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Abstract

State-of-the-art language models (LMs) some-
times generate non-factual hallucinations that
misalign with world knowledge. Despite ex-
tensive efforts to detect and mitigate halluci-
nations, understanding their internal mecha-
nisms remains elusive. Our study investigates
the mechanistic causes of hallucination, espe-
cially non-factual ones where the LM incor-
rectly predicts object attributes in response to
subject-relation queries. With causal mediation
analysis and embedding space projection, we
identify two mechanistic causes: 1) insufficient
attribute knowledge in lower-layer MLPs, and
2) failing to select the correct object attribute in
upper-layer attention heads. These mechanisms
in non-factual hallucinations exhibit varying de-
grees of subject-object association, predictive
uncertainty and perturbation robustness. Addi-
tionally, we scrutinize LM pre-training check-
points, revealing distinct learning dynamics for
the two mechanistic causes of hallucinations.
We also highlight how attribution features from
our causal analysis can effectively construct
hallucination detectors. Our work pioneers a
mechanistic understanding of LM factual er-
rors, fostering transparent and explainable ap-
proaches for hallucination mitigation.

1 Introduction

Language models (LMs) serve as repositories of
substantial knowledge (Petroni et al., 2019; Jiang
et al., 2020; Srivastava et al., 2023), yet they are
susceptible to generating text containing factual
errors. Notably, LMs have been observed to pro-
duce seemingly confident completions with hallu-
cinations (Dong et al., 2022; Zhang et al., 2023b),
fabricating entities or claims. As LMs extend their
reach to broader audiences and potential applica-
tions in safety-critical domains, understanding the
nature of factual errors becomes critical (Kaddour
et al., 2023).

The majority of research efforts has been cen-
tered on hallucination detection and mitigation

(Elaraby et al., 2023; Miindler et al., 2023; Man-
akul et al., 2023; Zhang et al., 2023a). However,
the internal mechanisms underlying LM halluci-
nations remain under-explored. Previous investi-
gations into hallucinations often treat the LM as
a black box, developing methods for factual gen-
eration based on external features such as predic-
tive uncertainty (Xiao and Wang, 2021; Varshney
et al., 2023) and logical consistency (Cohen et al.,
2023). Unfortunately, these approaches provide
no insights into the internal mechanisms of factual
errors and have demonstrated unreliability or con-
veyed contradictory signals (Turpin et al., 2023).

In contrast, interpretability research, which in-
vestigates the internal mechanisms of transformers
in white-box settings, has identified several cru-
cial model components related to knowledge flow
that are essential for answering questions correctly
(Dai et al., 2022; Meng et al., 2022a; Geva et al.,
2023). In addition, Akyiirek et al. (2022); Zhou
et al. (2023) has identified the important role of LM
pre-training in the acquisition of factual knowledge.
These interpretability studies on knowledge flow in
LMs have limited scopes: they only examine cases
where models generate factually correct responses,
leaving questions on how information flow or ac-
quisition unclear for hallucinations. Specifically, it
is unknown whether these components are equally
“fragile” and prone to simultaneous failure, or if
only certain components deviate from normal func-
tioning. It is also unclear how these factual errors
emerge and evolve during the process of language
model pretraining.

In this study, we employ mechanistic inter-
pretability (Olah, 2022) to investigate the origins
and manifestation of non-factual hallucinations in
language models (LMs). We use two established
interpretability methods, causal mediation analysis
(Pearl, 2001; Vig et al., 2020) and embedding space
projection (Geva et al., 2022; Dar et al., 2023) in
our specially designed setups on non-factual hal-
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Figure 1: Our main finding of two non-factual hallucination mechanisms. Left (a): The early-site hallucinations
are caused by lacking general knowledge of the subject in lower layer MLPs of transformer LMs — in this case,
the model fails to retrieve useful information about the entity (e.g., Orica, an Australian-based multinational
corporation) to generate the correct object attribute (e.g., Australia), and therefore outputs a highly non-feasible
prediction (January, which is incorrect as verified by manual fact-checking). Right (b): The late-site hallucinations
are caused by upper layer attention modules’ failure to identify the most relevant object attribute(s) to the subject
and relation — in this case, the model is able to retrieve related information about the subject (e.g., Toulouse, a
French city) from early-site MLPs, but cannot distinguish the irrelevant yet strongly associated attributes (e.g.,
Paris) from the correct answers (e.g., Bologna/Chongqing/Atlanta). We found that these two types of hallucinations
can be distinguished by the relative causal contribution to model predictions between MLP and attention modules

(AAIE(y, u), to be explained in section 4.1).

lucination data, aiming to assess the influence of
model components on hallucinating predictions.
We obtain converging evidence of two crucial LM
modules with the highest causal attributions to fac-
tually incorrect generations: the multi-layer percep-
trons (MLPs) in lower transformer layers and the
attention heads in upper transformer layers, which
have also been discovered as playing essential roles
in recalling factual associations (Geva et al., 2023).

Figure 1 illustrates two distinct scenarios where
the identified hallucinating components exhibit dif-
ferent behaviors. In some instances (the right
subfigure), lower-layer MLPs function normally,
successfully retrieving semantic attributes about
queried entities, while upper-layer attention heads
struggle to distinguish the most relevant attribute.
In other cases (the left subfigure), the model fails to
execute its fact-recalling pipeline at the beginning,
extracting no useful information from lower-layer
MLPs. We also observe that these two hallucina-
tion mechanisms have varying external manifes-
tations, distinguishable by their levels of subject-
object association strengths, robustness to input
perturbations, and model predictive uncertainty.

Moreover, our analysis investigates the learning
dynamics of language models, unveiling their pro-
gressive yet sometimes imperfect development of
fact-recalling pipelines during pretraining. As a
practical application, we demonstrate that mecha-
nistic interpretability features can be employed to
probe the presence of factual errors in LMs. Our

work offers the first mechanistic explanation of
LM factual errors as modular failures, fostering
research on model transparency and new methods
for hallucination mitigation.

2 Related Work

Factual knowledge in language models. The
exploration of knowledge tracing within Language
Models (LMs) has gained substantial attention
lately, with researchers investigating specific lay-
ers (Wallat et al., 2020; Meng et al., 2022a) and
neurons (Dai et al., 2022) responsible for storing
factual information. This line of inquiry extends to
techniques for model editing (De Cao et al., 2021;
Mitchell et al., 2021; Meng et al., 2022b) and infer-
ence intervention (Hernandez et al., 2023; Li et al.,
2023). Recent advancements by Geva et al. (2023);
Yu et al. (2023) identify crucial LM components
that form an internal pipeline for factual informa-
tion transfer. Our framework complements existing
research by offering an additional perspective on
LM factual knowledge processing, revealing that
compromised factually relevant modules can lead
to hallucinations.

Hallucinations. Language models are suscepti-
ble to generating hallucinations that can be unfaith-
ful (i.e. deviating from the source input provided by
users) or non-factual (i.e. contradicting established
world knowledge) (Ji et al., 2023; Zhang et al.,
2023b). Here, we focus on the latter type of hal-
lucination. Existing studies propose various meth-



ods to detect or mitigate hallucinations, leveraging
features such as internal activation patterns (Yuk-
sekgonul et al., 2023; Li et al., 2023), predictive
confidence (Varshney et al., 2023), and generation
consistency (Miindler et al., 2023; Manakul et al.,
2023; Zhang et al., 2023a). However, a mechanistic
investigation accounting for non-factual hallucina-
tions is lacking in these studies.

Mechanistic interpretability. Mechanistic inter-
pretability (Olah, 2022; Nanda, 2023) is an evolv-
ing research area. Recent works employ projec-
tions to the vocabulary (Dai et al., 2022; Geva et al.,
2022; Nostalgebraist, 2020) and interventions in
transformer computation (Haviv et al., 2022) to
study LM inner workings. Similar techniques have
been applied to explore neural network learning dy-
namics (Nanda et al., 2022) and discover sparse
computational graphs for specific tasks (Wang
et al., 2022; Conmy et al., 2023). Leveraging multi-
ple mechanistic interpretability methods, our study
provides a comprehensive yet consistent account
for non-factual hallucinations.

3 Background and Notation

An auto-regressive transformer language model,
denoted as GG, maps an input sequence of tokens
u = [wy, ..., wr|, represented by input token em-
beddings E(u) = [ey, ..., er], into a probability
distribution over the vocabulary for next-token pre-
diction. Within the transformer, the ¢-th token is
represented as a series of hidden states hz(l) where at
each layer [, the model computes and adds the inter-
mediate embeddings by two modules from hz(»l*l):
1) an aggregated multi-head self-attention mod-
ule output o\’ = W,([a{"”, ...,a""
al(l’k) is the output of the k-th attention head at layer
[ (with K heads in total) for the ¢-th token, and W,
is a linear transformation; 2) a multi-layer percep-
tron (MLP) output mgl) = ls,i)LP(hglfl) + agl)) at
layer (. Putting together, the hidden representation

1), where

UK .

h;’ is computed as:
hY = nY 10l ), (1)
Let H = {h!} be the set of T x L token hid-
den states across all layers (following Elhage et al.
(2021), we shall call them the residual stream out-
puts), A = {al} be the set of T x L attention
outputs, and M = {mz(l)} be the set of T x L
MLP outputs. We aim to investigate which inter-
mediate model outputs z € Z = H|J AU M (and

the corresponding sublayers that produce them) are
causally contributing to the generation of a factu-
ally incorrect entity.

4 Mechanisms of Hallucinations

4.1 Causal tracing of factual errors

Method. The intermediate hidden states H pro-
duced by G during model inference form a causal
dependency graph (Pearl, 2001) that contains many
paths from the input sequence to the output (next-
token prediction), and we wish to understand if
there are specific hidden states that are more impor-
tant than others when the producing a hallucination.
This is a natural case for causal mediation analysis,
which quantifies the contribution of intermediate
variables in causal graphs. For more information
about causal mediation analysis of language mod-
els, see (Vig et al., 2020).

We adapt the framework of Meng et al. (2022a)
to locate LM components that cause factual errors
via the task of factual open-domain questions on
structured queries. In particular, given a fact rep-
resented as a subject-relation-object triple (s, 7, 0),
we provide an LM G with a query prompt « con-
taining (s,r) (e.g., “Toulouse is the twin city of
__) with o as a true continuation (e.g., “Atlanta”).
We examine the cases where G predicts an incor-
rect object o as the next token(s) given u, and aim
to locate which intermediate hidden states in the
computation graph of G led to the hallucination.
We consider G to be a “corrupted” model with
certain modules failing to compute the “clean” rep-
resentations that could otherwise lead to the correct
answer o, and measure the contribution of each
module through four model runs:

1. In the hallucination run, we pass u into G
and extract all intermediate hidden representa-
tions Z as defined in Section 3, and compute
the log likelihood ratio y = log % be-
tween the true and hallucinated objects, which
quantifies the “degree of hallucination” of G.
For a hallucinating prediction, we would ob-

serve y > 0.

2. In the mitigation run, we follow Meng et al.
(2022a) and add a Gaussian noise € ~ N (0,1)
to the input token embeddings E(u), so that
when taking the intervened E*(u) = E(u)+e
as inputs, the log-likelihood ratio between the
hallucinated and the factual object would de-
crease (i.e., we only take noises with y, =



log % < y, indicating that the model

becomes more “truthful” after noise injec-
tions). We again extract all intermediate hid-
den representations, denoted as Z*.

3. In the mitigation-with-hallucination-state
run, we run G on u with perturbed input
embeddings E*(u) as in the mitigation run,
and hook G by forcing a particular hidden
representation z* € Z* to be the hidden
representation z during the hallucination run.

We then compute the the log likelihood ratio

o p(o| B (w).2)
YE* 2 = 108 LiE )2

compared to step 2.

to see how it changes

4. In the hallucination-with-mitigation-state
run, we run GG on the original prompt « as in
the hallucination run, and hook G by forcing
a particular hidden representation z € Z to
be the hidden representation z* during the
mitigation run. We then compute the the log
likelihooid ratio yg .+ = log % to
see how it changes compared to step 2.

We can therefore define two causal contribution
measurements of each hidden state z: the causal
indirect effect IE(y, u, €) = yp+ ., — y, measures
the decrease in the degree of hallucination after
mitigating a single hidden state, and the causal di-
rect effect DE(z, y, u,€) = yg ,+ — yx measures
the decrease in the degree of hallucination after
mitigating all other intermediate hidden states ex-
cept z. Averaging over a set of factual queries and
a sample of noises for each query, we obtain the
average direct effect (ADE) and average indirect
effect (AIE) for each hidden state.

Data. We collect a set of factual knowledge
queries from ParaRel (Elazar et al., 2021), with
each example containing a knowledge tuple . =
(s,7,0.) and a prompt generated from hand-curated
templates. We evaluated GPT-2-XL. on each
prompt © by computing the conditional probability
p(o|E(u)) of the next token continuation, where o
is taken from the collection of all capitalized alpha-
betical tokens in the model vocabulary. We define
hallucinations as the cases where the model assigns
the highest probability to a token o’ that is neither
the suffix of the true object o, nor the suffix of
any other objects of the subject-relation pair (s, r)
returned by a WikiData API query search. This
pipeline yields a set of 6,401 (u, 0, 0’) examples. !

'See Appendix A for more details about data construction.

Results. We compute the average causal effect
over all collected queries from ParaRel for all hid-
den states z € Z across various sentence positions
and transformer layers. Similar to previous studies
of causal mediation analysis, we found the distri-
butions of direct effect to be noisy and less inter-
pretable (Vig et al., 2020; Meng et al., 2022a), and
therefore focus on the causal tracing results of indi-
rect effect, as shown in Figure 2 for three modules:
the residual stream, the attention heads, and the
MLPs. We observe two groups of hidden states
yielding the highest attribution scores towards in-
correctly predicted objects: 1) the hidden states at
the early site (lower GPT layers) of the subject to-
kens, and 2) the hidden states at the late site (upper
GPT layers) of the last relation token. Our causal
tracing results therefore offer contrapositive sup-
port to the existence of the two-stage fact recalling
pipeline discovered by Geva et al. (2023), by show-
ing that failures of the same two module groups are
most likely causing factual errors.

Early- vs. late-site hallucination. Based on
the findings above, we hypothesize that there are
two different “mechanisms” that may cause non-
factual hallucinations, as illustrated in Figure 1:
1) the model fails to retrieve any related informa-
tion about the subject from lower-layer MLPs, and
2) the model successfully retrieves some subject
attributes from lower-layer MLPs, but the upper-
layer attention heads fail to distinguish the correct
object(s) among retrieved ones. We formalize this
idea by defining the following relative indirect
effect between late-site attentions (where the cor-
rect objects are distinguished) and early-site MLPs
(where subject attributes are retrieved):

AAIE(y, u) = AIER (y, u) — AIEgs (y, u) )

-3
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2
ATE(ay), y,u) = > AIE(m{,y, U)] 3
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where ATES™ (y, ) is the average indirect effect
of MLP sublayers in the lower 24 out of 48 lay-
ers on the first subject token wg of a query u, and
AIER® (y,u) is the average indirect effect of at-
tention heads in the upper 24 layers on the last
relation token wr of u, as illustrated in Figure 2.
A hallucination (u,0,0’) is early-site if the cor-
responding AAIE(y,u) < 0, and is late-site if
AAIE(y,u) > 0. Following this definition, we
classify the incorrectly answered queries into two
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Figure 2: Average Indirect Effect (AIE) of individual model components to non-factual hallucinations over 6,401
ParaRel queries that are incorrectly answered by GPT-2 XL. AAIE(y, u) is defined as the difference in AIE between
1) the attention outputs of the last 24 transformer layers and 2) the MLP outputs of the first 24 GPT-2 XL layers.
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Figure 3: Average Indirect Effect (AIE) of individual model components for (a) early-site (left column) and (b)

late-site (right column) non-factual hallucinations.

Statistics ~ Early-site hall.  Late-site hall.

Amount (2414 /37.7%) (3987 /62.3%)
$-0 assoc. 0.14 0.91
s-0' assoc. 0.17 2.12
Robustness 0.67 0.44
Uncertainty 5.10 4.74

Table 1: External data and model prediction features for
two types of non-factual hallucination.

categories and compute their average indirect ef-
fect distributions separately (Figure 3). We observe
significantly different causal effect distributions:
while most neurons that contribute significantly to
early-site hallucinations are located in lower layers,
late-site hallucinations have more highly contribu-
tive neurons in upper layers.

External manifestations of hallucination mecha-
nisms. We next investigate whether there are any
external features that can be leveraged to distin-
guish the two types of hallucinations. We consider

the following features of query data and model pre-
dictions: the subject-object association strength
is measured as the inner product between the GPT
input layer embeddings of a subject s and a true ob-
ject o or a hallucinating object o’; the robustness of
a predicted object o’ is measured as the percentage
of Gaussian noise injected during the mitigation
run in section 4.1 which, after being added to the
input embeddings, fails to make the model pre-
fer the true answer o than o' (i.e., y. < 0 < ¥);
the uncertainty of model prediction is measured
by the entropy of the conditional next-token dis-
tribution p(o|u). Table 1 summarizes the exter-
nal measurements. Some key observations are: 1)
subjects of late-site hallucinations (e.g., Toulouse)
often have hallucinating objects (e.g., Paris) of
much stronger association strengths than true ob-
jects (e.g., Bologna), so that the late-site attention
heads fail to “offset” the prior propensity of model
predicting o’ upon seeing s. Subjects of early-site
hallucinations (e.g., Orica), on the other hand, of-
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ten have much weaker associations with both true
(e.g., Australia) and hallucinating (e.g., January)
objects, which conforms with the low causal con-
tribution of early-site MLPs that are supposed to
store relevant knowledge about these entities; 2)
late-site hallucinations are significantly less robust
under input perturbations, probably because the
model has already retrieved the correct object from
early layers and is just “one step away” from dis-
tinguishing it and other less relevant attributes; 3)
the model is less certain about its predictions when
generating early-site hallucinations, a pattern that
is consistent with previous findings that epistemic
hallucinations are often associated with high pre-
dictive uncertainty (Xiao and Wang, 2021).

4.2 Module inspection via embedding space
projection

In this section, we provide further evidence of the
mechanistic difference between early- and late-site
hallucinations by looking at the information that
each module writes into the model residual stream
during model inference.

Method. As Equation 1 suggests, each attention
or MLP module at layer [ contributes to the model
prediction by adding its output hidden state into
the embeddings hl(-l_l) produced by the previous
layer. Recent work shows that the encoded knowl-
edge of a module can be interpreted by applying

the final-layer language model head projection to
its intermediate output hidden state, thereby ob-
taining a distribution over the vocabulary (Geva
et al., 2022; Dar et al., 2023). For each exam-
ple of model hallucination (u, 0,0’), we use this
method by first extracting the intermediate outputs
z € A|J M by all MLPs and attention modules,
and then taking the dot product j(z,0) = z”e, be-
tween z and the row vectors corresponding to o in
the final projection layer. The resulting embedding
space projection (ESP) can be taken as an approx-
imated contribution of z to p(o|u). By averaging
the projections over all queries and all modules of
the same type in each layer, we can then quantify
how much knowledge about the correct answer o
each layer contributes during inference.

Results. We compute the layerwise MLP and at-
tention projections for the true objects averaged
over three groups of queries: 1) factual answers
(i.e. model correctly predicts o as the next token),
2) early-site hallucinations, and 3) late-site hallu-
cinations. Figure 4 shows the results. We notice
that 1) MLPs write almost the same amount of
knowledge about the true answer into the residual
stream for late-site hallucinations and correctly an-
swered queries, while contributing much less when
the model generates early-site hallucinations; 2)
For both types of hallucination, the attention mod-
ules fail significantly compared to successful fact
recalls. These findings through embedding space
projection conform with causal intervention experi-
ment results, and together suggest that the failure
of either lower layer MLPs or upper layer attention
heads may lead to model hallucinations, and the
mechanistic difference between hallucinations can-
not be revealed without careful manipulation and
inspection of intermediate model outputs.

S Tracing LM Hallucinations During
Pretraining

We have identified two mechanisms of factual error
hallucinations in pre-trained LMs. In this section,
we design experiments with the goal of understand-
ing how these hallucinations emerge during model
pretraining. For example, do early-site and late-site
hallucinations exhibit different learning patterns
that contribute to their distinctions? We also aim
to explore why the misbehaving MLP and atten-
tion modules in the factual recall pipeline fail to
“develop” properly.



Data and models. To study language model hal-
lucinations during pretraining, we evaluate the
Pythia-1.4B model suite (Biderman et al., 2023) on
our curated ParaRel factual query dataset. Pythia
is a set of pretraining checkpoints for a family
of autoregressive LMs trained on public data in
the exact same order. We first take the last check-
point of Pythia-1.4B and repeat the same evaluation
and filtering processes for GPT2-XL on ParaRel
dataset described in section 4.1 to obtain a dataset
of 8,345 queries, where the model hallucinates on
6,664 questions and correctly answers 1,681 of
them. Next, we perform causal mediation analysis
on hallucinating queries to get average indirect ef-
fects for attention heads and MLPs, and categorize
the queries into 980 early-site and 5,684 late-site
hallucinations. We then evaluate and get intermedi-
ate hidden states for all queries on 32 Pythia-1.4B
pretraining checkpoints evenly distributed across
model learning history. 2.

Development of factual association pipeline.
We replicate the embedding space projection exper-
iments in section 4.2 on Pythia-1.4b checkpoints
and compare the results across pretraining steps.
For each Pythia-1.4B checkpoint, we first take the
ESP onto the true object tokens for 1) MLPs in
the first 12 out of 24 transformer layers, and 2)
attention heads in the last 12 layers, and then com-
pute the average ESP for the sets of factual, early-
site hallucination and late-site hallucination queries
(categorized based on prediction results by the last
model checkpoint). Figure 5 shows the evolution
trajectory of true object ESPs on 32 Pythia-1.4b
checkpoints. We notice that 1) the learning dynam-
ics of MLPs between late-site hallucination and fac-
tual queries are very similar, where they gradually
learn to produce positive ESPs to the true object
prediction roughly during the first half of pretrain-
ing. For early-site hallucinations, the MLPs instead
learn to make negative ESPs, again suggesting their
lack of true subject knowledge. 2) Similar to GPT2-
XL, the upper-layer attentions of Pythia only learn
to produce high ESPs for factual queries. More-
over, the attention modules will not learn to distin-
guish true objects until the early-site MLPs have
grown mature (~70-th pretraining step). Taken to-
gether, our results suggest that the early-site MLPs
and late-site attentions together form a two-step
pipeline of fact recall that emerges progressively
during pretraining, and failing to develop either of

2See Appendix C for details of Pythia evaluation.
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Figure 5: Average embedding space projections to the
true object tokens for lower-layer MLPs (up) and upper-
layer attention modules (down) of Pythia-1.4b pretrain-
ing checkpoints. The red vertical line indicates a “phase
change” when the lower layer MLPs finish their learn-
ing, and upper layer attention start to develop.

them will lead to hallucinating model predictions.

6 Application to Hallucination Detection

We have demonstrated that mechanistic inter-
pretability methods can reveal causes of LM factual
errors when we know that the model is hallucinat-
ing. In this section, we further show that the inter-
pretability features of model intermediate outputs
in our previous analyses can also be leveraged to
predict whether an LM is generating non-factual
hallucinations.

Data. We study non-factual hallucinations by
GPT2-XL on three factual query datasets: 1) the
ParaRel query dataset used in section 4, 2) the
Natural Questions dataset (Kwiatkowski et al.,
2019) that consists of 3,610 real Google search en-
gine queries annotated with answers and supporting
Wikipedia pages, and 3) the TruthfulQA dataset
by Lin et al. (2022) consisting of 817 adversarially
constructed commonsense reasoning questions to
measure whether a language model is truthful in
generating answers. We take the processed versions
of Natural Questions and Truthful QA by Li et al.
(2023) where apart from the true answer, each ques-
tion is also paired with a set of “plausible sound-
ing but false” answers. We follow the multiple-
choice evaluation scheme in question answering
and ask GPT2-XL to compute the conditional log-



likelihood of every candidate answer. If the answer
with highest likelihood has a ground truth label of
false, the query is then labeled as a hallucination,
and otherwise a factual prediction.

Problem formulation. We study the following
classification problem: given a query v and a con-
tinuation o by a language model (the most likely
next-word prediction for ParaRel queries, and the
first token of the most likely answer for Natural
Question and TruthfulQA), we wish to predict
whether the model is hallucinating or not, where
the true label is determined as described above.

Methods. We build logistic regression models to
predict model factuality based on the causal effect
scores of transformer modules to the log-likelihood
log p(o|u) of the model predicted next token, using
the same causal intervention patching method as
in section 4.1. Note that in this case, the causal
response variable is no longer a log-likelihood ra-
tio between two object tokens, but is instead the
log-likelihood of a model-generated token, whose
factuality is to be decided by the hallucination de-
tector. We compute the average causal direct and
indirect effects for each neuron in the intermediate
outputs of the attention, MLP and residual stream
modules across 48 layers, and concatenate the ar-
rays of average IE and DE scores of three modules
to get a single 4,800-dimensional feature vector of
causal attributions. Since performing causal me-
diation analysis is very expensive, we adopt the
gradient-based approximation method of causal
mediation effect in (Nanda, 2023) to accelerate

computations®.

Baselines. We also tested baseline logistic regres-
sion models using a suite of non-causal internal fea-
tures that have been shown to be indicative of LM
hallucinations: 1) the last-layer hidden state of the
last token of the input sequence, which the model
uses directly to generate the next token (Zhou et al.,
2021); 2) the activation values (Li et al., 2023); 3)
the gradients (De Cao et al., 2021) with respect
to log p(o|u); 4) the activation * gradient values
(Tang et al., 2022) with respect to log p(o|u); and 5)
the Integrated Gradient (Sundararajan et al., 2017)
with respect to logp(o|u). Here we compute IG
using 50 steps of Gauss-Legendre quadrature on
gradients of individual hidden states. For baselines
(2)-(4), we compute features for the same set of

3See Appendix D for details of the causal effect approxi-
mation method.

ParaRel NaturalQA Truthful QA
Random 50.0 50.0 50.0
LHS 62.1 56.6 50.4
Activation 67.8 62.6 52.0
Gradient 68.8 66.1 53.8
Grad. X Act. 68.9 68.3 60.1
1G 69.9 67.4 53.2
Causal IE 70.7 69.8 60.8
Causal DE 72.6 73.1 62.6

Table 2: Mean 5-fold cross-validation accuracy of hal-
lucination classifiers trained using various internal fea-
tures on three fact query datasets.

intermediate neurons as for the causal effect-based
classifiers, so that the dimensions of baseline input
feature vectors are the same as the IE-based and
the DE-based feature vectors.

Results. For each dataset, we perform a 5-fold
cross-validation and compute the mean predictive
accuracy of every hallucination classifier over the
validation sets. Table 2 summarizes the results.
We found that the two causal effect measures best
predict model hallucinations on all datasets, con-
sistently exceeding all baseline models. Notably,
all baselines except IG only make use of internal
information during the hallucination runs (i.e., step
1 in Section 4.1), so their inferior performance com-
pared to causal effect classifiers suggests counter-
factual interventions of model inference process
are crucial for locating modules whose activation
values are most indicative of factual errors. The 1G
baseline, as suggested by Meng et al. (2022a), is
often over-sensitive to input textual artifacts (e.g.
rare words and typos), and therefore yields much
less reliable predictions on the two QA datasets
with much more diverse input formats compared to
ParaRel.

7 Conclusion

Through mechanistic analysis, we identified two
causes of language model non-factual hallucina-
tions: insufficient attribute knowledge in lower-
layer MLPs and flawed object selection in upper-
layer attentions. Distinguishing properties in data
and model predictions, along with divergent pre-
training trajectories, were also unveiled. Leverag-
ing these insights, we crafted effective hallucina-
tion detectors. Our work establishes a mechanistic
understanding of LM factual errors, facilitating re-
search on transparent and explainable approaches
for hallucination mitigation.



8 Limitation

Our study bears several limitations. Firstly, certain
experiments depend on interpreting intermediate
layer representations and parameters through pro-
jection to the vocabulary space. While widely used,
this method only approximates the encoded infor-
mation of model components, particularly in early
layers. Secondly, we restricted our experiments to
two language models (GPT-2-XL and Pythia-1.4B).
Future research should validate our findings across
various models (e.g., GPT-J, LLaMA, OPT model
family) and sizes. Thirdly, our focus on non-factual
hallucinations with simple input sequences may not
fully capture real-world LM behavior. Future inves-
tigations should apply mechanistic interpretability
methods to study more complex and naturalistic
contexts, considering longer input queries and po-
tential adversarial features.
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A Dataset of Non-Factual Hallucinations

We follow the data construction pipeline in (Dai
et al., 2022) to generate each of our query input
sequence from an entry in ParaRel (Elazar et al.,
2021) containing a subject-relation-object knowl-
edge tuple (e.g. (Toulouse, is twin city of, Atlanta))
which exist as entities in WikiData. Each relation
has a set of prompt templates (e.g. ““__is the twin
city of __") where entities can be substituted to
form full prompts (e.g. “Toulouse is the twin city
of __" as a prompt that queries the object).

After generating the query dataset, we ask a lan-
guage model (GPT-2-XL or Pythia-1.4B) to predict
the most likely capitalized alphanumeric token # to
continue a given prompt v that contains a subject-
relation pair. We define a prediction 7 to be factual
if it satisfies at least one of the following two con-
ditions: 1) it is identical to or is a prefix of the
ground-truth object o; 2) it is identical to or is a
prefix of one of the entities returned by executing
a WikiData SPARQL “ query with (s, ) as inputs.
Finally, for each model, we discard those queries
with no capitalized alphanumeric tokens among
model predicted top-50 most likely tokens over the
entire vocabulary, as we found in most of these
cases the log likelihood of £ would become negligi-
ble. This data preprocessing pipeline yields a set
of 6,401 queries for GPT-2-XL and 8,345 queries
for Pythia-1.4B.

B Causal Tracing of Hallucinations

B.1 Experiment details

In the corrupted run, we follow (Meng et al.,
2022a) and corrupt the embeddings of the first
token of each subject by adding Gaussian noise
e ~ N(0,1). In (Meng et al., 2022a), the authors
perform embedding corruption by adding a Gaus-
sian noise with a standard deviation o ~ 0.15,
which is three times of the estimated the observed
standard deviation of token embeddings as sampled
over a body of text. However, we found this stan-
dard deviation often to be too small to significantly
change the relative log likelihood of a pair of true
and incorrect object, so we set ¢ = 1 instead. For
each run of text, the process is repeated multiple
times with different samples of corruption noise,
until we get a set of 10 independently sampled

noises that can reduce the relative log likelihood
y = log p(o'|E(u))

POl B0 We found that on average, about

*https://query.wikidata.org/
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71.1% of the sampled noises reduces y (i.e. make
the model to be more “truthful"), and on average,
injecting these valid noises would reduce the rela-
tive log likelihood from 11.7 to 2.3.

B.2 Examples of early-site and late-site
hallucinations

Table 3 presents several examples randomly drawn
from the sets of early-site and late-site hallucina-
tions made by GPT-2-XL. We found that in many
examples of late-site hallucinations, the model
tends to ignore the relational information in inputs
and output an object entity that is highly associated
with the subject — in some cases, the model may
even predict the subject itself as a continuation.
For early-site hallucinations, on the other hand, the
model predicted objects are often much less related
to the query, suggesting a lack of general knowl-
edge about the queried subject entity.

C Evaluation of Pythia Models

We evaluate Pythia-1.4B (24 layers, 2048-
dimensional hidden states, and 16 attention heads
per layer) on the constructed ParaRel query dataset
to perform the embedding space projection analy-
sis of hallucination evolution dynamics. We focus
on evaluating the Pythia model with 1.4 billion
parameters since it has the most similar size to
GPT2-XL in our previous analyses. Each Pythia
model features 154 checkpoints saved throughout
training, and we use 32 checkpoints of Pythial.4B
by starting from the first checkpoint with index 0
and taking one every five steps, plus the last check-
point (i.e. checkpoint-0, checkpoint-5, checkpoint-
10,...,checkpoint-150, checkpoint-153). To clas-
sify the mechanism of each hallucinating query,
we run the four-step causal mediation analysis
on checkpoint-153 of Pythia-1.4B and compute
the average indirect effects for MLPs, attentions
and residual streams. Same as GPT-2-XL experi-
ments, we corrupt input queries by injecting stan-
dard Gaussian noises into the first subject token,
and take for each query 10 independently sampled
noise that reduce the relative object likelihood .
Figure 6 and 7 shows the causal tracing results for
the Pythia-1.4B model, as well as the breakdown
AIE distributions for 980 early-site and 5,684 late-
site hallucinations, where we observe similar dis-
tributional patterns of causal effects as GPT-2-XL.
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D Hallucination Detection

D.1 Example data from Natural Questions
and Truthful QA

See Table 4 and 5 show example entries from Natu-
ralQA and Truthful QA datasets respectively. Com-
pared to ParaRel, the input forms of these datasets
are more diverse and cover a wider range of world
knowledge.

D.2 Details of causal attribution
approximation

To exactly compute neuron-level causal effects, one
need to make thousands of forward model pass for
each query by targeting one neuron at a time. We
therefore apply the method of attribution patch-
ing introduced in (Nanda, 2023) to approximately
compute causal effects for all neurons through one
forward and one backward pass. Formally, for an
input prompt © and continuation sequence ¢ which
the model considers as the most likely answer (note
that here y is no longer the log probability ratio
between two tokens, but the log probability of a
sequence of tokens). Let z, z* be the activation
values of a neuron (i.e. a dimension of the hidden
state of an input token at a particular transformer
layer) when taking the original and noise-injected
input embeddings F(u), E*(u) respectively, and
let g(z) = V,y, g9(z*) = V =y, be the gradient of
the neuron w.r.t the relative log likelihood in the
hallucination and the mitigation run with an input
embedding noise € injected, we can approximate
the causal direct effect and the causal indirect effect
of z as follows:

IE(2,y,u,€) = yp=. — ys = g(2")(y — yx) 4)
DE(Zayu Uu, 6) = yE,Z* — Y = g(z)(y* - y) (5)

Intuitively, we are assuming that the response vari-
able y is a locally linear function of the activation
value of z (when keeping other neurons fixed), so
the causal effect can be approximated as the multi-
plication of the gradient of z and the difference in
its activation values after input perturbation. The
approximations of AIE and ADE for each neuron
z can also be computed by averaging the approx-
imated IEs and DEs over independently sampled
noises and over all input queries.



prompt subject relation true object  predicted object hallucination mechanism
Korrespodent is formed in Korrespodent country of origin Ukraine April early-site
Mantecadas, that was created in Mantacedas country of origin Spain Japan early-site
Asprey’s headquarters are in Asprey headquarters location London New early-site
Opgezwolle was developed in Opgezwolle country of origin Netherlands Belgium late-site
Israel maintains diplomatic relations with Israel diplomatic relation India Israel late-site
Germany shares its border with Germany shares border with Luxemburg Russia late-site
Table 3
Question True answers False answer

who ordered the forbidden city to be built Zhu Di Emperor Qin Shi Huang

who has won the most games in nfl 2017 Dallas Cowboys Tom Brady

who was the famous scientist that . . .

Sir Ernest Rutherford  Albert Einstein

ran the research lab moseley went to in manchester

Table 4: Sample questions from the NaturalQA dataset.

Question True answers

False answers

1) Nothing happens;

2) You eat watermelon seeds;

3) The watermelon seeds pass through your digestive system;
4) You will not digest the watermelon seeds;

5) The watermelon seeds will be excreted;

What happens to you
if you eat watermelon seeds?

1) You grow watermelons in your stomach;
2) You get sick;

3) You have bad dreams;

4) You die;

5) You get indigestion;

6) You fall unconscious;

7) You digest the watermelon seeds

1) George Santayana wrote

"Only the dead have seen the end of war";

2) General Douglas MacArthur misattributed
the quote to Plato in a farewell speech

Who said, "Only the dead
have seen the end of war?"

1) Plato said, "Only the dead

have seen the end of war";

2) Douglas MacArthur first said,

"Only the dead have seen the end of war"

Table 5: Sample questions from the Truthful QA dataset.
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Figure 6: Average Indirect Effect (AIE) of individual model components to non-factual hallucinations over 6,664
ParaRel queries that are incorrectly answered by Pythia-1.4B. AAIE(y, u) is defined as the difference in AIE
between 1) the attention outputs of the last 24 transformer layers and 2) the MLP outputs of the first 12 Pythia-1.4B

layers.
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Figure 7: Average Indirect Effect (AIE) of individual model components of Pythia-1.4B for (a) early-site (left
column) and (b) late-site (right column) non-factual hallucinations.
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