
2024 International Conference on Bioinformatics and Biomedicine (BIBM)

979-8-3503-8622-6/24/$31.00 ©2024 IEEE
1334

SAMamba: Integrating State Space Model for
Enhanced Multi-modal Survival Analysis

Wei Zhang
Department of Data Science
City University of Hong Kong

Hong Kong SAR, China
wzhang472-c@my.cityu.edu.hk

Tong Chen
Department of Data Science
City University of Hong Kong

Hong Kong SAR, China
tong.chen@my.cityu.edu.hk

Wenxin Xu
Department of Data Science
City University of Hong Kong

Hong Kong SAR, China
wenxinxu8-c@my.cityu.edu.hk

Xinyue Li(B)

Department of Data Science
City University of Hong Kong

Hong Kong SAR, China
xinyueli@cityu.edu.hk

Abstract—Survival prediction represents a challenging ordinal
regression task, involving modeling of intricate interactions
among various data modalities. The recent evolution of state
space models, Mamba in particular, has opened new vistas for
effectively processing sequence data, including genomic profiles
and gigapixel pathology Whole Slide Images (WSIs). In light
of these advancements, we propose Survival Analysis Mamba
(SAMamba), a novel approach that melds the Mamba framework
with multi-modal survival prediction. Specifically, we propose
a patch clustering layer to identify morphological prototypes
from the extensive collection of patches within WSIs and employ
gene set enrichment analysis to explore the biological associations
between pathways and gene sets for enhanced and robust feature
representation. Subsequently, we introduce Mamba structures to
capture the intrinsic relationships within pathology WSIs and
genomic profiles with linear computational complexity. Addi-
tionally, we utilize multi-modal attention to seamlessly integrate
multi-modal data and design a self-attention pooling module to
further refine insights from each data modality for enhanced sur-
vival outcome prediction. Extensive experiments on four public
TCGA datasets are conducted to validate the effectiveness of our
proposed SAMamba, using ablation studies, statistical analysis,
and visualization. The experimental results demonstrate that our
method achieves superior performance compared to state-of-the-
art methods, highlighting the potential of the proposed SAMamba
for multi-modal survival outcome prediction. Our code will be
released at https://github.com/coffeeNtv/SAMamba.

Index Terms—Computational Pathology, Survival Analysis,
Multi-modal Learning, Mamba

I. INTRODUCTION

Survival prediction seeks to estimate the prognosis of pa-
tients by measuring the time span from either diagnosis or
the onset of treatment to the occurrence of a particular event
of interest, typically a critical endpoint such as death or the
relapse of disease. It is essential in clinical oncology and
broader medical practice as survival prediction enables clini-
cians to formulate tailored treatment strategies, assists patients
in understanding their prognosis for more informed decision-
making, and is crucial in clinical research for evaluating the
efficacy of therapies.

Genomic data, with its intricately detailed representation
of an individual’s genetic blueprint, unearths underlying ge-
netic predispositions and molecular pathways involved in
disease progression, which may not be evident through visual
examination alone. Concurrently, pathology images provide

spatial context that reveals the extent of disease spread, tumor
heterogeneity, and interactions between the tumor and its
microenvironment, all of which are critical determinants of
the disease trajectory.

With the advancement of multi-modal learning, research
in survival prediction has shifted from relying on single-
modality [1], [2] data to incorporating multiple modalities [3],
[4]. Thus, the integration of genomic and pathological data has
the potential to revolutionize survival prediction by uncovering
correlations and patterns that might be missed when each
is analyzed in isolation. Nevertheless, integrating genomic
data and pathology images presents several challenges. Firstly,
the sheer volume and complexity of both data types require
substantial computational power and sophisticated algorithms
to extract relevant prognostic features. Secondly, varying data
acquisition and processing protocols may introduce discrep-
ancies, necessitating a standardization process to ensure data
from various sources can be accurately compared and in-
tegrated. Furthermore, the heterogeneity between structured
genomic data and unstructured pathology images poses a
barrier, making it difficult to assimilate and leverage insights
from the two modalities effectively.

Many studies have made strides in addressing the challenges
above. For genomic data, many studies [1], [5] focus on the
covariates between the genetic and clinical attributes based on
the Cox regression to extract relevant information for patient
prognosis. Concurrently, due to the gigapixel of pathology
images, Multiple Instance Learning (MIL) based models [2],
[6], [7] are commonly applied in survival analysis where WSIs
are formulated as bags. This line of research underscores
the potential for utilizing either genomic or pathology data
independently to forecast patient outcomes and paves the
way for merging these two modalities. Notably, CLAM [8]
and MACT [3] have laid the groundwork for integrative
and comparative analyses with both pathology and genomic
data and subsequently inspired a burgeoning interest in the
field of multi-modal learning in survival prediction [4], [9],
[10]. Among multi-modal learning research, the application
of attention mechanisms has become progressively prevalent,
especially the Transformer [11] architecture, which emerges as
the predominant model of choice attributed to its proficiency
in handling sequence data. Despite its strengths, Transformer-
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based models encounter limitations. The intrinsic design of
the attention mechanism, which processes the entire sequence
collectively, can lead to a surge in computational complexity,
scaling quadratically with the sequence length.

Recent advancements in state space models, such as
Mamba [12], have revealed their considerable potential for
efficiently handling sequence data such as language and ge-
nomics. These models, which maintain competitive perfor-
mance alongside Transformer-based counterparts, boast scala-
bility with linear computational complexity. Their efficacy also
extends to the domain of computer vision for tasks including
image segmentation [13], [14], classification [15], [16], object
detection [15], [16], restoration [17], video understanding [18],
[19] and point cloud analysis [20]. Building on these insights,
we proposed Survival Analysis Mamba (SAMamba), a novel
framework designed to harness both intrinsic and intertwined
interactions from collections of WSIs and genomic attributes
for survival analysis. Specifically, we apply the Mamba archi-
tecture to model the sequences present in bags of WSIs and
the tabular genomic data with linear computational efficiency.
Further, we propose a novel patch clustering layer to identify
the morphological prototypes from lengthy bags of patches,
which reduces the computational complexity significantly,
and we use Gene Set Enrichment Analysis (GSEA) [21] to
explore the potential biological mechanisms. Additionally, we
employ a cross-modality attention strategy to capture the inter-
connections between genomic and pathological data, thereby
enhancing the model’s ability to make informed predictions of
survival outcomes. Our major contributions are as follows:

• We propose SAMamba, a novel framework in survival
prediction that incorporates the Mamba architecture for
modeling the intrinsic association within lengthy bags of
WSIs and tabular genetic attributes, and a multi-modal
attention mechanism to examine the interplay between
different modalities for cohesive feature representation.

• We propose a novel patch clustering layer to identify
morphological prototypes from a vast number of patches
within WSI, effectively reducing the computational com-
plexity and enhancing the robustness of feature extraction
from high-dimensional pathology images.

• We apply gene set enrichment analysis to enhance the
interpretability and the utility of genomic data by using
pathways from a large number of gene sets as our
functional categories.

• Extensive experiments are conducted to demonstrate the
effectiveness of our method among four public TCGA
datasets, and the results indicate that our method achieved
superior performance compared to state-of-the-art ap-
proaches, confirming the feasibility and improved accu-
racy of our SAMamba method in multi-modal survival
prediction.

II. METHODOLOGY

In this section, we begin by providing an overview of the
foundational concepts in the state space model and its variants,
such as Mamba. Subsequently, we present the formulation

of our task in survival prediction. Lastly, we introduce our
method in detail, focusing on the aspects of feature represen-
tation and multi-modal learning, respectively.

A. Fundamentals

State Space Models. State Space Models (SSMs) are
often regarded as continuous linear time-invariant systems
that transform an input signal x(t) ∈ R to an output signal
y(t) ∈ R via implicit latent state h(t) ∈ RN . They are usually
constructed as linear ordinary differential equations:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t) (1)

where A ∈ RN×N and B,C ∈ RN are evolution and
projection parameters, respectively. Subsequently, in the Struc-
tured State Space Sequence model (S4) [22], the zero-order
hold (ZOH) (Equation 2) [22] is applied to transform the
“continuous parameters” (∆, A,B) into “discrete versions”
(Ā, B̄) to incorporate deep learning algorithms.

Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A)− I) ·∆B (2)

The discretized system (from (∆, A,B,C) 7→ (Ā, B̄, C))
can be expressed in a linear recurrent way:

h′(t) = Āh(t) + B̄x(t), y(t) = Ch(t) (3)

As an alternative, Equation 3 can be further formulated as
a global convolution:

K =
(
CB, CAB, . . . , CA

l−1
B
)
, y = x ∗K (4)

where l is the length of the input sequence and K̄ represents
a structured convolutional kernel.

Mamba. Regarding the Linear Time Invariance (LTI) sys-
tems in Equations 1 to 4 where parameters are invariant for
all inputs, Mamba [12] proposed selection scan mechanism
to address the constant dynamics in LTI systems. Parameters
in Mamba, such as B and C, are derived from inputs, which
enable Mamba to have dynamic interactions along the input
sequence.

B. Survival Prediction Formulation

Survival prediction aims to estimate the time until an event
of interest occurs, such as death. In this study, given the
clinical information of patient X = {H,G, t, c}, our goal is
to estimate the hazard function fhazard(T = t | T ≥ t,X) ∈
[0, 1] which represents the instantaneous risk rate of the event
occurring at time t. It is defined as follows:

fhazard(T = t) = lim
∆t→0

P(t ≤ T < t+∆t | T ≥ t)

∆t
(5)

Specifically, H denotes the histological WSI, G denotes the
genomic profile, t is the overall survival time (in months),
c ∈ {0, 1} is the right censorship, where c = 1 indicates that
death has not occurred within the observation period in this
study. Instead of modeling the overall survival time of patients,
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Fig. 1. Overview of SAMamba. Histological WSIs are segmented into patches and processed through a pre-trained ResNet50 model with a patch clustering
layer to generate morphological prototypes. For genomic data, gene set enrichment analysis is utilized to identify enriched pathways, which are subsequently
processed by a self-normalizing network to obtain genomic embeddings. Mamba blocks and multi-modal attention mechanisms are employed to model intra-
modality associations and inter-modality interactions. Finally, self-attention pooling and feature fusion, followed by an MLP, are used to predict survival risk
(Zoom in for better view).

we measure the probability of the total survival time longer
than t with the cumulative distribution function defined as:

fsurvival(T ≥ t,X) =

t∏
u=1

(1− fhazard(T = u | T ≥ u,X)).

(6)

C. Feature Representation

Pathology images embedding. Building upon the MIL
paradigm, we consider the pathological WSIs as collections
of permutation-invariant instances. In particular, we adopt the
procedure established by CLAM [8], which starts by segment-
ing the tissue within WSIs and dividing it into non-overlapping
256 × 256 pixel patches. These patches are then processed
through a pre-trained ResNet50 network [23], which projects
them into a feature space of 1024 dimensions. Subsequently,
these features are passed through fully connected layers to
synthesize a set of patch features within WSIs. We denote the
ith WSI as H(i) = {h(i)j }

Nh
j=1 ∈ RNh×d, where Nh is the total

number of instances within the bag of WSI, and d represents
the dimensionality of each instance feature. Given that the
original WSIs contain gigapixels, each WSI includes a vast and
diverse number of patches. Loading all these patches during
training is memory-intensive and impractical. This necessitates
the identification of representative patches from the WSI for
feature selection and reduction. As illustrated in Figure 2,
many patches within WSI share similar features and tend to
cluster together. Based on these observation, we design a Patch

(a) (b) (c)

Fig. 2. The t-SNE visualizations of patch features within BRCA WSIs. (a-c)
are three different examples to illustrate clustered features and the rationale
behind the patch clustering layer design.

Clustering Layer (PCL) to select the morphological prototypes
from WSIs and to unify the number of patch features among
all WSIs. Our PCL is described in Algorithm 1, where B and
Nc are the batch size and the number of clusters in PCL,
respectively.

Algorithm 1 Patch Clustering Layer (PCL)
Input: x: Bags of patches from WSIs # (B,Nh, d)
Output: y: Feature clusters from patches # (B,Nc, d)

1: Initialize cluster centers ∈ RNc×d

2: di,j ← ∥xi − centersj∥ # The L2 distances, (B, d,Nc)
3: indices ← min(d, dim = 1) # Find nearest features to

cluster centers
4: y ← gather(x, 1, indices) # Gather the nearest features
5: return y
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Genomics embedding. The genomic profiles, including
the mutation statuses, copy number variations, and levels of
transcripts (quantified through bulk RNA-Seq), are typically
represented as single-value measurements, which offer a lim-
ited view if incorporated into the survival analysis task alone.
To enhance the interpretability and the utility of the tabular
genomics data, we apply GSEA [21], [24] to segment genomic
data into many pathways. Specifically, we use the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [25] as our reference
pathway database, and we perform enrichment analysis to
identify enriched pathways based on hypergeometric distribu-
tion with False Discovery Rate (FDR) correction for multiple
testing. Pathways are considered statistically significant based
on a threshold of FDR ≤ 0.05. Subsequently, these pathways
are processed through a Self-Normalizing Network (SNN) [26]
to derive a more informative feature representation of the
genomic data. For the ith patient, its genomic representation is
denoted as G(i) = {g(i)j }

Np

j=1 ∈ RNp×d , where d represents the
dimension of each pathway, and Np denotes the total number
of pathways.

D. Multi-modal Learning
Mamba Block. Considering the heterogeneity in pathol-

ogy WSIs and genomic profiles, we incorporate Mamba, an
emerging architecture that excels in modeling sequence data,
to investigate the intrinsic correlation within each modality.
The pseudocode of our Mamba blocks is shown in Algorithm
2, where TL denotes the output from the Lth mamba block,
B,N , and d denote the batch size, sequence length, and
dimension of input tokens, respectively.

Algorithm 2 Mamba Block
Input: input sequence TL−1 # (B, N , d)
Output: output sequence TL # (B, N , d)

1: T ′
L−1 ← Norm(TL−1) # (B, N , d)

2: x, z ← Linearx(T ′
L−1),Linearz(T ′

L−1) # (B, N , E)
3: x′ ← SiLU(Conv1d(x)) # (B, N , E)
4: B,C ← LinearB(x′),LinearC(x′) # (B, N , N)
5: ∆← log(1 + exp(Linear∆(x′) + Parameter∆)) #(B,N ,E)
6: Ā← ∆⊗ ParameterA # Outer product, (B, N , E, N)
7: B̄ ← ∆⊗B # (B, N , E, N)
8: y ← SSM(Ā, B̄, C)(x′) # (B, N , E)
9: y′ ← y ⊙ SiLU(z) # Element-wise product, (B, N , E)

10: TL ← LinearT (y′) + TL−1 # (B, N , d)
11: Return TL

Multi-modal Attention. To capture the associations be-
tween histological and genomic data, Multi-Modal Attention
(MMA) is applied to account for the interaction between
different modalities for further feature refinement:

MMA(Gen,Hen,Hen) = Softmax
(
GenHT

en√
dh

)
Hen (7)

MMA(Hen,Gen,Gen) = Softmax

(
HenGTen√

dg

)
Gen (8)

where dg and dh are dimension of Gen (Encoded gene
feature) and Hen (Encoded histological image feature), re-
spectively.

Self Attention Pooling. We design a Self Attention Pooling
(SAP) operation to condense the inherent correlations within
each modality and reduce the dimensionality of the refined
features for feature fusion. The pseudocode of SAP is demon-
strated in Algorithm 3.

Algorithm 3 Self Attention Pooling (SAP)
Input: x: input features # (B,N , d)
Output: xpool: pooling features # (B, d)

1: Initialization of query ∈ R1×d

2: xproj ← fc(x) # Projection of x, (B,N , d)
3: att scores ← matmul(xproj, queryT ) # Compute attention

scores, (B,N , 1)
4: att weights ← Softmax(att scores) # Compute attention

weights using Softmax
5: xpool ← matmul(att weights, x) # Compute weighted

sum, (B, d)
6: return xpool

Our SAMamba framework is presented in Algorithm 4.
Initially, a patch clustering layer is employed to extract
representative patch features. Subsequently, refined pathway
features and patch features are input into Mamba blocks to ex-
plore the intrinsic attributes within each modality. Multi-modal
attention is then utilized to capture the interplay between
modalities, accompanied by a self-attention pooling module
for feature condensing. Finally, concatenation is applied for
multi-modalfeature fusion. The risk score for each case is
predicted using a multilayer perceptron (MLP).

Algorithm 4 The SAMamba Algorithm
Input: H: Bags of WSI patches # (B, Nh, d)
Input: G: Genomics # (B, Np, d)
Output: Risk scores

1: Hc ← PCL(H)# Clustering for WSI patches, Alg. 1
2: Hen,Gen ←MH(Hc),MG(G) # Mamba encoding
3: Hatt ← MMA(Gen,Hen,Hen) # Multi-modal attention

for WSI patches, Eq. 7
4: Gatt ← MMA(Hen,Gen,Gen) # Multi-modal attention for

genomics, Eq. 8
5: Hde,Gde ←MH(Hatt),MG(Gatt) # Mamba decoding
6: Hpool,Gpool ← P(Hde),P(Gde) # SAP, Alg. 3
7: F ← Hpool ⊕ Gpool # multi-modal concatenation
8: Risk scores ← MLP(F) # Risk prediction by MLP
9: return Risk scores

E. Objective function

We apply the Negative Log-Likelihood loss (NLL) in pre-
vious work [3], [27] for survival prediction as our object
function:
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Lsurvival = −
K∑
i=1

ci · log (fsurvival (ti | Fi))

−
K∑
i=1

(1− ci) · log (fsurvival (ti − 1 | Fi))

−
K∑
i=1

(1− ci) · log (fhazard (ti | Fi))

(9)

where K refers to the length of the dataset, fhazard is
the hazard function defined in Equation 5, fsurvival is the
cumulative distribution function defined in Equation 6. F is
the integrated multi-modal featured shown in Algorithm 4, c
indicates the censorship.

III. EXPERIMENTS

A. Datasets

The Cancer Genome Atlas (TCGA)1 is a landmark cancer
genomics program that represents a comprehensive and pub-
licly accessible resource for the cancer research community,
providing a multi-dimensional view of the genomics changes
and their corresponding WSIs across various cancer types. In
this study, four datasets from TCGA are used to validate the
efficacy of our proposed SAMamba model, i.e. bladder urothe-
lial carcinoma (BLCA) (n =412), breast invasive carcinoma
(BRCA) (n =1093), lung adenocarcinoma (LUAD) (n =514),
and uterine corpus endometrial carcinoma (UCEC) (n =560).

B. Evaluation

In our study, we conducted a 5-fold cross-validation for
each cancer type and used the cross-validated concordance
index (C-index) [33] to measure the predictive accuracy of a
risk score in survival analysis. It assesses the proportion of all
usable patient pairs where the predictions and outcomes are
concordant. Mathematically, for a set of n independent patient
pairs, the C-index is defined as:

C − index =
1

N

n∑
i

n∑
j>i

(I(ti < tj) · I(ri > rj) · (1− ci))

(10)
Where ti and tj are the observed survival times of patients

i and j, with i ̸= j, ri and rj are predicted risk scores, I(·)
is the indicator function, which equals 1 when its argument is
true and 0 otherwise. N is the number of all possible pairs of
patients where ti ̸= tj , ci refers to the right censorship.

C. Implementation

For the pathological WSIs data, we apply a pre-trained
ResNet50 [23] to derive the 1024-dim feature as CLAM [8],
then fully connected layers are used to obtain 256-dim fea-
ture embeddings. For genomic attributes, SNN [8], [26] is
employed to extract their features into 256 dimensions. We
adopt the RAdam optimizer in our training process with an

1TCGA datasets can be found at https://portal.gdc.cancer.gov

initial learning rate set at 2e-4 and weight decay of 1e-5. The
number of clusters Nc in the PCL is 256, and the number
of pathways Np ranges from 188 to 285 for different cancer
types. Our architecture includes a single Mamba block for both
the encoding and decoding of each modality data. We set the
batch size as one due to variability in bag sizes across different
WSIs and trained our model for 30 epochs with one NVIDIA
A800 GPU.

D. Experimental Results

We compare our method with single-modal and multi-modal
benchmark methods as follows:

(1) Single-modal methods. For genomic data, we adopt the
SNN [3], [26], DeepSurv [5], [9] and CoxRegression [9], [28]
as compared models. Additionally, for the pathology WSIs,
we assess the performance of our model by comparing it with
five State-Of-The-Art (SOTA) methods: AttentionMIL [7],
DeepAttnMISL [2], DeepGraphConv [30], DeepAttnMISL [2],
CLAM [8] and Patch-GCN [6].

(2) Multi-modal methods. For integrating multimodality
data for survival predictions, we compare our SAMamba
with four multi-modal SOTA methods, including MCAT [3],
PORPOISE [10], MGCT [9], MOTCat [31], CMTA [32] and
Survpath [4].

The results shown in Table I indicate that our method
outperforms both the single-modal and multi-modal SOTA
methods in BRCA (70.05%), UCEC (71.27%) and LUAD
(69.3%) datasets, and achieves competitive performance in
BLCA (66.06%) dataset, indicating the effectiveness of in-
tegrating multi-modal data, and the great potential of Mamba
structure in multi-modal survival analysis. We observe that
CMAT outperforms our approach on the BLCA dataset. Upon
analysis, this superior performance might attribute to CMAT’s
utilization of all patches within WSIs during training. In
contrast, our method is limited to a fixed number of patches
due to computational resource constraints. This difference in
patch utilization likely contributes to the better predictive
performance of CMTA for BLCA. Note that we use experi-
mental results from original studies to ensure fair comparisons.
Results for Survpath [4] are only available for BRCA and
BLCA datasets among the datasets we compared.

E. Ablation Studies

To further validate the effectiveness of our SAMamba model
in survival prediction, we conduct three ablation experiments
with respect to genomics data, pathology WSIs, and feature
fusion, respectively. In the first experiment, we train three
SAMamba models with different genomic data categorization
strategies, namely the gene family [3], hallmark [4] and
GSEA [21], to explore the effectiveness of different methods
for genomic data integration. Concurrently, we investigate the
performance of our patch clustering layer with three settings:
(1) Randomly select Nc features to simulate the absence of
the PCL; (2) Using the average feature of each cluster as
the feature of interest; (3) Taking the nearest feature to each
clustering center as the representative feature. Furthermore,
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TABLE I
RESULTS COMPARED WITH DIFFERENT BENCHMARK METHODS WITH DIFFERENT MODALITY WHERE THE BEST RESULTS ARE HIGHLIGHTED.

Method BRCA (↑) BLCA (↑) UCEC (↑) LUAD (↑) Mean (↑)

G
en

es

SNN [3], [26] (NIPS 2017) 0.466 ± 0.058 0.541 ± 0.016 0.493 ± 0.096 0.539 ± 0.069 0.5098
DeepSurv [5], [9] (BMC MRM 2018) 0.598 ± 0.054 0.567 ± 0.049 0.577 ± 0.058 0.608 ± 0.026 0.5875
CoxRegression [9], [28] (JMLR 2018) 0.568 ± 0.077 0.591 ± 0.041 0.464 ± 0.099 0.574 ± 0.042 0.5493

SAMamba (Ours) 0.667 ± 0.0221 0.6001 ± 0.0286 0.6768 ± 0.0519 0.6167 ± 0.0179 0.6402

W
SI

s

Deep sets [3], [29] (NIPS 2017) 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.496 ± 0.008 0.4990
AttentionMIL [3], [7] (ICML 2018) 0.564 ± 0.050 0.536 ± 0.038 0.625 ± 0.057 0.559 ± 0.060 0.5710

DeepGraphConv [6], [30] (MICCAI 2018) 0.574 ± 0.044 0.499 ± 0.057 0.659 ±0.056 0.552 ± 0.058 0.5710
DeepAttnMISL [2], [3] (MIA 2020) 0.524 ± 0.043 0.504 ± 0.042 0.597 ± 0.059 0.548 ± 0.050 0.5433

CLAM [8], [9] (NBE 2021) 0.578 ± 0.032 0.565 ± 0.027 0.609 ± 0.082 0.582 ± 0.072 0.5835
Patch-GCN [6] (MICCAI 2021) 0.580 ± 0.025 0.560 ± 0.034 0.629 ± 0.052 0.585 ± 0.012 0.5885

SAMamba (Ours) 0.596 ± 0.0274 0.652 ± 0.0364 0.673 ± 0.0444 0.643 ± 0.0181 0.6410

M
ul

tim
od

al

Deep sets [3], [29] (NIPS 2017) 0.521 ± 0.079 0.604 ± 0.042 0.598 ± 0.077 0.616 ± 0.027 0.5848
AttentionMIL [3], [7] (ICML 2018) 0.551 ± 0.077 0.605 ± 0.045 0.614 ± 0.052 0.563 ± 0.050 0.5833
DeepAttnMISL [2], [3] (MIA 2020) 0.545 ± 0.071 0.611 ± 0.049 0.615 ± 0.020 0.595 ± 0.061 0.5915

MCAT [3] (ICCV 2021) 0.580 ± 0.069 0.624 ± 0.034 0.622 ± 0.019 0.620 ± 0.032 0.6115
PORPOISE [10] (Cancer Cell 2022) 0.583 ± 0.048 0.644 ± 0.036 0.688 ± 0.096 0.616 ± 0.063 0.6328

MGCT [9] (BIBM 2023) 0.608 ± 0.026 0.640 ± 0.039 0.645 ± 0.039 0.596 ± 0.078 0.6223
MOTCat [31] (ICCV 2023) 0.673 ± 0.006 0.683 ± 0.026 0.675 ± 0.04 0.67 ± 0.038 0.6753
CMTA [32] (ICCV 2023) 0.6679 ± 0.0434 0.691 ± 0.0426 0.6975 ± 0.0409 0.6864 ± 0.0359 0.6857

Survpath [4] (CVPR 2024) 0.640 ± 0.093 0.628 ± 0.073 - - -
SAMamba (Ours) 0.7005 ± 0.0265 0.6606 ± 0.017 0.7127 ± 0.0328 0.693 ± 0.0309 0.6917

TABLE II
ABLATION STUDIES ON GENE TOKEN, PATCH CLUSTERING LAYER, FUSION, AND BACKBONE BLOCKS. THE BEST RESULTS ARE HIGHLIGHTED.

Ablations Method BRCA (↑) BLCA (↑) UCEC (↑) LUAD (↑) Mean (↑)

Gene token
Gene family 0.6777 ± 0.0384 0.6723 ± 0.036 0.6593 ± 0.0458 0.6781 ± 0.0407 0.6719

Hallmark 0.6931 ± 0.0344 0.668 ± 0.0303 0.6803 ± 0.0383 0.6637 ± 0.0459 0.6763
GSEA (Ours) 0.7005 ± 0.0265 0.6606 ± 0.017 0.7127 ± 0.0328 0.693 ± 0.0309 0.6917

PCL
w/o 0.673 ± 0.0423 0.6473 ± 0.0216 0.6751 ± 0.0543 0.684 ± 0.023 0.6699

Average 0.6771 ± 0.0193 0.6497 ± 0.0415 0.6451 ± 0.0632 0.6832 ± 0.0393 0.6638
Top (Ours) 0.7005 ± 0.0265 0.6606 ± 0.017 0.7127 ± 0.0328 0.693 ± 0.0309 0.6917

Fusion Bilinear 0.6081 ± 0.0395 0.6087 ± 0.0072 0.6795 ± 0.0404 0.6379 ± 0.0385 0.6336
Concat (Ours) 0.7005 ± 0.0265 0.6606 ± 0.017 0.7127 ± 0.0328 0.693 ± 0.0309 0.6917

Backbone Transformer 0.6667 ± 0.0319 0.6472 ± 0.0303 0.6851 ± 0.0505 0.6877 ± 0.0208 0.6717
Mamba (Ours) 0.7005 ± 0.0265 0.6606 ± 0.017 0.7127 ± 0.0328 0.693 ± 0.0309 0.6917

TABLE III
COMPUTATIONAL COMPARISON OF SAMAMBA.

Types FLOPs (M) # Para (M) Time (s)
Mamba 283.116 1.752 591

Transformer 570 2.108 874

we also evaluate different multi-modal feature fusion methods,
such as bilinear pooling and concatenation, to determine the
most effective fusion strategy. Additionally, we substitute all
Mamba blocks with Transformer blocks in SAMamba and
calculate the floating point operations (FLOPs), the number
of parameters for both Mamba and Transformer blocks, and
the inference time across the LUAD cohort in Table III to
examine their performance and computational efficiency. The
results in Table II indicate that the integration of multi-modal
data leads to notable enhancements compared to using single-
modality data in survival prediction. Notably, we obtained the
best performance in the BLCA dataset when applying the

gene family strategy. However, we choose the categorization
strategy for genomic data based on the average C-index value
of four cancer types in Table II, indicating that GSEA can be
effective in SAMamba. We also found that using the features
nearest to each clustering center boosts the performance of
our model more than other approaches. Moreover, simple
concatenation emerges as the superior method in our task
among the fusion strategies tested. Further, the results in
Table II and II indicate that our SAMamba utilizing Mamba
blocks outperforms the Transformer-based SAMamba in both
prediction performance and computational efficiency.

F. Visualizations with Statistical Analysis and Interpretation

We apply the Kaplan-Meier curve to visualize the survival
experience of a cohort over time in Figure 3. The curve
represents the probability that a patient will survive beyond a
certain time point, assuming that the event of interest is death.
Each step downward in the Kaplan-Meier curve indicates the
occurrence of an event, and a horizontal line to the next
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BLCA BRCA LUAD UCEC

Fig. 3. Patient stratification with Kaplan-Meier curves and log-rank tests among different cancers (Zoom in for better view).

(a) (b) (c) (d) (e)

Case id: TCGA-5B-A90C
Survival months: 39.49

Low

High

Fig. 4. Co-attention maps of pathways on WSI with the highly associated patches in UCEC. (a) The WSI. (b) Focal adhesion. (c) PD-L1 expression and
PD-1 checkpoint pathway in cancer. (d) FoxO signaling pathway. (e) TGF-beta signaling pathway.

event signifies that subjects have survived up to that point.
Specifically, we divide samples into high-risk and low-risk
groups based on their median risk values, sort these samples
by their survival times in ascending order, and calculate the
survival probabilities for each risk group over the survival
timeline to draw the curve. Subsequently, the log-rank test is
performed to assess the statistical significance of differences
between the two survival curves. As shown in Figure 3, the p-
values in our log-rank test among four datasets are all below
0.05, indicating that the difference in survival between the
groups is considered statistically significant.

Further, we present the co-attention maps of pathways and
WSIs in Figure 4. Specifically, we selected four pathways in
three functional categories regarding to the biological mech-
anisms of uterine corpus endometrial carcinoma. Namely, the
PD-L1 expression and PD-1 checkpoint pathway in cancer [34]
(Human diseases), TGF-beta signaling pathway [35] and FoxO
signaling pathway [36] (Signal transduction), and Focal ad-
hesion [37], [38] (Cellular processes). We highlight patches
corresponding to highly correlated regions within the WSIs to
illustrate the patterns and associated locations where different
pathways may exert their influence on the WSIs.

IV. CONCLUSION

This paper proposes SAMamba, a pioneering study incorpo-
rating the Mamba structure for enhanced multi-modal survival

prediction. Specifically, we propose a novel patch clustering
layer to extract representative features from a vast number of
patches within whole slide images, effectively reducing the
computational complexity and enhancing the robustness of
feature extraction from high-dimensional pathology images.
Then, we apply gene set enrichment analysis to explore the
biological mechanisms between pathways and large gene sets,
providing a deeper understanding of the genomic contributions
to survival outcomes. Additionally, we incorporate Mamba
structures to capture intrinsic relationships within pathology
WSIs and genomic profiles with linear computational com-
plexity, enabling efficient and scalable analysis of multi-modal
data. Furthermore, we utilize a multi-modal attention mecha-
nism to seamlessly integrate data from different modalities
and design a self-attention pooling module to extract the
most informative features from each data modality, ensuring
a cohesive and comprehensive analysis for more accurate
survival predictions. Extensive experiments are conducted on
four public TCGA datasets to demonstrate the effectiveness
of our proposed SAMamba through ablation studies, statistical
analysis, and visualizations. The experiment results show that
our method achieves superior performance to state-of-the-
art methods, indicating the feasibility and clinical utility of
the proposed SAMamba for multi-modal survival outcome
prediction.
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