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ABSTRACT

Reinforcement Learning (RL) has emerged as a popular training paradigm, par-
ticularly when paired with reasoning models. While effective, it primarily focuses
on generating responses and lacks mechanisms to explicitly foster critique or re-
flection. Several recent studies, like Critique-Fine-Tuning (CFT) and Critique-
Guided-Distillation (CGD) have shown the benefits of explicitly teaching LLMs
how to critique. Motivated by them, we propose Critique Reinforcement Learning
(CRL), where the model is tasked with generating a critique for a given (question,
solution) pair. The reward is determined solely by whether the final judgment la-
bel c ∈ {True,False} of the generated critique aligns with the ground-truth
judgment c∗. Building on this point, we introduce CRITIQUE-CODER, which is
trained on a hybrid of RL and CRL by substituting 20% of the standard RL data
with CRL data. We fine-tune multiple models (CRITIQUE-CODER) and evalu-
ate them on different benchmarks to show their advantages over RL-only mod-
els. We show that CRITIQUE-CODER consistently outperforms RL-only baselines
on all the evaluated benchmarks. Notably, our CRITIQUE-CODER-8B can reach
over 60% on LiveCodeBench (v5), outperforming other reasoning models like
DeepCoder-14B and GPT-o1. Beyond code generation, CRITIQUE-CODER also
demonstrates enhanced general reasoning abilities, as evidenced by its better per-
formance on logic reasoning tasks from the BBEH dataset. This indicates that the
application of CRL on coding datasets enhances general reasoning and critique
abilities, which are transferable across a broad range of tasks. Hence, we believe
that CRL works as a great complement to standard RL for LLM reasoning.
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Figure 1: The effectiveness of our CRITIQUE-CODER, trained with a combination of CRL and RL
data, compared to baselines and models trained solely on RL data, with both training and eval-
uation conducted under the think mode setting. EvalPlus denotes the average of 4 benchmarks:
HumanEval, MBPP, and their corresponding plus version.

1 INTRODUCTION

Recent breakthroughs in complex reasoning across code generation, mathematical problem-solving,
and logical deduction have been driven by large language models such as OpenAI’s o1-o4 (Jaech
et al., 2024a), DeepSeek-R1 (Guo et al., 2025), and Kimi-K1.5 (Team et al., 2025). A key fac-
tor behind these advances is the combination of reinforcement learning (RL) with chain-of-thought
(CoT) (Wei et al., 2022), which enables models to iteratively refine intermediate reasoning steps.
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Building on this foundation, research has increasingly focused on scaling reasoning abilities in code
generation. For example, AceCoder (Zeng et al., 2025), HardTests (He et al., 2025), and Kod-
Coder (Xu et al., 2025) developed automated large-scale code data generation pipelines and applied
RL using reward models and test cases pass rewards, achieving notable performance gains. SWE-
RL (Wei et al., 2025) pioneered the scaling of RL-driven LLM reasoning for real-world software
engineering, leveraging an efficient rule-based reward system.

Standard reinforcement learning with verifiable reward (RLVR) has shown strong capabilities in
improving models’ problem-solving abilities. However, this paradigm can hardly elicit the in-
ternal critique or reflection behavior on existing solutions. Recently, there has been a line of
work (Wang et al., 2025c; Gou et al., 2024; Xi et al., 2024; Kapusuzoglu et al., 2025; Wang et al.,
2025a; Tang et al., 2024) aiming to explicitly teach LLMs to critique to unleash their reasoning
ability. Inspired by this, we propose a new learning paradigm, Critique Reinforcement Learning
(CRL), which incorporates this critique mechanism into RL and explicitly rewards models for ac-
curate reflection. CRL not only optimizes problem-solving skills but also explicitly incentivizes
its critique abilities via rewards for whether it can correctly judge a response’s correctness. Spe-
cially, the model is prompted with a question–solution pair [q; s] to predict a binarized judgment
label c ∈ {True,False}, which is compared with the annotated label c∗ to derive a binary (ver-
ifiable) reward. This is in contrast to the standard RLVR algorithm, which incentivizes the model
to predict a correct solution s to a given query q, as shown in Figure 2. Different from CFT (Wang
et al., 2025c), CRL incentivizes the model based on its self-generated judgment c instead of using
teacher-provided critique traces.

Based on the CRL paradigm, we develop CRITIQUE-CODER, a model trained to generate both high-
quality coding solutions and critiques on existing solutions. We conducted a series of experiments
with the GRPO algorithm (Shao et al., 2024). Specifically, we train QWEN3-4B and QWEN3-
8B (Yang et al., 2025) on the filtered rStar seed dataset (Liu et al., 2025) using a hybrid framework
that unifies CRL and standard RLVR. We used two-stage training, and the training context length is
extended from 16k to 32k to unleash the power of the long reasoning chain.

CRITIQUE-CODER present consistent improvements across multiple benchmarks, illustrated in Fig-
ure 1. From QWEN3-4B, our CRITIQUE-CODER achieves 59.0 accuracy on LiveCodeBench (v5)
(Jain et al., 2024), yielding +4.8 points over the base model and +2.4 points over the RL-only
variant. Remarkably, it even surpasses QWEN3-8B by +1.5 points. On QWEN3-8B, CRITIQUE-
CODER reaches 35.6 points on Aider-Polyglot, +7.2 points higher than baseline. It also reaches
60.8 points on LiveCodeBench (v5), which outperforms other reasoning models like DeepCoder-
14B (Luo et al., 2025) and GPT-o1 (Jaech et al., 2024b). This showcases the effectiveness of CRL
training. Furthermore, results on the logical reasoning benchmark BIG-Bench Extra Hard (Kazemi
et al., 2025) demonstrate that CRITIQUE-CODER achieves strong transferable reasoning ability, sur-
passing both baseline and RL-trained models and yielding a +6.1 improvement over the base model.
We also find that CRL is more effectively utilized as a complement to RL rather than serving as
an alternative. This is because CRL training primarily focuses on critiquing question–solution pairs
without generating actual solutions. Our ablation study in Table 5 confirms a 20% mix ratio as a
best practice.

In summary, we introduce CRL, a novel reinforcement learning (RL) training framework that in-
corporates critique learning within the RL paradigm. This novel learning approach enhances the
model’s critique and reasoning abilities, addressing the lack of critique and reflection incentives
typically found in standard RL frameworks. Building on this foundation, we introduce CRITIQUE-
CODER, a model trained on a mix of CRL and RL data. Compared to baseline models and those
trained exclusively with RL, CRITIQUE-CODER shows superior performance across coding datasets
of varying difficulty. Furthermore, the model demonstrates transferable general reasoning abilities,
as evidenced by its strong performance on logic reasoning benchmarks.

2 METHOD

2.1 PRELIMINARY

Problem Definition. CRITIQUE-CODER incorporates two complementary training frameworks for
LLMs. The first follows the standard RL setting: given a question q, the policy πθ samples n

2
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Figure 2: Comparison between CRL and Standard RL. Standard RL generates solutions based on
input questions and evaluates them by executing test cases, while CRL critiques the solution for
the paired question and compares the resulting conclusion with the GT to determine its correctness.
Experiment shows that RL+CRL can improve not only accuracy, but also the code quality.

candidate solutions {si}ni=1; each si is evaluated on the annotated test cases T to compute its pass
rate, which serves as the reward signal Rrl,i.

To complement this solution-level feedback, we introduce Critique Reinforcement Learning (CRL),
which provides binary correction signals on question–solution pairs. Specially, given an annotated
dataset D = {([qk; sk], c∗k)}Nk=1, where each pair ([q; s]) consists of a question and a solution with
an associated binary judgment label c∗ ∈ {0, 1}, the policy πθ is trained to generate n predictions
{ci}ni=1 indicating whether s satisfies the requirement posed by q. The reward Rcrl,i is derived from
the comparison between ci and c∗.

Finally, two reward signals Rrl,i from RL and Rcrl,i from CRL are combined together to update
policy parameters θ using GRPO. This unified optimization enables the model to benefit from both
critique-guided learning and task-oriented learning, fostering more critical and reflective learning.

Group Relative Policy Optimization (GRPO). We now detail GRPO (Shao et al., 2024), the op-
timization algorithm used to update model parameters. In contrast to PPO (Schulman et al., 2017),
GRPO enhances performance by leveraging relative performance-based updates, which yield more
stable and efficient policy refinement. The formal definition of GRPO is provided below:

J (θ) = E

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ρi,tÂi,t, clip(ρi,t, 1− ϵ, 1 + ϵ)Âi,t

)
− β DKL

(
πθ∥πref

) ,

where ρi,t =
πθ(oi,t | x, oi,<t)

πθold(oi,t | x, oi,<t)
.

(1)

In the above equation, ρi,t denotes the probability ratio of generating output oi,t under the new
policy πθ and old policy πθold , Âi,t represents the calculated advantage within each output group,
and DKL regularizes the optimization by measuring the divergence between πθ and the reference
policy πθref , which can prevent the policy from drifting too far away.

In our training scenario, the policy input x can be either a single question q from RL or a ques-
tion–solution pair ([q; s]) from CRL. These two input modalities give rise to distinct reward signals,
solution-level rewards Rrl,i and critique-level rewards Rcrl,i. Both signals are aggregated in the
computation of the advantage Âi,t, which makes the GRPO update in our framework fundamentally
different from standard RL: the advantage estimation is jointly shaped by task outcomes and critique
guidance, allowing the policy to align with both execution correctness and reflective judgment.
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Table 1: Dataset statistics of rStar-Coder seed
dataset before and after test-case filtering to save the
verification time.

Metric Before
Filtering

After
Filtering

Questions 29,365 23,069
Avg Cases 87 24
Median Cases 48 30
Avg Input Chars 96,208 40

Table 2: Dataset difficulty statistics us-
ing QWEN3-4B (thinking) with tempera-
ture=0.6, top-p=0.95, and top-k=20

Metric Value

Pass@1 43.72%
Pass@2 49.05%
Pass@4 52.98%

Avg Tokens / Solution 13,732

2.2 DATASET CONSTRUCTION

To evaluate the efficacy of CRL, the first step is to build a reliable CRL dataset. The construction
process is detailed in the following steps.

RL Dataset Selection. We construct our CRL dataset from the human-seeded RL dataset of rStar-
Coder (Liu et al., 2025), which contains a large number of test cases collected from both human-
written and verified generated data. However, we observe that many questions in the original dataset
include an excessive number of test cases (often exceeding 100 per problem), and some individual
cases are extremely long (over 10,000 tokens). Such characteristics substantially increase verifica-
tion time during RL training. To improve efficiency and consistency, we filter the data by discarding
test cases longer than 200 tokens and randomly sampling 30 cases for each problem. Table 1 reports
dataset statistics before and after filtering, showing a significant reduction in both test case length
and volume. Specifically, the average input characters decrease from 96,208 to 40, and the aver-
age number of cases drops from 87 to 24. This reduction greatly shortens test case evaluation time
during training, resulting in a more efficient learning process. To assess dataset difficulty, we eval-
uate QWEN3-4B (Yang et al., 2025) on the filtered dataset, shown in Table 2. The model achieves
43.72% at Pass@1 and 52.98% at Pass@4, indicating a moderate difficulty level—solvable in part,
yet leaving significant headroom for further progress. This makes the dataset well-suited for RL
training under the GRPO algorithm, where advantage is computed within groups.

Question:
You are an experienced 
Codeforces user …Q

Judgment: True

Solution:
import bisect
def main: …

Question:
You are an experienced …

Solution:
import bisect
def main: …

Filter Inference

Original 
Dataset   RL Dataset   Test Case 

Execution  Candidate Solution   CRL Data  

Figure 3: Critique data generation. This process involves generating candidate solutions and anno-
tating their judgment in the CRL dataset based on the pass rate over test cases.

Critique Data Generation. Figure 3 illustrates the critique data generation workflow. For each
problem, we prompt QWEN3-CODER-30B-A3B-INSTRUCT (Yang et al., 2025) to generate outputs,
from which we extract code blocks as candidate solutions. Empty code blocks are discarded to
ensure that only valid programs are retained for evaluation. Each candidate solution is then executed
on the test cases from the filtered dataset, and its pass rate is computed to determine its judgment.
A practical challenge is that certain test cases exhibit excessively long execution times, which may
cause timeouts and lead to the erroneous classification of correct solutions as failures. To relax this
constraint, we adopt a pass rate threshold of 80%: candidate solutions are labeled as True if their
test pass rate exceeds this percentage, and as False otherwise.

Hybrid Data Integration. In our case, training exclusively on critique-oriented data biases the
model toward overly focusing on evaluative feedback rather than task-oriented solutions, thereby
hindering its ability to directly generate answers in evaluation tasks. To mitigate this issue, we
construct a hybrid dataset that combines both CRL and standard RL data. This approach balances
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Algorithm 1 Training procedure of CRITIQUE-CODER

Input dataset D = {([qi; si], c∗i )}
N1
i=1 ∪ {(qj , tj)}

N2
j=1, policy πθ

1: Initialize policy model πθ ← πθinit

2: for each step do
3: Sample a batch B ⊂ D
4: for each data instance d ∈ B do
5: if d = ([q; s], c∗) ▷ CRL data with judgment then
6: Sample G outputs {oi}Gi=1 ∼ πθ([q; s])
7: Parse each oi to extract judgment ci inside \conclusion{}
8: Compute reward Rcrl,i(ci, c

∗) for each ci
9: else if d = (q, t) ▷ RL data with test cases then

10: Sample G outputs {oi}Gi=1 ∼ πθ(q)
11: Parse each oi to extract solution si enclosed by ’’’ [code] ’’’
12: Evaluate si on test cases t, obtain reward Rrl,i(si, t)
13: end if
14: end for
15: Compute Âi,t from reward Ri, where Ri = Rcrl,i(ci, c

∗) for CRL or Rrl,i(si, t) for RL.
16: Update the policy model πθ with GRPO ( Equation 1)
17: end for

the characteristics of both data types and exposes the model to a diverse range of scenarios during
training. Concretely, we randomly assign 20% of the data from the dataset to be CRL data, with
the remaining 80% consisting of standard RL data. Such a configuration not only mitigates the risk
of format shift but also improves the robustness of the learning process by jointly exploiting the
complementary advantages of both CRL and RL training paradigms.

2.3 TRAINING

Training procedure. Algorithm 1 presents the training procedure of CRITIQUE-CODER, which
integrates CRL and RL within a unified framework. The policy model is initialized from a pre-
trained checkpoint πθinit and optimized on a hybrid dataset comprising CRL samples with judgment
and RL samples with test cases. For CRL data, the model generates multiple candidate critiques,
extracts judgment predictions from the \conclusion{} field, and assigns rewards according to
their alignment with the GT labels. For RL data, the model produces solution candidates, extracts
the code block enclosed by ‘‘‘[code]‘‘‘, and evaluates them against the given test cases to de-
rive rewards. In both cases, the rewards are converted into advantage estimates, which subsequently
guide the policy update through GRPO.

Reward function. As specified in Algorithm 1, rewards are computed from two data sources: CRL
and RL. For CRL samples, the model is prompted to store the final judgment in \conclusion{},
from which the predicted label c is extracted. A reward of 1 is assigned if c matches the ground truth
c∗; otherwise, including the case where the prediction is missing, the reward is 0. For RL samples,
the reward is defined as the pass rate across test cases. Formally,

Rcrl(c, c
∗) =

{
1, if c = c∗,

0, otherwise,
, Rrl(s, T ) =

K

N
(2)

where T is the set of N test cases and K denotes the number of cases successfully solved by the
model’s output s. Thus Rrl ∈ [0, 1], with larger values indicating more reliable solutions. At the
batch level, each instance i receives its reward according to its data type:

Ri =

{
Rcrl(ci, c

∗
i ), if i ∈ BCRL,

Rrl(si, Ti), if i ∈ BRL.
(3)

Here BCRL and BRL denote the CRL and RL subsets within the batch, respectively.
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3 EXPERIMENT

3.1 TRAINING SETUP

We conducted experiments on two models, QWEN3-4B and QWEN3-8B (Yang et al., 2025), in
thinking mode. Following a two-phase training strategy similar to DeepCoder (Luo et al., 2025), we
set the maximum response length to 16k in the first phase and increase it to 32k once the rewards
have stabilized. During training, two rule-based rewards are employed, each tailored to a different
data type. For CRL data, the reward is 1.0 if the prediction matches the ground truth (GT) and 0.0
otherwise; additionally, during the 16k phase, this reward is scaled by a factor of 0.8 to reduce its
dominance relative to RL signals. For RL data, the reward corresponds to the pass rate over test
cases, ranging from 0.0 to 1.0. For standard RL training, we adopt the thinking prompt used in
the Qwen3 paper on LiveCodeBench, while the CRL training prompt is provided in Appendix B.
Throughout training, we apply the GRPO algorithm (Shao et al., 2024), which provides improved
stability and efficiency compared to PPO (Schulman et al., 2017). The hyperparameters are set as
follows: a batch size of 128, a learning rate of 1e-6, and 8 sampled outputs per prompt. To encourage
exploration while stabilizing entropy, the clipping ratio is asymmetric, with an upper bound of 0.3
and a lower bound of 0.2. We trained the model on the entire dataset for one epoch, and selected the
best-performing checkpoint using the LiveCodeBench (v5) as the validation set.

3.2 EVALUATION SETUP

To evaluate and compare our training results, we utilized four different benchmarks: EvalPlus (Liu
et al., 2023) (an average of HumanEval (Chen et al., 2021), HumanEval+, MBPP (Austin et al.,
2021), and MBPP+), BigCodeBench-Instruct (Zhuo et al., 2024), Aider-Polyglot (Aider, 2024), and
LiveCodeBench (v5, 2024.10–2025.02) (Jain et al., 2024). These benchmarks cover a diverse range
of coding tasks, enabling a comprehensive assessment of the model’s code generation ability.

For the sampling configuration, we follow the thinking mode settings reported in the original Qwen3
paper (Yang et al., 2025), with a temperature of 0.6, a top-p of 0.95, a top-k of 20, and a maximum
output length of 32,768 tokens. The same configuration is applied consistently across all evaluation
tasks. For LiveCodeBench specifically, we adopt the official evaluation prompt used in Qwen3
thinking mode. We also compare with some existing strong coding models like DeepSeek-R1-
distill-14B (Guo et al., 2025), DeepCoder (Luo et al., 2025), DeepSeek-V2.5 (DeepSeek-AI, 2024),
and GPT-o1 (Jaech et al., 2024b) with high reasoning effort.

3.3 MAIN RESULTS

Gains over Base Models. Compared with the base models, CRITIQUE-CODER leads to consis-
tent and notable improvements across benchmarks of varying difficulty levels. On QWEN3-4B, for
example, the LiveCodeBench score of CRITIQUE-CODER rises from 54.2 to 59.0, a gain of +4.8,
surpassing the larger QWEN3-8B baseline by +1.5 points. On the Aider-Polyglot benchmark, which
consists of multiple programming languages, CRITIQUE-CODER still demonstrates strong perfor-
mance, achieving a +7.2 improvement from QWEN3-8B baseline, despite being trained solely on
Python data using CRL. These results indicate the effectiveness of our algorithm.

Advantages over RL-trained Models. Under identical datasets and training configurations, re-
placing part of the RL data with CRL consistently yields superior results across all benchmarks. On
QWEN3-4B, CRITIQUE-CODER exceeds the Qwen3-4B-RL by +2.4 points on LiveCodeBench and
improves the overall benchmark average by +1.5 points. On QWEN3-8B, it outperforms the Qwen3-
8B-RL counterpart by +2.7 points on BigCodeBench-Hard, contributing to an average gain of +1.7
points across all benchmarks. These findings highlight that CRL brings complementary benefits
over RL, enabling CRITIQUE-CODER to achieve more robust and consistent improvements. We fur-
ther analyze the test outputs of CRL and standard RL on LiveCodeBench, as illustrated in Figure 4.
The results show that CRL generates longer reasoning traces in the think blocks, indicating more
extensive deliberation and reflection, and confirming that CRL indeed enhances the model’s reason-
ing and critique capabilities. It also incorporates markedly more explanatory comments within the
generated code, indicating stronger tendencies toward self-explanation.
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Table 3: CRITIQUE-CODER performance compared with baseline and models trained with standard
RL. The RL training was conducted on the filtered rStar-Coder seed dataset, and the CRL training
was carried out by converting 20% of the data into CRL for fair comparison.

Model EvalPlus BigCodeBench-I Aider-Polyglot LiveCodeBench AVGFull Hard v5
AceCoder-7B 82.7 43.3 19.6 - - -
DeepSeek-R1-Distill-14B 82.4 38.1 20.9 18.6 53.0 42.6
DeepCoder-14B 85.3 38.2 18.2 18.4 60.6 44.1
DeepSeek-V2.5-238B 83.8 48.9 27.0 17.8 42.6 44.0
GPT-o1 88.6 50.4 28.4 61.7 59.5 57.7

Baseline = Qwen3-4B (Thinking)

Baseline 85.2 42.0 20.9 21.8 54.2 44.8
Qwen3-4B-RL 84.9 40.6 23.0 23.6 56.6 45.7
CRITIQUE-CODER 86.5 43.1 23.0 24.4 59.0 47.2
∆ (Ours-Baseline) +1.3 +1.1 +2.1 +2.6 +4.8 +2.4

Baseline = Qwen3-8B (Thinking)

Baseline 85.8 44.6 23.6 28.4 57.5 48.0
Qwen3-8B-RL 86.2 44.5 24.3 34.5 59.6 49.8
CRITIQUE-CODER 87.7 46.6 27.0 35.6 60.8 51.5
∆ (Ours-Baseline) +1.9 +2.0 +3.4 +7.2 +3.3 +3.5

Figure 4: Analysis of the generations on the Live-
CodeBench (v5) problems. Results show that CRL can
elicit better reasoning behavior and coding quality.

Test Time Scaling 
Iterations (1-6)

Starting Point

Figure 5: Test-time scaling perfor-
mance of CRITIQUE-CODER-4B on
LiveCodeBench (v5)

Comparison with Frontier Models. Our 4B and 8B models are also highly competent in their
absolute performance. CRITIQUE-CODER-4B can beat the DeepCoder-14B (Luo et al., 2025) sig-
nificantly across the board despite having only 28% of its parameters. CRITIQUE-CODER-8B can
beat other strong models and only lags behind GPT-o1 (Jaech et al., 2024b) on Aide-Polyglot, which
is mainly due to not optimizing other languages beyond Python. On EvalPlus, CRITIQUE-CODER-
4B scores an impressive 86.5, just behind GPT-o1, while CRITIQUE-CODER-8B takes it a step
further with an even higher score of 87.7.

3.4 TRANSFERABLE REASONING ABILITY

To examine whether the critique and reasoning abilities learned by CRITIQUE-CODER extend be-
yond coding tasks, we further evaluate the model on the BIG-Bench Extra Hard (BBEH) logic
reasoning benchmark (Kazemi et al., 2025). As shown in Table 4, CRITIQUE-CODER achieves
consistent improvements over both the baseline QWEN3-4B and its RL-trained variant across all
four reasoning subtasks. In particular, it outperforms the Qwen3-4B-RL model by +4.5 points on
BoardgameQA, leading to an overall average gain of +4.0 points, and surpasses the base model by
+6.1 points on average. These results indicate that the critique-enhanced training paradigm not only
improves performance in coding benchmarks but also strengthens general reasoning capabilities.
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Table 4: Performance comparison on four BIG-Bench Extra Hard (BBEH) logic reasoning subtasks
Model Time Arithmetic DisambiguationQA Zebra Puzzles BoardgameQA AVG

Baseline = Qwen3-4B (Thinking)

Baseline 40.5 43.3 36.5 66.5 46.7
Qwen3-4B-RL 45.0 43.3 40.5 66.5 48.8
CRITIQUE-CODER 48.5 47.5 44.0 71.0 52.8
∆ (Ours-Baseline) +8.0 +4.2 +7.5 +4.5 +6.1

Table 5: Impact of different CRL data proportion. All datasets are derived from the filtered rStar-
Coder seed dataset, with varying proportions of RL data converted into CRL data.

Model EvalPlus BigCodeBench-I Aider-Polyglot LiveCodeBench AVGFull Hard v5
Baseline = Qwen3-4B (Thinking)

0% of CRL Data 84.9 40.6 23.0 23.6 56.6 45.7
50% of CRL Data 86.5 42.4 22.3 24.0 56.0 46.2
100% of CRL Data 85.2 41.6 17.6 21.3 56.6 44.5
20% of CRL Data (Ours) 86.5 43.1 23.0 24.4 59.0 47.2

3.5 TEST TIME SCALING

We further evaluate CRITIQUE-CODER-4B with sequence test-time scaling (budget forcing) (Muen-
nighoff et al., 2025), which extends the reasoning length at inference. On LiveCodeBench (v5),
removing the constraint on reasoning tokens enables the model to achieve a score of 62.0 after four
iterations, representing a +3.0 improvement compared to the setting without test-time scaling, as
reported in Figure 5. This result is highly valuable to show that our 4B model can even beat other
much larger baselines like DeepCoder-14B.

3.6 ABLATION STUDY

To examine how the proportion of CRL data affects training, we perform an ablation study by
varying the percentage of RL data replaced with CRL data, while keeping the overall dataset size
fixed. As shown in Table 5, introducing a moderate amount of CRL data consistently improves
performance over the pure RL setting. In particular, using 20% CRL data yields the best overall
results, surpassing both the baseline (0%) and higher proportions (50% and 100%) across most
benchmarks. Notably, while 50% CRL still maintains comparable performance, fully replacing RL
data with CRL leads to clear degradation, suggesting that CRL is most effective as a complement to
RL rather than a complete substitute. These findings highlight the importance of balancing RL and
CRL data, with a small proportion of CRL providing the most robust gains. Otherwise, there will
be a mismatch between training outputs and inference behavior during evaluation, as training solely
with CRL drives the model to focus excessively on judgment while neglecting solution generation.

3.7 LIMITATIONS IN SELF-CRITIQUE

Although incorporating CRL enhances the model’s reasoning and critique abilities, it does not ex-
hibit self-critique capability. To explore this limitation, we implemented critique-based parallel test-
time scaling on CRITIQUE-CODER. Specifically, on LiveCodeBench v5, the CRITIQUE-CODER-4B
was prompted to generate 10 candidate solutions for each question. These solutions, along with their
corresponding question, were subsequently fed back into the model for critique, with each solution
being critiqued for 64 samples. We then attempted to identify the best solution by leveraging these
critiques. The solutions were scored based on the number of True critiques they received. If mul-
tiple solutions received identical scores, the solution with the shortest critique thinking token was
selected. However, this approach did not result in performance improvements, indicating that the
model lacks genuine self-critique ability.
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4 RELATED WORKS

4.1 CRITIQUE LEARNING

The idea of leveraging critiques for improving model reasoning has been explored in several lines
of research. One direction is self-correction (Bai et al., 2022; Gou et al., 2023; Madaan et al.,
2023; Shinn et al., 2023), where models iteratively evaluate and revise their own outputs. Although
such methods are promising, subsequent studies have questioned their robustness and consistency
(Huang et al., 2023; Valmeekam et al., 2023). Another line involves reward models (Uesato et al.,
2022; Wang et al., 2023; Lightman et al., 2023), which act as learned evaluators that assign quality
scores to either final outputs or intermediate reasoning steps, thereby guiding reinforcement learning
to enhance reasoning capabilities. More recently, Critique Fine-Tuning (CFT) (Wang et al., 2025c;b)
explicitly trains models to critique candidate solutions, demonstrating improved reasoning ability.

Our approach is most related to CFT. Unlike CFT, which directly optimizes the model to imitate the
critique reasoning process, CRL instead encourages the model to actively explore and learn from
the correctness of its final judgments, thereby combining the benefits of critique reasoning with
reinforcement feedback.

4.2 REINFORCEMENT LEARNING FOR CODE GENERATION

Code generation, a core capability of LLMs, has received considerable attention. CodeRL (Le et al.,
2022) introduces a pioneering RL framework for code generation, employing an actor–critic archi-
tecture to encourage functionally correct outputs. Building on this foundation, PPOCoder (Shojaee
et al., 2023) incorporates the PPO algorithm to further stabilize and improve training. Moreover,
RLEF (Gehring et al., 2024) advances the paradigm by explicitly leveraging execution feedback
during synthesis. More recently, AceCoder (Zeng et al., 2025) proposes a scalable pipeline that
automatically constructs question–test case pairs from code data to facilitate RL training.

4.3 CHAIN-OF-THOUGHT REASONING.

Recent advances in reasoning language models (RLLMs) show that extended chain-of-thought
(CoT) reasoning substantially improves performance on tasks like coding and mathematics. OpenAI
o1 (Jaech et al., 2024a) and DeepSeek R1 (Guo et al., 2025) exemplify this trend by using inference-
time scaling, where models iteratively explore and reflect before converging on a solution. Building
on this, KIMI K1.5 (Team et al., 2025) simplifies the reinforcement learning framework while in-
corporating long-context scaling and enhanced policy optimization, further advancing reasoning
efficiency. More recently, Qwen3 (Yang et al., 2025) combines a thinking mode for reasoning with a
non-thinking mode for fast responses, switching between them to balance latency and performance.

5 CONCLUSION

In this paper, we introduce Critique Reinforcement Learning (CRL), a novel reinforcement learning
paradigm that integrates critique learning into the RL by incorporating feedback on the correctness
of critiques predicted by the model. Building on this foundation, we developed CRITIQUE-CODER,
trained on a mix of RL and CRL data. On LiveCodeBench v5, CRITIQUE-CODER-4B achieves a
score of 59.0, outperforming the baseline by +4.8 points and the RL-only model by +2.4 points.
In addition to coding tasks, CRL also enhances general reasoning ability. On the BBEH logical
reasoning benchmark, CRITIQUE-CODER shows substantial improvements, surpassing the baseline
and RL-trained models by +6.1 and +4.0 points on average across four subtasks. These results
demonstrate that CRL not only boosts critique and reflection abilities over standard RL but also
enables these capabilities to extend beyond coding domains. However, ablation studies reveal that
training exclusively on CRL data yields poorer performance than RL alone, since CRL focuses
on generating critiques rather than task-oriented solutions, leading to a mismatch with evaluation
requirements. Therefore, rather than substituting RL, CRL serves as a powerful complement to it.
Taken together, our findings demonstrate that CRL enhances standard RL by endowing models with
stronger critique and reasoning abilities—capabilities that manifest not only in coding tasks but also
transfer effectively to broader reasoning domains.
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APPENDIX

A USE OF LLMS

In preparing this manuscript, the authors used a large language model (LLM) to polish the writing
and improve readability across sections. The LLM was not used to generate original content, design
the research, or analyze data. All research ideas, results, and conclusions are the authors’ own, and
the authors take full responsibility for the accuracy and integrity of the content.

B CRL TRAINING PROMPT

We provide the prompt template used for constructing CRL training data.

Table 6: Prompt for constructing CRL training data
You will be given a question (problem specification) and a submitted solution. Your task is to
determine whether the solution is correct and fully satisfies the specification.

Question: {question}

Solution: {solution}

Conclude with \conclusion{T} for correct, \conclusion{F} for wrong.

15


	Introduction
	Method
	Preliminary
	Dataset Construction
	Training

	Experiment
	Training Setup
	Evaluation Setup
	Main Results
	Transferable Reasoning Ability
	Test Time Scaling
	Ablation Study
	Limitations in Self-Critique

	Related Works
	Critique Learning
	Reinforcement Learning for Code Generation
	Chain-of-Thought Reasoning.

	Conclusion
	Use of LLMs
	CRL training prompt

