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Abstract
State-of-the-art language models (LMs) some-001
times generate non-factual hallucinations that002
misalign with world knowledge. Despite ex-003
tensive efforts to detect and mitigate halluci-004
nations, understanding their internal mecha-005
nisms remains elusive. Our study investigates006
the mechanistic causes of hallucination, espe-007
cially non-factual ones where the LM incor-008
rectly predicts object attributes in response to009
subject-relation queries. With causal mediation010
analysis and embedding space projection, we011
identify two mechanistic causes: 1) insufficient012
attribute knowledge in lower-layer MLPs, and013
2) failing to select the correct object attribute in014
upper-layer attention heads. These mechanisms015
in non-factual hallucinations exhibit varying de-016
grees of subject-object association, predictive017
uncertainty and perturbation robustness. Addi-018
tionally, we scrutinize LM pre-training check-019
points, revealing distinct learning dynamics for020
the two mechanistic causes of hallucinations.021
We also highlight how attribution features from022
our causal analysis can effectively construct023
hallucination detectors. Our work pioneers a024
mechanistic understanding of LM factual er-025
rors, fostering transparent and explainable ap-026
proaches for hallucination mitigation.027

1 Introduction028

Language models (LMs) serve as repositories of029

substantial knowledge (Petroni et al., 2019; Jiang030

et al., 2020; Srivastava et al., 2023), yet they are031

susceptible to generating text containing factual032

errors. Notably, LMs have been observed to pro-033

duce seemingly confident completions with hallu-034

cinations (Dong et al., 2022; Zhang et al., 2023b),035

fabricating entities or claims. As LMs extend their036

reach to broader audiences and potential applica-037

tions in safety-critical domains, understanding the038

nature of factual errors becomes critical (Kaddour039

et al., 2023).040

The majority of research efforts has been cen-041

tered on hallucination detection and mitigation042

(Elaraby et al., 2023; Mündler et al., 2023; Man- 043

akul et al., 2023; Zhang et al., 2023a). However, 044

the internal mechanisms underlying LM halluci- 045

nations remain under-explored. Previous investi- 046

gations into hallucinations often treat the LM as 047

a black box, developing methods for factual gen- 048

eration based on external features such as predic- 049

tive uncertainty (Xiao and Wang, 2021; Varshney 050

et al., 2023) and logical consistency (Cohen et al., 051

2023). Unfortunately, these approaches provide 052

no insights into the internal mechanisms of factual 053

errors and have demonstrated unreliability or con- 054

veyed contradictory signals (Turpin et al., 2023). 055

In contrast, interpretability research, which in- 056

vestigates the internal mechanisms of transformers 057

in white-box settings, has identified several cru- 058

cial model components related to knowledge flow 059

that are essential for answering questions correctly 060

(Dai et al., 2022; Meng et al., 2022a; Geva et al., 061

2023). In addition, Akyürek et al. (2022); Zhou 062

et al. (2023) has identified the important role of LM 063

pre-training in the acquisition of factual knowledge. 064

These interpretability studies on knowledge flow in 065

LMs have limited scopes: they only examine cases 066

where models generate factually correct responses, 067

leaving questions on how information flow or ac- 068

quisition unclear for hallucinations. Specifically, it 069

is unknown whether these components are equally 070

“fragile” and prone to simultaneous failure, or if 071

only certain components deviate from normal func- 072

tioning. It is also unclear how these factual errors 073

emerge and evolve during the process of language 074

model pretraining. 075

In this study, we employ mechanistic inter- 076

pretability (Olah, 2022) to investigate the origins 077

and manifestation of non-factual hallucinations in 078

language models (LMs). We use two established 079

interpretability methods, causal mediation analysis 080

(Pearl, 2001; Vig et al., 2020) and embedding space 081

projection (Geva et al., 2022; Dar et al., 2023) in 082

our specially designed setups on non-factual hal- 083
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Figure 1: Our main finding of two non-factual hallucination mechanisms. Left (a): The early-site hallucinations
are caused by lacking general knowledge of the subject in lower layer MLPs of transformer LMs – in this case,
the model fails to retrieve useful information about the entity (e.g., Orica, an Australian-based multinational
corporation) to generate the correct object attribute (e.g., Australia), and therefore outputs a highly non-feasible
prediction (January, which is incorrect as verified by manual fact-checking). Right (b): The late-site hallucinations
are caused by upper layer attention modules’ failure to identify the most relevant object attribute(s) to the subject
and relation – in this case, the model is able to retrieve related information about the subject (e.g., Toulouse, a
French city) from early-site MLPs, but cannot distinguish the irrelevant yet strongly associated attributes (e.g.,
Paris) from the correct answers (e.g., Bologna/Chongqing/Atlanta). We found that these two types of hallucinations
can be distinguished by the relative causal contribution to model predictions between MLP and attention modules
(∆AIE(y, u), to be explained in section 4.1).

lucination data, aiming to assess the influence of084

model components on hallucinating predictions.085

We obtain converging evidence of two crucial LM086

modules with the highest causal attributions to fac-087

tually incorrect generations: the multi-layer percep-088

trons (MLPs) in lower transformer layers and the089

attention heads in upper transformer layers, which090

have also been discovered as playing essential roles091

in recalling factual associations (Geva et al., 2023).092

Figure 1 illustrates two distinct scenarios where093

the identified hallucinating components exhibit dif-094

ferent behaviors. In some instances (the right095

subfigure), lower-layer MLPs function normally,096

successfully retrieving semantic attributes about097

queried entities, while upper-layer attention heads098

struggle to distinguish the most relevant attribute.099

In other cases (the left subfigure), the model fails to100

execute its fact-recalling pipeline at the beginning,101

extracting no useful information from lower-layer102

MLPs. We also observe that these two hallucina-103

tion mechanisms have varying external manifes-104

tations, distinguishable by their levels of subject-105

object association strengths, robustness to input106

perturbations, and model predictive uncertainty.107

Moreover, our analysis investigates the learning108

dynamics of language models, unveiling their pro-109

gressive yet sometimes imperfect development of110

fact-recalling pipelines during pretraining. As a111

practical application, we demonstrate that mecha-112

nistic interpretability features can be employed to113

probe the presence of factual errors in LMs. Our114

work offers the first mechanistic explanation of 115

LM factual errors as modular failures, fostering 116

research on model transparency and new methods 117

for hallucination mitigation. 118

2 Related Work 119

Factual knowledge in language models. The 120

exploration of knowledge tracing within Language 121

Models (LMs) has gained substantial attention 122

lately, with researchers investigating specific lay- 123

ers (Wallat et al., 2020; Meng et al., 2022a) and 124

neurons (Dai et al., 2022) responsible for storing 125

factual information. This line of inquiry extends to 126

techniques for model editing (De Cao et al., 2021; 127

Mitchell et al., 2021; Meng et al., 2022b) and infer- 128

ence intervention (Hernandez et al., 2023; Li et al., 129

2023). Recent advancements by Geva et al. (2023); 130

Yu et al. (2023) identify crucial LM components 131

that form an internal pipeline for factual informa- 132

tion transfer. Our framework complements existing 133

research by offering an additional perspective on 134

LM factual knowledge processing, revealing that 135

compromised factually relevant modules can lead 136

to hallucinations. 137

Hallucinations. Language models are suscepti- 138

ble to generating hallucinations that can be unfaith- 139

ful (i.e. deviating from the source input provided by 140

users) or non-factual (i.e. contradicting established 141

world knowledge) (Ji et al., 2023; Zhang et al., 142

2023b). Here, we focus on the latter type of hal- 143

lucination. Existing studies propose various meth- 144

2



ods to detect or mitigate hallucinations, leveraging145

features such as internal activation patterns (Yuk-146

sekgonul et al., 2023; Li et al., 2023), predictive147

confidence (Varshney et al., 2023), and generation148

consistency (Mündler et al., 2023; Manakul et al.,149

2023; Zhang et al., 2023a). However, a mechanistic150

investigation accounting for non-factual hallucina-151

tions is lacking in these studies.152

Mechanistic interpretability. Mechanistic inter-153

pretability (Olah, 2022; Nanda, 2023) is an evolv-154

ing research area. Recent works employ projec-155

tions to the vocabulary (Dai et al., 2022; Geva et al.,156

2022; Nostalgebraist, 2020) and interventions in157

transformer computation (Haviv et al., 2022) to158

study LM inner workings. Similar techniques have159

been applied to explore neural network learning dy-160

namics (Nanda et al., 2022) and discover sparse161

computational graphs for specific tasks (Wang162

et al., 2022; Conmy et al., 2023). Leveraging multi-163

ple mechanistic interpretability methods, our study164

provides a comprehensive yet consistent account165

for non-factual hallucinations.166

3 Background and Notation167

An auto-regressive transformer language model,168

denoted as G, maps an input sequence of tokens169

u = [w1, ..., wT ], represented by input token em-170

beddings E(u) = [e1, ..., eT ], into a probability171

distribution over the vocabulary for next-token pre-172

diction. Within the transformer, the i-th token is173

represented as a series of hidden states h(l)i where at174

each layer l, the model computes and adds the inter-175

mediate embeddings by two modules from h
(l−1)
i :176

1) an aggregated multi-head self-attention mod-177

ule output a(l)i = Wo([a
(l,0)
i , ..., a

(l,K)
i ]), where178

a
(l,k)
i is the output of the k-th attention head at layer179

l (with K heads in total) for the i-th token, and Wo180

is a linear transformation; 2) a multi-layer percep-181

tron (MLP) output m(l)
i = f

(l)
MLP(h

(l−1)
i + a

(l)
i ) at182

layer l. Putting together, the hidden representation183

h
(l)
i is computed as:184

h
(l)
i = h

(l−1)
i + a

(l)
i +m

(l)
i . (1)185

Let H = {hli} be the set of T × L token hid-186

den states across all layers (following Elhage et al.187

(2021), we shall call them the residual stream out-188

puts), A = {ali} be the set of T × L attention189

outputs, and M = {m(l)
i } be the set of T × L190

MLP outputs. We aim to investigate which inter-191

mediate model outputs z ∈ Z = H
⋃
A
⋃
M (and192

the corresponding sublayers that produce them) are 193

causally contributing to the generation of a factu- 194

ally incorrect entity. 195

4 Mechanisms of Hallucinations 196

4.1 Causal tracing of factual errors 197

Method. The intermediate hidden states H pro- 198

duced by G during model inference form a causal 199

dependency graph (Pearl, 2001) that contains many 200

paths from the input sequence to the output (next- 201

token prediction), and we wish to understand if 202

there are specific hidden states that are more impor- 203

tant than others when the producing a hallucination. 204

This is a natural case for causal mediation analysis, 205

which quantifies the contribution of intermediate 206

variables in causal graphs. For more information 207

about causal mediation analysis of language mod- 208

els, see (Vig et al., 2020). 209

We adapt the framework of Meng et al. (2022a) 210

to locate LM components that cause factual errors 211

via the task of factual open-domain questions on 212

structured queries. In particular, given a fact rep- 213

resented as a subject-relation-object triple (s, r, o), 214

we provide an LM G with a query prompt u con- 215

taining (s, r) (e.g., “Toulouse is the twin city of 216

__”) with o as a true continuation (e.g., “Atlanta”). 217

We examine the cases where G predicts an incor- 218

rect object o′ as the next token(s) given u, and aim 219

to locate which intermediate hidden states in the 220

computation graph of G led to the hallucination. 221

We consider G to be a “corrupted” model with 222

certain modules failing to compute the “clean” rep- 223

resentations that could otherwise lead to the correct 224

answer o, and measure the contribution of each 225

module through four model runs: 226

1. In the hallucination run, we pass u into G 227

and extract all intermediate hidden representa- 228

tions Z as defined in Section 3, and compute 229

the log likelihood ratio y = log p(o′|E(u))
p(o|E(u)) be- 230

tween the true and hallucinated objects, which 231

quantifies the “degree of hallucination” of G. 232

For a hallucinating prediction, we would ob- 233

serve y > 0. 234

2. In the mitigation run, we follow Meng et al. 235

(2022a) and add a Gaussian noise ϵ ∼ N (0, 1) 236

to the input token embeddings E(u), so that 237

when taking the intervened E∗(u) = E(u)+ϵ 238

as inputs, the log-likelihood ratio between the 239

hallucinated and the factual object would de- 240

crease (i.e., we only take noises with y∗ = 241
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log p(o′|E∗(u))
p(o|E∗(u)) < y, indicating that the model242

becomes more “truthful” after noise injec-243

tions). We again extract all intermediate hid-244

den representations, denoted as Z∗.245

3. In the mitigation-with-hallucination-state246

run, we run G on u with perturbed input247

embeddings E∗(u) as in the mitigation run,248

and hook G by forcing a particular hidden249

representation z∗ ∈ Z∗ to be the hidden250

representation z during the hallucination run.251

We then compute the the log likelihood ratio252

yE∗,z = log p(o′|E∗(u),z)
p(o|E∗(u),z) to see how it changes253

compared to step 2.254

4. In the hallucination-with-mitigation-state255

run, we run G on the original prompt u as in256

the hallucination run, and hook G by forcing257

a particular hidden representation z ∈ Z to258

be the hidden representation z∗ during the259

mitigation run. We then compute the the log260

likelihood ratio yE,z∗ = log p(o′|E(u),z∗)
p(o|E(u),z∗) to261

see how it changes compared to step 2.262

We can therefore define two causal contribution263

measurements of each hidden state z: the causal264

indirect effect IE(y, u, ϵ) = yE∗,z − y∗ measures265

the decrease in the degree of hallucination after266

mitigating a single hidden state, and the causal di-267

rect effect DE(z, y, u, ϵ) = yE,z∗ − y∗ measures268

the decrease in the degree of hallucination after269

mitigating all other intermediate hidden states ex-270

cept z. Averaging over a set of factual queries and271

a sample of noises for each query, we obtain the272

average direct effect (ADE) and average indirect273

effect (AIE) for each hidden state.274

Data. We collect a set of factual knowledge275

queries from ParaRel (Elazar et al., 2021), with276

each example containing a knowledge tuple tc =277

(s, r, oc) and a prompt generated from hand-curated278

templates. We evaluated GPT-2-XL on each279

prompt u by computing the conditional probability280

p(o|E(u)) of the next token continuation, where o281

is taken from the collection of all capitalized alpha-282

betical tokens in the model vocabulary. We define283

hallucinations as the cases where the model assigns284

the highest probability to a token o′ that is neither285

the suffix of the true object oc nor the suffix of286

any other objects of the subject-relation pair (s, r)287

returned by a WikiData API query search. This288

pipeline yields a set of 6,401 (u, o, o′) examples. 1289

1See Appendix A for more details about data construction.

Results. We compute the average causal effect 290

over all collected queries from ParaRel for all hid- 291

den states z ∈ Z across various sentence positions 292

and transformer layers. Similar to previous studies 293

of causal mediation analysis, we found the distri- 294

butions of direct effect to be noisy and less inter- 295

pretable (Vig et al., 2020; Meng et al., 2022a), and 296

therefore focus on the causal tracing results of indi- 297

rect effect, as shown in Figure 2 for three modules: 298

the residual stream, the attention heads, and the 299

MLPs. We observe two groups of hidden states 300

yielding the highest attribution scores towards in- 301

correctly predicted objects: 1) the hidden states at 302

the early site (lower GPT layers) of the subject to- 303

kens, and 2) the hidden states at the late site (upper 304

GPT layers) of the last relation token. Our causal 305

tracing results therefore offer contrapositive sup- 306

port to the existence of the two-stage fact recalling 307

pipeline discovered by Geva et al. (2023), by show- 308

ing that failures of the same two module groups are 309

most likely causing factual errors. 310

Early- vs. late-site hallucination. Based on 311

the findings above, we hypothesize that there are 312

two different “mechanisms” that may cause non- 313

factual hallucinations, as illustrated in Figure 1: 314

1) the model fails to retrieve any related informa- 315

tion about the subject from lower-layer MLPs, and 316

2) the model successfully retrieves some subject 317

attributes from lower-layer MLPs, but the upper- 318

layer attention heads fail to distinguish the correct 319

object(s) among retrieved ones. We formalize this 320

idea by defining the following relative indirect 321

effect between late-site attentions (where the cor- 322

rect objects are distinguished) and early-site MLPs 323

(where subject attributes are retrieved): 324

∆AIE(y, u) = AIElate
Attn(y, u)− AIEearly

MLP(y, u) (2) 325

=
2

L

[ L∑
l=L

2

AIE(a(l)
T , y, u)−

L
2∑

l=1

AIE(m(l)
0 , y, u)

]
(3) 326

where AIEearly
MLP(y, u) is the average indirect effect 327

of MLP sublayers in the lower 24 out of 48 lay- 328

ers on the first subject token w0 of a query u, and 329

AIElate
Attn(y, u) is the average indirect effect of at- 330

tention heads in the upper 24 layers on the last 331

relation token wT of u, as illustrated in Figure 2. 332

A hallucination (u, o, o′) is early-site if the cor- 333

responding ∆AIE(y, u) < 0, and is late-site if 334

∆AIE(y, u) ≥ 0. Following this definition, we 335

classify the incorrectly answered queries into two 336
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Figure 2: Average Indirect Effect (AIE) of individual model components to non-factual hallucinations over 6,401
ParaRel queries that are incorrectly answered by GPT-2 XL. ∆AIE(y, u) is defined as the difference in AIE between
1) the attention outputs of the last 24 transformer layers and 2) the MLP outputs of the first 24 GPT-2 XL layers.
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Figure 3: Average Indirect Effect (AIE) of individual model components for (a) early-site (left column) and (b)
late-site (right column) non-factual hallucinations.

Statistics Early-site hall. Late-site hall.

Amount (2414 / 37.7%) (3987 / 62.3%)
s-o assoc. 0.14 0.91
s-o′ assoc. 0.17 2.12
Robustness 0.67 0.44
Uncertainty 5.10 4.74

Table 1: External data and model prediction features for
two types of non-factual hallucination.

categories and compute their average indirect ef-337

fect distributions separately (Figure 3). We observe338

significantly different causal effect distributions:339

while most neurons that contribute significantly to340

early-site hallucinations are located in lower layers,341

late-site hallucinations have more highly contribu-342

tive neurons in upper layers.343

External manifestations of hallucination mecha-344

nisms. We next investigate whether there are any345

external features that can be leveraged to distin-346

guish the two types of hallucinations. We consider347

the following features of query data and model pre- 348

dictions: the subject-object association strength 349

is measured as the inner product between the GPT 350

input layer embeddings of a subject s and a true ob- 351

ject o or a hallucinating object o′; the robustness of 352

a predicted object o′ is measured as the percentage 353

of Gaussian noise injected during the mitigation 354

run in section 4.1 which, after being added to the 355

input embeddings, fails to make the model pre- 356

fer the true answer o than o′ (i.e., y∗ < 0 < y); 357

the uncertainty of model prediction is measured 358

by the entropy of the conditional next-token dis- 359

tribution p(o|u). Table 1 summarizes the exter- 360

nal measurements. Some key observations are: 1) 361

subjects of late-site hallucinations (e.g., Toulouse) 362

often have hallucinating objects (e.g., Paris) of 363

much stronger association strengths than true ob- 364

jects (e.g., Bologna), so that the late-site attention 365

heads fail to “offset” the prior propensity of model 366

predicting o′ upon seeing s. Subjects of early-site 367

hallucinations (e.g., Orica), on the other hand, of- 368
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embedding and transformer module intermediate out-
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ten have much weaker associations with both true369

(e.g., Australia) and hallucinating (e.g., January)370

objects, which conforms with the low causal con-371

tribution of early-site MLPs that are supposed to372

store relevant knowledge about these entities; 2)373

late-site hallucinations are significantly less robust374

under input perturbations, probably because the375

model has already retrieved the correct object from376

early layers and is just “one step away” from dis-377

tinguishing it and other less relevant attributes; 3)378

the model is less certain about its predictions when379

generating early-site hallucinations, a pattern that380

is consistent with previous findings that epistemic381

hallucinations are often associated with high pre-382

dictive uncertainty (Xiao and Wang, 2021).383

4.2 Module inspection via embedding space384

projection385

In this section, we provide further evidence of the386

mechanistic difference between early- and late-site387

hallucinations by looking at the information that388

each module writes into the model residual stream389

during model inference.390

Method. As Equation 1 suggests, each attention391

or MLP module at layer l contributes to the model392

prediction by adding its output hidden state into393

the embeddings h
(l−1)
i produced by the previous394

layer. Recent work shows that the encoded knowl-395

edge of a module can be interpreted by applying396

the final-layer language model head projection to 397

its intermediate output hidden state, thereby ob- 398

taining a distribution over the vocabulary (Geva 399

et al., 2022; Dar et al., 2023). For each exam- 400

ple of model hallucination (u, o, o′), we use this 401

method by first extracting the intermediate outputs 402

z ∈ A
⋃
M by all MLPs and attention modules, 403

and then taking the dot product p̃(z, o) = zT eo be- 404

tween z and the row vectors corresponding to o in 405

the final projection layer. The resulting embedding 406

space projection (ESP) can be taken as an approx- 407

imated contribution of z to p(o|u). By averaging 408

the projections over all queries and all modules of 409

the same type in each layer, we can then quantify 410

how much knowledge about the correct answer o 411

each layer contributes during inference. 412

Results. We compute the layerwise MLP and at- 413

tention projections for the true objects averaged 414

over three groups of queries: 1) factual answers 415

(i.e. model correctly predicts o as the next token), 416

2) early-site hallucinations, and 3) late-site hallu- 417

cinations. Figure 4 shows the results. We notice 418

that 1) MLPs write almost the same amount of 419

knowledge about the true answer into the residual 420

stream for late-site hallucinations and correctly an- 421

swered queries, while contributing much less when 422

the model generates early-site hallucinations; 2) 423

For both types of hallucination, the attention mod- 424

ules fail significantly compared to successful fact 425

recalls. These findings through embedding space 426

projection conform with causal intervention experi- 427

ment results, and together suggest that the failure 428

of either lower layer MLPs or upper layer attention 429

heads may lead to model hallucinations, and the 430

mechanistic difference between hallucinations can- 431

not be revealed without careful manipulation and 432

inspection of intermediate model outputs. 433

5 Tracing LM Hallucinations During 434

Pretraining 435

We have identified two mechanisms of factual error 436

hallucinations in pre-trained LMs. In this section, 437

we design experiments with the goal of understand- 438

ing how these hallucinations emerge during model 439

pretraining. For example, do early-site and late-site 440

hallucinations exhibit different learning patterns 441

that contribute to their distinctions? We also aim 442

to explore why the misbehaving MLP and atten- 443

tion modules in the factual recall pipeline fail to 444

“develop” properly. 445
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Data and models. To study language model hal-446

lucinations during pretraining, we evaluate the447

Pythia-1.4B model suite (Biderman et al., 2023) on448

our curated ParaRel factual query dataset. Pythia449

is a set of pretraining checkpoints for a family450

of autoregressive LMs trained on public data in451

the exact same order. We first take the last check-452

point of Pythia-1.4B and repeat the same evaluation453

and filtering processes for GPT2-XL on ParaRel454

dataset described in section 4.1 to obtain a dataset455

of 8,345 queries, where the model hallucinates on456

6,664 questions and correctly answers 1,681 of457

them. Next, we perform causal mediation analysis458

on hallucinating queries to get average indirect ef-459

fects for attention heads and MLPs, and categorize460

the queries into 980 early-site and 5,684 late-site461

hallucinations. We then evaluate and get intermedi-462

ate hidden states for all queries on 32 Pythia-1.4B463

pretraining checkpoints evenly distributed across464

model learning history. 2.465

Development of factual association pipeline.466

We replicate the embedding space projection exper-467

iments in section 4.2 on Pythia-1.4b checkpoints468

and compare the results across pretraining steps.469

For each Pythia-1.4B checkpoint, we first take the470

ESP onto the true object tokens for 1) MLPs in471

the first 12 out of 24 transformer layers, and 2)472

attention heads in the last 12 layers, and then com-473

pute the average ESP for the sets of factual, early-474

site hallucination and late-site hallucination queries475

(categorized based on prediction results by the last476

model checkpoint). Figure 5 shows the evolution477

trajectory of true object ESPs on 32 Pythia-1.4b478

checkpoints. We notice that 1) the learning dynam-479

ics of MLPs between late-site hallucination and fac-480

tual queries are very similar, where they gradually481

learn to produce positive ESPs to the true object482

prediction roughly during the first half of pretrain-483

ing. For early-site hallucinations, the MLPs instead484

learn to make negative ESPs, again suggesting their485

lack of true subject knowledge. 2) Similar to GPT2-486

XL, the upper-layer attentions of Pythia only learn487

to produce high ESPs for factual queries. More-488

over, the attention modules will not learn to distin-489

guish true objects until the early-site MLPs have490

grown mature (∼70-th pretraining step). Taken to-491

gether, our results suggest that the early-site MLPs492

and late-site attentions together form a two-step493

pipeline of fact recall that emerges progressively494

during pretraining, and failing to develop either of495

2See Appendix C for details of Pythia evaluation.
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Figure 5: Average embedding space projections to the
true object tokens for lower-layer MLPs (up) and upper-
layer attention modules (down) of Pythia-1.4b pretrain-
ing checkpoints. The red vertical line indicates a “phase
change” when the lower layer MLPs finish their learn-
ing, and upper layer attention start to develop.

them will lead to hallucinating model predictions. 496

6 Application to Hallucination Detection 497

We have demonstrated that mechanistic inter- 498

pretability methods can reveal causes of LM factual 499

errors when we know that the model is hallucinat- 500

ing. In this section, we further show that the inter- 501

pretability features of model intermediate outputs 502

in our previous analyses can also be leveraged to 503

predict whether an LM is generating non-factual 504

hallucinations. 505

Data. We study non-factual hallucinations by 506

GPT2-XL on three factual query datasets: 1) the 507

ParaRel query dataset used in section 4, 2) the 508

Natural Questions dataset (Kwiatkowski et al., 509

2019) that consists of 3,610 real Google search en- 510

gine queries annotated with answers and supporting 511

Wikipedia pages, and 3) the TruthfulQA dataset 512

by Lin et al. (2022) consisting of 817 adversarially 513

constructed commonsense reasoning questions to 514

measure whether a language model is truthful in 515

generating answers. We take the processed versions 516

of Natural Questions and TruthfulQA by Li et al. 517

(2023) where apart from the true answer, each ques- 518

tion is also paired with a set of “plausible sound- 519

ing but false” answers. We follow the multiple- 520

choice evaluation scheme in question answering 521

and ask GPT2-XL to compute the conditional log- 522

7



likelihood of every candidate answer. If the answer523

with highest likelihood has a ground truth label of524

false, the query is then labeled as a hallucination,525

and otherwise a factual prediction.526

Problem formulation. We study the following527

classification problem: given a query u and a con-528

tinuation o by a language model (the most likely529

next-word prediction for ParaRel queries, and the530

first token of the most likely answer for Natural531

Question and TruthfulQA), we wish to predict532

whether the model is hallucinating or not, where533

the true label is determined as described above.534

Methods. We build logistic regression models to535

predict model factuality based on the causal effect536

scores of transformer modules to the log-likelihood537

log p(o|u) of the model predicted next token, using538

the same causal intervention patching method as539

in section 4.1. Note that in this case, the causal540

response variable is no longer a log-likelihood ra-541

tio between two object tokens, but is instead the542

log-likelihood of a model-generated token, whose543

factuality is to be decided by the hallucination de-544

tector. We compute the average causal direct and545

indirect effects for each neuron in the intermediate546

outputs of the attention, MLP and residual stream547

modules across 48 layers, and concatenate the ar-548

rays of average IE and DE scores of three modules549

to get a single 4,800-dimensional feature vector of550

causal attributions. Since performing causal me-551

diation analysis is very expensive, we adopt the552

gradient-based approximation method of causal553

mediation effect in (Nanda, 2023) to accelerate554

computations3.555

Baselines. We also tested baseline logistic regres-556

sion models using a suite of non-causal internal fea-557

tures that have been shown to be indicative of LM558

hallucinations: 1) the last-layer hidden state of the559

last token of the input sequence, which the model560

uses directly to generate the next token (Zhou et al.,561

2021); 2) the activation values (Li et al., 2023); 3)562

the gradients (De Cao et al., 2021) with respect563

to log p(o|u); 4) the activation * gradient values564

(Tang et al., 2022) with respect to log p(o|u); and 5)565

the Integrated Gradient (Sundararajan et al., 2017)566

with respect to log p(o|u). Here we compute IG567

using 50 steps of Gauss-Legendre quadrature on568

gradients of individual hidden states. For baselines569

(2)-(4), we compute features for the same set of570

3See Appendix D for details of the causal effect approxi-
mation method.

ParaRel NaturalQA TruthfulQA

Random 50.0 50.0 50.0
LHS 62.1 56.6 50.4
Activation 67.8 62.6 52.0
Gradient 68.8 66.1 53.8
Grad. X Act. 68.9 68.3 60.1
IG 69.9 67.4 53.2

Causal IE 70.7 69.8 60.8
Causal DE 72.6 73.1 62.6

Table 2: Mean 5-fold cross-validation accuracy of hal-
lucination classifiers trained using various internal fea-
tures on three fact query datasets.

intermediate neurons as for the causal effect-based 571

classifiers, so that the dimensions of baseline input 572

feature vectors are the same as the IE-based and 573

the DE-based feature vectors. 574

Results. For each dataset, we perform a 5-fold 575

cross-validation and compute the mean predictive 576

accuracy of every hallucination classifier over the 577

validation sets. Table 2 summarizes the results. 578

We found that the two causal effect measures best 579

predict model hallucinations on all datasets, con- 580

sistently exceeding all baseline models. Notably, 581

all baselines except IG only make use of internal 582

information during the hallucination runs (i.e., step 583

1 in Section 4.1), so their inferior performance com- 584

pared to causal effect classifiers suggests counter- 585

factual interventions of model inference process 586

are crucial for locating modules whose activation 587

values are most indicative of factual errors. The IG 588

baseline, as suggested by Meng et al. (2022a), is 589

often over-sensitive to input textual artifacts (e.g. 590

rare words and typos), and therefore yields much 591

less reliable predictions on the two QA datasets 592

with much more diverse input formats compared to 593

ParaRel. 594

7 Conclusion 595

Through mechanistic analysis, we identified two 596

causes of language model non-factual hallucina- 597

tions: insufficient attribute knowledge in lower- 598

layer MLPs and flawed object selection in upper- 599

layer attentions. Distinguishing properties in data 600

and model predictions, along with divergent pre- 601

training trajectories, were also unveiled. Leverag- 602

ing these insights, we crafted effective hallucina- 603

tion detectors. Our work establishes a mechanistic 604

understanding of LM factual errors, facilitating re- 605

search on transparent and explainable approaches 606

for hallucination mitigation. 607
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8 Limitation608

Our study bears several limitations. Firstly, certain609

experiments depend on interpreting intermediate610

layer representations and parameters through pro-611

jection to the vocabulary space. While widely used,612

this method only approximates the encoded infor-613

mation of model components, particularly in early614

layers. Secondly, we restricted our experiments to615

two language models (GPT-2-XL and Pythia-1.4B).616

Future research should validate our findings across617

various models (e.g., GPT-J, LLaMA, OPT model618

family) and sizes. Thirdly, our focus on non-factual619

hallucinations with simple input sequences may not620

fully capture real-world LM behavior. Future inves-621

tigations should apply mechanistic interpretability622

methods to study more complex and naturalistic623

contexts, considering longer input queries and po-624

tential adversarial features.625
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A Dataset of Non-Factual Hallucinations 864

We follow the data construction pipeline in (Dai 865

et al., 2022) to generate each of our query input 866

sequence from an entry in ParaRel (Elazar et al., 867

2021) containing a subject-relation-object knowl- 868

edge tuple (e.g. (Toulouse, is twin city of, Atlanta)) 869

which exist as entities in WikiData. Each relation 870

has a set of prompt templates (e.g. “__ is the twin 871

city of __") where entities can be substituted to 872

form full prompts (e.g. “Toulouse is the twin city 873

of __" as a prompt that queries the object). 874

After generating the query dataset, we ask a lan- 875

guage model (GPT-2-XL or Pythia-1.4B) to predict 876

the most likely capitalized alphanumeric token t̂ to 877

continue a given prompt u that contains a subject- 878

relation pair. We define a prediction t̂ to be factual 879

if it satisfies at least one of the following two con- 880

ditions: 1) it is identical to or is a prefix of the 881

ground-truth object o; 2) it is identical to or is a 882

prefix of one of the entities returned by executing 883

a WikiData SPARQL 4 query with (s, r) as inputs. 884

Finally, for each model, we discard those queries 885

with no capitalized alphanumeric tokens among 886

model predicted top-50 most likely tokens over the 887

entire vocabulary, as we found in most of these 888

cases the log likelihood of t̂ would become negligi- 889

ble. This data preprocessing pipeline yields a set 890

of 6,401 queries for GPT-2-XL and 8,345 queries 891

for Pythia-1.4B. 892

B Causal Tracing of Hallucinations 893

B.1 Experiment details 894

In the corrupted run, we follow (Meng et al., 895

2022a) and corrupt the embeddings of the first 896

token of each subject by adding Gaussian noise 897

ϵ ∼ N (0, 1). In (Meng et al., 2022a), the authors 898

perform embedding corruption by adding a Gaus- 899

sian noise with a standard deviation σ ≈ 0.15, 900

which is three times of the estimated the observed 901

standard deviation of token embeddings as sampled 902

over a body of text. However, we found this stan- 903

dard deviation often to be too small to significantly 904

change the relative log likelihood of a pair of true 905

and incorrect object, so we set σ = 1 instead. For 906

each run of text, the process is repeated multiple 907

times with different samples of corruption noise, 908

until we get a set of 10 independently sampled 909

noises that can reduce the relative log likelihood 910

y = log p(o′|E(u))
p(o|E(u)) . We found that on average, about 911

4https://query.wikidata.org/
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71.1% of the sampled noises reduces y (i.e. make912

the model to be more “truthful"), and on average,913

injecting these valid noises would reduce the rela-914

tive log likelihood from 11.7 to 2.3.915

B.2 Examples of early-site and late-site916

hallucinations917

Table 3 presents several examples randomly drawn918

from the sets of early-site and late-site hallucina-919

tions made by GPT-2-XL. We found that in many920

examples of late-site hallucinations, the model921

tends to ignore the relational information in inputs922

and output an object entity that is highly associated923

with the subject – in some cases, the model may924

even predict the subject itself as a continuation.925

For early-site hallucinations, on the other hand, the926

model predicted objects are often much less related927

to the query, suggesting a lack of general knowl-928

edge about the queried subject entity.929

C Evaluation of Pythia Models930

We evaluate Pythia-1.4B (24 layers, 2048-931

dimensional hidden states, and 16 attention heads932

per layer) on the constructed ParaRel query dataset933

to perform the embedding space projection analy-934

sis of hallucination evolution dynamics. We focus935

on evaluating the Pythia model with 1.4 billion936

parameters since it has the most similar size to937

GPT2-XL in our previous analyses. Each Pythia938

model features 154 checkpoints saved throughout939

training, and we use 32 checkpoints of Pythia1.4B940

by starting from the first checkpoint with index 0941

and taking one every five steps, plus the last check-942

point (i.e. checkpoint-0, checkpoint-5, checkpoint-943

10,...,checkpoint-150, checkpoint-153). To clas-944

sify the mechanism of each hallucinating query,945

we run the four-step causal mediation analysis946

on checkpoint-153 of Pythia-1.4B and compute947

the average indirect effects for MLPs, attentions948

and residual streams. Same as GPT-2-XL experi-949

ments, we corrupt input queries by injecting stan-950

dard Gaussian noises into the first subject token,951

and take for each query 10 independently sampled952

noise that reduce the relative object likelihood y.953

Figure 6 and 7 shows the causal tracing results for954

the Pythia-1.4B model, as well as the breakdown955

AIE distributions for 980 early-site and 5,684 late-956

site hallucinations, where we observe similar dis-957

tributional patterns of causal effects as GPT-2-XL.958

D Hallucination Detection 959

D.1 Example data from Natural Questions 960

and TruthfulQA 961

See Table 4 and 5 show example entries from Natu- 962

ralQA and TruthfulQA datasets respectively. Com- 963

pared to ParaRel, the input forms of these datasets 964

are more diverse and cover a wider range of world 965

knowledge. 966

D.2 Details of causal attribution 967

approximation 968

To exactly compute neuron-level causal effects, one 969

need to make thousands of forward model pass for 970

each query by targeting one neuron at a time. We 971

therefore apply the method of attribution patch- 972

ing introduced in (Nanda, 2023) to approximately 973

compute causal effects for all neurons through one 974

forward and one backward pass. Formally, for an 975

input prompt u and continuation sequence c which 976

the model considers as the most likely answer (note 977

that here y is no longer the log probability ratio 978

between two tokens, but the log probability of a 979

sequence of tokens). Let z, z∗ be the activation 980

values of a neuron (i.e. a dimension of the hidden 981

state of an input token at a particular transformer 982

layer) when taking the original and noise-injected 983

input embeddings E(u), E∗(u) respectively, and 984

let g(z) = ∇zy, g(z
∗) = ∇z∗y∗ be the gradient of 985

the neuron w.r.t the relative log likelihood in the 986

hallucination and the mitigation run with an input 987

embedding noise ϵ injected, we can approximate 988

the causal direct effect and the causal indirect effect 989

of z as follows: 990

IE(z, y, u, ϵ) = yE∗,z − y∗ ≈ g(z∗)(y − y∗) (4) 991

DE(z, y, u, ϵ) = yE,z∗ − y∗ ≈ g(z)(y∗ − y) (5) 992

Intuitively, we are assuming that the response vari- 993

able y is a locally linear function of the activation 994

value of z (when keeping other neurons fixed), so 995

the causal effect can be approximated as the multi- 996

plication of the gradient of z and the difference in 997

its activation values after input perturbation. The 998

approximations of AIE and ADE for each neuron 999

z can also be computed by averaging the approx- 1000

imated IEs and DEs over independently sampled 1001

noises and over all input queries. 1002
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prompt subject relation true object predicted object hallucination mechanism

Korrespodent is formed in Korrespodent country of origin Ukraine April early-site
Mantecadas, that was created in Mantacedas country of origin Spain Japan early-site
Asprey’s headquarters are in Asprey headquarters location London New early-site
Opgezwolle was developed in Opgezwolle country of origin Netherlands Belgium late-site
Israel maintains diplomatic relations with Israel diplomatic relation India Israel late-site
Germany shares its border with Germany shares border with Luxemburg Russia late-site

Table 3

Question True answers False answer

who ordered the forbidden city to be built Zhu Di Emperor Qin Shi Huang

who has won the most games in nfl 2017 Dallas Cowboys Tom Brady

who was the famous scientist that
ran the research lab moseley went to in manchester

Sir Ernest Rutherford Albert Einstein

Table 4: Sample questions from the NaturalQA dataset.

Question True answers False answers

What happens to you
if you eat watermelon seeds?

1) Nothing happens;
2) You eat watermelon seeds;
3) The watermelon seeds pass through your digestive system;
4) You will not digest the watermelon seeds;
5) The watermelon seeds will be excreted;

1) You grow watermelons in your stomach;
2) You get sick;
3) You have bad dreams;
4) You die;
5) You get indigestion;
6) You fall unconscious;
7) You digest the watermelon seeds

Who said, "Only the dead
have seen the end of war?"

1) George Santayana wrote
"Only the dead have seen the end of war";
2) General Douglas MacArthur misattributed
the quote to Plato in a farewell speech

1) Plato said, "Only the dead
have seen the end of war";
2) Douglas MacArthur first said,
"Only the dead have seen the end of war"

Table 5: Sample questions from the TruthfulQA dataset.
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Figure 6: Average Indirect Effect (AIE) of individual model components to non-factual hallucinations over 6,664
ParaRel queries that are incorrectly answered by Pythia-1.4B. ∆AIE(y, u) is defined as the difference in AIE
between 1) the attention outputs of the last 24 transformer layers and 2) the MLP outputs of the first 12 Pythia-1.4B
layers.
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(a) Early-site hallucinations (∆AIE(y, u) < 0)
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(b) Late-site hallucinations (∆AIE(y, u) ≥ 0)

Figure 7: Average Indirect Effect (AIE) of individual model components of Pythia-1.4B for (a) early-site (left
column) and (b) late-site (right column) non-factual hallucinations.
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