
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CRITIQUE-CODER: ENHANCING CODER MODELS BY
CRITIQUE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL) has emerged as a popular training paradigm, par-
ticularly when paired with reasoning models. While effective, it primarily focuses
on generating responses and lacks mechanisms to explicitly foster critique or re-
flection. Several recent studies, like Critique-Fine-Tuning (CFT) and Critique-
Guided-Distillation (CGD) have shown the benefits of explicitly teaching LLMs
how to critique. Motivated by them, we propose Critique Reinforcement Learning
(CRL), where the model is tasked with generating a critique for a given (question,
solution) pair. The reward is determined solely by whether the final judgment la-
bel c ∈ {True,False} of the generated critique aligns with the ground-truth
judgment c∗. Building on this point, we introduce CRITIQUE-CODER, which is
trained on a hybrid of RL and CRL by substituting 20% of the standard RL data
with CRL data. We fine-tune multiple models (CRITIQUE-CODER) and evalu-
ate them on different benchmarks to show their advantages over RL-only mod-
els. We show that CRITIQUE-CODER consistently outperforms RL-only baselines
on all the evaluated benchmarks. Notably, our CRITIQUE-CODER-8B can reach
over 60% on LiveCodeBench (v5), outperforming other reasoning models like
DeepCoder-14B and GPT-o1. Beyond code generation, CRITIQUE-CODER also
demonstrates enhanced general reasoning abilities, as evidenced by its better per-
formance on logic reasoning tasks from the BBEH dataset. This indicates that the
application of CRL on coding datasets enhances general reasoning and critique
abilities, which are transferable across a broad range of tasks. Hence, we believe
that CRL works as a great complement to standard RL for LLM reasoning.

Qwen3-4B Qwen3-8B
45

50

55

60

65

70

54.2

57.5
56.6

59.659.0
60.8

LiveCodeBench (v5)
Base RL Ours

Qwen3-4B Qwen3-8B

20

25

30

35

40

45

21.8

28.4

23.6

34.5

24.4

35.6

Aider-Polyglot
Base RL Ours

Qwen3-4B Qwen3-8B
80

82

84

86

88

90

92

85.2
85.8

84.9

86.286.5

87.7

EvalPlus
Base RL Ours

Figure 1: The effectiveness of our CRITIQUE-CODER, trained with a combination of CRL and RL
data, compared to baselines and models trained solely on RL data, with both training and eval-
uation conducted under the think mode setting. EvalPlus denotes the average of 4 benchmarks:
HumanEval, MBPP, and their corresponding plus version.

1 INTRODUCTION

Recent breakthroughs in complex reasoning across code generation, mathematical problem-solving,
and logical deduction have been driven by large language models such as OpenAI’s o1-o4 (Jaech
et al., 2024a), DeepSeek-R1 (Guo et al., 2025), and Kimi-K1.5 (Team et al., 2025). A key fac-
tor behind these advances is the combination of reinforcement learning (RL) with chain-of-thought
(CoT) (Wei et al., 2022), which enables models to iteratively refine intermediate reasoning steps.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Building on this foundation, research has increasingly focused on scaling reasoning abilities in code
generation. For example, AceCoder (Zeng et al., 2025), HardTests (He et al., 2025), and Kod-
Coder (Xu et al., 2025) developed automated large-scale code data generation pipelines and applied
RL using reward models and test cases pass rewards, achieving notable performance gains. SWE-
RL (Wei et al., 2025) pioneered the scaling of RL-driven LLM reasoning for real-world software
engineering, leveraging an efficient rule-based reward system.

Standard reinforcement learning with verifiable reward (RLVR) has shown strong capabilities in
improving models’ problem-solving abilities. However, this paradigm can hardly elicit the in-
ternal critique or reflection behavior on existing solutions. Recently, there has been a line of
work (Wang et al., 2025c; Gou et al., 2024; Xi et al., 2024; Kapusuzoglu et al., 2025; Wang et al.,
2025a; Tang et al., 2024) aiming to explicitly teach LLMs to critique to unleash their reasoning
ability. Inspired by this, we propose a new learning paradigm, Critique Reinforcement Learning
(CRL), which incorporates this critique mechanism into RL and explicitly rewards models for ac-
curate reflection. CRL not only optimizes problem-solving skills but also explicitly incentivizes
its critique abilities via rewards for whether it can correctly judge a response’s correctness. Spe-
cially, the model is prompted with a question–solution pair [q; s] to predict a binarized judgment
label c ∈ {True,False}, which is compared with the annotated label c∗ to derive a binary (ver-
ifiable) reward. This is in contrast to the standard RLVR algorithm, which incentivizes the model
to predict a correct solution s to a given query q, as shown in Figure 2. Different from CFT (Wang
et al., 2025c), CRL incentivizes the model based on its self-generated judgment c instead of using
teacher-provided critique traces.

Based on the CRL paradigm, we develop CRITIQUE-CODER, a model trained to generate both high-
quality coding solutions and critiques on existing solutions. We conducted a series of experiments
with the GRPO algorithm (Shao et al., 2024). Specifically, we train QWEN3-4B and QWEN3-
8B (Yang et al., 2025) on the filtered rStar seed dataset (Liu et al., 2025) using a hybrid framework
that unifies CRL and standard RLVR. We used two-stage training, and the training context length is
extended from 16k to 32k to unleash the power of the long reasoning chain.

CRITIQUE-CODER present consistent improvements across multiple benchmarks, illustrated in Fig-
ure 1. From QWEN3-4B, our CRITIQUE-CODER achieves 59.0 accuracy on LiveCodeBench (v5)
(Jain et al., 2024), yielding +4.8 points over the base model and +2.4 points over the RL-only
variant. Remarkably, it even surpasses QWEN3-8B by +1.5 points. On QWEN3-8B, CRITIQUE-
CODER reaches 35.6 points on Aider-Polyglot, +7.2 points higher than baseline. It also reaches
60.8 points on LiveCodeBench (v5), which outperforms other reasoning models like DeepCoder-
14B (Luo et al., 2025) and GPT-o1 (Jaech et al., 2024b). This showcases the effectiveness of CRL
training. Furthermore, results on the logical reasoning benchmark BIG-Bench Extra Hard (Kazemi
et al., 2025) demonstrate that CRITIQUE-CODER achieves strong transferable reasoning ability, sur-
passing both baseline and RL-trained models and yielding a +6.1 improvement over the base model.
We also find that CRL is more effectively utilized as a complement to RL rather than serving as
an alternative. This is because CRL training primarily focuses on critiquing question–solution pairs
without generating actual solutions. Our ablation study in Table 5 confirms a 20% mix ratio as a
best practice.

In summary, we introduce CRL, a novel reinforcement learning (RL) training framework that in-
corporates critique learning within the RL paradigm. This novel learning approach enhances the
model’s critique and reasoning abilities, addressing the lack of critique and reflection incentives
typically found in standard RL frameworks. Building on this foundation, we introduce CRITIQUE-
CODER, a model trained on a mix of CRL and RL data. Compared to baseline models and those
trained exclusively with RL, CRITIQUE-CODER shows superior performance across coding datasets
of varying difficulty. Furthermore, the model demonstrates transferable general reasoning abilities,
as evidenced by its strong performance on logic reasoning benchmarks.

2 METHOD

2.1 PRELIMINARY

Problem Definition. CRITIQUE-CODER incorporates two complementary training frameworks for
LLMs. The first follows the standard RL setting: given a question q, the policy πθ samples n

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Coding LLM Policy GRPO
rStarCoder Seed

Generate
Solutions

Filter
Slow Tests

Solutions

Filtered Test Cases

Question

Judgement
      of Solution

Tests

Correct 
Judge?

Question
+

Solution

Solutions

Policy
Update

Reward

Reward

Standard Reinforcement Learning

Critique Reinforcement Learning

RL

A
cc

ur
ac

y

RL+CRL

RL RL+CRL

Th
in

ki
ng

 L
en

gt
h

RL RL+CRLC
od

e 
C

om
m

en
ts

RL RL+CRL

C
od

e 
Fu

nc
tio

ns

Figure 2: Comparison between CRL and Standard RL. Standard RL generates solutions based on
input questions and evaluates them by executing test cases, while CRL critiques the solution for
the paired question and compares the resulting conclusion with the GT to determine its correctness.
Experiment shows that RL+CRL can improve not only accuracy, but also the code quality.

candidate solutions {si}ni=1; each si is evaluated on the annotated test cases T to compute its pass
rate, which serves as the reward signal Rrl,i.

To complement this solution-level feedback, we introduce Critique Reinforcement Learning (CRL),
which provides binary correction signals on question–solution pairs. Specially, given an annotated
dataset D = {([qk; sk], c∗k)}Nk=1, where each pair ([q; s]) consists of a question and a solution with
an associated binary judgment label c∗ ∈ {0, 1}, the policy πθ is trained to generate n predictions
{ci}ni=1 indicating whether s satisfies the requirement posed by q. The reward Rcrl,i is derived from
the comparison between ci and c∗.

Finally, two reward signals Rrl,i from RL and Rcrl,i from CRL are combined together to update
policy parameters θ using GRPO. This unified optimization enables the model to benefit from both
critique-guided learning and task-oriented learning, fostering more critical and reflective learning.

Group Relative Policy Optimization (GRPO). We now detail GRPO (Shao et al., 2024), the op-
timization algorithm used to update model parameters. In contrast to PPO (Schulman et al., 2017),
GRPO enhances performance by leveraging relative performance-based updates, which yield more
stable and efficient policy refinement. The formal definition of GRPO is provided below:

J (θ) = E

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ρi,tÂi,t, clip(ρi,t, 1− ϵ, 1 + ϵ)Âi,t

)
− β DKL

(
πθ∥πref

) ,

where ρi,t =
πθ(oi,t | x, oi,<t)

πθold(oi,t | x, oi,<t)
.

(1)

In the above equation, ρi,t denotes the probability ratio of generating output oi,t under the new
policy πθ and old policy πθold , Âi,t represents the calculated advantage within each output group,
and DKL regularizes the optimization by measuring the divergence between πθ and the reference
policy πθref , which can prevent the policy from drifting too far away.

In our training scenario, the policy input x can be either a single question q from RL or a ques-
tion–solution pair ([q; s]) from CRL. These two input modalities give rise to distinct reward signals,
solution-level rewards Rrl,i and critique-level rewards Rcrl,i. Both signals are aggregated in the
computation of the advantage Âi,t, which makes the GRPO update in our framework fundamentally
different from standard RL: the advantage estimation is jointly shaped by task outcomes and critique
guidance, allowing the policy to align with both execution correctness and reflective judgment.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Dataset statistics of rStar-Coder seed
dataset before and after test-case filtering to save the
verification time.

Metric Before
Filtering

After
Filtering

Questions 29,365 23,069
Avg Cases 87 24
Median Cases 48 30
Avg Input Chars 96,208 40

Table 2: Dataset difficulty statistics us-
ing QWEN3-4B (thinking) with tempera-
ture=0.6, top-p=0.95, and top-k=20

Metric Value

Pass@1 43.72%
Pass@2 49.05%
Pass@4 52.98%

Avg Tokens / Solution 13,732

2.2 DATASET CONSTRUCTION

To evaluate the efficacy of CRL, the first step is to build a reliable CRL dataset. The construction
process is detailed in the following steps.

RL Dataset Selection. We construct our CRL dataset from the human-seeded RL dataset of rStar-
Coder (Liu et al., 2025), which contains a large number of test cases collected from both human-
written and verified generated data. However, we observe that many questions in the original dataset
include an excessive number of test cases (often exceeding 100 per problem), and some individual
cases are extremely long (over 10,000 tokens). Such characteristics substantially increase verifica-
tion time during RL training. To improve efficiency and consistency, we filter the data by discarding
test cases longer than 200 tokens and randomly sampling 30 cases for each problem. Table 1 reports
dataset statistics before and after filtering, showing a significant reduction in both test case length
and volume. Specifically, the average input characters decrease from 96,208 to 40, and the aver-
age number of cases drops from 87 to 24. This reduction greatly shortens test case evaluation time
during training, resulting in a more efficient learning process. To assess dataset difficulty, we eval-
uate QWEN3-4B (Yang et al., 2025) on the filtered dataset, shown in Table 2. The model achieves
43.72% at Pass@1 and 52.98% at Pass@4, indicating a moderate difficulty level—solvable in part,
yet leaving significant headroom for further progress. This makes the dataset well-suited for RL
training under the GRPO algorithm, where advantage is computed within groups.

Question:
You are an experienced 
Codeforces user …Q

Judgment: True

Solution:
import bisect
def main: …

Question:
You are an experienced …

Solution:
import bisect
def main: …

Filter Inference

Original 
Dataset   RL Dataset   Test Case 

Execution  Candidate Solution   CRL Data  

Figure 3: Critique data generation. This process involves generating candidate solutions and anno-
tating their judgment in the CRL dataset based on the pass rate over test cases.

Critique Data Generation. Figure 3 illustrates the critique data generation workflow. For each
problem, we prompt QWEN3-CODER-30B-A3B-INSTRUCT (Yang et al., 2025) to generate outputs,
from which we extract code blocks as candidate solutions. Empty code blocks are discarded to
ensure that only valid programs are retained for evaluation. Each candidate solution is then executed
on the test cases from the filtered dataset, and its pass rate is computed to determine its judgment.
A practical challenge is that certain test cases exhibit excessively long execution times, which may
cause timeouts and lead to the erroneous classification of correct solutions as failures. To relax this
constraint, we adopt a pass rate threshold of 80%: candidate solutions are labeled as True if their
test pass rate exceeds this percentage, and as False otherwise.

Hybrid Data Integration. In our case, training exclusively on critique-oriented data biases the
model toward overly focusing on evaluative feedback rather than task-oriented solutions, thereby
hindering its ability to directly generate answers in evaluation tasks. To mitigate this issue, we
construct a hybrid dataset that combines both CRL and standard RL data. This approach balances

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Training procedure of CRITIQUE-CODER

Input dataset D = {([qi; si], c∗i )}
N1
i=1 ∪ {(qj , tj)}

N2
j=1, policy πθ

1: Initialize policy model πθ ← πθinit

2: for each step do
3: Sample a batch B ⊂ D
4: for each data instance d ∈ B do
5: if d = ([q; s], c∗) ▷ CRL data with judgment then
6: Sample G outputs {oi}Gi=1 ∼ πθ([q; s])
7: Parse each oi to extract judgment ci inside \conclusion{}
8: Compute reward Rcrl,i(ci, c

∗) for each ci
9: else if d = (q, t) ▷ RL data with test cases then

10: Sample G outputs {oi}Gi=1 ∼ πθ(q)
11: Parse each oi to extract solution si enclosed by ’’’ [code] ’’’
12: Evaluate si on test cases t, obtain reward Rrl,i(si, t)
13: end if
14: end for
15: Compute Âi,t from reward Ri, where Ri = Rcrl,i(ci, c

∗) for CRL or Rrl,i(si, t) for RL.
16: Update the policy model πθ with GRPO ( Equation 1)
17: end for

the characteristics of both data types and exposes the model to a diverse range of scenarios during
training. Concretely, we randomly assign 20% of the data from the dataset to be CRL data, with
the remaining 80% consisting of standard RL data. Such a configuration not only mitigates the risk
of format shift but also improves the robustness of the learning process by jointly exploiting the
complementary advantages of both CRL and RL training paradigms.

2.3 TRAINING

Training procedure. Algorithm 1 presents the training procedure of CRITIQUE-CODER, which
integrates CRL and RL within a unified framework. The policy model is initialized from a pre-
trained checkpoint πθinit and optimized on a hybrid dataset comprising CRL samples with judgment
and RL samples with test cases. For CRL data, the model generates multiple candidate critiques,
extracts judgment predictions from the \conclusion{} field, and assigns rewards according to
their alignment with the GT labels. For RL data, the model produces solution candidates, extracts
the code block enclosed by ‘‘‘[code]‘‘‘, and evaluates them against the given test cases to de-
rive rewards. In both cases, the rewards are converted into advantage estimates, which subsequently
guide the policy update through GRPO.

Reward function. As specified in Algorithm 1, rewards are computed from two data sources: CRL
and RL. For CRL samples, the model is prompted to store the final judgment in \conclusion{},
from which the predicted label c is extracted. A reward of 1 is assigned if c matches the ground truth
c∗; otherwise, including the case where the prediction is missing, the reward is 0. For RL samples,
the reward is defined as the pass rate across test cases. Formally,

Rcrl(c, c
∗) =

{
1, if c = c∗,

0, otherwise,
, Rrl(s, T ) =

K

N
(2)

where T is the set of N test cases and K denotes the number of cases successfully solved by the
model’s output s. Thus Rrl ∈ [0, 1], with larger values indicating more reliable solutions. At the
batch level, each instance i receives its reward according to its data type:

Ri =

{
Rcrl(ci, c

∗
i ), if i ∈ BCRL,

Rrl(si, Ti), if i ∈ BRL.
(3)

Here BCRL and BRL denote the CRL and RL subsets within the batch, respectively.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3 EXPERIMENT

3.1 TRAINING SETUP

We conducted experiments on two models, QWEN3-4B and QWEN3-8B (Yang et al., 2025), in
thinking mode. Following a two-phase training strategy similar to DeepCoder (Luo et al., 2025), we
set the maximum response length to 16k in the first phase and increase it to 32k once the rewards
have stabilized. During training, two rule-based rewards are employed, each tailored to a different
data type. For CRL data, the reward is 1.0 if the prediction matches the ground truth (GT) and 0.0
otherwise; additionally, during the 16k phase, this reward is scaled by a factor of 0.8 to reduce its
dominance relative to RL signals. For RL data, the reward corresponds to the pass rate over test
cases, ranging from 0.0 to 1.0. For standard RL training, we adopt the thinking prompt used in
the Qwen3 paper on LiveCodeBench, while the CRL training prompt is provided in Appendix B.
Throughout training, we apply the GRPO algorithm (Shao et al., 2024), which provides improved
stability and efficiency compared to PPO (Schulman et al., 2017). The hyperparameters are set as
follows: a batch size of 128, a learning rate of 1e-6, and 8 sampled outputs per prompt. To encourage
exploration while stabilizing entropy, the clipping ratio is asymmetric, with an upper bound of 0.3
and a lower bound of 0.2. We trained the model on the entire dataset for one epoch, and selected the
best-performing checkpoint using the LiveCodeBench (v5) as the validation set.

3.2 EVALUATION SETUP

To evaluate and compare our training results, we utilized four different benchmarks: EvalPlus (Liu
et al., 2023) (an average of HumanEval (Chen et al., 2021), HumanEval+, MBPP (Austin et al.,
2021), and MBPP+), BigCodeBench-Instruct (Zhuo et al., 2024), Aider-Polyglot (Aider, 2024), and
LiveCodeBench (v5, 2024.10–2025.02) (Jain et al., 2024). These benchmarks cover a diverse range
of coding tasks, enabling a comprehensive assessment of the model’s code generation ability.

For the sampling configuration, we follow the thinking mode settings reported in the original Qwen3
paper (Yang et al., 2025), with a temperature of 0.6, a top-p of 0.95, a top-k of 20, and a maximum
output length of 32,768 tokens. The same configuration is applied consistently across all evaluation
tasks. For LiveCodeBench specifically, we adopt the official evaluation prompt used in Qwen3
thinking mode. We also compare with some existing strong coding models like DeepSeek-R1-
distill-14B (Guo et al., 2025), DeepCoder (Luo et al., 2025), DeepSeek-V2.5 (DeepSeek-AI, 2024),
and GPT-o1 (Jaech et al., 2024b) with high reasoning effort.

3.3 MAIN RESULTS

Gains over Base Models. Compared with the base models, CRITIQUE-CODER leads to consis-
tent and notable improvements across benchmarks of varying difficulty levels. On QWEN3-4B, for
example, the LiveCodeBench score of CRITIQUE-CODER rises from 54.2 to 59.0, a gain of +4.8,
surpassing the larger QWEN3-8B baseline by +1.5 points. On the Aider-Polyglot benchmark, which
consists of multiple programming languages, CRITIQUE-CODER still demonstrates strong perfor-
mance, achieving a +7.2 improvement from QWEN3-8B baseline, despite being trained solely on
Python data using CRL. These results indicate the effectiveness of our algorithm.

Advantages over RL-trained Models. Under identical datasets and training configurations, re-
placing part of the RL data with CRL consistently yields superior results across all benchmarks. On
QWEN3-4B, CRITIQUE-CODER exceeds the Qwen3-4B-RL by +2.4 points on LiveCodeBench and
improves the overall benchmark average by +1.5 points. On QWEN3-8B, it outperforms the Qwen3-
8B-RL counterpart by +2.7 points on BigCodeBench-Hard, contributing to an average gain of +1.7
points across all benchmarks. These findings highlight that CRL brings complementary benefits
over RL, enabling CRITIQUE-CODER to achieve more robust and consistent improvements. We fur-
ther analyze the test outputs of CRL and standard RL on LiveCodeBench, as illustrated in Figure 4.
The results show that CRL generates longer reasoning traces in the think blocks, indicating more
extensive deliberation and reflection, and confirming that CRL indeed enhances the model’s reason-
ing and critique capabilities. It also incorporates markedly more explanatory comments within the
generated code, indicating stronger tendencies toward self-explanation.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: CRITIQUE-CODER performance compared with baseline and models trained with standard
RL. The RL training was conducted on the filtered rStar-Coder seed dataset, and the CRL training
was carried out by converting 20% of the data into CRL for fair comparison.

Model EvalPlus BigCodeBench-I Aider-Polyglot LiveCodeBench AVGFull Hard v5
AceCoder-7B 82.7 43.3 19.6 - - -
DeepSeek-R1-Distill-14B 82.4 38.1 20.9 18.6 53.0 42.6
DeepCoder-14B 85.3 38.2 18.2 18.4 60.6 44.1
DeepSeek-V2.5-238B 83.8 48.9 27.0 17.8 42.6 44.0
GPT-o1 88.6 50.4 28.4 61.7 59.5 57.7

Baseline = Qwen3-4B (Thinking)

Baseline 85.2 42.0 20.9 21.8 54.2 44.8
Qwen3-4B-RL 84.9 40.6 23.0 23.6 56.6 45.7
CRITIQUE-CODER 86.5 43.1 23.0 24.4 59.0 47.2
∆ (Ours-Baseline) +1.3 +1.1 +2.1 +2.6 +4.8 +2.4

Baseline = Qwen3-8B (Thinking)

Baseline 85.8 44.6 23.6 28.4 57.5 48.0
Qwen3-8B-RL 86.2 44.5 24.3 34.5 59.6 49.8
CRITIQUE-CODER 87.7 46.6 27.0 35.6 60.8 51.5
∆ (Ours-Baseline) +1.9 +2.0 +3.4 +7.2 +3.3 +3.5

Figure 4: Analysis of the generations on the Live-
CodeBench (v5) problems. Results show that CRL can
elicit better reasoning behavior and coding quality.

Test Time Scaling 
Iterations (1-6)

Starting Point

Figure 5: Test-time scaling perfor-
mance of CRITIQUE-CODER-4B on
LiveCodeBench (v5)

Comparison with Frontier Models. Our 4B and 8B models are also highly competent in their
absolute performance. CRITIQUE-CODER-4B can beat the DeepCoder-14B (Luo et al., 2025) sig-
nificantly across the board despite having only 28% of its parameters. CRITIQUE-CODER-8B can
beat other strong models and only lags behind GPT-o1 (Jaech et al., 2024b) on Aide-Polyglot, which
is mainly due to not optimizing other languages beyond Python. On EvalPlus, CRITIQUE-CODER-
4B scores an impressive 86.5, just behind GPT-o1, while CRITIQUE-CODER-8B takes it a step
further with an even higher score of 87.7.

3.4 TRANSFERABLE REASONING ABILITY

To examine whether the critique and reasoning abilities learned by CRITIQUE-CODER extend be-
yond coding tasks, we further evaluate the model on the BIG-Bench Extra Hard (BBEH) logic
reasoning benchmark (Kazemi et al., 2025). As shown in Table 4, CRITIQUE-CODER achieves
consistent improvements over both the baseline QWEN3-4B and its RL-trained variant across all
four reasoning subtasks. In particular, it outperforms the Qwen3-4B-RL model by +4.5 points on
BoardgameQA, leading to an overall average gain of +4.0 points, and surpasses the base model by
+6.1 points on average. These results indicate that the critique-enhanced training paradigm not only
improves performance in coding benchmarks but also strengthens general reasoning capabilities.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Performance comparison on four BIG-Bench Extra Hard (BBEH) logic reasoning subtasks
Model Time Arithmetic DisambiguationQA Zebra Puzzles BoardgameQA AVG

Baseline = Qwen3-4B (Thinking)

Baseline 40.5 43.3 36.5 66.5 46.7
Qwen3-4B-RL 45.0 43.3 40.5 66.5 48.8
CRITIQUE-CODER 48.5 47.5 44.0 71.0 52.8
∆ (Ours-Baseline) +8.0 +4.2 +7.5 +4.5 +6.1

Table 5: Impact of different CRL data proportion. All datasets are derived from the filtered rStar-
Coder seed dataset, with varying proportions of RL data converted into CRL data.

Model EvalPlus BigCodeBench-I Aider-Polyglot LiveCodeBench AVGFull Hard v5
Baseline = Qwen3-4B (Thinking)

0% of CRL Data 84.9 40.6 23.0 23.6 56.6 45.7
50% of CRL Data 86.5 42.4 22.3 24.0 56.0 46.2
100% of CRL Data 85.2 41.6 17.6 21.3 56.6 44.5
20% of CRL Data (Ours) 86.5 43.1 23.0 24.4 59.0 47.2

3.5 TEST TIME SCALING

We further evaluate CRITIQUE-CODER-4B with sequence test-time scaling (budget forcing) (Muen-
nighoff et al., 2025), which extends the reasoning length at inference. On LiveCodeBench (v5),
removing the constraint on reasoning tokens enables the model to achieve a score of 62.0 after four
iterations, representing a +3.0 improvement compared to the setting without test-time scaling, as
reported in Figure 5. This result is highly valuable to show that our 4B model can even beat other
much larger baselines like DeepCoder-14B.

3.6 ABLATION STUDY

To examine how the proportion of CRL data affects training, we perform an ablation study by
varying the percentage of RL data replaced with CRL data, while keeping the overall dataset size
fixed. As shown in Table 5, introducing a moderate amount of CRL data consistently improves
performance over the pure RL setting. In particular, using 20% CRL data yields the best overall
results, surpassing both the baseline (0%) and higher proportions (50% and 100%) across most
benchmarks. Notably, while 50% CRL still maintains comparable performance, fully replacing RL
data with CRL leads to clear degradation, suggesting that CRL is most effective as a complement to
RL rather than a complete substitute. These findings highlight the importance of balancing RL and
CRL data, with a small proportion of CRL providing the most robust gains. Otherwise, there will
be a mismatch between training outputs and inference behavior during evaluation, as training solely
with CRL drives the model to focus excessively on judgment while neglecting solution generation.

3.7 LIMITATIONS IN SELF-CRITIQUE

Although incorporating CRL enhances the model’s reasoning and critique abilities, it does not ex-
hibit self-critique capability. To explore this limitation, we implemented critique-based parallel test-
time scaling on CRITIQUE-CODER. Specifically, on LiveCodeBench v5, the CRITIQUE-CODER-4B
was prompted to generate 10 candidate solutions for each question. These solutions, along with their
corresponding question, were subsequently fed back into the model for critique, with each solution
being critiqued for 64 samples. We then attempted to identify the best solution by leveraging these
critiques. The solutions were scored based on the number of True critiques they received. If mul-
tiple solutions received identical scores, the solution with the shortest critique thinking token was
selected. However, this approach did not result in performance improvements, indicating that the
model lacks genuine self-critique ability.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4 RELATED WORKS

4.1 CRITIQUE LEARNING

The idea of leveraging critiques for improving model reasoning has been explored in several lines
of research. One direction is self-correction (Bai et al., 2022; Gou et al., 2023; Madaan et al.,
2023; Shinn et al., 2023), where models iteratively evaluate and revise their own outputs. Although
such methods are promising, subsequent studies have questioned their robustness and consistency
(Huang et al., 2023; Valmeekam et al., 2023). Another line involves reward models (Uesato et al.,
2022; Wang et al., 2023; Lightman et al., 2023), which act as learned evaluators that assign quality
scores to either final outputs or intermediate reasoning steps, thereby guiding reinforcement learning
to enhance reasoning capabilities. More recently, Critique Fine-Tuning (CFT) (Wang et al., 2025c;b)
explicitly trains models to critique candidate solutions, demonstrating improved reasoning ability.

Our approach is most related to CFT. Unlike CFT, which directly optimizes the model to imitate the
critique reasoning process, CRL instead encourages the model to actively explore and learn from
the correctness of its final judgments, thereby combining the benefits of critique reasoning with
reinforcement feedback.

4.2 REINFORCEMENT LEARNING FOR CODE GENERATION

Code generation, a core capability of LLMs, has received considerable attention. CodeRL (Le et al.,
2022) introduces a pioneering RL framework for code generation, employing an actor–critic archi-
tecture to encourage functionally correct outputs. Building on this foundation, PPOCoder (Shojaee
et al., 2023) incorporates the PPO algorithm to further stabilize and improve training. Moreover,
RLEF (Gehring et al., 2024) advances the paradigm by explicitly leveraging execution feedback
during synthesis. More recently, AceCoder (Zeng et al., 2025) proposes a scalable pipeline that
automatically constructs question–test case pairs from code data to facilitate RL training.

4.3 CHAIN-OF-THOUGHT REASONING.

Recent advances in reasoning language models (RLLMs) show that extended chain-of-thought
(CoT) reasoning substantially improves performance on tasks like coding and mathematics. OpenAI
o1 (Jaech et al., 2024a) and DeepSeek R1 (Guo et al., 2025) exemplify this trend by using inference-
time scaling, where models iteratively explore and reflect before converging on a solution. Building
on this, KIMI K1.5 (Team et al., 2025) simplifies the reinforcement learning framework while in-
corporating long-context scaling and enhanced policy optimization, further advancing reasoning
efficiency. More recently, Qwen3 (Yang et al., 2025) combines a thinking mode for reasoning with a
non-thinking mode for fast responses, switching between them to balance latency and performance.

5 CONCLUSION

In this paper, we introduce Critique Reinforcement Learning (CRL), a novel reinforcement learning
paradigm that integrates critique learning into the RL by incorporating feedback on the correctness
of critiques predicted by the model. Building on this foundation, we developed CRITIQUE-CODER,
trained on a mix of RL and CRL data. On LiveCodeBench v5, CRITIQUE-CODER-4B achieves a
score of 59.0, outperforming the baseline by +4.8 points and the RL-only model by +2.4 points.
In addition to coding tasks, CRL also enhances general reasoning ability. On the BBEH logical
reasoning benchmark, CRITIQUE-CODER shows substantial improvements, surpassing the baseline
and RL-trained models by +6.1 and +4.0 points on average across four subtasks. These results
demonstrate that CRL not only boosts critique and reflection abilities over standard RL but also
enables these capabilities to extend beyond coding domains. However, ablation studies reveal that
training exclusively on CRL data yields poorer performance than RL alone, since CRL focuses
on generating critiques rather than task-oriented solutions, leading to a mismatch with evaluation
requirements. Therefore, rather than substituting RL, CRL serves as a powerful complement to it.
Taken together, our findings demonstrate that CRL enhances standard RL by endowing models with
stronger critique and reasoning abilities—capabilities that manifest not only in coding tasks but also
transfer effectively to broader reasoning domains.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study does not involve human subjects, sensitive data, or potentially harmful methodologies.
The design and development of our framework adheres to principles of fairness, transparency, and
reproducibility. We have reviewed ICLR 2026’s Code of Ethics and confirm that our work complies
with its guidelines in all aspects.

REPRODUCIBILITY STATEMENT

We affirm our commitment to the reproducibility of this research. The code is provided along with
the paper submission, and our framework will be open-sourced and made publicly available upon
publication to facilitate independent verification and further study.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Aider. Aider-polyglot benchmark. https://aider.chat/2024/12/21/polyglot.
html#the-polyglot-benchmark, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco Cohen, and
Gabriel Synnaeve. Rlef: Grounding code llms in execution feedback with reinforcement learning.
arXiv preprint arXiv:2410.02089, 2024.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang, Nan Duan, Weizhu Chen, et al. Critic: Large
language models can self-correct with tool-interactive critiquing. In The Twelfth International
Conference on Learning Representations, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhongmou He, Yee Man Choi, Kexun Zhang, Jiabao Ji, Junting Zhou, Dejia Xu, Ivan Bercovich,
Aidan Zhang, and Lei Li. Hardtests: Synthesizing high-quality test cases for llm coding. arXiv
preprint arXiv:2505.24098, 2025.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024a.

OpenAI: Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,
Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace

11

https://aider.chat/2024/12/21/polyglot.html#the-polyglot-benchmark
https://aider.chat/2024/12/21/polyglot.html#the-polyglot-benchmark


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark
Chen, Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah,
Mehmet Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen,
Michael Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov,
Miles Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese,
Neil Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum,
Oleg Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter
Zhokhov, Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara,
Reimar Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu,
Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sand-
hini Agarwal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao,
Shengli Hu, Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer
Papay, Steph Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao
Wang, Taylor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas
Dimson, Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peter-
son, Tyna Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko,
Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining
Chen, Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, Zhuohan Li,
and et al. Openai o1 system card. Technical Report arXiv:2412.16720, OpenAI, San Francisco,
CA, December 2024b. URL https://arxiv.org/abs/2412.16720. arXiv:2412.16720
[cs.AI].

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Berkcan Kapusuzoglu, Supriyo Chakraborty, Chia-Hsuan Lee, and Sambit Sahu. Critique-
guided distillation: Improving supervised fine-tuning via better distillation. arXiv preprint
arXiv:2505.11628, 2025.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou, San-
ket Vaibhav Mehta, Lalit K Jain, Virginia Aglietti, Disha Jindal, Peter Chen, et al. Big-bench
extra hard. arXiv preprint arXiv:2502.19187, 2025.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36:21558–21572, 2023.

Yifei Liu, Li Lyna Zhang, Yi Zhu, Bingcheng Dong, Xudong Zhou, Ning Shang, Fan Yang, and
Mao Yang. rstar-coder: Scaling competitive code reasoning with a large-scale verified dataset.
arXiv preprint arXiv:2505.21297, 2025.

12

https://arxiv.org/abs/2412.16720


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang
Wu, Xiaoxiang Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Er-
ran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A fully open-source
14b coder at o3-mini level. https://pretty-radio-b75.notion.site/
DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51,
2025. Notion Blog.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code
generation using deep reinforcement learning. arXiv preprint arXiv:2301.13816, 2023.

Zhengyang Tang, Ziniu Li, Zhenyang Xiao, Tian Ding, Ruoyu Sun, Benyou Wang, Dayiheng Liu,
Fei Huang, Tianyu Liu, Bowen Yu, et al. Self-evolving critique abilities in large language models.
In Second Conference on Language Modeling, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language models
really improve by self-critiquing their own plans? arXiv preprint arXiv:2310.08118, 2023.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv
preprint arXiv:2312.08935, 2023.

Yubo Wang, Ping Nie, Kai Zou, Lijun Wu, and Wenhu Chen. Unleashing the reasoning potential of
pre-trained llms by critique fine-tuning on one problem. Proceedings of EMNLP, 2025a.

Yubo Wang, Ping Nie, Kai Zou, Lijun Wu, and Wenhu Chen. Unleashing the reasoning potential of
pre-trained llms by critique fine-tuning on one problem. arXiv preprint arXiv:2506.03295, 2025b.

Yubo Wang, Xiang Yue, and Wenhu Chen. Critique fine-tuning: Learning to critique is more effec-
tive than learning to imitate. arXiv preprint arXiv:2501.17703, 2025c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via rein-
forcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

13

https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhiheng Xi, Dingwen Yang, Jixuan Huang, Jiafu Tang, Guanyu Li, Yiwen Ding, Wei He, Boyang
Hong, Shihan Do, Wenyu Zhan, et al. Enhancing llm reasoning via critique models with test-time
and training-time supervision. arXiv preprint arXiv:2411.16579, 2024.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A
diverse, challenging, and verifiable synthetic dataset for coding. arXiv preprint arXiv:2503.02951,
2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. Acecoder:
Acing coder rl via automated test-case synthesis. arXiv preprint arXiv:2502.01718, 2025.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A USE OF LLMS

In preparing this manuscript, the authors used a large language model (LLM) to polish the writing
and improve readability across sections. The LLM was not used to generate original content, design
the research, or analyze data. All research ideas, results, and conclusions are the authors’ own, and
the authors take full responsibility for the accuracy and integrity of the content.

B CRL TRAINING PROMPT

We provide the prompt template used for constructing CRL training data.

Table 6: Prompt for constructing CRL training data
You will be given a question (problem specification) and a submitted solution. Your task is to
determine whether the solution is correct and fully satisfies the specification.

Question: {question}

Solution: {solution}

Conclude with \conclusion{T} for correct, \conclusion{F} for wrong.

15


	Introduction
	Method
	Preliminary
	Dataset Construction
	Training

	Experiment
	Training Setup
	Evaluation Setup
	Main Results
	Transferable Reasoning Ability
	Test Time Scaling
	Ablation Study
	Limitations in Self-Critique

	Related Works
	Critique Learning
	Reinforcement Learning for Code Generation
	Chain-of-Thought Reasoning.

	Conclusion
	Use of LLMs
	CRL training prompt

