
Reproducing: Parameterized Explainer for Graph Neural
Network

Anonymous Authors

Reproducibility Summary1

Scope of Reproducibility2

The main claims that are reproduced in this report are:3

1. The PGExplainer is able to correctly identify the ground-truth motif responsible for node and graph classifica-4

tion of a given GNN.5

2. The PGExplainer is able to achieve a maximum AUC of 0.987 for node classification and a maximum AUC of6

0.926 for graph classification, both with a standard deviation that is a maximum of 0.021.7

3. The PGExplainer is able to generate explanations for the given node classification tasks in 24 milliseconds or8

less, and graph classification tasks in 80 milliseconds or less.9

Methodology10

The provide codebase, which had a TensorFlow implementation, from the original PGExplainer paper has been used to11

reproduce their experiments. To replicate their work, the codebase has also been reimplemented to a PyTorch framework.12

All datasets are tested 10 times to find the average AUC and inference time.13

Results14

The TensorFlow implementation is able to find and show the correct motifs for all the tested datasets. The PyTorch15

implementation is able to do the same, except for the MUTAG dataset. The AUC for node classification is higher than16

stated in the paper for the TensorFlow implementation, the graph classification AUC is mostly similar. The inference17

time that was found using the PyTorch implementation seems to be in the same ballpark as the results shown in the18

original study.19

What was easy20

The paper was well written, which made it easy to understand the concepts and techniques that were used. On top of21

that, the models were precisely described and in great detail, this made the implementation of the models much easier.22

What was difficult23

Even though the reimplementation of TensorFlow into PyTorch was not a big obstacle, the rest of the code was not24

very structured or well written. A number of inconsistencies were found between the code and the paper, mostly in25

mentioned hyperparameters. Next to that, the provided code did not support GPU processing out of the box.26

The last dataset that was used in the original study, the MUTAG dataset, was very big, resulting in some computational27

problems. Even though the computational problems were managed eventually, the model could not be tested properly28

on this dataset due to its size.29

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



1 Introduction30

Many underlying data structures from different areas of science and engineering (e.g. data mining and molecular31

biology) can be represented in graphs (Scarselli et al. [2008]). These graphs usually have a similar structure in that32

they all contain nodes and edges. An example of such a graph could be a social network of people that are in contact33

with each other. In the graph, the persons are denoted by the nodes and their relationships are denoted by the edges.34

Graphs like these are often researched to find certain patterns or structures within them. A powerful tool used to study35

graphs are Graph Neural Networks (GNNs), which are a type of Neural Network that directly work on the structure36

of a graph (Scarselli et al. [2008]). They adapt a message passing design to learn the representation of the nodes by37

aggregating representation vectors of its neighbors. This design makes the model able to find the features of the nodes38

and the topology of the graph (Luo et al. [2020]). GNNs are widely applied for graph analysis, because of their high39

performance and interpretability (Zhou et al. [2018]).40

Even though GNNs are useful and efficient, they can be considered a black box, as predictions made by the model are41

often hard to understand for humans. The model looks at a combination of node features and graph topology to make42

its predictions, a combination of these 2 factors can thus be seen as an explanation of a prediction. In the work of Ying43

et al. [2019] a model, the GNNExplainer, has been introduced that is able to find these explanations. This model takes a44

trained GNN and its predictions as input, and it returns an explanation for the prediction in the form of a subgraph of45

the original graph along with a subset of the most important node features. However, the problem with this model is46

that it is instance specific and is thus not able to give a general explanation of how the GNN produces its predictions. It47

has to be retrained for every new prediction it makes. Consequently, the GNNExplainer has a high computation time48

making it unfeasible for real life application where multiple graphs need explaining.49

A more recent implementation of a model that can explain the predictions of GNNs, is the PGExplainer (Luo et al.50

[2020]). This model builds on the GNNExplainer by utilizing a generative probabilistic model, which has shown51

the ability to learn underlying structures from graphs. These underlying structures can in turn be used to explain the52

predictions that a GNN provides. To be able to explain predictions on a collection of instances, the PGExplainer is53

parameterized and trained using a deep neural network. Since the neural network parameters are shared across all the54

explained instances, the PGExplainer is able to provide model-level explanations for the individual instances. This55

global view of the GNN allows the explainer to explain entire model structures, instead of only single instances. It thus56

does not need to be retrained when a new graph from the same dataset is presented, but can quickly infer an explanation.57

(Luo et al. [2020]).58

This report contains the reproduction of the experiments done in the paper of Luo et al. [2020]. The authors of the59

paper provided a codebase that is used to run their experiments. The code is originally implemented in a TensorFlow60

framework, for this reproduction report it is reimplemented to a PyTorch framework. The provided code and the paper61

each also present a different set of hyperparameters. The ones present in the code are used for the reproduction, as they62

obtain better results.63

2 Scope of reproducibility64

The paper of Luo et al. [2020] introduces a new explainer for GNNs, the PGExplainer, which outperforms a preceding65

model, the GNNExplainer. The results that were found using the PGExplainer show an improvement in AUC over66

the GNNExplainer, on explaining both node and graph classifications for the datasets: BA-Shapes, BA-Community,67

Tree-Cycles, Tree-Grid, BA-2motifs and MUTAG.68

Below we specify the central claims made in the PGExplainer study, which we will attempt to reproduce.69

1. The PGExplainer is able to correctly identify the ground-truth motif responsible for node and graph classifica-70

tion of a given GNN.71

2. The PGExplainer is able to achieve a maximum AUC of 0.987 for node classification and a maximum AUC of72

0.926 for graph classification, both with a standard deviation that is a maximum of 0.021.73

3. The PGExplainer is able to generate explanations for the given node classification tasks in 24 milliseconds or74

less, and graph classification tasks in 80 milliseconds or less.75

The results will be both reproduced and replicated as per ACM guidelines (ACM [2020]). For the reproduction we will76

perform the experiments using their publicly available codebase, and done by a different team on different hardware.77

As part of the replication we rewrite their code from TensorFlow to Pytorch, which allows us to run the experiments78

without the use of any artifacts provided by the original authors.79

2



3 Methodology80

As stated earlier, the authors made their codebase available on a public GitHub repository1. Of note is that the provided81

codebase differed from the architecture and hyperparameters specified in the paper. The experimental results achieved82

by this code improved on the results reported in the paper, which led us to the decision to use this new code for our83

reproducibility assessment. The specific changes they made will be expanded upon in the model description section84

below. The reproduction of the experiments in TensorFlow is straight-forward, as the provided code is run on our85

hardware without any changes to fairly verify their results.86

For the replication experiments the code is reimplemented to a PyTorch framework, using the original code as a template.87

This is done to test whether the obtained results are independent of the framework that is used in the original paper. In88

contrast to the framework, the models, datasets and hyperparameters remained the same2 as given in the codebase.89

Both the TensorFlow and the PyTorch implementation of the models are run 10 times per model with a different seed90

per run to get the average result and the standard deviation, as was the case in the original paper. The models are tested91

on their Area Under ROC Curve (AUC) score and their inference time. The inference time is the time that is needed for92

the explainer to generate a motif for a new graph and thus does not include the training time of the model. The AUC93

score is used in the original paper and earlier literature to report the accuracy of the explanations. We concur with the94

usage of this metric, as it is especially fit for this task. This is because the generated explanations need enough true95

positives to yield the correct motif, and few false positives to not include too many uninformative nodes. AUC provides96

us with a good way to evaluate this trade-off as the generative model outputs probabilities for each edge, for which an97

artificial threshold has to be set at, for example, 0.5 if we were to use accuracy as a metric. (Huang and Ling [2005]).98

3.1 Model descriptions99

Figure 1: PGExplainer model structure as described below

The experimental setup consists of two models. The first model is a classifier consisting of a Graph Convolutional100

Network3 for embedding and a fully connected layer for classification. The classifier differs slightly for the node101

and graph classification tasks. The second model is a feed-forward neural network, which is the central part of the102

PGExplainer, responsible for the latent variables used to generate the explanatory subgraphs. The mutual information103

between this subgraph and the input graph is used as a loss to train the explainer network. A schematic representation104

made by the original authors is given in figure 1.105

The structure of the GNN layer is notated with GNN(a, b, c) with a as input dimension, b as output dimension and c as106

activation function. The structure of a fully connected layer is denoted with FC(a, b, c), with a, b and c having the same107

meaning as for the GNN layer. In the code the original authors also use two BatchNormalization layers (BatchNorm) and108

skip connections in the form of concatenations (Concat), which are not specified in the paper. The structure of the node109

classification model is GNN(10, 20, ReLU)-BatchNorm-Concat-GNN(20, 20, ReLU)-BatchNorm-Concat-GNN(20, 20,110

ReLU)-Concat-FC(60, #labels, softmax). A change was made here in the PyTorch implementation, as the obtained111

AUC increased significantly when the tensors were concatenated after every GNN layer instead of twice after the112

BatchNorm layer and once after the final GNN layer. Trying this on the TensorFlow implementation did not result113

in major improvements, as the AUC was already highly optimized. This point will be further expounded upon in the114

discussion.115

1https://github.com/flyingdoog/PGExplainer
2Except for the learning rate on some experiments, as PyTorch learned much faster than TensorFlow
3Specified simply as a GNN in the original paper

3



For graph classification the BatchNorm and Concat layers are not used, but an additional maxpooling layer is specified,116

and additionally a sum aggregation layer is added in the code. These are added because the input tensors for graph117

classification contain an additional channel dimension, which has a size of 25 for the BA-2motifs dataset. The118

maxpooling and summation are both performed on the feature dimension of size 20 of the output of the previous layers,119

resulting in the BA-2motifs case in two tensors with shape batch size ×25. These two layers are concatenated resulting120

in a tensor of shape batch size ×50, which is then fed into the final prediction layer. The original paper incorrectly121

specifies the size of the input dimension of the final layer to be 40, we presume because this does not need to be122

explicitly specified in TensorFlow, while it does in Pytorch. The final structure of the graph classification model in123

the code is GNN(10, 20, ReLU)-GNN(20, 20, ReLU)-GNN(20, 20, ReLU)-Maxpooling Summation-FC(50,#labels,124

softmax).125

The structure of the explainer is FC(#input, 64, ReLU)-FC(644, 1, Linear). Befor the difference between node and126

graph classification is that the node classification model has as #input 60 and graph classification has #input 50.127

3.2 Datasets128

Figure 2: Base graph and motif structures

This figure shows the base graph structures and all the corresponding motifs for all the different tested datasets.

The datasets that were used by in the preliminary paper can be categorized into two categories, node classification129

datasets and graph classification datasets. The node classification datasets that were used, are the same as the ones that130

were used in the paper in which the GNNExplainer was proposed. For node classification the goal is to classify the131

nodes, whose values are dependent on their relation to a motif. A motif is a characteristic part of the graph that is used132

to make predictions, which can thus act as an explanation for the classification. The 4 node classification datasets are all133

synthetically made, the structure of the graphs and motifs can be seen in figure 2. (1) The BA-shapes dataset has a134

total of 300 nodes in the form of a Barabasi-Albert (BA) graph with 80 added house shaped motifs. The motifs are135

connected to randomly selected nodes in the graph, after which additional random edges are added. Nodes in this graph136

can have 4 different labels, base nodes get the label 0 and the top, middle and bottom of the house motif get the label 1,137

2 and 3, respectively. (2) The BA-community graph is a combination of 2 BA-shapes graphs. Features are assigned to138

every node via two Gaussian distributions. The nodes are classified with 1 of the 8 classes depending on the community139

membership they are in and the structural role they play. (3) The Tree-Cycles dataset contains a binary tree of a total of140

8 levels. A set of 80 motifs in the form of a 6-noded cycle are added to random nodes in the graph. (4) The Tree-Grid141

has the same base graph as Tree-Cycle, but 80 3-by-3 grid motifs are randomly added instead of 80 6-noded cycles 80.142

For graph classification a total of 2 different datasets were used in the preliminary paper. The goal of graph classification143

is to correctly classify a graph in one of the given types. This is done by finding the motif in the graph that characterizes144

a specific class of graph. The structure of the graphs and motifs can again be seen in figure 2. (1) The BA-2motif dataset145

is, like the node classification graphs, syntactically generated. It contains 1000 graphs with a BA base structure. Half of146

the total amount of graphs are attached with a house motif and the other half with a 5-node cycle motif. The graphs147

are classified with 1 of the 2 classes, specified by the added motif. This dataset was not used in the paper in which148

the GNNExplainer was proposed. (2) The MUTAG dataset is the only real world dataset that is used in the original149

paper. This dataset contains 4337 different molecule graphs, each of which is labeled with 1 of the 2 classes: mutagenic150

or nonmutagenic. Those graphs that contain a carbon ring with the chemical groups NH2 or NO2 are classified as151

mutagenic, while the nonmutagenic graph have no defining motif, but can also have carbon rings. The two chemical152

groups can therefore be seen as the motif in the graphs, while the carbon ring does not convey any information.153

All datasets are divided into a training, validation and test set. The training set contains 80% of the data, the validation154

set contains 10% and the test set contains 10%. Table 1 shows the specifications of the different datasets.155

4The original paper defines this incorrectly as 20

4



Table 1: Graph details
BA-Shapes BA-community Tree-Cycles Tree-Grid BA-2motifs MUTAG

Number of graphs 1 1 1 1 1000 4337
Avg. nodes 700 1400 871 1231 25 30.32
Avg. edges 4110 8920 1950 3410 51.4 61.54

Number of labels 4 8 2 2 2 2

This table shows an overview of all the graphs that are used in this report. The left 4 columns show the node classification
graphs and the right 3 columns show the graph classification graphs.

3.3 Hyperparameters156

The GNN classifier uses the Adam optimizer, with an initial learning rate of 1.0 × 10−3 for the node GNN and157

1.0×10−2 for the graph GNN. All weight variables are initialized with Xavier initialization (Glorot and Bengio [2010]).158

The node GNN is trained for 1000 epochs and the graph GNN for 5000 epochs.159

The PGExplainer also uses the Adam optimizer, but with an initial learning rate of 3.0× 10−3 for node classification160

and 5.0×10−2 for graph classification. These learning rates were found to be too high on some datasets for the PyTorch161

implementation and were thus set to 1.0× 10−4 for Tree-Grid and to 1.5× 10−4 for BA2-motifs. This will be further162

explained in the discussion. The coefficient of size regularization is set to 0.05 and entropy regularization is set to163

1.0. The model is trained for 30 epochs for all datasets. The temperature that is used follows the annealing schedule164

τ (t) = τ0(τT /τ0)
t, with τ0 = 5.0 and τT = 2.0.165

3.4 Experimental setup166

To run the multitude of experiments, the supercomputer Lisa from the provider SURFsara has been used. This167

supercomputer has been made available for students of the University of Amsterdam (UvA) and Vrije Universiteit168

Amsterdam (VU) to be able to run experiments for projects. The GPU that is used is a quad Scalable Link Interface169

(SLI) GeForce 1080Ti, each with 11 Gbps of memory speed. The code used is publicly available on the github:170

https://github.com/afalbrecht/FACTAI21/tree/master/PGExplainer171

4 Results172

4.1 Qualitative results173

Figure 3: TensorFlow motifs

(a) BA_Shapes (b) BA_Community (c) Tree_Cycle (d) Tree_Grid (e) BA_2motifs (f) MUTAG

This figure shows correct (top) and incorrect (bottom) motifs found with the TensorFlow implementation of the code
for every dataset.

Figure 3 shows the motifs that were found using the TensorFlow implementation of the code. As can be seen, the model174

is able to find the correct motifs for the different datasets. The claim that explanations mapping to the ground truth175

motifs could be found is verified and reproducible. However, upon further inspection, there are also instances in which176

the PGExplainer fails to find the ground-truth motif. A manual qualitative evaluation was conducted and the following177

the following qualitative results were found for each dataset: (1) BA-Shapes performed the best, with only up to 5/50178

5



uninformative graphs over the different iterations. (2) BA2-community found the ground truth relatively consistently,179

but as it was a noisier dataset, it included the uninformative BA part of the graph more often, namely 15 times out of180

50. (3) Tree-Circles performed less consistent, with only 20/50 graphs qualifying as circles and the rest consisting of181

lines or single nodes. It does consistently find the informative (blue) nodes, which explains why the AUC and loss182

are still optimal. This disconnect between the metrics and provided explanation shows a crucial weakness inherent in183

the proposed method. (4) Tree-grid only got 10/50 strictly correct, as most others consisted of only three squares. (5)184

BA-2motifs was very unstable at generating explanations, as can also be seen in the quantitative results. This resulted185

in some seeds yielding only 2/50 mistakes, while other seeds would yield only 5/50 correct explanations. (6) This186

instability was less prevalent in the MUTAG dataset, as most explanations were correct. This is positive, as it shows the187

usefulness of the explainer on a real world dataset.188

Figure 4: PyTorch motifs

(a) BA_Shapes (b) BA_Community (c) Tree_Cycle (d) Tree_Grid (e) BA_2motifs (f) MUTAG

This figure shows correct (top) and incorrect (bottom) motifs found with the PyTorch implementation of the code for
every dataset. The only exception for the top motif being is the shown motif for the MUTAG dataset.

Figure 4 shows the motifs that were found using the reimplemented PyTorch model. The results seem comparable to189

the results shown in figure 3. The PyTorch implementation is able to find the correct motifs on all the datasets, except190

for the MUTAG dataset. Not all generated images were correct, with high failure rates for BA-shapes, Tree-Grid and191

BA-2motifs, while the other two datasets showed similar failure rates as the TensorFlow implementation. The reasons192

for these errors will be discussed in the discussion. Still, for all datasets besides MUTAG, the correct motifs are found193

by the PyTorch implementation, making the original paper replicable for those datasets.194

4.2 Quantitative results195

4.2.1 Average explanation AUC196

Table 2: Average AUC
BA-Shapes BA-Community Tree-Cycle Tree-Grid BA-2motifs MUTAG

TensorFlow 0.999± 8.251× 10−5 0.994± 0.0005 0.997± 0.0003 0.992± 0.0002 0.827± 0.1341 0.899± 0.1651
Pytorch 0.999± 5.691× 10−5 0.996± 0.0004 0.933± 0.0839 0.708± 0.1127 0.516± 0.1625 0.385± 0.0020
Improve 0% 0.4% −6.42% −28.62% −37.61% −57.17%

This table shows the average AUC for the different graphs for the two neural network frameworks. The AUC is
calculated by running every model 10 times, each with a different random seed. The accuracy improvement from
TensorFlow to PyTorch is shown in percentage.

Table 2 shows the results of the AUC test using both the TensorFlow and PyTorch implementations for all the different197

datasets. For the node classification tasks, the TensorFlow implementation shows to be extremely accurate, in fact it198

shows to be more accurate than the scores in the original paper. This discrepancy can be partly explained by the updated199

code given by the authors, which improves upon the scores reported in the paper on every dataset. But interestingly200

enough for Tree-Grid and BA-Community our results are better (respectively 0.06 an 0.04 better on AUC) than when201

using their pre-trained weights, which might be explained by our different hardware and multiple seeds, though it202

remains uncertain. For the graph classification tasks, the TensorFlow implementation shows to be slightly worse in the203

BA-2motifs dataset and slightly better in the MUTAG dataset. The decrease in the BA-2motifs set concurs with the204

6



instability touched upon above, as its AUC fluctuated between 0.5 and 0.98 on different seeds. This will be returned to205

in the discussion.206

The PyTorch implementation performs well on the BA-shapes, BA-community and the Tree-cycle dataset for the node207

classification graphs. However, the AUC score for the Tree-grid dataset is much lower than the score of the TensorFlow208

implementation, it has a decrease of 28.62%. It also shows to have a high standard deviation, the AUC score for the209

Tree-grid dataset can fluctuate between values of 0.941 and 0.58. This is due to an instability in the loss function used210

in the paper, which will be further discussed in the discussion.211

The PyTorch implementation performs worse than the TensorFlow implementation when it comes to the graph212

classification tasks. For the BA-2motifs dataset there is a decrease in AUC score of 37.61%. Only one seed tested seed213

was able to score an AUC of 0.95, the seed 1234 which is interestingly also used by the original authors. This does214

again attest to the explainer on the BA-2motif dataset, which was not touched upon in the original paper. Thus we215

were not able to fully replicate or reproduce their results in the instance of the BA2-motif dataset. MUTAG also wasn’t216

replicable, but the other node classifier dataset were replicable with some minor adjustments, as will be touched upon in217

the discussion.218

4.2.2 Average explanation time219

Table 3: Average inference time (ms)
BA-Shapes BA-Community Tree-Cycle Tree-Grid BA-2motifs MUTAG

Pytorch 3.611± 0.58 3.675± 0.6 1.752± 0.43 1.861± 0.42 2.179± 0.569 74.711± 10.251

This table shows the inference time in milliseconds for the different graphs for the PyTorch framework. The inference
time is calculated by running every model leach with a different random seed.

Table 3 shows the inference time results for the different datasets for the PyTorch implementation. Since both the220

original paper and code did not provide an explicit way to time the inference operation, the TensorFlow implementation221

is omitted. However, the found inference times seem to be in the same ballpark as the inference times reported in the222

preliminary study.223

5 Discussion224

In conclusion: reproducibility claim 1 was able to be reproduced for all datasets and replicated for all except MUTAG.225

Reproducibility claim 2 was able to be reproduced for all datasets except for BA-2motif, which had a higher standard226

deviation than was reported in the original paper. Not all datasets were able to be replicated, but qualifications for this227

statement will be made below.228

Reproducibility claim 3 was able to be replicated, but not able to be reproduced due to an oversight in our implementation229

as discussed below.230

Several points remain to be discussed:231

1. BA2-motifs instability the only major point that hampers the reproducibility, and it is suspected by us that this has to232

do with the dataset itself, as it did get the right subgraphs, but did not correctly rank the most important edges. This233

could be due to latent mutual information in these edges, that also allow the classifier to classify, besides the motifs234

which stand as ground truths. 2. Pytorch seemed to learn much faster in the cases of BA2-motifs and Tree-Grid, which235

resulted in loss-hacking behaviour. This can be seen in the case of Tree-Grid, as here it finds the optimum after 3236

epochs, then plateaus for a while, and then starts dropping heavily. This problematic behaviour was caused by the237

original implementation of the size_loss, which put a penalty on the size of the subgraphs by summing the edgeweights238

in the adjacency matrix. To get this loss down the model then started decreasing these continuous variables by an order239

of 10 every epoch, resulting in pathological AUC behaviour with decent graphs. Changing this loss to merely adding up240

the amount of non-zero edge weights immediately improved stability, but it was also found that decreasing the learning241

rate by an order of 10 helped circumvent the issue as well. This was not reported on our paper, but can be seen by242

decreasing the learning rate. 3. BA-shapes got worse pictures than expected, which was a problem encountered the day243

before the paper had to be finalized, as earlier they were replicated. This turned out to be due to the concatination of the244

batchnorm as touched upon above, which when done in the pytorch friendly way results in better pictures. This is also245

not shown in the report due to time issues. 4. The tensorflow inference time was not reported due to an oversight in246

measuring the duration, which was fixed in pytorch but not able to be fixed in tensorflow before the deadline.247

7



The overall result of this reproduction study mainly supports the claims that are made in the preliminary study. However,248

there still is room for improvement for finding evidence to support the claims that were made.249

To further strengthen the claims made in the paper, ideally the models should be tested on a new dataset on top of250

the datasets that are used in the original study. This tests the generlizability of the model, which validates the overall251

usefulness of such a model. Next to that, it would be interesting to test this model on a larger dataset and on larger252

graphs.253

Since the authors provided the code that was used for their study, the reimplementation of the model into the PyTorch254

framework was mostly based on that provided code. However, in hindsight, the provided code did not suit as a good255

template for the PyTorch implementation. For further inspection of the model, it would be interesting to completely256

reimplement the model from scratch, so that the model is computationally stronger. Testing this could provide more257

information about the power of the model.258

Due to a misconception, the code that was provided by the authors was not run on a GPU, but instead on a CPU. This259

was done because the code that was provided, did not support GPU out of the box. So, to fully test their claims about260

computation speeds, the provided code should be ran on a GPU.261

5.1 What was easy262

The paper from Luo et al. [2020] was mostly well written and detailed. The appropriate use of images and tables is263

well done and are structurally good. The formulas for the PGExplainer are also accurately described, which makes264

interpreting the model easier.265

5.2 What was difficult266

Unfortunately, there were several inconsistencies in the code and in the paper that had to be solved. To begin with,267

adjusting the provided code from a TensorFlow framework to a PyTorch framework was harder than initially expected.268

Some functions that are available in the TensorFlow framework are non-existent or slightly different in the PyTorch269

framework, making the task time consuming. This was combined with the fact that certain pieces of code are poorly270

written. To give an example, the temperature hyperparameters described in section 3.3 did not update for the Tree-Cycle271

graphs as it should have done, and stayed at 5 for the entire training sequence.272

Another difficulty was that some aspects that were described in the paper did not match how the code worked. This are273

some of the inaccuracies that were found. (1) The maxpooling layer that is supposedly used in the graph classification274

model was not present in the code. The reason for this is unknown. (2) For the node classification model, the code had a275

batchnorm layer that was not described in the paper. This layer has been kept for the rewriting of the code. (3) The276

paper described the structure of the explainer model to be FC(#input, 64, ReLU)-FC(20, 1, Linear). This is ofcourse277

impossible, because the output of the first layer needs to match the input of the second layer. The code showed that the278

input of the second layer had to be 64. (4) The amount of epochs for the training of the different explainer models is279

described to be 30. However, the amount of epochs for the training of the BA-shapes dataset has been set to 10 in the280

code. The reason for this is again not known.281

5.3 Communication with original authors282

During this study there has been no contact with the authors of the preliminary paper, since there were no big issues283

with the code or the paper.284

8



References285

ACM. Artifact review and badging - current, 2020. URL https://www.acm.org/publications/policies/286

artifact-review-and-badging-current.287

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In288

Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages 249–256. JMLR289

Workshop and Conference Proceedings, 2010.290

Jin Huang and Charles X Ling. Using auc and accuracy in evaluating learning algorithms. IEEE Transactions on291

knowledge and Data Engineering, 17(3):299–310, 2005.292

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. Parameterized293

explainer for graph neural network. Advances in Neural Information Processing Systems, 33, 2020.294

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural295

network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.296

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating explanations297

for graph neural networks. In Advances in neural information processing systems, pages 9244–9255, 2019.298

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun.299

Graph neural networks: A review of methods and applications. arXiv preprint arXiv:1812.08434, 2018.300

9

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Datasets
	Hyperparameters
	Experimental setup

	Results
	Qualitative results
	Quantitative results
	Average explanation AUC
	Average explanation time


	Discussion
	What was easy
	What was difficult
	Communication with original authors


