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ABSTRACT

Accurate prediction of trajectories for multiple interacting agents following un-
known dynamics is crucial in many real-world critical physical and social systems
where a group of agents interact with each other, leading to intricate behavior pat-
terns at both the individual and system levels. In many scenarios, trajectory pre-
dictions must be performed under partial observations i.e., only a subset of agents
are known and observable. Consequently, we can only observe the trajectories of a
subset of agents with a sampled interaction graph from a larger topological system
while the behaviors of the unobserved agents and their interactions with the ob-
served agents are not known. In this work, we propose STAGE Net, a sequential
spatiotemporal attention-based generative model to learn system dynamics with
multiple interacting agents where some agents are completely unobserved (hid-
den) all the time. Our network utilizes the spatiotemporal attention mechanism
with neural inter-node messaging to capture high-level behavioral semantics of
the multi-agent system. Our analytical results motivate STAGE Net design using
spatiotemporal graph with time anchors to effectively model complex multi-agent
interactions with unobserved agents and no prior information about interaction
graph topology. We evaluate our method on multiagent simulations with spring
and charged dynamics and two real-world trajectory datasets. Empirical results
illustrate that our method outperforms existing multiagent interaction modeling
networks in predicting trajectories of complex multiagent interactions even in the
presence of a large number of unobserved agents.

1 INTRODUCTION

Understanding the unknown underlying dynamics governing a group of co-evolving agents and how
they influence each other’s behavior is a crucial task across various domains, including robotics
(Mavrogiannis & Knepper|(2020), Saha et al.| (2020)), Abbeel & Ng| (2004)), social networks (Alahi
et al.| (2016al), [Luber et al|(2010)), and transportation networks (Jahangiri & Rakhal (2015)), 'Woj-
tusiak et al.| (2012), Yu et al.| (2015)). It poses a challenge to uncover hidden relations and predict
dynamics based on observed trajectories, which is vital for downstream decision-making. An im-
portant task in discovering and understanding multi-agent dynamics is predicting the trajectory of all
agents over time (trajectory prediction). Deep learning techniques such as latent interaction graphs
(Kipf et al.| (2018)), |Alet et al.| (2019)), attention-based methods for graphs (Vemula et al.| (2017,
Hoshen| (2017), [Kosaraju et al.| (2019)), Huang et al.|(2021)), recurrent neural networks (Rubanova
et al. (2019b), Zhan et al|(2019)), and neural message passing (Santoro et al.| (2017a), |Li et al.
(2020)) have been developed to predict emergent behavioral patterns in multi-agent systems. With
no explicit information about the underlying interaction dynamics, these models formulate the prob-
lem in the form of graph structures, with nodes representing the agents and edges expressing the in-
teraction. These models learn the evolution dynamics of nodes or edge attributes in a self-supervised
fashion.

These methodologies assume that the dynamical systems are fully observable, i.e the number of
agents in the system is known and the trajectories can be sparsely (Zhu et al|(2021)), Huang et al.
(2020), Marisca et al.|(2022),Sun et al.[(2019)) or continuously sampled (Alahi et al.|(2016b)), [Ban-
1jamali| (2022)), |Graber & Schwing| (2020), Kipf et al.[(2018))) However, many applications deal with
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unobservable agents due to inherent restrictions in sensing and observation capabilities. For exam-
ple, in a swarm robotics system, the observable agents might only be the designated leaders, while
the others are unobservable due to the lack or malfunctioning of sensors. Alternatively, the external
vision sensors used for decision-making might only be capable of perceiving a subset of agents in
the system, thus providing a constrained view of the entire system’s behavior. Additionally, there
might be situations where the presence of additional, hidden agents is unknown, complicating the
observation challenge further. A system with such ’hidden agents’ will demonstrate a lower number
of independent degrees of freedom compared to its true intrinsic dimension. Developing deep learn-
ing models that can predict the trajectory of multi-agent systems under the limited observability of
agents continues to be a challenging task.

In this paper, we present StageNet, a machine learning model to predict the trajectory of multi-agent
systems with unknown (hidden) dynamics and in the presence of unknown (hidden) agents. Our
network learns effective spatiotemporal representations conditioned only on observations from vis-
ible agents. We leverage the spatiotemporal attention mechanism with neural inter-node messaging
to capture high-level behavioral semantics of the multiagent system. Our contributions to this paper
are summarized as:

* We develop a multi-agent behavior modeling framework designed for trajectory forecast-
ing. This framework utilizes a dynamic spatiotemporal graph attention mechanism, specif-
ically tailored for systems where only a subset of agents is observable at any given time.

* We introduce a dynamic spatiotemporal graph to model structural information across time
using observations from visible nodes to recover knowledge representations missing due to
unobserved agents

* We employ a graph neural network applied to a spatiotemporal graph to approximate the
initial latent posterior distribution. This approach aids in learning representations con-
ducive to the long-term prediction of partially observable systems.

We provide analytical motivation that constructing a spatiotemporal graph from visible nodes in
a multi-agent system yields a superior representation of the entire system, subsequently enhanc-
ing the performance of visible agent trajectory prediction. Empirically, we demonstrate that our
STAGE-Net is capable of learning meaningful representations for multi-agent systems, utilizing
four datasets: one with agents exhibiting spring dynamics, another with charged dynamics, a real-
world dataset of motion trajectories of joints experiencing sensor failures and a dataset capturing
the movement patterns of basketball players. Our model offers improved long-term prediction even
when a substantial number of agents are unobservable in these diverse scenarios.

2  SPATIAL-TEMPORAL ATTENTION MODEL

2.1 PROBLEM DESCRIPTION

We consider a multi-agent system with M homogeneous and heterogeneous agents out of which
only N agents could be observed (Observable Agents) at any time and the rest (M — N) agents are
unobserved (Hidden Agents). The number of agents could vary depending on the system and we
assume that we do not know the total number of agents and hidden agents present in the system.
We could only observe the spatial-temporal state sequences of the observable agents. We model
the observable agents as a graph G = (O, R) where nodes O = {01, 09, 03,...0n5} represents
the observed agents with R = {(i, j)} representing the interactions among them. We model the
interactions among the agents as graph edges. These functional interactions among agents could be
inferred from the physical proximity of the agents or the structure of the system they are placed in.
We model the interactions R = {(i, )} as a weighted adjacency matrix A € RV*¥ with a; ; > 0
representing an edge going from ‘" node to the j** with interaction strength given by the value of
a; j. For each agent, we denote spatio-temporal sequences as o; = {ol} where t € {t1,t2,....t1}
and o} € RP denote the spatial feature of object i at time ¢. The observation sequences are only
available for the observed agents and we have no contextual or state information about the hidden
agents. For this work, we assume that observations are temporally aligned and sampled at uniform

intervals. We denote the the set of historical state sequence as X = o}:T’L ,4=1,..., N and we aim
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Figure 1: Firstly, the encoder computes the initial latent states for edges and nodes based on the
observed sequence of agent observations and adjacency matrix sequence. This computation occurs
in two steps: Step 1 involves attention-based representation learning over the dynamic spatiotem-
poral graph. Step 2 focuses on sequence attention, to learn posterior over the initial latent state.
Afterward, the neural ODE framework propagates the latent state through time, and subsequently,
the decoder generates predicted observations for the agents. (Best viewed in color)

to [ [2) ti tn

Generative Model and Decoder

to estimate p( X Tr+1:Tnts | X1 Th  RUTh) to forecast agent trajectories given historical observations
up to t = T}, where T' = T}, + Ty and T’y denotes the forecasting horizon.

2.2 MODEL OVERVIEW

Our method STAGE Net: Spatial-Temporal Graph Attention Network is designed to learn representa-
tions from spatiotemporal observations of multi-agent systems with interaction graphs sampled from
a larger unknown topological system. The STAGE learns a parameterized embedding latent space
by aggregating temporal representations from all the available multiagent observations weighted by
node-dependent attention coefficients. The overall framework is depicted in Figure[T]and it consists
of three parts that are trained jointly. (1) An encoder module that maps the observations to latent
initial conditions for all the nodes, while taking into account the interactions among entities. (2)
A generative neural-ode model characterized by ODE function for latent states for nodes with the
goal of learning the latent space dynamics of the system. (3) A decoder that generates the node
predictions for the visible agents conditioned on the latent state.

2.2.1 DYNAMIC SPATIOTEMPORAL GRAPH WITH TEMPORAL ANCHORS

The core component of STAGE is the dynamics temporal graph to learn and propagate the structural
temporal information from observed observations from the sub-graph. Rather than developing an
encoder to distill temporal features from the original subgraph (Watters et al.| (2017)), our approach
constructs a temporal graph derived directly from the agents’ observations. A temporal node is
instantiated for every i*" agent whenever an observation is made at time ¢, and we define a temporal
relation, denoted by » € R{(i,j)}, between agents. Every node in the graph is characterized by
a unique feature vector, denoted as 0; ; = [azi,t, UM], which is concatenation of the agent’s spatial
location (; ;) and velocity (v; ;) for the i*" agent at time ¢. Each node is then assigned with time
anchors a; defined as a; = t; — to,; where ¢; represents the node’s observation time and ¢y ; is
the is the time at which the observation started. This calculated temporal position encapsulates the
chronological information, allowing for the nuanced depiction of temporal relationships within the
graph. The depiction of temporal relationships is further refined through the construction of edges,
based on an edge matrix where each element represents the temporal disparity between two nodes,
1 and j, formalized as r;; = a; — a;. The existence of an edge and its attributes are contingent upon
this time difference, with an edge being formulated and assigned the value of the time difference if
it is within a predefined threshold, the maximum allowable gap. Subsequently, we will denote this
temporal graph as G.
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Figure 2: TIllustration of the spatiotemporal attention layer in action: On the left side, there’s a
spatiotemporal graph with each node having an associated time series. In the center(b), you can
observe how this layer functions to update the target representation. Finally, the module is passed
through the self-attention layer to get the initial latent distribution.

2.2.2 TEMPORAL GRAPH HIERARCHICAL ATTENTION

Next, to learn representations for each i*" node in the spatiotemporal graph G, we leverage graph
attention-based neural message passing to propagate information. The goal of this attention network
is to learn aggregated representations from the observations X7, of i*" muti-agent and observation

set its neighbors le:Th where j € N (). We donote the learned representation of i*” node in graph

at ['" layer as hig’(l). We initialize the representation encoding with temporal positional encoding g
as:

hZ(O) = 0(Winit[0i1|| Atstar]) + 4" (Dtstart) %

o(.) is a nonlinear activation function and || is a concatenation operation for tensors. This process
is depicted in the left sketch of Figure [2] where this initialization process is shown for a sample
graph with three visible nodes. We then update the initialized representations by spatial-temporal
attention operations [Huang et al.|(2021) for each node using graph neural message passing. Similar
to|Vaswani et al.|(2017)), we define query as the token for which we need a new representation, a key
as a feature for the source token, and the value as the representation or message of the token to be
passed. The interaction representation message Message € R from the s*" source node to the

T—S

r*" receiver node is computed as:
Message' ! = Wvﬁg(lfl), EZ’(FI) = o(W; [hfj’(lfl)HAtsm]) + ¢' (Atgart) (2)

Here, W, and W, are linear transformation weight matrices. Next, we find the attention scores for
the messages:

_ A (1= r(l— 1
Attni_}s = softmax{(Wkeyhg’(l 1))T(uneryhg’(l 1)) . ﬁ} 3)

Then, all the temporal messages are aggregated to update the node-level context features:

h;’(l) = hg(lfl) + Z (Attn! ! - Message! "] ) @)
sEN,.

This is shown in Figure , where the graph convolution network is used to update the (I — 1)**
layer’s representations.

2.2.3 TEMPORAL CONTEXT FEATURE ATTENTION

To embed the above-learned representation to the stochastic latent state, we learn a posterior distri-
bution for each latent state’s starting point defined by z¥. The stochastic latent state is designed to
learn the distribution of potential configurations for the visible and hidden agents in the system. In
our constructed spatiotemporal graph with time-induced edges, we have O(K N) nodes where K
is the average number of observations for an agent and /N is the total number of observed agents.
We use a self-attention layer to encode the K observation representations into a single posterior
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Figure 3: Visualizations depicting predictive trajectories for spring systems involving varying de-
grees of hidden agents. In the top row, a system with 10 agents and 50% hidden agents is shown,
while the bottom row displays a system with 20 agents and 75% hidden agents. Dotted lines repre-
sent predicted trajectories, while solid lines represent observed trajectories.

distribution vector for each agent.

ui = 3 Attn(RSL Rt REL AT - ji )
t

here iALzGl is the output of the last graph convolutional layer with temporal encoding followed by
nonlinear activation operation similar to[2] The posterior distribution of the initial latent state is then
given by:
t
1, o = faw(ui), qa(2°|X<r,,G°) = N(u2,ol0) (6)

2.2.4 NEURAL ODE FOR GENERATIVE MODELLING

We model the state evolution of the latent states with a series of ordinary differential equations to
drive the latent state forward in time.

t
st = %

¢ dt
where the goqe is modeled as a learnable graph convolutional network and models the nonlinear
interactions among the agents. An MLP decoder is then employed to reconstruct the trajectory from
the latent states.

= Gode (2}, 25, ....2), z?, le = ODESolver(gode, [z?, ..z?\,], (to,.-tT)) @)

2.2.5 LoOSS FUNCTION AND TRAINING

The encoder, decoder, and generative model are trained together by maximizing the evidence lower
bound (ELBO), as illustrated below where the first term is the prediction loss for visible nodes, and
the second term is the KL divergence.

ELBO(9, ) = Ezong, (20x)[10g o (X)] — KLgs (2°]X)[|p(2°)] ®)

2.2.6 ANALYTICAL MOTIVATION

Let G(V (t), E(t)) be the graph with nodes V' (¢) and edges E(t) at time ¢. Let G’ be a subgraph of
G with observed nodes x1(t), z2(¢), . .., xn(¢). The temporal graph 7" can be defined as a multiset
of the states of graph G at different time points, represented as: 7" = {G'(t1), G' (t2), ..., G (t,)}
where each G'(t;) is a member of the multiset representing the state of graph G’ at time ¢;, and
additional temporal edges are added between nodes in G’ (¢;) and G’ (t;41) foralli = 1,2,...,r—1
to represent the temporal connections between the different states of graph G’. Here, a multiset is a
generalized notion of a set that allows multiple instances of its elements. We first state the following
two theorems:
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Figure 4: MSE Error values vs time for spring systems with 50% and 75% unobservable agents.

Theorem 1: The Fisher information of the embedding of the multiset X; is greater than the Fisher

information of the embedding of each individual element x;(t) (For proof refer to| Supp. Theorem
U]

Theorem 2: Given the reduced temporal graph T' , the corresponding reduced spatial graph G’,
and the static spatial graph G, if the Fisher information of the embedding of T’ exceeds the Fisher
information of the embedding of G', i.e., I(T") > I(G') then it follows that the covariance of the
reduced temporal graph, Cov(T"), is less than the covariance of the reduced spatial graph, Cov(G'),
represented as: Cov(T") < Cov(G') (For proof refer to| Supp. Theorem 2))

Based on the above two theorems, we can deduce that if Cov(7”) and Cov(G’) are the estimators
of parameters 6 of the full spatial graph Cov(G) then: Cov(T”) < Cov(G’) i.e. the covariate
of the temporal graph Cov(7”) is a better estimator of the complete graph Cov(G) than Cov(G’).
Hence, constructing a temporal graph from the spatial graph of visible nodes in a multi-agent system
where some nodes are unobservable all the time yields a superior representation of the entire system
compared to the reduced spatial graph, subsequently enhancing the performance of visible agent
trajectory prediction.

3 EMPIRICAL EVALUATION

In this section, we evaluate our framework Stage Net on two synthetic datasets and two real-world
dataset and compare the performance against state-of-the-art methods for trajectory prediction in
multi-agent settings. Note that these SOTA methods were all designed assuming all agents are always
observed. In subsequent experiments, we address the unobserved agent problem in highly coupled
agent settings and assess how prediction performance changes as the percentage of unobserved
agents increases.

Datasets We validate the effectiveness of our proposed approach by conducting experiments on four
distinct datasets: datasets involving agents connected by springs and charged particles
(2018)), the CMU motion capture dataset and the basketball dataset (2014)). The
first two datasets are simulated, where each sample consists of N particles interacting within a 2D
box without any external forces. To introduce hidden agents in the simulation, we randomly conceal
M agents out of the total N agents in the system after completing all the simulations. As for the
motion capture dataset, we specifically select walking sequences from the CMU motion capture
dataset. Each sample in this dataset comprises 31 trajectories, where each trajectory corresponds to
a single joint of the subject. Similar to the simulated dataset, during both the training and testing
phases, we randomly hide joints for the subject. On the other hand, the basketball dataset contains
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Table 1: Accuracy Metrics (x1072) for 30*" step in predicting trajectories for simulations with
spring interactions.

Total Agents Springs 10 Springs 20 Springs 30
Unobserved Agents 20% 30% 40% 50% 60% 75% 80% 83.33%

Single RNN 320£1.83 3.88+£233 3.85+237 451+£271 433+2797 4814349 3.61+268 3.60+2.68
FC Graph 62+200 591+201 597+212 5.01+£223 4.01+206 275+1.26 264+141 255+126
JointRNN 123+096 1.62+120 1.77+128 2.10+150 233+1.73 238+£130 246+1.67 231+148
D-NRI 1494+075 185+091 234+133 249+185 230£138 277+1.64 197+128 2.06+136

STAGE Net (ours) 0.20 £0.16 0.62 +0.23 0.65+0.32 0.78+0.39 0.96+0.58 091 +047 0.96+0.59 097 +0.51

Table 2: Accuracy Metrics (x1072) for 30" step in predicting trajectories for simulations with
charged interactions.

Total Agents Charged 10 Charged 20 Charged 30
Unobserved Agents 20% 30% 40% 50% 60% 75% 80% 83.33%

Single RNN 0.54+048 0.53+049 0.77+054 0.78+0.63 083+0.69 0.78+0.54 088+0.65 1.14+0.73
FC Graph 1.17+0.52 1.01£049 121+0.60 091+£076 1494076 1.65+0.72 1.71+085 233+1.14
JointRNN 0.59+059 0.60+0.64 0.79+0.69 0.78+0.75 0.84+082 088+071 1.03+082 128+1.03
D-NRI 0.78 +£0.49 0.61£049 082+051 0.83+0.60 0.75+0.62 1.00+0.66 1.11+085 1.34+0.93

STAGE Net (ours) 043 +0.42 047 +048 0.59 £0.69 0.58+0.65 059+07 072+05 0.74+0.72 0.94 + 0.68

trajectories of five agents out of 10 agents with 50% observability preprocessed into 49 frame data.
Additional details about experiment setup and datasets are provided in the appendix [A]

Baselines We compare our network STAGE with the following baselines. Since we do not have any
existing prior work on this work, we consider state-of-the-art models where a full agent topological
graph is known for learning continuous system dynamics. We evaluate against two recurrent neural
network (RNN) baselines, Single RNN and Joint RNN, which utilize shared-weight LSTMs for each
object and a concatenated LSTM for all objects’ states prediction, respectively. We also implement
Fully Convolutional Graph Messaging, using a message-passing network decoder similar to (Watters
et al.|/(2017)) over a fully connected graph of visible agents. Furthermore, we consider DNRI (Graber
& Schwing| (2020)), which combines graph neural networks and variational inference, introducing
a latent variable model that captures temporal evolution through an RNN component.

Experimental Settings We conducted a series of experiments where different proportions of agents
were unobservable. In these experiments, we observed the particles’ behavior over a specified time
interval, denoted as [to, ¢1,], and expected our model to autonomously learn the dynamics of their
interactions. Subsequently, the model was tasked with predicting the trajectories of the particles for
the time interval [t51, tx]. We utilized a GNN featuring a latent dimension of 64 and incorporated
two layers in the temporal graph hierarchical attention module. The temporal context feature atten-
tion module was set with an dimension of 128. For solving ODE, we employed the Runge-Kutta
solver and we employed a one-layer graph network with a hidden node representation dimension of
128 for the ODE function. For all our simulated datasets and motion dataset experiments, we set the
values of ¢;, and ¢ to be 30 and 60, respectively while for the basketball dataset ¢ is set to 49. To
evaluate the accuracy of our predicted trajectories, we employed the mean squared error (MSE) as
the chosen metric.

Results Figure 3] displays the qualitative results predicting the spring system’s behavior, portraying
the model’s efficacy in scenarios with 50% and 75% hidden, unobservable agents. Within the graph,
nodes colored in black symbolize hidden agents, and those in color represent observable ones. Each

Table 3: Accuracy Metrics (x 107~2) in predicting trajectories for Motion Dataset

Unobserved Joints 0 5 10 15 20

MultiBlock RNN (Schmidt|(2019)) 0.17 0.18 0.16 0.18 0.13
FC Graph (Watters et al.|(2017)) 0.14 013 0.19 0.16 0.16

JointRNN(Schmidt|(2019)) 030 034 028 023 0.23
D-NRIGraber & Schwing|(2020) 0.16 0.30 0.17 030 0.20
STAGE Net (ours) 0.11 0.13 0.1 0.10 o0.13
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% Temporal Observability ~STAGE Net DNRI FC Joint RNN  Single RNN
33% 1.40+245 260+1.79 2.67+1.67 1.94+1.51 1.86+1.47
50% 1.36+2.39 235+1.57 2454190 1.62+1.29 1.55+1.26
66% 1.37+£240 2.00£1.33 221+125 1.29+1.03 1.22+1.00
100% 1.32+233 2.069+1.23 1.72+0.93 1.022+7.6 0.98+0.77

Table 4: Accuracy Metrics (x 10~2) for temporal observability for basketball data system with 50%
observable agents

Table 5: Ablation study: MSE error for three STAGE net model variants for different configurations for spring dataset.

Total Agents Spring 5 Spring 10 Spring 20 Spring 30
Unobserved Agents 0% 20% 40% 60% 30% 40% 50% 60% 70% 80% 15% 80% 83.33% 87.33%
SN-all connected 1.2 06 045 049 067 076 093 063 058 0.67 0.58 0.60 0.81 0.59
SN w/o attention 022 048 104 060 060 1.04 0.70 0.84 072 073 0.73 0.75 1.08 1.37
SN w/o temporal Encoding 028 025 034 05 1.28 0.87 038 041 049 0.68 043 045 0.9 0.56
STAGE Net original 021 025 033 043 027 026 031 037 045 057 039 042 0.47 0.54

SN-all connected: StageNet with visible agents fully connected, SN w/o attention: StageNet without attention mechanism, SN w/o temporal
encoding: network with temporal encoding removed, Orignal: network with attention mechanism, temporal encoding and visible graph
linkings

agent’s observed (represented by solid lines) and predicted trajectories (depicted by dashed lines)
are illustrated for both position and velocity. Notably, in the system with 75% unobservable agents,
agent number 4 demonstrates a unique case—it maintains no connections with visible agents and
is exclusively linked to seven hidden ones. Impressively, even in such a challenging scenario, our
model proficiently exploits the spatiotemporal observations of visible agents to predict their trajec-
tories with high accuracy. In Figure fi] a visual representation of the evolution error in dynamics
is depicted for the spring system, projecting 30 steps into the future. This specific illustration fo-
cuses on scenarios with 50% and 75% unobservable agents. The Stage Net model outperforms all
the baseline models in predicting future trajectories while maintaining both low error levels and
minimal variance.

Table [1| and Table [2| present the 30" step mean-squared error for trajectory prediction in both the
spring and charged systems. We conducted experiments on four systems, specifically 5 agents,
10 agents, 20 agents, and 30 agents, respectively. For each system, we gradually hide agents and
trained our framework accordingly. STAGE Net consistently outperforms all the baselines for both
systems, affirming the efficacy of our framework’s design in learning representation. Even when a
large portion of the interaction graph is unobserved, our model exhibits minimal prediction errors in
experiments involving 20 or 30 agents with only 4 or 5 agents visible. Table [3|shows the prediction
results for motion datasets with a different set of joints randomly hidden to train the network. Sim-
ilar to the spring and charged datasets, our network consistently outperforms the baseline models,
demonstrating its superior performance in this context as well. It is noteworthy, however, that in this
dataset, baseline models such as RNN and FC Graph exhibit markedly improved performance com-
pared to their counterparts in the spring and charged datasets. This enhanced performance can be
attributed to the inherent geometric constraints of joints moving in synchronization with the overall
body’s trajectory, facilitating more accurate predictions of each joint’s trajectory. This contrast is ev-
ident when compared to the spring and charged datasets, where an agent’s motion is predominantly
influenced by its neighboring agents, with no overarching constraints guiding the entire system’s
movements. Table ] displays the outcomes of the basketball dataset, where only 50% of the agents
are observable. To introduce temporal sparsity, we apply random sparse sampling to encoder obser-
vations and utilize them for trajectory prediction, following the methodology outlined in [Sun et al.
(2019). Our observations reveal that in scenarios involving concealed agents and limited temporal
observability in the basketball dataset, STAGE Net surpasses the baseline models in performance.

Importance of Temporal Encoding and Attention Our network STAGE Net consists of two main
components: the dynamic spatio-temporal graph and the temporal graph attention. The purpose of
our study is to gain a deeper understanding of each component within these modules. To do this,
we conducted an ablation study where we explored three different variations of the model. In the
first variant, we trained the model without any prior knowledge of the relationships between edges
in the graph. Consequently, we assumed that all visible agents were interlinked, resulting in the
establishment of a fully connected graph during the construction of the temporal graph. StageNet’s
temporal graph attention module itself comprises two essential elements: the attention module and
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the temporal encoding. For the other two variants, we examined models that lacked either attention
or temporal encoding. In these variations, we didn’t incorporate attention to nodes over time, and
we omitted node temporal importance through temporal encoding. We evaluated the performance of
these distinct model configurations by quantifying their mean squared error (MSE) across a spectrum
of scenarios, encompassing varying numbers of both total agents and hidden agents in the context of
spring simulations. Table [3]illustrates the mean squared error (MSE) for different configurations of
total agents and hidden agents for spring simulations. Our original model consistently outperformed
all alternative model variations across the entire spectrum of scenarios we examined.

Influence of Hidden Agent on Visible Agent Predictions

To deepen our understanding of how hidden
agents impact the predictions of visible agent
dynamics, we conduct tests using models on
the spring dataset. We maintain 50% observ-
ability and vary the interactions of the hid-
den agents. For this assessment, we establish
connections among all visible agents, thereby Edges (r) = 1 Edges (r) = 2 Edges (r) =5
forming a fully connected subgraph comprised

solely of visible agents. Subsequently, we in-  Fjgure 5: Illustration of the graph configurations

crementally augment the number of edges be- (o study the influence of hidden agents on visible
tween hidden and visible agents, ranging from  jgent predictions

r = 1tor = 5. Here, a value of r signifies that
each hidden agent in the system is connected to
r visible agents. Notably, there are no intercon-
nections between any two hidden agents. The
illustration of this configuration is provided in

Figure 3]

Figure [6] illustrates the prediction error for the
STAGE Net and baseline models. It is evi-
dent that as the number of connections between
hidden and visible agents increases from 2 to
5, STAGE Net consistently outperforms, main-
taining minimal prediction error and variance.
In contrast, the baseline models exhibit a de-
cline in predictive accuracy as the number of
hidden-visible agent edges increases. Interest-
ingly, when r = 1—signifying that each hidden
agent is connected to only one visible agent, the
observed error is higher compared to scenarios where each hidden agent is connected to two or more
visible agents. This can be attributed to the absence of hidden agents between any two visible agents,
resulting in a betweenness centrality of zero for all visible agent pairs with respect to a hidden agent.
In contrast, for other configurations, at least one hidden agent exists between any pair of visible
agents. This structural difference enables STAGE Net to adeptly uncover hidden influences through
representation learning on spatiotemporal graphs. For additional insights and ablation studies, please
refer to Appendix [B]

Al

Figure 6: MSE error for models as the number
of connections hidden to visible connections are
increased.

4 CONCLUSION

In this work, we have presented a framework for integrating spatiotemporal information from multi-
agent observations with multiple co-evolving and interacting agents unobserved. In order to capture
the underlying hidden representations of the evolution of dynamics, we propose a dynamic temporal
graph to encode the observations to a latent manifold and use a neural ode to propagate the latent
interaction dynamics forward. In the future, we would like to estimate the dynamics and intrinsic
dimensions of the unobservable agents in the system. We would also like to consider large-scale
interacting systems with heterogeneous agents where the interaction relations dynamically evolve
over time. While this paper focuses on prediction tasks, an exciting future direction could involve
controlling multi-agent systems with hidden agents.
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A EXPERIMENTAL SETUP

A.1 PROBLEM STATEMENT

We have systematically classified various multi-agent observation scenarios, as outlined in table[6]
to position our work within the broader research domain. In our paper, we delve into a particularly
challenging scenario, dealing with unobservable agents due to inherent sensing and observation
constraints, leading to a system with fewer independent degrees of freedom than its intrinsic dimen-
sion. This problem, while seemingly specific, represents a critical and complex challenge within the
realm of multi-agent systems. Most prior research in this domain, as summarized in our classifica-
tion, assumes full observability of agents, whether the sampling is sparse or continuous. Our work,
however, tackles a more intricate scenario where some agents are inherently unobservable.

A.2 DATASET
Simulated Datasets: In our particle simulation experiments, we consider N particles, with N taking

values from the set {5,40}, placed within a 2D box. In the springs model, we randomly estab-
lish connections between pairs of particles with a 50% probability and these particles interact via
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Scenario

Description of Problem

References

Complete observability with
known interaction topology

Complete observability with
unknown interaction topology

Irregular sampling of
observations or temporally
sparse data

Only few agents observable
with sparse temporal
sampling and unknown

Multi-agent systems where
all agents are observable at all
times, with a known
interaction topology,
facilitating the modeling
process.

All agents are observable at
all times; however, the
interaction topology is not
predefined and must be
inferred from observational
data.

All agents are observable but
the observation events are
sporadic or irregular, leading
to temporal data sparsity.

Not all agents are observable,
with some never being
observed, coupled with sparse

‘Watters et al.|(2017)

Alahi et al.|(2016b)
Banijamali| (2022)) Graber &
Schwing| (2020) Kipf et al.
(2018) [Alet et al.| (2019) |van
Steenkiste et al.| (2018))
Santoro et al.| (2017b))

Rubanova et al.| (2019a)) [Zhu
et al.|(2021) [Huang et al.
(2020)Marisca et al.| (2022))
Sun et al.[{(2019)

(Ours)

interaction topology temporal data collection.

Table 6: Systematic classification of observation scenarios in multi-agent systems.

Hooke’s law, where the force I;; acting on particle v; due to particle v; follows Hooke’s law:
F,; = —k(r; — r;), with k as the spring constant and r; representing the 2D position vector of par-
ticle v;. We sample initial positions from a Gaussian distribution (N (0, 0.5)), and initial velocities
are assigned as random vectors with a norm of 0.5. Trajectories are simulated by numerically solv-
ing Newton’s equations of motion using a leapfrog integration method similar to |Kipf et al.| (2018])
with a fixed step size of 0.001, and we subsample the trajectories by selecting every 100th step for
training and testing.

In contrast, for the charged particle model, we equip each particle with positive or negative charges,
¢, sampled uniformly from 4q. The interaction between these charged particles is governed by

Coulomb forces, defined as F;; = C - sign(qg; - ¢;) - ‘(:f:,jl)a, where C' is a constant. Unlike the

springs model, all pairs of charged particles interact, potentially resulting in attraction or repulsion,
depending on their relative distances. For each of the simulated datasets, 10,000 training samples
and 2,000 testing samples are generated. To incorporate hidden agents within the simulation, we
randomly select M agents from the system to hide after the completion of all simulations while only
preserving the edges with visible agents.

CMU Motion Capture Dataset: The Carnegie Mellon University (CMU) Motion Capture dataset
(cmu), a comprehensive and widely recognized collection of motion capture data, was utilized in this
study. This dataset embodies a diverse array of human movements, encompassing activities from
walking and running to more intricate motions such as dancing, recorded from various subjects. Our
empirical focus was on Subject 35 and their walking trajectories. The dataset extracted for our study
consists of 8,063 frames, each documenting 31 specific points. All attributes, including position
and velocity, were normalized to have a maximum absolute value of 1. We trained our models
on 30-timestep sequences and subsequently assessed their performance on sequences of equivalent
length.

Basket Ball Dataset: In the basketball dataset, each trajectory provides detailed information about
the 2D positions and velocities of the offensive team, consisting of 5 players. Initially, these trajec-
tories are divided into 49 frames, which collectively capture approximately 8 seconds of gameplay.
During the training phase, all models undergo training using the initial 30 frames extracted from the
training trajectories. When it comes to evaluation, the models are presented with input data com-
prised of sampled trajectories from the first 30 frames, and this sampling strategy is adjusted based
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on temporal sparsity. Specifically, for a temporal sparsity of 10%, we select 27 observations from
the initial 30 observations for each individual player, and subsequently, the models are tasked with
predicting the subsequent 19 frames.

A.3 BASELINES

Recurrent Neural Networks We implement two recurrent baselines: Single RNN and Joint RNN.
The first RNN baseline utilizes separate LSTMs (with shared weights) for each object. The second
baseline, labeled as “joint,” combines all state vectors by concatenation and feeds them into a single
LSTM, which is trained to predict all future states simultaneously.

Fully Convolutional Graph Messaging(Watters et al. (2017)) We implement a message-passing
network decoder similar to|Kipf et al.| (2018]) operating over a fully connected graph of visible agents
with only one edge type.

DNRI(Graber & Schwing|(2020)) DNRI combines the power of graph neural networks and varia-
tional inference to model the interactions and dependencies between entities over time. It introduces
a latent variable model that captures the temporal evolution of the system by incorporating a recur-
rent neural network (RNN) component. It allows for inferring the latent variables that represent the
hidden states and interactions between the entities at different time steps. By using variational infer-
ence, DNRI provides a probabilistic framework that can capture uncertainty and make predictions
about future interactions.

Table[7]presents the hyperparameters used for the evaluation of the baselines across all three datasets.

Table 7: List and description of hyperparameters for baselines

Hyperparameter Value Description

Encoder latent 128 Latent size of encoder.

Decoder latent 128 Latent size of Decoder decoder.

Batch_size 128 The number of samples processed in a single pass.

Ir 5x 10™*  The learning rate for training the model.

Optimizer Adam Model optimization algorithm.

Teacher forcing steps 30 Number of steps for which teacher forcing is applied.
Val teacher forcing steps 30 Whether to apply teacher forcing during validation.
Edge types 2 Number of types of edges in the graph.

Encoder layers 2 Number of layers in the encoder’s MLP.

A.4 ADDITIONAL MODEL DETAILS AND HYPERPARAMETERS

All components of the Stage Net are illustrated in Figure[7] The hyperparameters utilized to assess
Stage Net on all the datasets are listed in Table

Neural ODE for Generative Modelling In systems involving continuous multi-variable dynam-
ics, the state’s dynamic nature is depicted through continuous values of ¢ over a collection of depen-
dent variables, and it progresses according to a sequence of first-order ordinary differential equations
(ODEs):

i
_dz

1.2 N
Zy = o =gi(z;, 20,5 2)
These equations advance the states of the system in tiny steps over time. With the latent initial states
29,28, ..., 2" € RY for every object, 2} is the resolution to an ODE initial-value problem (IVP)

and can be computed at any required times using numerical ODE solvers like Runge-Kutta:

T
i i 12 N
zT—z0+/ 9i(25, 25,y 2p )dt
0

The function g; outlines the dynamics of the latent state, and it has been proposed to be parameter-
ized with a neural network in recent research, allowing for data-driven learning.
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Figure 7: Design framework for encoder and decoder in STAGE Net (Best viewed in color.)

By generalizing to continuous scenarios, where NV; denotes the set of immediate neighbors of object
0;, we reformulate it as:

1 .2

i
G dz; o
— =gz, 25, -,

#= ) =fo | Y. frlz )

JEN;

Here, the || is the concatenation operations, and fo, fr are two neural networks to capture the
interaction of the latent system. The ODE function and the latent initial state z§ will define the
complete trajectories for each object. For the ode solver, we use the fourth-order Runge-Kutta

method based on using the torchdiffeq python package (2018)).

A.5 COMPUTATIONAL COMPLEXITY

In Figure [8] we present the computational complexity of our encoder’s temporal graph. For eval-
uation, a spring system comprising 10 agents was simulated, generating simulations with varying
distributions of visible and hidden agents. We observe the number of edges in the visible graph and
temporal graph. For example, a model trained on data with 7 visible and 3 hidden agents yields an
average of 10.5 edges for the visible agents. In contrast, our encoder’s temporal graph, constructed
over 30 timesteps, encompasses 13,048 edges. As the count of visible agents escalates, there’s a
corresponding increase in the temporal graph’s edges, scaling at O((E + N)T?), where E and N
denote the edges and nodes of the initial interaction graph, excluding hidden agents. This relation-
ship is illustrated in Figure [8a] which plots the average temporal edges against the average visible
edges in the interaction graph. Additionally, Figure [8b] showcases the GFLOPs of the Stage net’s
encoder in relation to the increment in visible agents.
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Hyperparameter Value Description

Scheduler Cosine Schedulerused to adjust the learning rate during training.

Test Data Size 2000 The number of samples in the test dataset.

Observation Std. Dev. 0.01 The standard deviation of the observation noise.

Number of Epochs 100 The number of times the learning algorithm will work through the entire
training dataset.

Learning Rate 5x 10™%  The step size at each iteration while moving toward a minimum of the
loss function.

Batch Size (Simulated) 128 The number of training examples utilized in one iteration.

Random Seed 1991 The seed used by the random number generator.

Dropout Rate 0.2 The probability of setting a neuron to zero during training.

Latent Size 16 The dimensionality of the latent space.

GNN Dimension 64 The dimensionality of the Graph Neural Network.

ODE Func Dimension 128 The dimensionality of the ODE Function.

GNN Layers 2 The number of layers in the Graph Neural Network.

Number of Heads in zy Encoder 1 The number of attention heads in the initial encoder.

ODE Func Layers 1 The number of layers in the ODE Function.

ODE Solver RK4 The method used to solve the Ordinary Differential Equation, Runge-
Kutta of order 4 in this case.

Gradient Norm Clipping 10 The maximum allowed value for the gradient norm, used to prevent
exploding gradients.

Number of Edge Types 2 The number of different types of edges in the graph.

L2 Regularization 1 x 103  The weight decay parameter to prevent overfitting.

Optimizer AdamW  The optimization algorithm used to minimize the loss function.

Table 8: List and description of hyperparameters used in STAGE Net

Average Visible and Temporal Graph Edges vs Number of Visible Agents Encoder GFLOPS vs Number of Visible Agents
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Figure 8: a.) A comparative representation of the average visible edges and average temporal graph
edges against the number of visible agents. b.) Representation of Encoder GFLOPS against the
Number of Visible Agents. Each bar signifies the computational complexity in GFLOPS of the
encoder for the corresponding number of visible agents, highlighting the proportional increase in
computational demand with the increase in visible agents

B ADDITIONAL EMPIRICAL RESULTS

B.1 ANALYZING THE IMPACT OF HIDDEN AGENT INTERACTION STRENGTH ON MODEL
PREDICTION

In this study, we study the influence of hidden agents by modifying the interaction strength amongst
hidden agents in a spring system, with the interaction (coupling) strength systematically adjusted
between 0.5 to 5.0. Concurrently, the interaction strength for visible agents is statically maintained
at 1. For the spring dataset, interaction strength, symbolized as I} ;, is quantified by the equation
F, ; = —k(x; — x;), where k represents the interaction strength between the entities ¢ and j.

The models were trained on a spring dataset with 50% observability consisting of 10,000 samples
for each specified level of coupling and were subsequently evaluated on a separate test dataset,
comprising 2,000 samples.

Fi gure@] shows the 30*"-step prediction error for all the baselines. A prominent observation from our
experimental results is the exceptional and consistent performance of the StageNet model across all
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Figure 9: Mean Squared Error (MSE) values for the models as the interaction (coupling) strength is
increased for the hidden agents.
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degrees of coupling coefficients. StageNet not only exhibited a lower mean prediction error and low
variance compared to the baseline models but also demonstrated remarkable stability, with its error
rate not exhibiting a swift increase with the enhancement in interaction strength for hidden agents.
This contrasts markedly with the other models, which showed a discernible upward error trend with
increasing interaction strength. This empirical evidence underscores the resilience and dependability
of StageNet in scenarios with varied interaction strengths, especially where the influence of hidden
agents is pronounced in the system.

B.2 DECIPHERING TEMPORAL CONTEXT FEATURE ATTENTION MAPS: THE INTERPLAY
BETWEEN HIDDEN AGENTS, INFORMATION DENSITY, AND PREDICTION ACCURACY

0.0 0.0
0 5 10 15 20 25 (I) é 1b 15 20 25
(a) 10 agents with 5 observable (b) 20 agents with 15 observable

0.0 0.0

25 2.5

0 5 10 15 20 25 0 5 10 15 20 25

(c) 30 agents with 25 observable (d) 40 agents with 35 observable

Figure 10: Temporal Context Feature Attention Maps: Visualization of temporal context feature
attention across various configurations each with 50% observability

(a) Observation timesteps = 10 (b) Observation timesteps = 15

|
)

(c) Observation timesteps = 20 (d) Observation timesteps = 30

Figure 11: Temporal Context Feature Attention Maps: Feature attention maps applied to a system
with 10 agents, including 50% unobservable agents, with variations in observation time.
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Figure [T0] visually illustrates temporal context feature attention maps for spring systems, each with
a distinct proportion of hidden agents, ranging from 50% to 87.5%, while maintaining a constant
count of five visible agents. The y-axis represents the index of the agent, and the x-axis plots the
timesteps, with each row in the attention map representing the temporal attention values at different
timesteps.

The attention values are scaled between 0 and 1, with yellow cells indicating a value of 0, and pro-
gressively darker shades of blue signifying attention values nearing 1. A critical observation is that
as the proportion of hidden agents increases, the attention maps become densely populated with
values of 1. This suggests that the network is utilizing every available timestep in the sequence to
refine the precision of its future predictions. This transition to denser attention maps underscores a
pivotal implication: the network, when faced with denser maps, is signaling a potential insufficiency
in the available information. It is indicative of the network’s increasing demand for more compre-
hensive data to optimize its predictive accuracy. Therefore, this density in attention values implies
a heightened necessity to augment the number of timesteps observed. By extending the observa-
tion timesteps, we can cater to the network’s increasing information needs, thereby enhancing the
model’s predictive accuracy and precision.

In essence, the densification of attention values in the maps is a clear indicator of the network’s
struggle with the available information, emphasizing the potential requirement to increase the obser-
vation timesteps to fulfill the network’s information needs and, consequently, improve the accuracy
of predictions.

Figure [TT] provides further insight into this phenomenon by showcasing attention maps of four dis-
tinct models of a system, each consisting of 10 agents, 5 of which are hidden, across varied ob-
servation time periods, extending from 10 to 30 timesteps. A prominent observation from these
maps is the progressive sparsification of the attention maps and a concurrent increase in predictive
accuracy as the number of timesteps is increased. This is depicted in figure [12| where we plot the
average MSE error for systems as their encoder’s observation time is increased. This sparsifica-
tion and enhanced accuracy suggest that the determination of an optimal observation period can be
strategically made, contingent upon the number of hidden agents within the system. This analysis
uncovers a crucial correlation: the higher the proportion of hidden agents in a system, the more
extensive the observation period required to achieve accurate predictions. This denotes that systems
with a greater number of hidden agents demand a more comprehensive observation framework to
accurately capture the intricacies of the system dynamics and produce precise predictions.

In conclusion, the decrease in the density of attention maps and the corresponding enhancement
in accuracy with extended timesteps emphasize the importance of selecting an optimal observation
period, particularly in systems with a significant number of hidden agents. The insights derived
from these attention maps serve as a valuable guide in the strategic selection of observation periods,
facilitating the development of robust models capable of delivering precise predictions in a variety
of scenarios.

B.3 PERFORMANCE OF STAGE NET IN VARIED TOPOLOGICAL CONDITIONS WITH FIXED
NUMBER OF VISIBLE AGENTS

In this experiment, we fix the quantity of visible agents within the system, while the number of
hidden agents is subjected to variation. Figure [I3]graphically represents the efficacy of the model,
which has been trained on a spring system with 10 total agents out of which 5 are hidden agents.
This is evaluated against systems with a diverse range of hidden agents, all the while maintaining
the count of visible agents at 5.

The STAGE models consistently demonstrate superior performance over the baselines, regardless
of the variations in the ratio of hidden to visible agents. This superiority of STAGE models is
indicative of their robustness and adaptability across different scenarios, showcasing their ability to
yield reliable results with different proportions of hidden and visible agents.

19



Under review as a conference paper at ICLR 2024

Performance of StageNet as Observation time is increased
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Figure 12: Prediction accuracy for two spring system with 50% and 75% unobservable agents as the
observation time for encoder is increased

Model Error vs. Number of Agents

Stage Net
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Figure 13: Mean Squared Error (MSE) values (x 10~2) for the model trained on a 10-5 configura-
tion, while altering the total number of agents in the system, while keeping the visible agents fixed
at 5.
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B.4 MODEL ABLATION: IMPACT OF ODE LATENT DIMENSION ON MODEL PREDICTIVE
ACCURACY

For this experiment, we chose the spring system system with 50% unobservability and systematically
varied the latent dimension of the ODE function. Our findings indicate that the optimal performance
is achieved when the ODE latent size is set to 64, and performance deteriorates as the latent size
deviates from this value. This phenomenon can be attributed to the following factors: When the
latent size is kept small (e.g., 16 or 32), the model exhibits underfitting, meaning it struggles to
capture the crucial characteristics and relationships within the multi-agent observations. Conversely,
when the latent size is significantly increased (e.g., 512), it gives rise to the curse of dimensionality.
In high-dimensional spaces, generalization becomes challenging as the model requires an extensive
amount of data to effectively cover the feature space, leading to potentially poorer performance on
the task at hand.

Table 9: Average MSE Error for different ODE latent dimension

Size of ODE Latent  Average MSE Error

16 0.0053
32 0.0041
64 0.0030
128 0.0037
256 0.0034
512 0.0041

B.5 EVALUATION OF STAGENET WITH SENSOR FAILURES FOR VISIBLE AGENTS

In this study, we address scenarios where observations for visible agents are intermittently unavail-
able due to random sensor failures. We consider two types of sensor failures: a) Asynchronous
Sensor Failure, and b) Synchronous Sensor Failure. In the case of Synchronous Sensor Failure,
all sensors for the visible agents fail simultaneously, leading to observations being available only
at certain timesteps. Specifically, we randomly select 20 out of 30 timesteps, and the model re-
ceives observations only for these selected steps. Figure [T4]illustrates the MSE error for a spring
system with 10 agents, varying the percentage of unobservable agents. In contrast, during Asyn-
chronous Sensor Failure, each agent’s sensor fails independently, and we have observations for only
20 timesteps per agent. Figure [T3]displays the MSE error for asynchronous sensor failure across
the model. Compared to other models, StageNet demonstrates significantly lower error rates in both
asynchronous and synchronous sensor failure scenarios.

B.6 ROBUSTNESS OF STAGENET AGAINST NOISY DATA

This study further explores StageNet’s resilience to noisy observations by training the model on
noise-free data and evaluating it under Gaussian noise conditions (mean = 0) with varying standard
deviations (0.001 to 0.1). In our investigation, we normalized the data before introducing noise to
simulate real-world scenarios. We observed the model’s performance in a spring system with 10
agents, particularly focusing on scenarios with different percentages of unobservable agents. Figure
[I6] depicts the Mean Squared Error (MSE) under Gaussian noise with a standard deviation of 0.1,
highlighting StageNet’s robustness even with high noise levels. Additionally, Figure [T7] examines
the MSE in a scenario where 50% of the agents are unobservable across different noise intensities,
further illustrating the model’s substantial resilience to noise. These results underscore StageNet’s
superior performance against noise, especially in comparison to baseline models.
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Figure 14: MSE error for synchronous sensor failure. Observations are randomly sampled for 20
steps out of 30 for all agents and provided to the model for evaluation.
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Figure 15: MSE error for asynchronous sensor failure. Observations are randomly sampled for 20
steps out of 30 for each agent and provided to the model for evaluation.

B.7 EXPLORING SYSTEMS WITH HETEROGENEOUS AGENT CHARACTERISTICS

Our previous analysis primarily addressed systems with homogeneous agents, characterized by uni-
form dynamics across all entities. This section ventures into the realm of heterogeneous agents,
introducing variability in agent dynamics. Specifically, we explore a spring system setup where
each agent, as a heterogeneous entity, possesses distinct and unknown coupling parameters. In
contrast to our earlier homogeneous agent experiments, which operated under a single coupling pa-
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Performance Comparison with Varying Unobservable Percentages
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Figure 16: MSE Performance under Gaussian Noise (SD =0.1) in a Spring System with 10 Agents,
demonstrating StageNet’s effective noise handling capabilities.

rameter setting for all agents, this study delves into varied configurations. We examine three distinct
scenarios:

1. Visible Heterogeneity, Hidden Homogeneity: Only the visible agents exhibit heterogeneity,
while hidden agents maintain homogeneous characteristics.

2. Universal Heterogeneity: Every agent in the system, both visible and hidden, is heteroge-
neous, with their coupling parameters randomly assigned.

3. Hidden Heterogeneity, Visible Homogeneity: This scenario reverses the first, with only
hidden agents being heterogeneous.

Coupling Parameter Configurations: For the heterogeneous agents, we define three coupling param-
eter sets: a.) 3 types of agents: {0, 0.5, 1}, b.) 4 types of agents {0, 0.5, 1, 1.5}, and c.) 5 types of
agents {0, 0.5, 1, 1.5, 2}.

During simulations, each heterogeneous agent’s coupling parameter is randomly selected from these
sets with uniform probability. Table [I0]presents the error metrics for baseline models across differ-
ent heterogeneous agent configurations, particularly when all agents are considered heterogeneous.
We observe that baseline models struggle to capture the intricate dynamics of this setup, resulting
in significantly higher error rates compared to our proposed model. Additional configurations and
their outcomes are depicted in Figure[I8] where similar trends are noted.

Table 10: Performance Metrics for Different Models for Heterogeneous Agents.

Stage Net DNRI FC SingleRNN JointRNN

Number of Mean Std Mean Std Mean Std Mean Std Mean Std
Het. Types

3 0.0104 0.0096 7.12  0.4076 2.28 0.39 292 026 3.55 0.31
4 0.0081 0.0077 7.16 0.38 2.26 0377 291 0.2639 3.53 0.288
5 0.0089 0.0079 7.27 037 228 0.377 2.9 0.2454 3.5 0.27
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Performance Comparison of Different Models with Noise Levels

iiii'ii

Figure 17: MSE Trends for a System with 50% Unobservable Agents across Various Noise Levels,
showcasing the robustness of StageNet in complex, partially observable environments.
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Figure 18: Different configurations of heterogeneous agents in our study

C ANALYTICAL PROOFS

C.1 DEFINITIONS

Multisets and kernels for multisets A multiset is a generalized notion of a set of a set, which
accommodates multiple instances of its elements. We deliberate on multisets of features in R4,
represented as:

X% ={x|x={x1,...,%,}, with each x; € R? for some n > 1}

The cardinality of a multiset symbolized as | - |, is determined by summing the multiplicities of its
elements.

In this context, we assume the existence of a kernel on the space of multisets, represented as Ky :
X% x x4 — Rand its either an exact or an approximate embedding, s : X¢ — RP, such that
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Kms(X;X/) ~ <¢ms(x)a 7vzjms(x/»

Temporal Graph Let G(V (t), E(t)) be the graph with nodes V' (¢) and edges E(t) at time ¢.
Let G’ be a subgraph of G with observed nodes x1(t), z2(t),...,2n(t). The Temporal Graph
T’ can be defined as a multiset of the states of graph G’ at different time points, represented as:
T ={G'(t1),G (t2),...,G (t,)} where each G'(t;) is a member of the multiset representing the
state of graph G’ at time ¢;, and additional temporal edges are added between nodes in G’(¢;) and
G'(ti41) foralli = 1,2,...,r—1 torepresent the temporal connections between the different states
of a graph G'.

In the derivation of all our analytical results, we base our arguments on the subsequent assumptions:

Assumptions:

1. We assume the embedding of each individual node, z;(¢), to conform to a multivariate
Gaussian distribution, parametrized by 6 = {u, X}.

2. The embedding of the multiset, X, is hypothesized to adhere to a Gaussian Mixture Model
(GMM) with K components, described by parameters ¢ = {m, u, 3}. Here, 7 signifies
the mixture weights, u represents the means, and X defines the covariance matrices of the
components.

3. I(0; N) represent the Fisher Information Matrix (FIM) as a function of the parameter 6 and
the number of observed nodes V.

4. The Fisher Information is a differentiable function with respect to the number of observed
nodes.

C.2 ANALYSIS OF FISHER INFORMATION IN MULTISET EMBEDDINGS FOR TEMPORAL
GRAPH

Theorem 1 The Fisher information of the embedding of the multiset X; is greater than the Fisher
information of the embedding of each individual element x;(t) i.e., det(J(¢p) > det(I(6))

Proof: Let the probability density function representing the embedding of node z; at time ¢ be
f(x;(t);0), parameterized by 6. Similarly, let the probability density function representing the
embedding of the multiset X; be g(X;; ¢), parameterized by ¢. Each individual node embedding
x;(t) is assumed to follow a Gaussian distribution:

€))

202

x;(t) — u)?
Fas(t)i,0?) = g exp (((t)ﬂ)>

The multiset embedding X; is assumed to follow a Gaussian Mixture Model with K components:

K
9(Xism, 1, B) =Y mN(Xis e, S) (10)
k=1

If the Fisher information for an individual node is given by 7'(6) and the Fisher information of the
multiset X; is given as J(¢), then:

(d 10gL<J()Q;<b)>2

o Y

2
10)=E [(je g (2:(0:0)) ] = J(¢)=E

Let’s assume that the covariate distribution between any two nodes z;(¢) and x; (t) is Gaussian, with
parameters 6 = {1, afj}, where f1;; is mean and o7, is the variance of the Gaussian distribution
representing the covariate between nodes ¢ and j. Given the Gaussian covariate distribution between
the nodes, the Fisher Information for the covariate distribution between nodes ¢ and j is given by:

012 Cov(u,o?)
10) = | o0 (1, %) e

25



Under review as a conference paper at ICLR 2024

For a Gaussian Mixture Model, the Fisher information matrix J(¢) where ¢ = {, u, X} depends
on the derivatives of the log-likelihood with respect to the parameters. The elements of the Fisher
information matrix are given by the expected second derivatives of the log-likelihood, which can
be computed using the Expectation-Maximization (EM) algorithm. Assume that the embedding of
node z;(t) follows a Gaussian distribution with mean z and variance o2, both parameterized by 6.
The Fisher information, I(6), for this node is derived as follows:

1(0) =E

(jg log f(xi<t>;u,a2>)2] (12)

Assume that the embedding of the multiset X; follows a Gaussian mixture model with K compo-
nents, each with its own mean p and variance O',%, all parameterized by ¢. The Fisher information,
J(¢), for this multiset is derived as follows:

2
J(¢) =E KC; log g(X; { fur, Ui}fl)) 1 (13)

To compare J(¢) and I(f), we need to compare the respective Fisher information matrices.

Since these matrices are of different dimensions, a direct comparison is not straightforward. How-
ever, we can compare the determinant of the Fisher information matrices as a scalar representation
of the information contained in the embeddings. We aim to compare the determinant of the Fisher
Information Matrix for a Gaussian Mixture Model (GMM) with that of a Gaussian distribution. We
will symbolically represent the Fisher Information Matrix for a GMM and derive its determinant to
compare with the determinant of the Fisher Information Matrix for a Gaussian distribution. Let’s
consider a GMM with K components, each with parameters ¢y = {7y, g, 1k}, where 7y, is the
weight, uy is the mean, and X, is the covariance matrix of the k-th component. The log-likelihood
for the GMM is given by:

N K
log L(¢) = ) log (Z WkN(xi;MmZk)) (14)
1=1 k=1

The Fisher Information Matrix, J(¢), for the GMM is a block-diagonal matrix, where each block
corresponds to the Fisher Information Matrix for the parameters of component &, J(¢y). Each
block, J(¢y), can be represented symbolically as:

5)

[ (6 )lmn = E [fML(@}

8¢km8¢kn

Now, considering Gaussian covariance between the components, we need to consider the interaction
between the components of the Gaussian Mixture Model (GMM) and derive the Fisher Information
Matrix accordingly. When the components are not independent, the blocks of the Fisher Information
Matrix are not necessarily diagonal, and the off-diagonal elements represent the covariance between
the components. Let’s denote the covariance between component & and component [ as >;. The
Fisher Information Matrix, J(¢), for the GMM with covariance can be represented as:

@) = | G4

The Fisher Information for the GMM can be expressed as a weighted sum of the Fisher Information
of the individual components:

:|+Zkl

K

Tx, (@) =D mrle, (Ox; Ni)
k=1
where 7y, are the mixture weights, 6, are the parameters for each component, and Ny, is the number
of observations assigned to the k-th component.

Let J(¢) denote the Fisher Information Matrix with covariance, represented as a block matrix:

| J(ew) X
so = [ g ]
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where J(¢r,) and J(¢;) are the Fisher Information Matrices for individual components, and ¥; and
>1; are the covariance matrices between the components.

There can be two cases that arise here.

Case I: Xy, = X;; = 0 Then, the determinant of .J(¢) is strictly greater than the product of the
determinants of the individual Fisher Information Matrices, i.e.,

det(J(¢)) > det(J(¢r)) - det(J (1))

i.e the determinant of the Fisher Information Matrix with covariance for two components is greater
than the determinant of the Fisher Information Matrix when they are independent. Given that the
determinant of the Fisher Information Matrix for the GMM with covariance is greater than the
determinant of the Fisher Information Matrix, it is evident that the multiset embedding X; will
contain more information about the parameters than the individual node embedding x;(¢) when
considering Gaussian covariance between the components. Thus, since the determinant of J(¢) is
greater than the determinant of 7(6), then it can be concluded that the multiset embedding contains
more information about the parameters than the individual node embedding.

Case II: Ekh Elk 75 0

When there is covariance between two Gaussian components in a GMM, the elements in .J(¢) rep-
resenting the covariance between these components would be non-zero, symbolizing the interaction
between the components. To prove the inequality |J(¢)| > |I(6)], let us elaborate that the deter-
minant of the Fisher Information Matrix, |.J(¢)|, for the GMM with covariance, will typically be
greater due to the additional terms representing the interaction between the components along with
the individual components’ information. Let us assume there are KX Gaussian components in the
GMM, each with its mean and variance, and let’s denote the covariance between the i-th and j-th
components as cov(i, j). The determinant of J(¢) would be the sum of the determinants of the indi-
vidual components plus the terms representing the covariance interaction between the components:

K
@)~ DI+ Y conling)

i#j

Since the covariance terms represent additional information not present in a single Gaussian com-
ponent, it would generally contribute to a greater determinant of .J(¢) as compared to |1(9)|:

7 ()] > [1(6)]

Hence, for both cases, we proved that the Fisher information of the embedding of the multiset X; is
greater than the Fisher information of the embedding of each individual element x;(t).

Theorem 2 Given the reduced temporal graph T’ , the corresponding reduced spatial graph G',
and the static spatial graph G, if the Fisher information of the embedding of T' exceeds the Fisher
information of the embedding of G, i.e.,

(T > I1(G")

then it follows that the covariance of the reduced temporal graph, Cov(T"), is less than the covari-
ance of the reduced spatial graph, Cov(G'), represented as:

Cov(T") < Cov(G")

Proof: Let I(7”) and I(G’) denote the Fisher Information in the reduced temporal graph 7" and
the reduced spatial graph G’ respectively, both of which are derived from a complete graph G.
The Fisher Information Matrix for each graph is computed based on the observed nodes and their
relationships within the respective graphs.

From definition, the temporal graph 7’ is the multiset representation of a sequence of spa-
tial graphs G’ at different time points. According to Cramér-Rao Lower Bound (CRLB), i
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X = (X1,Xo,...,X,) be a random vector with probability density function f(x;@), where
0 = (01,0, ...,0%)is a vector of parameters of interest. Let T(X) = (T3 (X), T2(X), ..., Tx(X))
be an unbiased estimator of 0, i.e., E[T(X)] = 6. Then, for any unbiased estimator T'(X), the
covariance matrix of T'(X) satisfies:

Cov(T(X),0) > 1(6) !,

where I(0) is the Fisher Information matrix of the random vector X with respect to the parameter
vector @ Thus, we can conclude that the Fisher information of the embedding of the T” is greater
than the Fisher information on the embedding of each spatial graph G’ at any timestep.

(7T > I1(G¢"

Thus, it is concluded that based on the construction and inherent properties of the temporal graph 7’
and the spatial graph G’, the reduced temporal graph 7" retains more information than the reduced
spatial graph G'.

The Fisher information of the embedding of the T” is greater than the Fisher information of the
embedding of G":
(T > I1(G")
Consequently, due to the inverse relationship between Fisher Information and covariance:
(="' <naGH

Applying the Cramér-Rao Bound, we relate the inverses of the Fisher Information to the covariances
of the estimators:
Cov(T') < I(T")™' < I(G")™! < Cov(G)

= Cov(T") < Cov(G")

Thus, it is concluded that the covariance of the reduced temporal graph 7" serves as a more accurate
estimator for the complete graph G' compared to the covariance of the reduced spatial graph G’.

D BROADER IMPACT

Many often we do not operate in complete information settings for these complex co-evolving sys-
tems and addressing the practical challenges of measuring the entire system, our work provides
valuable insights into the analysis of subgraphs in various domains. This has implications for fields
such as protein-protein interactions, metabolic networks, planetary systems, and robotic systems,
where complete agent measurements are often unattainable. Additionally, our framework is benefi-
cial for large-scale networks that are either computationally intensive to handle, as it enables deliber-
ate sampling of smaller subnetworks for analysis or have sensor failures thereby having incomplete
knowledge of the system’s degrees of freedom. This has practical implications for researchers and
practitioners working with complex networks, allowing them to focus their analysis on representa-
tive subgraphs while maintaining reasonable accuracy.

E ADDITIONAL VISUALIZATIONS

28



Under review as a conference paper at ICLR 2024

True Position Predicted Velocity True Velocity

s i

Predicted Position

0 B B

b

| I Wi

True Position

Predicted Velocity True Velocity

Figure 19: Visualizations depicting predictive trajectories for basketball dataset involving 5 players.
Dotted lines represent predicted trajectories, while solid lines represent observed trajectories.
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Figure 20: Visualizations depicting predictive trajectories for spring systems involving varying de-
grees of hidden agents. In the top row, a system with 10 agents and 50% hidden agents is shown,
while the bottom row displays a system with 20 agents and 75% hidden agents. We also plot corre-
lation and phase plots for both the systems as correlation plots for variables X and Y across different
lags help in determining the time lag between predictions and observations, enabling a better under-
standing of the temporal dynamics in the data.
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