
corresponds to the first stage of training, namely the pre-
training of the Latent Regularizer. (b) represents the second
stage of training, which is the joint training of the Latent
Predictor and the Latent Regularizer.

different image attributes. The dimension of𝑤 can be extended to
𝑙 × 512 in the W+ space, where 𝑙 is the number of layers, offering
more expressiveness. This advanced architecture allows for more
precise control over the generated images, enhancing the quality
and reducing artifacts. For a detailed technical explanation, please
refer to the original paper on StyleGAN2 [20]. Our work is based
on theW+ space.

3.2 Latent Regularizer
Our training process is divided into two distinct stages. The first
stage is dedicated to the pre-training of the Latent Regularizer,
followed by the second stage which focuses on the joint training of
both the Latent Predictor and the Latent Regularizer. This section
will detail the training conducted during the first stage as well as
the proposed Latent Regularizer.

As illustrated in Figure 3, due to the complex distribution of
the W+ space, even minor inference errors can generate outlier
latent codes that fall outside the reasonable distribution of theW+

space. This can lead to a significant degradation in the fidelity of
the generated images, which is manifested as artifacts or incorrect
dragging in the pixel space. Therefore, we need to train an additional
Latent Regularizer to ensure that the latent code motion remains
within the reasonable distribution of theW+ space. This assists the
Latent Predictor in more stably forecasting the latent code motion
sequences.

Figure 5: Reconstruction of the outlier latent codes. For each
set of images, the first, second, and third columns correspond
to the initial random sampled latent code𝑤 , the outlier latent
code𝑤 ′, and the reconstructed �̂� , respectively.

As illustrated in Figure 4 (a), the mapping network of StyleGAN2
[20] randomly samples a 512-dimensional latent code 𝑧 from a nor-
mal distribution and maps it to a latent code𝑤 of dimension 𝑙 × 512,
where 𝑙 represents the number of layers in the generator network.
These mapped latent codes serve as training samples for the La-
tent Regularizer. UserControllableLT [8] finds that manipulating
latent codes on deep layers enables spatial control, such as pose
and orientation. DragGAN [29] considers the feature maps after
the 6th block of StyleGAN2 [20], which performs the best among
all features due to a good trade-off between resolution and discrimi-
nativeness. Inspired by UserControllableLT [8] and DragGAN [29],
our work is based on the editing of the first six layers of the latent
code𝑤 .

To obtain the outlier latent code, we introduce random noise to
the randomly sampled latent code𝑤 . In the first stage of training, we
initially add noise to the first six layers of𝑤 . Specifically, we perform
a masking operation on the first six layers of𝑤 , randomly setting
the vector values of these layers to zero with a 25% probability,
followed by the addition of Gaussian noise.

𝑤 ′ = (𝑤 ⊙ 𝑀) + 𝑁 (1)

where𝑤 ′ represents the outlier latent code, ⊙ denotes theHadamard
product,𝑀 is the masking vector with elements being 0 or 1, and
𝑁 is the noise sampled from a Gaussian distribution.

Prior work [8, 17–20, 29] finds that manipulating the first six
layers of the latent codes enables spatial control, such as pose and
orientation. Thus,𝑤 ′ is divided into two sets of vectors: the noisy
vectors𝑤

′
1 from the first six layers and the remaining clean vectors

𝑤
′
2.
Given that𝑤

′
1 is more closely associated with local features, and

𝑤
′
2 predominantly relates to global features [8, 17–20, 29], we aim

to restore the noise-added local features𝑤
′
1 by leveraging the clean

global features𝑤
′
2.

4
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Figure 6: Visualization of the latent code motion sequence.
Given an initial latent code𝑤0, a sequence𝑤0,𝑤1, ...,𝑤5 can
be generated through the perturbation process described by
Equation (7), where 𝑖 = 1, 2, 3, 4, 5.

The Latent Regularizer structure adopts a standard transformer
architecture, with 𝑤

′
1 serving as the key and value for the cross-

attention mechanism, while 𝑤
′
2, after being mapped through an

MLP to reduce token length, acts as the query for the cross-attention
mechanism. The output of the cross-attention mechanism, serving
as the restored local features, is concatenated with the clean global
features𝑤

′
2 to form the reconstructed latent code �̂� .

𝑞 = 𝑄 · (𝑀𝐿𝑃 (𝑤
′
2) ⊕ 𝑃𝐸) (2)

𝑘 = 𝐾 ·𝑀𝐿𝑃 (𝑤
′
1) (3)

𝑣 = 𝑉 ·𝑀𝐿𝑃 (𝑤
′
1) (4)

�̂� = [(𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑞 · 𝑘𝑇 ) · 𝑣),𝑤
′
2] (5)

where 𝑃𝐸 denotes the position embedding, ⊕ denotes element-wise
sum, and [, ] indicates the concatenation operation.

The Latent Regularizer learns to recover clean latent codes from
noisy latent codes through a reconstruction task. The reconstruc-
tion loss is chosen to be the 𝐿1 𝐿𝑜𝑠𝑠 , with the latent code𝑤 serving
as the label.

L𝑟𝑒𝑔 = E𝑤∼𝑝 (𝑧 ) ∥�̂� −𝑤 ∥1 (6)
As illustrated in Figure 5, the Latent Regularizer is capable of elimi-
nating the random noise introduced into the latent codes, thereby
correcting the outlier latent codes back into the reasonable distri-
bution of theW+ space. Indeed, through the reconstruction task,
the Latent Regularizer learns to (i) infer latent codes from their
internal structure, and (ii) restore erroneous and missing data. This
process facilitates the Latent Regularizer in learning the mapping
representations of natural image prior distributions in the W+

space.

3.3 Latent Predictor
This section will elaborate on the proposed Latent Predictor, as
well as the joint training of the Latent Predictor and the Latent
Regularizer.

As illustrated in Figure 4 (b), the mapping network of StyleGAN2
[20] randomly samples a 512-dimensional latent code 𝑧 from a
normal distribution and maps it to a latent code𝑤0 of dimension
𝑙 × 512, where 𝑙 represents the number of layers in the generator
network. Subsequently, we slightly perturb the first six layers of
𝑤0 to obtain 𝑤1, and then similarly perturb the first six layers of
𝑤1 to acquire𝑤2, and so forth. By repeating this process of minor

random perturbations n times, we generate a sequence of latent
codes𝑤0,𝑤1,𝑤2, . . . ,𝑤𝑛 . The perturbation process is as follows:

𝑤𝑖 = 𝑤𝑖−1 − 𝜆 · (𝑤∗ −𝑤𝑖−1) (7)

where 𝜆 is a constant,𝑤∗ is an independently sampled latent code
unrelated to𝑤0, and 𝑖 = 1, 2, . . . , 𝑛.

Prior work [8, 17–20, 29] finds that manipulating the first six
layers of the latent codes enables spatial control, such as pose, ori-
entation and shape. Our perturbation process does not affect other
styles, such as color and texture. Therefore, our perturbation facil-
itates the preservation of identity information during the image
dragging process. As illustrated in Figure 6, our perturbation pro-
cess of latent codes in the StyleGAN2 [20] latent space corresponds
to spatial variations in the pixel space of images, such as pose, ori-
entation, and shape. Therefore, the sequence 𝑤0,𝑤1, . . . ,𝑤𝑛 is a
latent code motion sequence. By utilizing this motion sequence as
a training sample, the image dragging problem can be decomposed
into multiple sequential sub-problems. Between two consecutive
sub-problems, the majority of pixels in the images before and af-
ter dragging remain consistent, requiring the model to predict the
movement of only a small portion of pixels, thereby significantly
reducing the complexity of the problem.

The Latent Predictor employs a straightforward teacher-forcing
cross-attention Transformer Decoder [46] for motion sequence pre-
diction. The latent codes 𝑤0 and 𝑤𝑛 are processed through the
StyleGAN2 generator network [20] to produce the synthesized
images 𝐼0 and 𝐼𝑛 , respectively. An off-the-shelf feature matching
algorithm [2] is applied to 𝐼0 and 𝐼𝑛 , with matching points whose
pixel distance exceeds 50 selected as training sample points. The
matching points of 𝐼0 are designated as handle points (for instance,
the red point of 𝐼0 in Figure 4 (b)), and those of 𝐼𝑛 as target points
(for instance, the blue point of 𝐼𝑛 in Figure 4 (b)). DragGAN [29]
focuses on the feature maps from the 6th block of StyleGAN2 [20],
as they offer an optimal balance between resolution and discrimina-
tive power, outperforming other features in effectiveness. Inspired
by DragGAN [29], we use the feature map obtained after passing
𝑤0 through the 6th block of the StyleGAN2 [20] generator net-
work as the intermediate feature map 𝐹0 in our work. Subsequently,
we extract small patches corresponding to the positions of handle
points and target points on 𝐹0. After 𝐹0 undergoes convolution
to extract spatial information, it is concatenated with the small
patches to serve as the key and value for the cross-attention mech-
anism. The sequence composed of 𝑤0,𝑤1, . . . ,𝑤𝑛−1 is combined
with position embeddings through element-wise addition, serving
as the query for the cross-attention mechanism. During training,
teacher forcing is employed to predict �̂�1, �̂�2, . . . , �̂�𝑛 . The final
output is connected via skip connection to the Latent Regularizer,
to constrain the predicted latent code motion sequences within the
reasonable distribution of theW+ space.

𝑘 = 𝐾 ·𝑀𝐿𝑃 ( [𝑀𝐿𝑃 (𝐹𝑠𝑒𝑞), 𝑀𝐿𝑃 (𝑃𝑠𝑒𝑞)]) (8)

𝑣 = 𝑉 ·𝑀𝐿𝑃 ( [𝑀𝐿𝑃 (𝐹𝑠𝑒𝑞), 𝑀𝐿𝑃 (𝑃𝑠𝑒𝑞)]) (9)
𝑞 = 𝑄 · (𝑀𝐿𝑃 ( [𝑤0;𝑤1; . . . ;𝑤𝑛−1]) ⊕ 𝑃𝐸) (10)

[�̂�1; �̂�2; . . . ; �̂�𝑛] = 𝐷 (𝑀𝐿𝑃 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑞 · 𝑘𝑇 ) · 𝑣)) (11)
where 𝐹𝑠𝑒𝑞 denotes the sequence of feature vectors extracted from
the intermediate feature 𝐹0 after spatial convolution to gather in-
formation, and 𝑃𝑠𝑒𝑞 represents the 7x7 patches at the positions
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Figure 7: Drag Loss. The Drag loss supervises the patches of
intermediate features to guide the handle points towards the
target points.

corresponding to the handle points and target points on 𝐹0, and 𝑃𝐸
denotes the position embedding. The notation [; ] is used to rep-
resent the formation of a latent code sequence, while [, ] indicates
the concatenation operation.

The Latent Predictor aims to learn the state transition path from
𝑤0 to𝑤𝑛 , with the L1 loss function employed as the loss function.

L𝑝𝑟𝑒𝑑 = E𝑤∼𝑝 (𝑧 ) ∥�̂�𝑠𝑒𝑞 −𝑤𝑠𝑒𝑞 ∥1 (12)

where �̂�𝑠𝑒𝑞 denotes the set consisting of 𝑤0, �̂�1, �̂�2, . . . ; �̂�𝑛 , and
𝑤𝑠𝑒𝑞 represents the set containing𝑤0,𝑤1, . . . ,𝑤𝑛−1,𝑤𝑛 .

Furthermore, we apply a drag loss to the intermediate feature
maps to guide the handle points towards the target points. Specif-
ically, we use the feature of the handle patch before dragging as
supervision for the feature of the target patch after dragging.

L𝑑𝑟𝑎𝑔 =

𝑛−1∑︁
𝑖=0

𝑚𝑖∑︁
𝑗=1

∑︁
ℎ𝑖,𝑗 ∈Ω (𝐻𝑖,𝑗 )
𝑡𝑖,𝑗 ∈Ω (𝑇𝑖,𝑗 )

∥𝐹𝑖 (ℎ𝑖, 𝑗 ) − 𝐹𝑖+1 (𝑡𝑖, 𝑗 )∥1 (13)

where 𝑛 represents the length of the latent code motion sequence,
and𝑚𝑖 is the number of matching points between the generated
images 𝐼𝑖 and 𝐼𝑖+1 corresponding to𝑤𝑖 and𝑤𝑖+1, with onlymatching
points exceeding a pixel distance of 30 being selected. The matching
points on 𝐼𝑖 are designated as handle points 𝐻𝑖, 𝑗 (the red point of
𝐼𝑖 in Figure 7), and those on 𝐼𝑖+1 are designated as target points
𝑇𝑖, 𝑗 (the blue point of 𝐼𝑖+1 in Figure 7). We use Ω(𝐻𝑖, 𝑗 ) to represent

User Edit DragGAN Ours User Edit DragGAN Ours

Figure 8: A qualitative comparison of the image editing per-
formance between our method and DragGAN [29].

the pixels within a 7x7 patch centered at 𝐻𝑖, 𝑗 . 𝐹𝑖 and 𝐹𝑖+1 are the
intermediate feature maps of 𝑤𝑖 and �̂�𝑖+1, respectively. 𝐹 (ℎ𝑖, 𝑗 )
denotes the feature values of 𝐹 at pixel ℎ𝑖, 𝑗 . This loss function
encourages the handle points to move towards the target points.

Finally, the overall loss function is defined as:

L = 𝛼L𝑝𝑟𝑒𝑑 + 𝛽L𝑑𝑟𝑎𝑔 (14)

where 𝛼 and 𝛽 are coefficients to balance the two loss functions,
with 𝛼 set to 0.1 and 𝛽 set to 1 by default in our experiments.

4 EXPERIMENT
4.1 Training And Inference
Following the setup of DragGAN [29], we utilized the StyleGAN2
[20] pre-trained on the following datasets (the resolution of the
pretrained StyleGAN2 [20] is shown in brackets): FFHQ (512) [19],
AFHQCat (512) [4], SHHQ (512) [10], LSUNCar (512) [48], LSUNCat
(256) [48], Landscapes HQ (256) [40] and self-distilled dataset from
Self-distilled stylegan [28] including Lion (512) [28], Dog (1024)
[28], and Elephant (512) [28].

The Latent Regularizer employs a standard transformer architec-
ture, consisting of a self-attention mechanism with 6 transformer
encoder layers, and a cross-attentionmechanismwith 6 transformer
decoder layers [46]. The Latent Predictor consists of a self-attention
mechanismwith 6 transformer encoder layers, and a cross-attention
mechanism with 16 transformer decoder layers [46].

In the first stage of training, only Latent Regularizer requires
training, with its learning rate set to 1×10−3. In the second stage of
training, both Latent Regularizer and Latent Predictor require joint
training. The learning rate for Latent Regularizer is set at 1 × 10−5,
while Latent Predictor employs a cosine annealing decay for its
learning rate, with an initial value set at 1× 10−5, a minimum value
at 1 × 10−7, and a decay period of 30. The first stage of training
requires 50 epochs. The second stage of training requires 150 epochs.
The mapping network and generator network of StyleGAN2 [20]
are both frozen.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Auto DragGAN: Editing the Generative Image Manifold in an Autoregressive Manner ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Ours

DragGAN

Ours

DragGAN

Running
Time 0.00s 0.01s 0.02s 0.03s 0.04s 0.00s 0.01s 0.02s 0.04s 2.00s

Figure 9: A qualitative comparison between our method and DragGAN [29] in terms of inference speed and image editing
performance.

The user inputs handle points and target points on the initial
image, which are then processed through the Latent Predictor and
the Latent Regularizer, resulting in the edited image.

4.2 Qualitative Evaluation
Figure 1 illustrates the comparison between our method and Drag-
GAN [29] under complex editing scenarios, while Figure 8 displays
the comparison in simple editing scenarios. Figure 9 shows a com-
prehensive comparison of editing speed and image editing perfor-
mance between our method and DragGAN [29]. Our method all
outperforms DragGAN [29].

4.3 Quantitative Evaluation
Following the setup of DragGAN [29], we conducted a quantitative
evaluation of our method, encompassing facial landmark manipu-
lation and paired image reconstruction.

4.3.1 Face Landmark Manipulation. Following the setup of Drag-
GAN [29], we employed an off-the-shelf tool, Dlib-ml [22], for
facial landmark detection. Subsequently, we utilized a StyleGAN2
[20] pre-trained on the FFHQ [19] dataset to randomly generate
two facial images, upon which we performed landmark detection.
Our objective is to manipulate the landmarks of the first facial im-
age to align them with the landmarks of the second facial image.
Subsequently, we calculate the mean distance (MD) between the
landmarks of the two images. The results are derived from an av-
erage of 2000 tests using the same set of test samples to evaluate
all methods. In this manner, the final Mean Distance (MD) score
reflects the efficacy of the method in moving the landmarks to the
target positions. Evaluations were conducted with varying numbers
of landmarks, including 1, 5, and 68. Additionally, we report the
Frechet Inception Distance (FID) scores between the edited images
and the initial images.

Table 1: Quantitative evaluation on face landmark manip-
ulation. We calculate the mean distance (MD) between the
landmarks of the two images. The FID and Time are reported
based on the ‘1 point’ setting. Red font indicates the best
performance, while blue signifies the second best.
Method 1 point 5 points 68 points FID Time (s)
No edit 14.76 12.39 15.27 - -
UserControllableLT 11.64 10.41 10.15 25.32 0.03
FreeGAN 1.45 3.03 4.17 7.67 2.0
DragGAN 1.62 3.23 4.32 8.30 1.9
Ours w/o Latent Regularizer 3.75 5.79 11.14 17.23 0.12
Ours w/o Latent Predictor 4.94 12.78 25.63 26.34 0.15
Ours 1.33 3.02 3.56 6.46 0.04

The results are provided in Table 1. Our method achieves perfor-
mance comparable to DragGAN [29] under different numbers of
points. According to the FID scores, the image quality post-editing
with our approach is superior. In terms of speed, our method signifi-
cantly surpasses DragGAN [29]. Overall, our results are comparable
to DragGAN [29], but with a faster execution speed.

4.3.2 Paired Image Reconstruction. In our study, both our method
and DragGAN [29] were evaluated using the same settings as those
employed in UserControllableLT [8]. In this study, we begin with a
latent code 𝑤1 and apply random perturbations to it in the same
manner as described in UserControllableLT [8], thereby generating
another latent code 𝑤2. Subsequently, we use these two latent
codes to generate StyleGAN2 [20] images 𝐼1 and 𝐼2, respectively.
Following this, we calculate the optical flow between 𝐼1 and 𝐼2 and
randomly select 32 pixel points from the flow field as user input 𝑈 .
Our research objective is to reconstruct image 𝐼2 using only 𝐼1 and𝑈 .
The results are provided in Table 2. In most datasets, our approach
demonstrates superior performance compared to DragGAN [29].

4.3.3 Ablation Study and Analysis Experiment. In this context, we
investigate the roles of the Latent Regularizer and Latent Predictor
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Figure 10: A comparative analysis of the Mean Distance Decay between Auto DragGAN and DragGAN [29] across various
datasets. Auto DragGAN demonstrates faster convergence compared to DragGAN [29]. The convergence point at 2s indicates
that both methods have comparable abilities in dragging the handle points to the target points.

in influencing the performance of the model. The results are pro-
vided in Table 1 and Table 2. ‘Ours w/o Latent Regularizer’ denotes
the scenario where the Latent Regularizer is not utilized for the
restoration of the latent codes. ‘Ours w/o Latent Predictor’ denotes
the scenario where the length of latent code motion sequence, 𝑛,
equals 1. Additionally, we discuss the impact of 𝑛 on the effective-
ness of the model trained in the final stage. The results are provided
in Table 3.

4.3.4 Mean Distance Decay. We introduce a new metric, Mean
Distance Decay (MDD), to assess the speed performance of drag
editing. MDD represents the ratio of the current mean distance
between the handle points and the target points to the initial mean
distance. A smaller value indicates a closer proximity between the
handle points and the target points. The formula is as follows:

𝑀𝐷𝐷 =
𝑀𝐷𝑐𝑢𝑟

𝑀𝐷𝑖𝑛𝑖𝑡
(15)

where𝑀𝐷𝑐𝑢𝑟 represents the mean distance at the current moment,
while𝑀𝐷𝑖𝑛𝑖𝑡 denotes the initial mean distance.

As illustrated in the Figure 10, our approach demonstrates faster
convergence in drag operations across various datasets compared
to DragGAN [29]. Our method begins to converge at approximately
0.04s across various datasets, whereas DragGAN [29] starts to
converge around 2s. The calculation of Mean Distance Decay
(MDD) is based on selecting only a single pair of handle point and
target point. We calculated the Mean Distance Decay (MDD) on
each dataset. We selected a handle point and a target point on the
initial image, and then performed a drag operation to calculate the
Mean Distance Decay (MDD) for both methods. As illustrated in
the Figure 10, the final experimental results indicate that ourmethod
converges more rapidly than DragGAN [29], while maintaining a
comparable dragging capability with DragGAN [29].

Table 2: Quantitative evaluation on paired image reconstruc-
tion.We follow the evaluation in UserControllableLT [8] and
report MSE (×102)↓ and LPIPS (×10)↓ scores. Red font indi-
cates the best performance, while blue signifies the second
best.

Dataset Lion LSUN Cat Dog LSUN Car
Metric MSE LPIPS MSE LPIPS MSE LPIPS MSE LPIPS
UserControllableLT 1.82 1.14 1.25 0.87 1.23 0.92 1.98 0.85
DragGAN 0.52 0.70 0.88 0.86 0.39 0.42 1.75 0.77
FreeGAN 0.48 0.67 0.79 0.96 0.38 0.37 1.64 0.64
Ours w/o Latent Regularizer 1.52 1.38 1.33 0.83 0.94 0.83 2.01 0.94
Ours w/o Latent Predictor 1.74 1.12 1.51 0.95 1.97 0.93 2.13 0.98
Ours 0.42 0.58 0.70 0.63 0.31 0.32 1.53 0.58

Table 3: Effects of 𝑛. Paired image reconstruction on Dog
dataset. We follow the evaluation in UserControllableLT [8]
and report MSE (×102)↓ score.
𝑛 1 2 3 4 5 7 9 10
MSE 1.97 1.18 0.68 0.54 0.37 0.39 0.39 0.38

5 CONCLUSION
We propose Auto DragGAN, which, unlike DragGAN [29], Free-
Drag [26], and DragDiffusion [39] that optimize latent vectors, is an
autoregression-based model we have developed to learn the move-
ment paths of latent codes within the latent space. Our method
benefits from learning the variation patterns of latent codes during
the image dragging process, and it significantly outperforms other
methods [26, 29, 39] in handling complex dragging scenarios. This
approach not only matches but slightly exceeds the effectiveness
of DragGAN [29] while significantly boosting processing speed.
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