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Abstract
Pretrained language models (PLMs) have001
been shown to accumulate factual knowledge002
from their unsupervised pretraining proce-003
dures (Petroni et al., 2019). Prompting is an004
effective way to query such knowledge from005
PLMs. Recently, continuous prompt methods006
have been shown to have a larger potential007
than discrete prompt methods in generating ef-008
fective queries (Liu et al., 2021a). However,009
these methods do not consider symmetry of010
the task. In this work, we propose Symmet-011
rical Prompt Enhancement (SPE), a continu-012
ous prompt-based method for fact retrieval that013
leverages the symmetry of the task. Our results014
on LAMA, a popular fact retrieval dataset,015
show significant improvement of SPE over pre-016
vious prompt methods.017

1 Introduction018

Prompt-based learning proposes to formulate dif-019

ferent NLP tasks into language modeling problems020

(Schick and Schütze, 2021). It is a novel paradigm021

that effectively uses Pretrained Language Models022

(PLMs) (Liu et al., 2021a), and achieves compara-023

ble or better performance than fine-tuning (Lester024

et al., 2021). Prompt-based learning has also been025

used for the task of fact retrieval from PLMs. In026

this task, the goal is to predict the (masked) ob-027

ject of factual tuples of type (subject, relation, ob-028

ject). Prompt-based methods assume that PLMs029

gather and store factual knowledge during their pre-030

training, and cloze-style prompts can retrieve this031

knowledge (Petroni et al., 2019). The prompts are032

either handcrafted (Petroni et al., 2019; Bouraoui033

et al., 2020) or automatically generated (Shin et al.,034

2020; Haviv et al., 2021). For example, to retrieve035

the knowledge about geographic location of Luxem-036

bourg in the PLMs, a prompt can be formed by037

filling Luxembourg in the first blank of the follow-038

ing template: "____ is located in ____.". An039

effective prompt will query the PLM to output Eu-040

rope as the most likely prediction for the second041

Prompt: Luxembourg is located in ____ .

Prediction Probability 
Germany          
France            
Europe              

<Subject: Luxembourg, Relation: location, Object: Europe> 

Prompt: ____ is located in Germany.

Luxembourg          

Template: ___ is located in ___ .

Prompt: ____ is located in France.

Luxembourg   

Prompt: ____ is located in Europe.

Luxembourg    

Germany          
France            
Europe              

Figure 1: Example of fact retrieval: Given a subject and
relation, predict the object. SPE uses a fixed template
to generate a prompt for predicting object given subject
(green box) as well as several symmetrical prompts for
predicting the subject given object candidates (yellow
boxes). The final prediction is obtained using the like-
lihoods of the object candidates and of the given sub-
ject as obtained using the symmetrical prompts. Bars
represent probabilities from BERT. Note that SPE is a
continuous prompt-based method. We use natural lan-
guage prompts and template here for illustration.

blank. Such methods are promising but brittle. Mi- 042

nor changes in the template can lead to significant 043

difference in the performance (Jiang et al., 2020). 044

Recent works has shown that continuous prompts 045

obtained via gradient-based learning, are more ef- 046

fective and robust than discrete prompts since there 047

are less restrictions on the search space (Liu et al., 048

2021b; Qin and Eisner, 2021; Zhong et al., 2021; 049

Liu et al., 2021a). 050

While existing work focuses on the design of 051

the prompts, they do not leverage the symmetry in- 052

herent in the task’s definition. For example, while 053

Luxembourg is located in Europe, Europe is the 054

region that contains Luxembourg. Similar princi- 055

ple is applied in other NLP tasks (Crawford et al., 056

1996; Kiddon and Domingos, 2015; He et al., 2017; 057

Tanchip et al., 2020). 058

In this work, we propose Symmetrical Prompt 059

1



Enhancement (SPE), a continuous prompt learning060

method that incorporates the above mentioned sym-061

metry of the task. Specifically, in addition to using062

a prompt to predict the object given the subject,063

SPE also uses an additional symmetrical prompt to064

predict the subject given the object. Using the first065

prompt (see green box in Fig. 1), SPE obtains a066

few high-probability candidates for the object like067

Germany, France, and Europe. Thereafter, for each068

object candidate, it generates a symmetrical prompt069

(shown in yellow boxes), and obtains the likelihood070

of the subject, Luxembourg. Finally, SPE reranks071

the object candidates by joint likelihood of both the072

candidates as well as the subject (given the candi-073

dates). In the running example illustrated in Fig. 1,074

we can see that even though the correct answer,075

Europe, was not the most likely output in the green076

box, SPE’s symmetrical prompting resulted in its077

(joint) likelihood being the highest. Our experi-078

ments on the fact retrieval dataset, LAMA (Petroni079

et al., 2019), shows SPE achieves significant im-080

provement over previous prompt approaches.081

2 Symmetrical Prompt Enhancement082

The goal of fact retrieval via prompt generation083

is to output object O for given subject I and rela-084

tion R by constructing a prompt P . Most meth-085

ods operate by assuming a template T , and gen-086

erating the prompt P from T , I and R. Fig. 1087

shows an example of Subject (Luxembourg), Rela-088

tion (location), Object (Europe), Template (____089

is located in ____.), and Prompt (Luxembourg is090

located in ____.). Note that the figure shows a091

natural language template and prompts for read-092

ability. However, for continuous prompt meth-093

ods like ours, the template is a sequences of vec-094

tors like [V ]1...[V ]n ____ [V ]n+1...[V ]n+m ____095

[V ]n+m+1...[V ]n+m+k, ∀[V ]i ∈ Rd. The prompt,096

P , is typically generated by learning these vectors097

from the training data and filling the (representa-098

tion of) I in the first blank. Note that prompts are099

relation-specific (PR) but here we refer to them100

as P for simplicity. The model’s prediction, Ô, is101

the most likely object candidate for the remaining102

blank in the prompt as determined by the PLM.103

Mathematically,104

P = PGenθ(T , I) (1)105

Ô = argmax
v∈V

PPLM(blank = v|P), (2)106

where PGenθ is the prompt generator parameter-107

ized by θ and V is the vocabulary of the PLM.108

Our proposed approach, Symmetrical Prompt En- 109

hancement (SPE), leverages the inherent symmetry 110

of the task. Specifically, in addition to learning 111

the original prompt Porig for predicting the object 112

given the subject, SPE also generates several sym- 113

metrical prompts, Psym, for predicting the subject 114

given the object. Like P , Psym is also generated 115

from T except that this time the first blank is filled 116

by the (representation of) O. 117

Porig = PGenθ(T , I) (3) 118

Psym = PGenθ(T ,O) (4) 119

Ô = argmax
v∈V

PPLM(blank = v|Porig) (5) 120

Î = argmax
v∈V

PPLM(blank = v|Psym). (6) 121

The model is trained by optimizing a linear combi- 122

nation of the cross-entropy objectives of predicting 123

the object O and the subject I: 124

min
θ
LCE(Ô,O|Porig) + λLCE(Î, I|Psym),

(7) 125

where λ is a hyperparameter. 126

During inference, SPE selects top K predictions 127

CK using the original prompt and I , and uses them 128

as candidates to generate symmetrical prompts 129

Pk
sym. 130

CK = TopKv∈V P(v|I,Porig) (8) 131

Pk
sym = PGenθ(T , ck), ∀ck ∈ CK. (9) 132

Finally, the model’s prediction Ô is: 133

Ô =arg max
ck∈CK

log PPLM (ck|Porig)

+ λ log PPLM (I|Pk
sym).

(10) 134

In practice, L and PPLM are normalized by input 135

length to account for inputs with multiple tokens. 136

3 Experimental Setup 137

We conduct experiments on the fact retrieval part 138

of LAMA dataset (Petroni et al., 2019), which con- 139

sists of fact triples with single-token objects from 140

41 relations in Wikidata (Vrandečić and Krötzsch, 141

2014). We use the training set extended by Shin 142

et al. (2020). We choose masked language mod- 143

els BERT (Devlin et al., 2019) and RoBERTa (Liu 144

et al., 2019) as PLMs, which are fixed during train- 145

ing to serve as static knowledge bases. For imple- 146

mentation, we use PLMs in Huggingface library of 147

Transformers (Wolf et al., 2020). Following Liu 148
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Model BERT-base BERT-large RoBERTa-base

P@1 P@10 MRR P@1 P@10 MRR P@1 P@10 MRR

Manual 31.1 59.5 40.3 28.9 57.7 38.7 - - -

LPAQA 34.1 62.0 43.6 39.4 67.4 49.1 1.2 9.1 4.2

AutoPrompt 43.3 73.9 53.9 - - - 40.0 68.3 49.9

OptiPrompt (manual) 48.6 79.0 58.9 50.6 79.2 60.7 - - -

SoftPrompt (mined) 48.8 79.6 59.4 51.0 81.4 59.6 40.6 75.5 53.0

P-tuning 48.2 78.1 58.6 49.9 80.6 60.6 43.5 73.9 53.8

SPE 50.3 80.5 60.9 52.3 82.2 62.9 46.4 75.5 56.1

Table 1: Result on LAMA. Our approach, SPE, outperforms both discrete prompt approaches: Manual (Petroni
et al., 2019), LPAQA(Jiang et al., 2020), and AutoPrompt (Shin et al., 2020); and continuous prompt methods:
Optiprompt (Zhong et al., 2021), Softprompt (Qin and Eisner, 2021) and P-tuning (Liu et al., 2021b).

Model P@1 P@10 MRR

P-tuning 48.2 78.1 58.6

SPE K=1 48.7 79.9 59.5
K=5 49.9 79.9 60.5
K=10 49.9 79.9 60.7
K=15 50.3 80.5 60.9

Table 2: Effect of varying size of candidate pool on
SPE’s performance. SPE outperforms P-tuning even
without reranking (K=1). A larger candidate pool helps
the model even further.

et al. (2021b) we use the following generic format149

for template, T : [V ]1 [V ]2 [V ]3 ____ [V ]4 [V ]5150

[V ]6 ____ [V ]7 [V ]8 [V ]9 ∀[V ]i ∈ Rd. We also use151

their BiLSTM (Graves et al., 2013) with multilayer152

perceptron (MLP) architecture to setup PGen.153

For I with multiple tokens, we mask them one154

token at a time to generate Psym, and use the av-155

erage of pseudo likelihoods from all Psyms to rep-156

resent PPLM (I|Psym). In practice, we find that157

masking one token at a time is better than mask-158

ing the entire phrase at once, and averaging the159

pseudo-likelihood has better performance. The160

training batch size is 8. We set K to be 15 during161

inference, and λ to be 0.8 according to preliminary162

results. The results are evaluated by accuracy at163

top 1 (P@1) and top 10 (P@10) predictions, and164

Mean Reciprocal Rank (MRR) as in Qin and Eisner165

(2021). See Appendix A for more setup details.166

4 Results167

We compare our results with both discrete and con-168

tinuous prompt methods. Discrete prompt methods169

include prompts from manually designed templates 170

(Petroni et al., 2019); LPAQA (Jiang et al., 2020), 171

which uses text mining based prompts; and Au- 172

toPrompt (Shin et al., 2020), which uses discrete 173

lexicalized trigger tokens for prompt generation. 174

Continuous prompt methods include P-tuning (Liu 175

et al., 2021b), which uses a neural network to gen- 176

erate prompt tokens; OptiPrompt (Zhong et al., 177

2021), which uses manually initialized continuous 178

prompts; and SoftPrompt (Qin and Eisner, 2021), 179

which ensembles multiple prompts initialized with 180

mined templates. 181

Our results in Table 1 show that SPE outper- 182

forms all previous methods. Note that, unlike Op- 183

tiPrompt and SoftPrompt, we do not make use of 184

manual templates as initialization. Nevertheless, 185

SPE outperforms them indicating that the it gen- 186

erates prompts of higher qualities even without 187

manual efforts. For the rest of our experiments, we 188

consider P-tuning as our primary baseline since it 189

is the best performing model that is directly com- 190

parable to SPE. 191

Table 2 shows how the performance of SPE 192

varies with the size of the candidate pool. Compar- 193

ing the first two rows we can see that even with a 194

single candidate (K=1), SPE outperforms our pri- 195

mary baseline, P-tuning. Increasing the size of the 196

candidate pool further improves the performance 197

by allowing the model to conduct bidirectional fil- 198

tering. However, expanding the candidate pool has 199

trade-off between performance and memory usage. 200

Table 3 shows some qualitative examples of top 5 201

predictions for a given subject-relation pair from P- 202

tuning (top half of each row) and SPE (bottom half 203

of each row). The correct answers are underlined, 204

and their ranks in the predicted list are shown in the 205
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Rel Subject Top 5 Predictions (Prob. High −→ Low): Top - PT, Bottom - SPE Rank

P101 Richard Wagner
music history psychology opera linguistics 4
opera music philosophy aesthetics art 1

P108 Spike Milligan
Microsoft IBM Google BBC ESPN 4

BBC Microsoft CBS ESPN Google 1

P364 Baaz
Turkish English French Arabic Persian 41
Hindi Urdu Punjabi Bengali Persian 1

P27 Rubens Barrichello
Belgium France Italy Spain Germany 15

Brazil Spain Argentina Portugal Uruguay 1

P127 Nismo
Google Nokia Iceland Intel Microsoft 14
Toyota Nissan Honda Mitsubishi Volkswagen 2

P30 Marshall Islands
Antarctica Asia Africa Oceania Europe 4

Asia Oceania Africa Antarctica Europe 2

Table 3: Comparison between P-tuning (referred as PT) and SPE for the following relations: P101 (field of work),
P108 (employer), P364 (original language of film or TV show), P27 (country of citizenship), P127 (owned by),
and P30 (continent). Correct answers are underlined and the last column represents the rank of correct answers.

right-most column. We make several observations206

from this table.207

First, we can see that, in general, the rank of208

the correct answer is lower in SPE’s list than in209

P-tuning’s list. For instance, consider the first row210

with subject as Richard Wagner, a German com-211

poser, and relation as P101 (field of work). SPE212

correctly predicts opera as the top-ranked object213

for this example while it appears at the fourth po-214

sition in P-tuning’s list. Similarly, SPE correctly215

predicts BBC as the employer of Spike Milligan,216

and Hindi as the original language of the Indian217

thriller, Bazz.218

Second, SPE also correctly identifies the coun-219

try of citizenship for Rubens Barrichello as Brazil.220

Identifying objects for relations like country of cit-221

izenship for individuals are challenging because222

their personal descriptions appeared in the pretrain-223

ing corpus of PLMs might contain mentions of224

several places he/she has worked or lived or re-225

ceived education in. This might create confusion226

for PLMs. For example, the Wikipedia page of227

the famous Brazilian Formula One player, Rubens228

Barrichello, mentions a handful of other countries229

where he participated in competitions.230

Third, SPE, in general, brings a notable improve-231

ment in the ranked lists, even if the correct an-232

swer is not the topmost prediction. For example,233

Nismo is more likely to be owned by a Japanese234

vehicle company than an Internet firm. SPE’s top235

predictions include Toyota, Nissan (the correct an-236

swer), and Honda, while P-tuning’s top predictions237

include Google, Nokia, and Iceland. Similarly, 238

SPE’s top predictions for original language of In- 239

dian thriller Bazz include several Indian languages 240

(with the correct answer as the topmost prediction) 241

while P-tuning’s top predictions contain European 242

and Middle Eastern languages. 243

Fourth, for relations with close-set answers (e.g. 244

P30 continent of Marshall Islands), the task of fact 245

retrieval reduces to a classification problem with 246

fixed number of labels. Prompt based models, in 247

general, are observed to be affected by label im- 248

balance in the training set (Zhong et al., 2021). 249

For example, in our dataset, the majority class for 250

continents is Antartica (95.6% of continent-type 251

objects) while Oceania, only occurs in 0.4% of 252

the continent-type objects. P-tuning is probably 253

affected by this imbalance and outputs the majority 254

label, Antartica, as the continent that contains Mar- 255

shall Islands while Oceania, the correct answer, 256

appears at rank 4. SPE is less affected by the abun- 257

dance of the majority class and missing labels and 258

outputs Oceania at the second position. 259

5 Conclusion 260

Prompt-based learning is an effective way of knowl- 261

edge retrieval from PLMs. In this work, we intro- 262

duce Symmetrical Prompt Enhancement (SPE) that 263

utilizes the inherent symmetry of the task to better 264

improve fact retrieval. Our experiments show that 265

SPE outperforms existing SOTA methods. It also 266

demonstrates potential in alleviating the problem 267

of label imbalance in prompting. 268
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to recall. In Proceedings of the 2021 Conference of381
the North American Chapter of the Association for382
Computational Linguistics: Human Language Tech-383
nologies, pages 5017–5033, Online. Association for384
Computational Linguistics.385

A Additional Setup Details386

The prompt generator consists of a two-layer BiL-387

STM and a two-layer MLP on top of it. The MLP388

uses ReLU (Glorot et al., 2011) as the activation389

function. The hidden size of LSTM and dimension390

of d are 768 for BERT-base-cased and RoBERTa-391

base, and 1024 for BERT-large-cased.392
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