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ABSTRACT

We present a certified defense to clean-label poisoning attacks. These attacks work
by injecting a small number of poisoning samples (e.g., 1%) that contain p-norm
bounded adversarial perturbations into the training data to induce a targeted mis-
classification of a test-time input. Inspired by the adversarial robustness achieved
by randomized smoothing, we show how an off-the-shelf diffusion model can
sanitize the tampered training data. We extensively test our defense against seven
clean-label poisoning attacks and reduce their attack success to 0–16% with only a
negligible drop in the test time accuracy. We compare our defense with existing
countermeasures against clean-label poisoning, showing that the defense reduces
the attack success the most and offers the best model utility. Our results highlight
the need for future work on developing stronger clean-label attacks and using our
certified yet practical defense as a strong baseline to evaluate these attacks.

1 INTRODUCTION

A common practice in machine learning is to train models on a large corpus of data. This paradigm
empowers many over-parameterized deep-learning models but also makes it challenging to retain the
quality of data collected from various sources. This makes deep-learning-enabled systems vulnerable
to data poisoning (Rubinstein et al., 2009; Nelson et al., 2008b; Biggio et al., 2012; Jagielski et al.,
2018; Shafahi et al., 2018; Carlini, 2021)—where an adversary can alter a victim model’s behaviors
by injecting malicious samples (i.e., poisoning samples) into the training data.

But in practice, it may be challenging to make modifications to entire training data used for supervised
classification, because they are often relatively small. As a result, recent work has developed clean-
label poisoning attacks (Shafahi et al., 2018; Zhu et al., 2019; Aghakhani et al., 2021; Turner et al.,
2019; Saha et al., 2020; Huang et al., 2020; Geiping et al., 2021b), where the attacker aims to control
the victim model’s behavior on a specific test input by injecting a few poisons that visually appear to
be correctly-labeled, but in fact include human-invisible adversarial perturbations.

We present a defense against clean-label poisoning attacks inspired by defenses to test-time adversarial
examples. Existing poisoning defenses fall into two categories certified and heuristic. Certified
defenses offer provable guarantees, but often significantly decrease the utility of defended models at
test-time, making them impractical (Ma et al., 2019; Levine & Feizi, 2020; Wang et al., 2022; Zhang
et al., 2022). Heuristic approaches (Suciu et al., 2018; Peri et al., 2020; Hong et al., 2020; Geiping
et al., 2021a; Liu et al., 2022) demonstrate their effectiveness against existing attacks in realistic
scenarios. However, these defenses rely on unrealistic assumptions, such as the defender knowing the
target test input (Suciu et al., 2018), or are evaluated against specific poisoning adversaries, leaving
them ineffective against adaptive attacks or future adversaries.

Our contributions. First, we make two seemingly distant goals closer by presenting a certified
defense against clean-label poisoning that also minimizes the decrease in clean accuracy. For any
p-norm bounded adversarial perturbations to the training data, we ensure a certified accuracy higher
than the prior certified defenses. The model trained on the tampered data classifies a subset of test
input x (or x+ δ, where ||δ||`p in clean-label backdoor poisoning) correctly. To achieve this goal, we
leverage the recent diffusion probabilistic diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Nichol & Dhariwal, 2021). We use an off-the-shelf diffusion model to denoise the entire
training data before training a model. In §3, we theoretically show how one achieves a certified
accuracy under 2-norm bounded adversarial perturbation to the training data.
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Removing adversarial perturbations in the training data before model training, we can decouple the
certification process from the training algorithm. Second, we leverage this computational property
our defense has and present a series of training techniques to alleviate the side-effects of employing
certified defenses, i.e., the utility loss of a defended model. To our knowledge, we are the first
certified defense that decouples these two processes. We minimize the utility loss by employing
the warm-starting (Ash & Adams, 2020). We train a model a few epochs on the tampered data or
initialize its model parameters using a pre-trained model. None of them alters the training process;
thus, our defense’s provable guarantee holds. In §4, we show they attribute to a better performance
compared to existing certified defenses.

Third, we extensively evaluate our defense against seven clean-label poisoning attacks studied in
two different scenarios under `2- and `∞-norm bounds: transfer-learning and training a model from-
scratch. In transfer-learning, our defense completely renders the attack ineffective with a negligible
accuracy drop of 0.5% in the certified radius of 0.1 in 2-norm perturbations. We also reduce the attack
success to 2–16% when a defender trains a model from scratch. We further compare our defense with
six poisoning defenses in the prior work. We demonstrate more (or the same in a few cases) reduction
in the attack success and less accuracy drop than those existing defenses.

We discuss research questions important in studying poisoning attacks and defenses but are far-
neglected in the prior work. We suggest future work directions to answer them.

2 PRELIMINARIES ON CLEAN-LABEL POISONING

Threat model. A clean-label poisoning attacker causes a misclassification of a specific target test-
time sample (xt, yt) by compromising the training data Dtr with poisoning samples Dp. If a victim
trains a model f on the poisoned training data Dptr =Dtr ∪Dp, the resulting model f∗θ is likely
to misclassify the target instance to the adversarial class yadv while preserving the classification
behavior of f∗θ on the clean test-set S. The attacker crafts those poisons (xp, yp) by first taking a
few base samples in the same domain (xb, yb) and then adding human-imperceptible perturbations
δ, carefully crafted by the attacker and also bound to ||δ||`p ≤ ε, to them while keeping their labels
clean (yb = yp). A typical choice of the bound is `∞ or `2.

Poisoning as a constrained bi-level optimization. The process of crafting optimal poisoning
samples D∗p can be formulated as the constrained bi-level optimization problem:

D∗p = arg min
Dp

Ladv(xt, yt; f∗θ ),

where Ladv(xt, yadv; f∗θ ) is the adversarial loss function quantifying how accurately a model f∗θ ,
trained on the compromised training data, misclassifies a target sample xt into the class an adversary
wants yadv . Dp is the set of poisoning samples we craft, and D∗p is the resulting optimal poisons.

While minimizing the crafting objective Ladv(xt, yt; f∗θ ), the attacker also trains a model f∗θ on the
compromised training data, which is itself another optimization problem, formulated as follows:

f∗θ = arg min
θ

Ltr(Dptr, S; θ),

where the typical choice of Ltr is the cross-entropy loss, and S is the clean test-set. Combining both
the equations becomes a bi-level optimization: find D∗p such that Ladv is minimized after training,
while minimizing Ltr as well.

To make the attack inconspicuous, the attacker constraints this bi-level optimization by limiting the
perturbation δ = xp − xb each poisoning sample can contain to ||δ||`p < ε.

Existing clean-label attacks. Initial work (Shafahi et al., 2018; Zhu et al., 2019; Aghakhani et al.,
2021) minimizes Ladv by crafting poisons that are close to the target in the latent representation space
g(·). A typical choice of g(·) is the activation outputs from the penultimate layer of a pre-trained
model f(·), publicly available to the attacker from the Internet. The attacks have shown effective in
transfer-learning scenarios, where f(·) will be fine-tuned on the poisoned training data. The attacker
chooses base samples from the target class (xb, yadv) and craft poisons (xp, yadv). During fine-tuning,
f(·) learns to correctly classify poisons in the target’s proximity in the latent representation space
and classify the target into the class yadv the attacker wants.
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Recent work focuses on making those poisoning attacks effective when f is trained from scratch on
the tampered training set. To do so, the attacker requires to approximate the gradients computed on
Ladv that are likely to appear in any models. Huang et al. (2020) address this challenge by meta-
learning; the poison-crafting process simulates all the possible initialization, intermediate models,
and adversarial losses computed on those intermediate models. A follow-up work by Geiping et al.
(2021b) alleviates the computational overhead of the prior work by proposing gradient matching, that
aligns the gradients from poisoning samples with those computed on a target.

Defenses against clean-label poisoning. Early work on poisoning defenses focuses on filtering out
poisons from the training data. Nelson et al. (2008a) and Suciu et al. (2018) compute the training
samples negatively impacting the classification results on targets. But in practice, the defender does
not know which test-time samples are the attack targets. Follow-up work (Rubinstein et al., 2009;
Peri et al., 2020; Tran et al., 2018) leverages unique statistical properties (e.g., spectral signatures)
that can distinguish poisons from the clean data. All these approaches depend on the data they use
to compute the properties. Recent work (Geiping et al., 2021a; Borgnia et al., 2021; Hong et al.,
2020; Liu et al., 2022) thus reduces the dependency by proposing data- or model-agnostic defenses,
adapting robust training or differentially-private training. While shown effective against existing
attacks, those defenses are not provable.

A separate line of work addresses this issue by proposing certifiable defenses (Levine & Feizi, 2020;
Wang et al., 2022; Weber et al., 2023), which guarantee the correct classification of test-time samples
when an adversary compromises the training data with the k poisons whose perturbation radius of r.
Levine & Feizi (2020); Wang et al. (2022)’s approach is majority voting, where the defender splits
the training data into multiple disjoint subsets, train models on them, and run majority voting of test
inputs over those models. BagFlip Zhang et al. (2022) proposes a model-agnostic defense that uses
the idea of randomized smoothing Cohen et al. (2019) studied in adversarial robustness. However, the
certification offered by these works has only shown effective in toy datasets like MNIST, and it has
been under-studied whether they will scale to practical scenarios, e.g., CIFAR10 or TinyImageNet.
The computational demands of these defenses further hinder their deployment in practice.

3 DIFFUSION DENOISING AS CERTIFIED DEFENSE

We aim to certify the prediction of a model fθ trained on a poisoned training data Dptr. To formally
define this goal, we define the perturbation bound ε as the `p distance between two datasets, computed
by taking the sum across `p perturbations of all images. The perturbation space Pπε is the set of all
the datasets Dptr obtained by tampering samples with the crafting algorithm π with the bound ε.
Operating within the space P , for any test-time sample (xt, yt), can produce a certificate that

PrDptr∈Pπε (Dtr)

[
fθ←Dptr (xt) = fθ←Dtr (xt)

]
> 1− α

with arbitrarily high probability 1− α, we guarantee that training on any poisoned dataset Dptr ∈
Pπr (Dtr) in the perturbation bound ε will classify the example xt the same way as it was classified
on the non-poisoned dataset Dtr.

3.1 ROBUSTNESS GUARANTEE

Intuition. Randomized smoothing Cohen et al. (2019) guarantees that a fixed classifier fθ will
classify any adversarial example x′ correctly with high probability. To make this argument, it first
shows that even for extremely large values of noise δ, the example x+ δ will be classified correctly.
Thus, the analysis of randomized smoothing is able to show that a (much smaller) worst-case direction
δadv will not change the prediction of the classifier.

Here we make a similar argument, but change where the noise is added. Given a dataset Dptr, where
some examples may be slightly perturbed to poison the model, we want to guarantee that any model
fθ trained on Dptr will classify the test examples correctly. To achieve this, we train many models f iθ
on datasets from Pπδ (with extremely large perturbations δ); if each of these classifiers consistently
labels the test data correctly, then we can be guaranteed that (much smaller) worst-case poisoning
directions δadv can not change the prediction of the classifier.

Randomized smoothing shows that adversarial noise to the test input x will not cause misprediction
because the predictions remain consistent even for large quantities of Gaussian noise x+ δ. In our
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setting, adversarial noise to the model’s training data Dtr will not cause misprediction as even for
large quantities of Gaussian noise Pπδ to the training set the predictions of fθ←Dptr remain consistent.

Randomized smoothing transforms a non-robust classifier f into a smoothed (robust) classifier g:

g(x) = arg max
c∈Y

Prδ∼N(0,σ2I)[fθ(x+ δ) = c].

But clean-label poisoning does not add any test-time perturbations to the target samples. Instead,
it alters the training dataset, which then causes the models trained on the dataset to be different.
Therefore, for our use-case we define:

g(x) = arg max
c∈Y

Prθ∼train(Dptr∼Pπδ )[fθ(x) = c].

Each model fθ is obtained by training a new classifier on a perturbed version of the training dataset.

3.2 (DIFFUSION) DENOISING FOR THE ROBUSTNESS

Denoising diffusion probabilistic model (DDPMs) are a recent generative model that works by
learning the diffusion process of the form xt ∼

√
1− βt · xt−1 + βt · ωt, where ωt is drawn from

a standard normal distribution N (0, I) with x0 sourced from the actual data distribution, and βt
being fixed (or learned) variance parameters. This process transforms images from the target data
distribution into purely random noise over time t, and the reverse denoising process constructs images
in the data distribution, starting with random Gaussian noise. A DDPM with a fixed time-step t ∈ N+

and a fixed schedule samples a noisy version of a training image xt ∈ [−1, 1]w·h·c of the form:

xt :=
√
αt · x+

√
1− αt · N (0, I),

where αt is a constant derived from t, which decides the level of noise to be added to the image (the
noise increases consistently as t grows). During training, the model minimizes the difference between
x and the denoised xt, where xt is obtained by applying the noise at time-step t.

Diffusion denoising for the robustness. We utilize off-the-shelf DDPMs (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Nichol & Dhariwal, 2021) to denoise adversarial perturbations added to the
training data and as a result, provide the robustness to clean-label poisoning. A naive adaptation of
randomized smoothing to our scenario is to train multiple models on the training data with Gaussian
noise augmentation or using adversarial training. But we need to add noise to the data that does not
make it look natural or they are computationally demanding. We thus avoid using these approaches
to train models, instead we want to remove the (potentially compromised) training set before training.
Note that the robustness guarantee that randomized smoothing offers holds regardless of how a model
is trained. We can still certify the robustness against clean-label poisoning. The fact that we use the
denoising may make the guarantee a bit loose, but we show in our evaluation that the loose guarantee
is sufficient to render existing attacks ineffective. Our denoising process is shown in Algorithm 1.

Pseudocode Noise, denoise, train, classify

1: fn DTCLASSIFY(f, σ,D, x, n)
2: counts← 0
3: for i ∈ {1, 2, ..., n} do
4: t∗, αt∗ ← GETTIMESTEP(σ)
5: D̂ ← NOISEANDDENOISE(D,αt∗ ; t∗)
6: f̂θ ← TRAIN(D̂, f )
7: counts[f̂θ(x)]← counts[f̂θ(x)] + 1

8: ret counts
9:

10: fn GETTIMESTEP(σ)
11: t∗ ← find t s.t. 1−αt

αt
= σ2

12: ret t∗, αt∗

Pseudocode Randomized smoothing [Cohen et al.]

1: fn PREDICT(f, σ, D, x, n, α)
2: counts← DTCLASSIFY(f, σ,D, x, n0)
3: ĉA, ĉB ← top two predictions in counts
4: nA, nb ← counts[ĉA], counts[ĉB]
5: if BINOMPVAL(nA, nA + nB , 0.5 ≤ α) ret ĉA
6: else ret ABSTAIN
7:
8: fn CERTIFY(f, σ, D, x, n0, n, α)
9: counts0← DTCLASSIFY(f, σ,D, x, n0)

10: ĉA ← top predictions in counts0
11: counts← DTCLASSIFY(f, σ,D, x, n)
12: pA ← LOWERCFBOUND(counts[ĉA], n, 1−α)
13: if pA > 1/2 ret ĉA and radius σΦ−1(pA)
14: else ret ABSTAIN
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3.3 PREDICTION AND CERTIFICATION

Now we present algorithms for running a prediction with the classifiers trained on Dptr and certifying
the robustness of the model’s prediction on a test-time sample x. Our work extends the algorithms
presented by Cohen et al. (2019) to clean-label poisoning settings, as shown in Algorithm 2.

Prediction. To compute the prediction for a test-time sample x, we make an adaptation of the standard
randomized smoothing. We train n classifiers on n different noised-then-denoised training datasets,
and return the predictions of these classifiers on the target x, with the algorithm DTCLASSIFY(·). We
run this algorithm for a sufficient number of times (e.g., over 1000 times). The prediction output is
then the majority-voted label from these classifiers.

Certification process exactly follows the standard randomized smoothing. We first count the number
of occurrences of the most likely label ĉA compared to any other runner-up label, and from this can
derive a radius (for the training set perturbations) on which x is guaranteed to be robust.
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Figure 1: Certified radius and accuracy at-
tained by denoising the CIFAR10 training data
with different σ values in {0.1, 0.25, 0.5, 1.0}.
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Figure 2: Certified radius and accuracy at-
tained by adding Gaussian random noise to train-
ing data with different σ in {0.1, 0.25, 0.5, 1.0}.

Results. We train 10k CIFAR10 models using an efficient training pipeline that trains a single model
in 15 seconds on an A100 GPU (for a total of 1.7 GPU days of compute). These models have a clean
accuracy of between 92% and 58% depending on the level of noise σ introduced, and for the first time
can certify non-trivial robustness to clean-label poisoning attacks. A full curve comparing certified
accuracy for all given perturbation radii is shown in Figure 1. Instead of applying a diffusion model,
we test the randomized smoothing approach proposed by Weber et al. (2023): adding Gaussian
random noise directly to the images and train on these (noisy) images. This achieves a similar level of
certified accuracy and robustness as our denoising approach, but at a cost of training for 20× longer.

3.4 COMPUTATIONAL EFFICIENCY FOR CERTIFICATION

In order to obtain a robustness certificate, we must train many CIFAR10 models on different de-
noisings of the training dataset. This step is computationally expensive, but is in line with the
computational complexity of prior randomized smoothing based approaches that require similar work.
However, as we will show later, in practice we can empirically obtain robustness with only a very
small number of training runs (even as low as one!), confirming the related observation from (Lucas
et al., 2023) who find a similar effect holds for randomized smoothing of classifiers.

4 EMPIRICAL EVALUATION

We empirically evaluate the effectiveness of our certified defense against clean-label poisoning.
We adapt the poisoning benchmark developed by Schwarzschild et al. (2021). This benchmark
runs clean-label poisoning attacks with the same attack configurations, allowing us to compare our
defense’s effectiveness across many existing attacks.

Poisoning attacks. We evaluate our defense against seven clean-label poisoning attacks: four
targeted poisoning (Poison Frogs (Shafahi et al., 2018), Convex Polytope (Zhu et al., 2019), Bullseye
Polytope (Aghakhani et al., 2021), Witches’ Brew (Geiping et al., 2021b)) and three backdoor attacks
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(Label-consistent Backdoor (Turner et al., 2019), Hidden-Trigger Backdoor (Saha et al., 2020), and
Sleeper Agent (Souri et al., 2022)). The first three attacks operate in the transfer-learning scenarios
(i.e., they assume that the victim fine-tunes a model from some given initialization), whereas the rest
assumes the victim trains a model from-scratch. While our defense offers certificates only to targeted
poisoning attacks, we test if the defense can mitigate clean-label backdooring like the prior work did.

Metrics. We employ two metrics: clean accuracy and attack success rate. We compute the accuracy
on the entire test set. An attack is successful if a poisoned model classifies a target sample to the
intended class. When evaluating backdoor attacks, we only count the cases where a tampered model
misclassifies the target sample containing a trigger pattern.

Methodology. We run our experiments in CIFAR10 and Tiny ImageNet (Krizhevsky et al., 2009;
Le & Yang, 2015). Following the standard practices in the prior work (Schwarzschild et al., 2021),
we run each attack 100 times on different targets and report the averaged metrics over the 100 runs.
We randomly choose the base and target classes. We set the poisoning budget to 0.5–1% for all
our attacks: the attacker can tamper with only 500 samples of the entire 50k training instances in
CIFAR10 and 250 of the total 100k training samples in Tiny ImageNet.

Attack scenarios. We evaluate against both the transfer-learning and training from-scratch attacks.
In transfer-learning, we fine-tune a pre-trained model on the tampered training set while we train
a randomly initialized model in the training from-scratch scenario. We also evaluate against the
attackers with two types of knowledge: white-box and black-box. The white-box attackers know the
victim model’s internals, while the black-box attackers do not. More details are in Appendix A.

4.1 EFFECTIVENESS OF OUR DENOISING DEFENSE

We first show to what extent our defense makes the seven poisoning attacks ineffective. Our defense
is attack-agnostic. A defender does not know whether the training data contains poisoning samples or
not; instead, the defender always trains a model on the denoised training set. We measure the trained
model’s accuracy and attack success and compare them with the baseline, where a model is trained
directly without denoising. We evaluate with different defense strengths: σ ∈ {0.1, 0.25, 0.5, 1.0}.
The attacks are with the perturbation bound of 16-pixels in `∞-norm and that of 3.5–6.5 in `2-norm.
We extended many poisoning attacks for supporting `2 bounds. Both `∞ and `2 bounds we use are
comparable to each other. We show the conversion between the two bounds in Appendix B. Due to the
page limit, the results from Tiny ImageNet and attacking with different `p-norms are in Appendix C.

Table 1: Defense effectiveness in transfer-learning scenarios (CIFAR10). We measure the clean
accuracy and attack success of the models trained on the denoised training set. Each cell shows the
accuracy in the parentheses and the attack success outside. Note that † indicates the runs with σ=0.0,
the same as our baseline that trains models without any denoising.

Our defense against `2 attacks at σ (%) Our defense against `∞ attacks at σ (%)

Poisoning attacks Knowledge †0.0 0.1 0.25 0.5 1.0 †0.0 0.1 0.25 0.5 1.0

Poison Frog!

W
B

(93.6)99.0 (93.3)0.0 (91.8)1.0 (84.8)0.0 (79.9)1.0 (93.6)68.8 (93.3)0.0 (92.7)0.0 (90.8)0.0 (87.4)0.0
Convex Polytope (93.7)16.2 (93.2)0.0 (91.7)0.0 (86.6)0.0 (77.0)0.0 (93.7)12.2 (93.3)0.0 (92.7)0.0 (90.8)1.0 (87.5)0.0
Bullseye Polytope (93.5)100 (93.3)4.0 (92.6)0.0 (87.5)0.0 (79.2)1.0 (93.5)100 (93.3)0.0 (92.7)0.0 (90.8)1.0 (87.5)0.0
Label-consistent Backdoor - (93.2)1.0 (93.3)0.0 (92.6)0.0 (90.8)1.0 (87.5)0.0
Hidden Trigger Backdoor - (93.4)7.0 (93.3)0.0 (92.6)0.0 (90.8)0.0 (87.5)0.0

Poison Frog!

B
B

(91.6)10.0 (91.2)0.0 (89.6)0.5 (82.9)0.0 (77.8)2.0 (91.7)2.5 (91.3)0.0 (90.3)0.0 (88.8)0.5 (86.2)1.0
Convex Polytope (91.7)3.0 (91.0)0.0 (89.5)0.0 (84.6)0.5 (73.6)1.0 (91.8)2.5 (91.3)0.0 (90.3)0.0 (88.8)0.5 (86.2)1.0
Bullseye Polytope (91.6)9.0 (91.3)0.0 (90.3)0.0 (85.5)0.0 (76.3)1.0 (91.6)8.0 (91.3)0.0 (90.3)0.0 (88.8)0.5 (86.2)0.5
Label-consistent Backdoor - (91.5)1.0 (91.3)0.0 (90.3)0.0 (88.8)0.0 (86.2)1.5
Hidden Trigger Backdoor - (91.6)4.0 (91.2)1.0 (90.3)1.0 (89.3)1.5 (86.3)1.5

Transfer-learning scenarios. Table 1 summarizes our results. Our defense is also effective in
mitigating the attacks in transfer-learning. Each cell contains the accuracy and the attack success rate
of a model trained on the denoised training set. All the numbers are the averaged values over 100
attacks. Against the white-box attacks, we reduce the success rate of the targeted poisoning attacks
to 0–4% at σ of 0.1. In the black-box attacks, the targeted poisoning is less effective (with 3–10%
success), but still, the defense reduces the success to 0–1%. We observe that the two clean-label
backdoor attacks show 1–7% success regardless of the attacker’s knowledge. We thus exclude these
attacks from the subsequent evaluation. Using σ greater than 0.5 increases the attack success by
0.5–2%. But, this may not because of the successful poisoning attacks but due to the significant
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decrease in a model’s accuracy (3-9%). Increasing σ may defeat a stronger attack but significantly
decrease a model’s accuracy. This result is interesting, as in our theoretical analysis shown in Sec 3,
our defense needs σ of 0.25, while 0.1 is sufficient to defeat both the attacks.

Training from-scratch scenarios. Table 2 shows our results with the same format as in Table 1. We
demonstrate that our defense mitigates both attacks at σ = 0.25, aligned to what we’ve seen in our
theoretical analysis. In Witches’ Brew, the attack success decreases from 34–71% to 3–10%; against
Sleeper Agent, the attack success decreases from 19–40% to 7–19%1. Note that to reduce their attack
success to ∼10%, our defense needs a minimum σ of 0.25–0.5. It is also noteworthy that our defense
reduces the backdooring success significantly while the certificate does not hold because test-time
samples are altered with trigger patterns.

Table 2: Defense effectiveness in training from-scratch scenarios (CIFAR10). We measure the
accuracy and attack success of the models trained on the denoised training set. Each cell shows
the accuracy in the parentheses and the attack success outside. Note that † indicates the runs with
σ=0.0, the same as our baseline that trains models without any denoising. We use an ensemble of
four models, and WB and BB stand for the white-box and the black-box attacks, respectively.

Our defense against `2 attacks at σ (%) Our defense against `∞ attacks at σ (%)

Poisoning attacks Knowledge †0.0 0.1 0.25 0.5 1.0 †0.0 0.1 0.25 0.5 1.0

Witches’ Brew

W
B (92.2)71.0 (86.4)54.0 (72.3)10.0 (46.7)11.0 (42.5)10.0 (92.3)65.0 (86.5)9.0 (71.9)3.0 (46.0)9.0 (41.3)7.0

Sleeper Agent Backdoor (92.4)40.5 (84.4)66.5 (71.8)19.5 (46.8)13.0 (39.9)10.5 (92.4)35.0 (86.1)17.0 (73.0)8.0 (47.0)9.5 (39.7)10.0

Witches’ Brew

B
B

(90.1)45.5 (85.9)28.0 (75.5)4.0 (58.8)7.0 (49.0)10.0 (90.0)33.5 (85.8)3.5 (75.5)2.5 (58.8)6.0 (48.7)6.5
Sleeper Agent Backdoor (90.0)39.5 (85.0)44.5 (75.1)14.5 (58.6)9.5 (49.0)8.0 (90.0)18.5 (85.6)11.5 (75.5)7.0 (58.8)8.0 (48.4)8.0

4.2 IMPROVING MODEL UTILITY

A shortcoming of certified defenses (Levine & Feizi, 2020; Wang et al., 2022; Zhang et al., 2022)
is that the certified accuracy is substantially lower than the undefended model’s accuracy. We also
observe in §4.1 that our defense, when we train a model from scratch on the data, denoised with large
σ values, is not free from the same issue, which hinders their deployment in practice.

In §3, we show that our defense is agnostic to how we train a model, including how we initialize a
model’s parameters. We leverage this property and minimize the utility loss by initializing model
parameters in specific ways before we train the model on the denoised data. We test two scenarios: a
defender can use in-domain data or out-of-domain data to pre-train a model and use its parameters to
initialize. We evaluate them against the three most effective attacks shown in Table 1.

Table 3: Improving the utility of defended models. We
show the accuracy of defended models and the attack success
after employing our two strategies. The top three rows are
the baselines from Table 1 and 2, and the next two sets of
three rows are our results. We highlight the cells showing
the accuracy improvements in bold. ResNet18 models are
used. BP, WB, and SA indicate Bullseye Polytope, Witches’
Brew, and Sleeper Agent, respectively.

Our defense against `∞ attacks at σ (%)

Att. Initialization †0.0 0.1 0.25 0.5 1.0

BP N/A
(Baseline)

(93.5)100 (93.3)0.0 (92.7)0.0 (90.8)1.0 (87.6)0.0
WB (92.3)65.0 (86.5)9.0 (71.9)3.0 (46.0)9.0 (41.3)7.0
SA (92.4)34.0 (86.2)18.5 (73.0)7.9 (47.2)8.2 (40.1)11.5

BP In-domain
(CIFAR10)

(93.5)100 (93.3)0.0 (92.6)1.0 (90.9)1.0 (87.7)2.0
WB (92.3)65.0 (86.5)9.0 (72.7)5.0 (47.2)7.0 (38.6)8.0
SA (92.4)34.0 (86.2)18.1 (73.4)8.5 (47.8)9.9 (36.9)11.2

BP †Out-of-domain
(ImageNet-21k)

(85.2)4.0 (71.1)7.0 (66.4)5.0 (58.6)5.0 (48.7)6.0
WB (86.6)14.0 (84.1)4.0 (79.0)0.0 (67.7)5.0 (54.0)6.0
SA (92.3)35.0 (86.1)18.0 (72.9)8.5 (47.6)10.0 (37.4)10.0
†ResNet18 in Torchvision library; only the latent space dimension differs.

Initializing a model using in-
domain data. Our strategy here is an
adaptation of warm-starting (Ash &
Adams, 2020). We first train a model
from scratch on the tampered training
data for a few epochs to achieve
high accuracy. It only needs 5–10
epochs in CIFAR10. We then apply
our defense and continue training the
model on the denoised training set.

Table 3 summarizes our results. The
middle three rows are the results of
leveraging the in-domain data. We
train the ResNet18 models on the
tampered training set for 10 epochs
and continue training on the denoised
training data for the rest 30 epochs.
Our first strategy (warm-starting) in-
creases the accuracy of the defended
models while defeating clean-label

poisoning attacks. Under strong defense guarantees σ>0.1, the models have 0.5–2.2% increased
1The success rate of typical backdoor attacks is ∼90%; thus, the success below 19% means they are ineffective.
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accuracy, compared to the baseline, while keeping the attack success ∼10%. In σ = 0.1, we achieve
the same accuracy and defense successes. Our strategy can be potentially useful when a defender
needs a stronger guarantee, such as against stronger clean-label poisoning future work will develop.

Using models pre-trained on out-of-domain data. Now, instead of running warm-starting on our
end, we can also leverage “warm" models available from the legitimate repositories. To evaluate,
we take the ResNet18 model pre-trained on ImageNet-21k. We use this pre-trained model in two
practical ways. We take the model as-is and train it on the denoised training data. In the second
approach, we combine the first approach with the previous idea. We train the model on the tampered
training data for a few epochs and then train this fine-tuned model on the denoised data.

The bottom three rows of Table 3 are the results of using the warm model. We fine-tune the ResNet18
for 40 epochs on the denoised training data. In many cases, our second strategy can improve the
accuracy of the defended models trained with strong defense guarantees (σ> 0.1). These models
achieve 6.5–13.2% greater accuracy than the results shown in Table 2 and 1. In σ= 1.0, the final
accuracy of defended models has a negligible difference from the baseline. We are the first work to
offer practical strategies to manage the utility-security trade-off in certified defense.

4.3 COMPARISON TO EXISTING POISONING DEFENSES

We finally examine how our defense works better/worse than existing defenses. We compare ours with
five defenses: k-NN (Peri et al., 2020), DP-SGD (Ma et al., 2019; Hong et al., 2020), AT (Geiping
et al., 2021a), FrieNDs (Liu et al., 2022), and ROE (Rezaei et al., 2023). The ROE is a certified
defense, and the other four are non-certified ones. We use `∞-norm of 16 in CIFAR10.

Table 4: Comparison of ours to Deep kNN.

Poisoning attacks TP FP Trained Ours (σ=0.1)

Witches’ Brew 31 464 (86.3) 3.0 (86.5)9.0
Bullseye Polytope 431 63 (93.7)25.0 (93.3)0.0

Deep kNN removes poisons from the training
data by leveraging the k-nearest-neighbor (kNN)
algorithm. They run kNN on the latent represen-
tations of the training data to identify potentially
malicious samples (i.e., samples with labels dif-
ferent from the nearest ones) and remove them.

We compare Deep kNN’s effectiveness to our defense. We use the defense configurations that bring
the best results in the original study, i.e., setting k to 500. Table 5 shows our results. Deep kNN fails
to remove most poisoning samples (but it removes many benign samples!).

Table 5: Comparison of ours to training-time defenses.

Heuristic defense Certified defense
Poisoning attacks DP-SGD AT FrieNDs ROE Ours

Bullseye Polytope (93.9)7.0 (90.3)96.0 (90.2)10.0 ∗N/A (93.5) 0.0
Witches’ Brew (76.0)4.0 (66.5) 2.0 (87.6) 8.0 (70.2)10.0 (86.5) 9.0
Sleeper Agent (74.8)5.0 (69.0) 6.0 (87.4) 14.0 (68.6)12.0 (86.0)17.0
∗ROE is incompatible with BP as ROE needs to train 250 models from scratch.

DP-SGD. Ma et al. (2019) proposed a
certified defense against poisoning at-
tacks that leverage differential privacy
(DP). DP makes a model less sensitive
to a single-sample modification to the
training data. But the defense offers
a weak guarantee in practice; for ex-
ample, the certificate is only valid in
CIFAR10, when an adversary tampers one training sample. (Hong et al., 2020) later empirically
shows that DP is still somewhat effective against poisoning. We compare our defense to the training
with (1.0, 0.05)-DP, follow the prior work (Lecuyer et al., 2019). We use Opacus2 to train models
with DP and keep all the other configurations the same. In Table 5, both defenses significantly reduce
the attack success to 0–16%. Our defense achieves at most 10% higher accuracy than DP. DP reduces
the attack success slightly more against clean-label backdooring.

AT. Geiping et al. (2021a) adapts the adversarial training (AT) for defeating clean-label poisoning: in
each mini-batch, instead of crafting adversarial examples, they synthesize poisoning samples and have
a model to make correct classifications on them. While effective, the model could overfit a specific
poisoning attack used in the adapted AT, leaving the model vulnerable to unseen poisoning attacks.
We thus compare our defense with the original AT with the PGD-7 bounded to ε of 4,assuming that
clean-label poisons are already adversarial examples. AT thus may not add more perturbations to
them during training. Table 5 shows that our defense achieves higher accuracy than the robust models
while making the attcaks ineffective. Interestingly, AT cannot defeat the BP attacks.

2https://opacus.ai
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FrieNDs. Liu et al. (2022) advances the idea of training robust models. Instead of adding random
Gaussian noise to the data during training, they use “friendly" noise, pre-computed by a defender, that
minimizes the accuracy loss to a model they will train. When their defense is in action, they train a
model on the tampered training data with two types of noise: the friendly noise computed before and
a weak random noise sampled uniformly within a bound. Ours and FrieNDs greatly reduce the attack
success while preserving the model’s utility. The critical difference is that ours is a certified defense,
while FrieNDs is not. A future work we leave is developing adaptive attacks against FrieNDs.

ROE. Certified defenses (Steinhardt et al., 2017; Ma et al., 2019; Diakonikolas et al., 2019; Levine &
Feizi, 2020; Gao et al., 2021; Zhang et al., 2022; Wang et al., 2022; Rezaei et al., 2023) are; however,
most of these defenses showed their effectiveness in limited scenarios, such as in MINST-17 (Zhang
et al., 2022), a subset of MNIST containing only the samples of the digits 1 and 7. In consequence,
they aren’t compatible with our clean-label poisoning settings. A recent defense by Rezaei et al.
(2023) demonstrates the certified robustness in practical settings; we thus compare our defense to
their run-off-election (ROE). In Table 5, we empirically show that our defense is comparable to ROE
while we preserve the model accuracy more.

Note on the computational efficiency. Most training-time defenses require additional mechanisms
we need to “add" to the training algorithm. AT needs to craft adversarial examples or clean-label
poisons (Geiping et al., 2021a). DP-SGD introduces noise into the gradients during training. FrieNDs
pre-computes friendly noise and then optimally applies the noise during the training, and ROE
requires training of 250 base classifiers to achieve the improved certificates. In contrast, our defense
only requires to run forward once with an off-the-shelf diffusion model.

5 DISCUSSION

Our work offers a new perspective on the cat-and-mouse game played in clean-label poisoning.

Initial claims from the cat: Clean label poisoning attacks, with human-imperceptible perturbations
that keeping the original labels, are an attractive option to inject malicious behaviors into models.
Even if a victim carefully curates the training data, they remain effective by evading filtering defenses
that rely on statistical signatures distinguishing clean samples from poisons (Nelson et al., 2008a;
Suciu et al., 2018; Peri et al., 2020).

The mouse’s counterarguments: Yet, as seen in research on the adversarial robustness, such small
perturbations can be brittle (Carlini et al., 2022): by adding a large quantity of noise and then
denoising the images, the adversarial perturbations become nearly removed—and so clean-label
perturbations are also removed. In prior work (and in this work as well), we leverage this observation
and propose both certified and non-certified heuristic defenses.

Additional arguments from the cat: A counterargument from the clean-label attack’s side was that
those defenses inevitably compromise a model’s performance—a fact corroborated by the prior work
on the adversarial robustness (Tsipras et al., 2018; Zhang et al., 2019). Similarly, defenses could
greatly reduce the poisoning attack success, but at the same time, they decrease the accuracy of
defended models, often tipping the scales in favor of the adversary. If a defense yields a CIFAR-10
model with 60–70% utility, what is the point of having such models in practice? Indeed, our own
certified models require degraded utility to achieve certified predictions. Other defenses, e.g., DP-
SGD (Ma et al., 2019; Hong et al., 2020), are computationally demanding, increasing the training
time an order of magnitude.

Our work shows that this cat-and-mouse game need not be as pessimistic as the cat portrays.

By leveraging an off-the-shelf DDPMs (Ho et al., 2020; Nichol & Dhariwal, 2021), we can purify
the training data, possibly containing malicious samples, offline and render six clean-label attacks
ineffective. With a weak provable guarantee against the training data contamination (`∞-norm of 2),
the majority of attacks reach to 0% success. A few recent attacks exhibit 0–10% success rate—a rate
comparable to random misclassification of test-time inputs.

In contrast to the cat’s counterargument, we can also address the accuracy degradation problem—as
long as we do not need certified robustness. Existing defenses that work to defend against poisoning
require applying a particular training algorithm designed by the defender (Hong et al., 2020; Geiping
et al., 2021a; Liu et al., 2022; Levine & Feizi, 2020; Wang et al., 2022; Zhang et al., 2022). By
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decoupling the training process and the defense, we open a new opportunity to develop training
techniques that can enhance the accuracy of the defended models while keeping the robustness. Our
results propose two effective heuristic algorithms in improving defended models’ utility, especially
when the models are under strong defense guarantees (i.e., ||ε||∞ > 2).
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Reproducibility Statement. To ensure our work is reproducible, we provide descriptions of the
datasets, models, training hyper-parameters, poisoning attacks and defenses both in the main text and
Appendix. Specifically, Sec 4 offers detailed discussion on the poisoning attacks, attack scenarios
evaluation metrics, and methodology. Appendix A provides the implementation details, training
hyperparameters, and poisoning attack configurations. We believe this detailed information will
facilitate the successful replication of our work. We also include the source code in our submission.
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A EXPERIMENTAL SETUP IN DETAIL

We adapt the poisoning benchmark from the prior work (Schwarzschild et al., 2021). Most work
on clean-label poisoning attacks uses this benchmark for showcasing their attack success. The
open-sourced implementation of Sleeper Agent is incompatible with this framework; thus, we run this
attack separately. We implement the attacks to use a comparable `2-norm bound in the poison-crafting
process (see §B). We implemented our benchmarking framework in Python v3.73 and PyTorch v1.134.
We use the exact attack configurations and training hyper-parameters that the original study employs.

In contrast to the original work, we made two major differences. We first increase the perturbations
bounded to ||ε||∞ = 16 as the 8-pixel bound attacks do not result in a high attack success rate.
Defeating 8-pixel bounded attacks is trivial for any poisoning defenses. Second, we do not use their
fine-tuning subset, which only contains 2500 training samples and 25–50 poisons. It (as shown in the
next subsections) leads to 60–70% accuracy on the clean CIFAR10 test-set, significantly lower than
80–90%, which can be trivially obtained with any models and training configurations. If a model
trained on the contaminated training data misclassifies a target, it could be a mistake caused by a
poorly performing model.

We run a comprehensive evaluation. We run 7 attacks; for each attack, we run 100 times of crafting
and training/fine-tuning a model. We also examine 5 different denoising factor σ. In total, we
ran 3500 poisoning attacks. For the most successful three attacks, we run 6 different certified and
non-certified defenses over 100 poisoning runs. The three training-time defenses (DP-SGD, AT,
FrieNDs) require 100 trainings of a model for each, and the certified defense (RoE) requires 100×250
trainings in total. To accommodate this computational overhead, we use two machines, each equipped
with 8 Nvidia GPUs. Crafting a poisoning set takes approximately one hour and training takes 30
minutes on a single GPU.

B TRANSLATING l∞-BOUND INTO l2-BOUND

The certification we offer in Sec 3 is defined in l2-norm, while most poisoning attacks work with
l∞-norm, e.g., of 8 or 16. We therefore convert these l∞-bounds into l2-bounds. We assume the
worst-case perturbation in the l∞-space that changes every pixel location of an image by 16 pixels,
compute the l2-norm of that perturbation as follows, and use it in §4:

• l∞-bound of 8 pixels:
√

3 ∗ 32 ∗ 32 ∗ (8/255)2 = 1.74

• l∞-bound of 16 pixels:
√

3 ∗ 32 ∗ 32 ∗ (16/255)2 = 3.48

Oftentimes, the `2 attacks with the comparable bound 3.48 do not lead to comparable attack suc-
cess. We, therefore, especially for the poisoning attacks in the transfer-learning scenarios, increase
the bound to 6.43. We note that most existing attacks either do not implement `2 bounds or are
unbounded (Shafahi et al., 2018).

C MORE EXPERIMENTAL RESULTS

Here we include additional experimental results.

C.1 USING THE EVALUATION SETUP BY SCHWARZSCHILD ET AL. (2021)

We examine the weaker adversary whose perturbation is bounded to ||δ||∞ = 8. We also employ the
exact setup as the prior work (Schwarzschild et al., 2021), where we craft 25 poisons on a ResNet18
pre-trained on CIFAR-100 and fine-tune the model on a subset of the CIFAR-10 training data. The
subset contains the first 250 images per class (2.5k samples in total).

Table 6 summarizes our results against clean-label poisoning attacks with l∞-norm of 8. We examine
five poisoning attacks in the white-box and black-box scenarios. We focus on the attacks against
transfer-learning as the specific data splits the prior work (Schwarzschild et al., 2021) uses are

3https://www.python.org/
4https://pytorch.org
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Table 6: Diffusion denoising against clean-label poisoning (CIFAR10). We denoise the l∞-norm
of 8 perturbations added by five poisoning attacks by running a single-step stable diffusion on the
entire training set. In each cell, we show the average attack success over 100 runs and the average
accuracy of models trained on the denoised data in the parenthesis. Note that † indicates the runs
with σ=0.0, the same as our baseline that trains models without any denoising.

Our defense against `∞ attacks at σ (%)

Poisoning attacks Scenario †0.0 0.5 1.0 1.5 2.0

Poison Frog! (Shafahi et al., 2018)

W
hi

te
-b

ox

(69.8)13.0 (55.9)8.0 (43.1)4.0 (34.7)9.0 (26.9)11.0
Convex Polytope (Zhu et al., 2019) (69.8)24.0 (53.8)5.0 (42.6)9.0 (35.0)8.0 (27.7)6.0
Bullseye Polytope (Aghakhani et al., 2021) (69.4)100.0 (55.8)10.0 (42.8)8.0 (35.0)9.0 (27.4)9.0
Label-consistent Backdoor (Turner et al., 2019) (69.8)2.0 (55.9)3.0 (42.7)5.0 (34.9)8.0 (27.4)12.0
Hidden Trigger Backdoor (Saha et al., 2020) (69.8)5.0 (55.9)3.0 (42.7)10.0 (35.2)9.0 (27.3)9.0

Poison Frog! (Shafahi et al., 2018)

B
la

ck
-b

ox

(67.9)7.0 (53.8)6.0 (43.3)2.5 (35.3)8.0 (28.8)6.5
Convex Polytope (Zhu et al., 2019) (67.9)4.0 (53.7)3.0 (43.3)3.5 (35.2)3.0 (28.8)8.0
Bullseye Polytope (Aghakhani et al., 2021) (67.7)8.0 (53.8)17.5 (43.2)16.5 (35.3)7.5 (28.6)8.5
Label-consistent Backdoor (Turner et al., 2019) (67.9)3.5 (53.8)2.0 (43.5)4.5 (35.2)2.5 (29.0)8.0
Hidden Trigger Backdoor (Saha et al., 2020) (67.9)7.5 (53.7)2.0 (43.3)7.0 (35.2)10.5 (28.7)8.5

only compatible with them. Poisoning attacks against training from scratch scenarios use the entire
CIFAR10 as ours, so we don’t need to duplicate the experiments. In the white-box setting, we
fine-tune the CIFAR-100 ResNet18 model (that we use for crafting poisons) on the poisoned training
set. In the black-box setting, we fine-tune different models (VGG16 and MobileNetV2 models
pre-trained on CIFAR-100) on the same poisoned training set. We use σ in {0.5, 1.0, 1.5, 2.0} for
our single-step DDPM. σ=0.0 is the same as no defense.

Results. Diffusion denoising significantly reduces the poisoning attack success. The most successful
attack, Bullseye Polytope in the white-box setting, achieves the attack success of 100% in l∞-norm of
8 pixels, but denoising with σ of 0.5 can reduce their success to 10%. Our defense reduces the attack
success of Poison Frog! and Convex Polytope from 13-34% to 2-8% at σ = 0.5. The two backdoor
attacks (label-consistent and hidden trigger) exploiting clean-label poisoning are not successful in the
benchmark setup (their success rate ranges from 2-7.5%). We thus could not quantify our defense’s
effectiveness against these backdoor attacks. Note that Schwarzschild et al. (2021) also showed these
backdoor attacks ineffective, and our finding is consistent with their results. We exclude them from
our Tiny ImageNet results in §C.2.

We also observe that the increased σ (strong denoising) can significantly reduce the utility of a model
trained on the denoised training data. Note that since the setup uses only 2.5k CIFAR10 samples
for fine-tuning, and in consequence, the model’s utility is already ∼70% at most, much lower than
our setup. As we increase the σ from 0.5 to 2.0, the fine-tuned model’s accuracy leads to 56%
to 27%. However, we show that with the small σ, our diffusion denoising can reduce the attack
success significantly. We also show in our evaluation (§4) that we achieve a high model’s utility
while keeping the same σ. We attribute the increased utility to recent model architectures, such as
VisionTransformers, or to pre-training a model on a larger data corpus. We leave further investigation
for future work.

Moreover, in a few cases, the poisoning success increases from 2–7% to 10–13% as we increase σ.
We attribute this increase not to the attack being successful with a high σ but to the poor performance
of a model. For example, the accuracy of a model with σ = 2.0 is ∼27%, meaning that four out of
five targets in a class can be misclassified.

C.2 TINY IMAGENET RESULTS

We also ran our experiments with Tiny ImageNet to examine whether our findings are consistent
across different datasets. We assume the same adversary who can add perturbations bounded to
`∞-norm of 16 pixels. For the three attacks in transfer-learning scenarios, we craft 250 poisoning
samples on a VGG16 pret-trained on the same dataset and fine-tune the model on the tampered
training set. We do not evaluate backdoor attacks because they are either ineffective (label-consistent
and hidden trigger) or the original study did not employ Tiny ImageNet (Sleeper Agent).
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Table 7: Diffusion denoising against clean-label poisoning (Tiny ImageNet). We consider four
attacks with the `∞-norm of 16 perturbation bound. In each cell, the attack success and accuracy of
models trained on the denoised data in the parenthesis on average over 100 runs. Note that † indicates
the runs with σ=0.0, representing no-defense scenario.

Our defense against `∞ attacks at σ (%)

Poisoning attacks Scenario †0.0 0.1 0.25 0.5 1.0

Poison Frog! (Shafahi et al., 2018)

W
B

(58.9)79.0 (56.3)3.0 (53.3)2.0 (46.5)2.0 (32.0)1.0
Convex Polytope (Zhu et al., 2019) (58.9)95.0 (56.3)14.6 - - -
Bullseye Polytope (Aghakhani et al., 2021) (58.8)100.0 (57.4)100.0 - (48.7)0.0 -

Poison Frog! (Shafahi et al., 2018)

B
B

(58.0)5.0 (51.9)0.0 (46.5)0.0 (36.0)1.0 (22.6)1.0
Convex Polytope (Zhu et al., 2019) (58.1)0.0 (51.9)0.0 - - -
Bullseye Polytope (Aghakhani et al., 2021) (57.9)9.0 (59.1)33.3 - (49.8)16.7 -

Results. Table 7 shows our results. Our results are consistent with what we observe in CIFAR10.
Note that the poisoning attacks are more successful against Tiny ImageNet, and we attribute the
success to the learning complexity of Tiny ImageNet over CIFAR10: Tiny ImageNet has 200 classes
and 100k training samples. Prior work (Schwarzschild et al., 2021) had the same observation. Our
defense significantly reduces the attack success. Bullseye Polytope in the white-box setting, achieves
the attack success of 100% without our defense, but denoising with σ of 0.25 reduces their success
to 10–15%. We find the defense reduces the success of Poison Frog! and Convex Polytope from
79–95% to 3–15% at σ = 0.1. We also observe that the increase in σ significantly degrades the
model utility., e.g., σ =1.0 loses the accuracy by 27%.

D (DENOISED) POISONING SAMPLES

Table 8: Visualize poisoning samples. We, for the CIFAR10 training data, display the poisoning
samples crafted by different clean-label poisoning attacks (`∞-norm of 16). We also show how
the perturbations are denoised with difference σ values in {0.1, 0.25, 0.5, 1.0}. σ = 0.1 yields to
ineffective poisons. σ = 0.0 means we do not denoise the poisons.

FC CP BP WB HTBD CLBD SA σ

0.0

0.1

0.25

0.5

1.0
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