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Lightning Pose: improved animal pose 
estimation via semi-supervised learning, 
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Contemporary pose estimation methods enable precise measurements 
of behavior via supervised deep learning with hand-labeled video frames. 
Although effective in many cases, the supervised approach requires extensive 
labeling and often produces outputs that are unreliable for downstream 
analyses. Here, we introduce ‘Lightning Pose’, an efficient pose estimation 
package with three algorithmic contributions. First, in addition to training on 
a few labeled video frames, we use many unlabeled videos and penalize the 
network whenever its predictions violate motion continuity, multiple-view 
geometry and posture plausibility (semi-supervised learning). Second, we 
introduce a network architecture that resolves occlusions by predicting pose 
on any given frame using surrounding unlabeled frames. Third, we refine the 
pose predictions post hoc by combining ensembling and Kalman smoothing. 
Together, these components render pose trajectories more accurate and 
scientifically usable. We released a cloud application that allows users to label 
data, train networks and process new videos directly from the browser.

Behavior is a window into the processes that underlie animal intelli-
gence, ranging from early sensory processing to complex social inter-
action1. Methods for automatically quantifying behavior from video2–4 
have opened the door to high-throughput experiments that compare 
animal behavior across pharmacological5 and disease6 conditions.

Pose estimation methods based on fully supervised deep learning 
have emerged as a workhorse for behavioral quantification7–11. This 
technology reduces high-dimensional videos of behaving animals to 

low-dimensional time series of their poses, defined in terms of a small 
number of user-selected keypoints per video frame. Three steps are 
required to accomplish this feat. Users first create a training dataset 
by manually labeling poses on a subset of video frames; typically, 
hundreds or thousands of frames are labeled to obtain reliable pose 
estimates. A neural network is then trained to predict poses that match 
user labels. Finally, the network processes a new video to predict a pose 
for each frame separately. Each predicted keypoint is accompanied 
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on a treadmill and performing a sensory-guided locomotion task14. 
Using a camera and a bottom mirror, the mouse’s side and underside 
are observed simultaneously, recorded at 250 frames per second. Sev-
enteen body parts are tracked, including all four paws in both views. 
We trained five DeepLabCut networks on 631 labeled frames (for each 
network, we used a different random seed to split the labeled frames 
into train and test sets).

We analyzed the time series of the estimated left hind paw position 
during 1 s of running behavior for each of the five networks (Fig. 1b). 
Each time series exhibited the expected periodic pattern (due to the 
running gait), but included numerous ‘glitches’, some of which are 
undetected by the networks’ confidence. This collection of five net-
works—also known as a ‘deep ensemble’22—outputs variable predictions 
on many frames, especially in challenging moments of ambiguity or 
occlusion (Supplementary Video 1). We will later use this ensemble 
variance as a proxy for keypoint ‘difficulty’.

Supervised networks need more labeled data to generalize
It is standard to train a pose estimator using a representative sample of 
subjects, evaluate performance on held-out examples from that sample 
(‘in-distribution’ test set, henceforth InD), then deploy the network for 
incoming data. The incoming data may include new subjects, seen from 
slightly different angles or lighting conditions (‘out-of-distribution’ 
test set, henceforth OOD). Differences between the InD and OOD test 
sets are termed ‘OOD shifts’25,26.

We analyzed five datasets: ‘mirror-mouse’14, a freely swimming 
mormyrid fish imaged with a single camera and two mirrors (for three 
views in total; ‘mirror-fish,’ Supplementary Fig. 1), a resident-intruder 
assay27,28 (‘CRIM13;’ top-down view), paw tracking in a head-fixed 
mouse29 (‘IBL-paw;’ side view), and a crop of the pupil area in IBL-paw 
(‘IBL-pupil’). We split each labeled dataset into two cohorts of subjects, 
InD and OOD (Supplementary Table 1).

We trained supervised networks that use a pretrained ResNet-50 
backbone, similar to DeepLabCut, on InD data with an increasing num-
ber of labeled frames. Ten networks were trained per condition, each 
on a different random subset of InD data. We evaluated the networks’ 
performance on held-out InD and OOD labeled examples. We first rep-
licated the observation that InD test-set error plateaus starting from 
~200 labeled frames16 (Fig. 1c). From looking at this curve in isolation, 
it could be inferred that additional manual annotation is unnecessary. 
However, the OOD error curve keeps steeply declining as more labels 
are added. This larger label requirement is consistent with recent work 
showing that ~50,000 labeled frames are needed to robustly track ape 
poses30, and that mouse face tracking networks need to be explicitly 
fine-tuned on labeled OOD data to achieve good performance31.

To address these limitations, we developed the Lightning Pose 
framework, comprising two components: semi-supervised learning 
and a TCN architecture.

Semi-supervised learning via spatiotemporal constraints
Most animal pose estimation algorithms treat body parts as independ-
ent in time and space. Moreover, they do not train on the vast amounts 
of available unlabeled videos. These two observations offer an oppor-
tunity for semi-supervised learning21. We thus train a network on both 
labeled frames (supervised) and large volumes of unlabeled videos 
(unsupervised; Fig. 2a). For unlabeled videos, the network outputs a 
time series of pose predictions. These predictions are subjected to a 
set of spatiotemporal constraints, and severe violations of these con-
straints incur penalties (with a controllable threshold parameter ϵ). 
The unsupervised losses are applied only during training and hence 
do not affect video prediction speeds.

Temporal difference loss
The first spatiotemporal constraint we introduce is also one held by 
4-month-old infants: objects should move continuously32 and not jump 

by a confidence score, and low-confidence predictions are typically 
dropped. This process of labeling–training–prediction can be iterated 
until performance is satisfactory. The tracked poses are used in down-
stream analyses including quantifying predefined behavioral features 
(for example, gait features such as stride length, or social features such 
as distance between subjects), estimation of neural encoding and 
decoding models, classification of behaviors into discrete ‘syllables’ 
and closed-loop experiments12–17.

Although the supervised paradigm is effective in many cases, a 
number of roadblocks remain. To start, image labeling can be labori-
ous, especially when handling complicated skeletons across multiple 
views. Even with large, labeled datasets, trained networks often pro-
duce ‘glitchy’ predictions that require further manipulation before 
downstream analyses18,19, and struggle to generalize to subjects and ses-
sions outside their training data. Even networks that achieve low error 
rates on labeled test frames can still produce error frames that hinder 
downstream scientific tasks. Manually identifying these error frames 
is like finding a needle in a haystack20: errors persist for a few frames 
at a time, whereas behavioral videos can be hours long. Automatic 
approaches—currently limited to filtering low-confidence predictions 
and temporal discontinuities—can miss scientifically critical errors.

To improve the robustness and usability of animal pose estima-
tion, we present Lightning Pose, a solution at three levels: modeling, 
software and a cloud-based application.

First, we leverage semi-supervised learning, which involves train-
ing networks on both labeled frames and unlabeled videos, and is 
known to improve generalization and data efficiency21. On unlabeled 
videos, the networks are trained to minimize a number of unsupervised 
losses that encode our prior beliefs about moving bodies: poses should 
evolve smoothly in time, be physically plausible, and be localized con-
sistently when seen from multiple views. In addition, we leverage unla-
beled frames in a temporal context network (TCN) architecture, which 
instead of processing a single frame at a time, processes each frame 
with its neighboring (unlabeled) frames. Our resulting models outper-
form their purely supervised counterparts across datasets, providing 
more reliable predictions for downstream analyses. We further improve 
our networks’ predictions using a general Bayesian post-processing 
approach, which we coin the ensemble Kalman smoother (EKS): we 
aggregate (‘ensemble’) the predictions of multiple networks—which is 
known to improve their accuracy and robustness22,23—and model those 
aggregated predictions with a spatially constrained Kalman smoother 
that takes their collective uncertainty into account.

We implemented these tools in a deep learning software package 
that capitalizes on recent advances in the deep learning ecosystem. We 
name our package Lightning Pose, as it is based on the PyTorch Lightning 
deep learning library24. Unlike most existing packages, Lightning Pose 
is video centric and built for manipulating large videos directly on the 
graphics processing unit (GPU), to support our semi-supervised training.

Finally, we developed a no-install cloud application that is accessed 
from the browser and enables users to annotate data, train networks 
and diagnose performance without requiring programming skills or 
specialized hardware.

Results
Supervised pose estimation and its limitations
The leading packages for animal pose estimation—DeepLabCut7, SLEAP8, 
DeepPoseKit9 and others—differ in architectures and implementation 
but all perform supervised heat map regression on a frame-by-frame 
basis (Fig. 1a). A standard model is composed of a ‘backbone’ that 
extracts features for each frame (for example, a ResNet-50 network) 
and a ‘head’ that uses these features to predict body part location heat 
maps. Networks are trained to match their outputs to manual labels.

Even when trained with many labeled frames, pose estimation 
network outputs may still be erroneous. We highlight this point using 
the ‘mirror-mouse’ dataset, which features a head-fixed mouse running 
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too far between video frames. We define the temporal difference loss 
for each body part as the Euclidean distance between consecutive 
predictions in pixels. Similar losses have been used to detect outlier 
predictions post hoc14,31, whereas our goal is to incorporate these losses 
directly into network training33.

The threshold ϵ indicates the maximum allowed jump, forming a 
ball of zero-loss values around the previous prediction; it should be set 
depending on the frame rate, frame size, the camera’s distance from 
the subject, and how quickly or jerkily the subject moves (Fig. 2b).

If our losses are indeed viable proxies for pose prediction errors, 
they should be correlated with pixel errors in labeled test frames. We 
analyzed the predictions of a supervised model trained with 75 labeled 
frames, and found a mild correlation between the temporal differ-
ence loss and pixel errors (log-linear regression: Pearson r = 0.26, 95% 

confidence interval (CI) = [0.20, 0.32]; Fig. 2b). The mild correlation 
here is expected: errors that persist across multiple frames will exhibit 
a low temporal difference loss; in periods of fast motion, the temporal 
difference loss will be high even when keypoint predictions are accu-
rate. As a comparison, confidence is a more reliable predictor of pixel 
error (Pearson r = − 0.54, 95% CI = [−0.59, −0.49]).

Multi-view PCA loss
The common pipeline for three-dimensional (3D) tracking in neuro-
science includes three steps: (1) calibrating multiple cameras using a 
physical calibration board, (2) training a network to estimate a 2D pose 
independently in each camera, and (3) triangulating the 2D poses into 
a 3D pose using standard computer vision techniques18,34. The com-
mon pipeline has two limitations. First, camera calibration is brittle 
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Fig. 1 | Fully supervised pose estimation often outputs unstable predictions 
and requires many labels to generalize to new animals. a, Diagram of a typical 
pose estimation model trained with supervised learning, illustrated using the 
mirror-mouse dataset. A dataset is created by labeling keypoints on a subset of 
video frames. A convolutional neural network, consisting of a ‘backbone’ and 
a prediction ‘head’, takes in a batch of frames as inputs, and predicts a set of 
keypoints for each frame. It is trained to minimize the distance from the labeled 
keypoints. b, Predictions from five supervised DeepLabCut networks (trained 
with 631 labeled frames on the mirror-mouse dataset), for the left front paw 
position (top view) during 1 s of running behavior (Supplementary Video 1). Top, 

x-coordinate; middle, y-coordinate; bottom, confidence, applying a standard 
0.9 threshold indicated by the dashed line. Black arrows indicate example time 
points where there is disagreement among the network predictions. c, Top row 
shows five example datasets. Each blue image is an example taken from the InD 
test set, which contains new images of animals that were seen in the training set. 
The orange images are test examples from unseen animals altogether, which we 
call the OOD test set. Bottom row shows data efficiency curves, measuring test-
set pixel error as a function of the training set size. InD pixel error is shown in blue 
and OOD in orange. Line plots show the mean pixel error across all keypoints and 
frames ± s.e. over n = 10 random subsets of InD training data.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

Error

Image
plane

t–2

t–1

t+1

t+2

t

Paw1

Supervised 
loss

paw1 (x)
paw1 (y)
tail1 (x)

Time

Error

pa
w

1 (
x)

Lo
ss

H
ig

h
Lo

w

Implausible
configuration

Lightning pose architecture

t – 2 t – 1 t + 1 t + 2t

Paw2

Context head 

Static head

Predicted t (static)

Backbone
Predicted t
(context)

a

b

Position heatmaps (implicit)

Te
m

po
ra

l d
i­

er
en

ce
lo

ss
 (p

ix
el

s)

OOD pixel error

Lo
ss

H
ig

h
Lo

w

0.99

3 10 30

3

10
30

M
ul

ti-
vi

ew
 P

C
A

lo
ss

 (p
ix

el
s)

OOD pixel error

r = 0.26 [0.20, 0.32]

c

e

dTemporal di­erence loss Multi-view PCA loss Pose PCA loss

Po
se

 P
C

A
lo

ss
 (p

ix
el

s)

Mirror-mouse
Mirror-fish

Number of PCs kept

0.7

0.8

1.0

0.9

Fraction of PCs kept

0 0.5 1.0

Conceptual illustration Loss landscape

Correlation with error Variance explained

Mirror-mouse 
(28D)
Mirror-fish
(40D)
CRIM13 (28D)

0.99

TCN architecture

No 
ground 

truth

Unsupervised
losses

0.4

0.8

1.0

0.6

Lo
ss

H
ig

h
Lo

w

Few labeled
frames

(expensive)

Many videos
(cheap)

Predicted keypoints Labeled keypoints

Existing paradigm
(e.g., DeepLabCut,

DeepPoseKit,
SLEAP)Backbone Head

Time series of
predicted keypoints

Image with
context frames

Bidirdirectional
CRNN

IBL-pupil (8D)

1 2 3 4 5 63 10 30

3

10

30 r = 0.88 [0.87, 0.90]

OOD pixel error
3 10 30

3

10

30
r = 0.91 [0.90, 0.92]

Fig. 2 | Lightning Pose exploits unlabeled data in pose estimation model 
training. a, Diagram of the semi-supervised model that contains supervised (top 
row) and unsupervised (bottom row) components. b, Temporal difference loss. 
Top left: illustration of a jump discontinuity. Top right: loss landscape for frame t 
given the prediction at t − 1 (white diamond), for the left front paw (top view). The 
dark blue circle corresponds to the maximum allowed jump, below which the loss 
is set to zero. Bottom left: correlation between temporal difference loss and pixel 
error on labeled test frames. c, Multi-view PCA loss. Top left: illustration of a 3D 
keypoint detected on the imaging plane of two cameras. Top right: loss landscape 
for the left front paw (top view; white diamond) given its predicted location on 
the bottom view. The blue band of low loss values is an ‘epipolar line’ on which the 

top-view paw could be located. Bottom left: correlation between multi-view PCA 
loss and pixel error. Bottom right: cumulative variance explained for single body 
part labels across all views versus the fraction of principal components (PCs) kept 
on multi-view datasets. d, Pose PCA loss. Top left: illustration of plausible and 
implausible poses. Top right: loss landscape for the left front paw (top view; white 
diamond) given all other keypoints, which is minimized around the paw’s actual 
position. Bottom left: correlation between Pose PCA loss and pixel error. Bottom 
right: cumulative variance explained for pose labels versus fraction of PCs kept.  
e, The TCN processes each labeled frame with its adjacent unlabeled frames, 
using a bidirectional CRNN. It forms two sets of location heat map predictions, 
one using single-frame information and another using temporal context.
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(especially for small experimental setups) and adds experimental 
complexity. Second, network training is blind to the dependencies 
between the views.

The ‘multi-view PCA’ loss constrains the predictions for unlabeled 
videos to be consistent across views35,36, while bypassing the need 
for camera calibration. Each multi-view prediction contains width–
height pixel coordinates for a single keypoint across all views. We use 
principal component analysis (PCA)—a linear method—to compress 
each multi-view prediction into three dimensions, and then expand it 
back into the original pixel coordinates (henceforth, ‘PCA reconstruc-
tion’). We define the multi-view PCA loss as the pixel error between the 
original versus the PCA-reconstructed prediction, averaged across 
keypoints and views. The multi-view PCA loss should approach zero 
when the predictions are consistent across views and when nonlinear 
camera distortions are negligible (Fig. 2c). Substantial distortions 
may be introduced by the lens or a water medium; this simple linear 
approach will not be robust in these cases. Practically, however, in both 
the mirror-mouse (two views) and mirror-fish (three views) datasets, 
distortions were minimized by placing the camera far from the subject 
(~1.1 m and ~1.7 m, respectively). In both cases, three PCA dimensions 
explained >99.9% of the multi-view ground truth label variance (Fig. 2c).

For a single frame of the mirror-mouse dataset, we computed the 
loss landscape for the left front paw on the top view, given its position 
in the bottom view. According to multiple-view geometry, a point 
identified in one camera constrains the corresponding point in a sec-
ond camera to a specific line, known as the ‘epipolar line’37. Indeed, the 
loss landscape exhibits a line of low loss values that intersects with the 
paw’s true location (Fig. 2c). The multi-view loss is strongly correlated 
with pixel error in a test set of labeled OOD frames (Pearson r = 0.88, 
95% CI = [0.87, 0.90]), much more so than the temporal difference loss 
or confidence, motivating its use both as a post hoc quality metric and 
as a penalty during training.

Pose PCA loss
Not all body configurations are feasible, and of those that are feasible, 
many are unlikely. Even diligent yoga practitioners will find their head 
next to their foot only on rare occasions (Fig. 2d). The Pose PCA loss 
constrains the predicted pose to lie on a low-dimensional subspace 
of feasible and likely body configurations. It is defined as the pixel 
error between an original pose prediction and its reconstruction after 
low-dimensional compression.

This loss is inspired by the success of low-dimensional models in 
capturing biological movement38, ranging from worm locomotion39 to 
human hand grasping40. We similarly find that across four of our data-
sets, 99% of the pose variance can be explained with far fewer dimen-
sions than the number of pose coordinates (Fig. 2d)—mirror-mouse: 
14/28 components; mirror-fish: 8/40; CRIM13: 8/28; IBL-pupil 3/8 
(IBL-paw only contains four dimensions). The effective pose dimen-
sionality depends on the complexity of behavior, the keypoints selected 
for labeling and the quality of the labeling. Pose dimensionality will be 
lower for sets of spatially correlated keypoints, and higher in the pres-
ence of labeling errors that reduce these correlations.

Using an example from the mirror-mouse dataset, we computed 
the PCA loss landscape for the left hind paw given the location of all the 
other body parts, finding that the loss strongly favors predictions in 
the vicinity of the true paw location (Fig. 2d). Across all labeled OOD 
frames, Pose PCA loss closely tracks ground truth pixel error (Fig. 2d; 
Pearson r = 0.91, 95% CI = [0.90, 0.92]). The Pose PCA loss might errone-
ously penalize valid postures that are not represented in the labeled 
dataset. To test the prevalence of this issue, we took DeepLabCut mod-
els trained with abundant labels and computed the Pose PCA loss on 
held-out videos. We collected 100 frames with the largest Pose PCA loss 
per dataset. Manual labeling revealed that 85/100 (mirror-mouse; Sup-
plementary Video 2), 87/100 (mirror-fish; Supplementary Video 3) and 
100/100 (CRIM13; Supplementary Video 4) of the frames include true 

errors, indicating that in most cases, large Pose PCA losses correspond 
to pose estimation errors, rather than unseen rare poses.

TCN
When labeling frames that contain occlusions or ambiguities, practi-
tioners often scroll the video to help ‘fill in the gaps’. This useful tem-
poral context is not provided to standard architectures that process 
one frame at a time.

Therefore, we developed a TCN (Fig. 2e), which uses a 2J + 1 frame 
sequence to predict the location heat maps for the middle (that is, J + 1) 
frame. As in the standard architecture, the TCN starts by pushing each 
image through a backbone that extracts useful features. Then, instead 
of predicting the pose directly from each of these individual features, 
a bidirectional convolutional recurrent neural network (CRNN) is 
applied to the time series of features; the CRNN outputs a prediction 
only for the middle frame. The CRNN is lightweight compared to the 
backbone, and we only apply the backbone once per frame; there-
fore, the TCN runtime scales linearly with the number of total context 
frames. We have found that a context window of five frames (that is, 
J = 2) provides an effective balance between speed and accuracy and 
have used this value throughout the paper. The outputs of the TCN and 
the single-frame model tend to match on fully visible keypoints, and 
differ on occluded or ambiguous keypoints.

Spatiotemporal losses enhance outlier detection
Practitioners often detect outliers using a combination of low- 
confidence and large temporal difference loss14,18,31,41. Here we show the 
multi-view and Pose PCA losses complement this standard approach 
by capturing additional unique outliers in video predictions, going 
beyond small, labeled test sets (Fig. 2b–d).

We start with an example from the mirror-mouse dataset, focus-
ing on the left hind paw on the bottom view (Fig. 3a,b). We analyzed 
the predictions from a DeepLabCut model (trained as in Fig. 1b). One 
common mistake involves switching back and forth between similar 
looking body parts, in this case the front and hind paws (Fig. 3a). These 
‘paw switches’ are not flagged by low confidence. They are also partially 
missed by the temporal difference loss, which only flags jumps to and 
from a wrong location, but not consecutive predictions at the wrong 
location. In contrast, the multi-view PCA loss flags the errors due to 
inconsistency with the top-view prediction.

We generalized this example by quantifying the overlaps and 
unique contributions of the different outlier detection methods on 
20 unlabeled videos. We investigate two data regimes: ‘scarce labels’ 
(75), which mimics prototyping a new tracking pipeline, and ‘abundant 
labels’ (631 for the mirror-mouse dataset), that is, a ‘production’ setting 
with a fully trained network.

First, when moving from the scarce to the abundant labels regime, 
we found a 66% reduction in the outlier rate—the union of keypoints 
flagged by confidence, temporal difference and multi-view PCA 
losses—going from 116,000/800,000 to 39,000/800,000 keypoints. 
This indicates that the networks become better and more confident. 
Multi-view PCA captures a large number of unique outliers, which are 
missed by confidence and the temporal difference loss (Fig. 3c). The 
Pose PCA includes both views and thus is largely overlapping with 
multi-view PCA.

The overlap analysis above does not indicate which outliers are 
true versus false positives. To analyze this at a large scale, we restricted 
ourselves to a meaningful subset of the ‘true outliers’ that can be 
detected automatically, namely predictions that are impossible given 
the mirrored geometry. We defined this subset of outliers as frames 
for which the horizontal displacement between the top and bottom 
view predictions for a paw exceeds 20 pixels14; the networks output 
72,000/800,000 such errors with scarce labels, and 16,000/800,000 
with abundant labels. These spatial outliers should violate the 
PCA losses, but it is unknown whether they are associated with low 
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Fig. 3 | Unsupervised losses complement model confidence for outlier 
detection. a, Example frame sequence from the mirror-mouse dataset. 
Predictions from a DeepLabCut model (trained on 631 frames) are overlaid 
(magenta ×), along with the ground truth (green +). Open white circles denote 
the location of the same body part (left hind paw) in the other (top) view; given 
the geometry of this setup, a large horizontal displacement between the top 
and bottom predictions indicates an error. Each frame is accompanied with 
‘standard outlier detectors’, including confidence, temporal difference loss 
(shaded in blue) and ‘proposed outlier detectors’, including multi-view PCA loss 
(shaded in red; Pose PCA excluded for simplicity), indicates an inlier as defined 
by each metric, and indicates an outlier. b, Example traces from the same video. 
Blue background denotes times where standard outlier detection methods 

flag frames: confidence falls below a threshold (0.9) and/or the temporal 
difference loss exceeds a threshold (20 pixels). Red background indicates 
times where the multi-view PCA error exceeds a threshold (20 pixels). Purple 
background indicates both conditions are met. c, The total number of keypoints 
flagged as outliers by each metric, and their overlap. d, AUROC for each paw, 
for DeepLabCut models trained with 75 and 631 labeled frames (left and right 
columns, respectively). AUROC = 1 indicates the metric perfectly identifies 
all nominal outliers in the video data; 0.5 indicates random guessing. AUROC 
values are computed across all frames from 20 test videos; box plot variability 
is over n = 5 random subsets of training data. Boxes use the 25th, 50th and 75th 
percentiles for minimum, center and maximum values, respectively; whiskers 
extend to 1.5 times the interquartile range (IQR).
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confidence and large temporal differences. Instead of setting custom 
thresholds on our metrics as in Fig. 3b, we now estimate each metric’s 
sensitivity via a ‘receiver operating characteristic’ (ROC) curve, which 
plots the true positive rate against the false positive rate across all 
possible thresholds. Area under the receiver operating characteristic 
curve (AUROC) equals 1 for a perfect outlier detector, 0.5 for random 
guessing, and values below 0.5 indicate systematic errors. All metrics 
are above chance in detecting ‘true outliers’ (Fig. 3d); for this class of 
spatial errors, the PCA losses are more sensitive outlier detectors than 
network confidence, and certainly more than the temporal difference 
loss (due to the pathologies described above). In summary, the PCA 
losses identify additional outliers that would have been otherwise 
missed by standard confidence and temporal difference thresholding 
(Extended Data Figs. 1 and 2).

Both unsupervised losses and TCN boost tracking 
performance
We now evaluate the tracking accuracy of four Lightning Pose model 
variants: networks trained with semi-supervised learning (‘SS’, includ-
ing all applicable unsupervised losses), TCN architecture (‘TCN’), a com-
bination of the two (‘SS–TCN’), and neither (‘baseline’). The ‘baseline’ 
model enables a clean comparison to supervised pose estimation by 
eliminating implementation-level artifacts. It differs from DeepLabCut 
in implementation (Supplementary Information) although it matches 
it in performance across datasets. We compared the networks’ raw 
predictions, without any post-processing, to focally assess the implica-
tions of the proposed methods.

First, we examined the mouse’s right hind paw position (top view) 
during 2 s of running (Fig. 4a and Supplementary Video 5). We com-
pared the predictions from SS–TCN versus the baseline model, both 
trained on 75 labeled frames. The SS–TCN predictions are smoother 
and more confident, exhibiting a clearer periodic pattern expected 
for running on a stationary wheel. Akin to Fig. 3a, we find confident 
‘paw switches’ for the baseline model, but not for SS–TCN (Fig. 4b).

Next, for each model variant we trained five networks with dif-
ferent random subsets of InD data, and calculated pixel errors on 253 
labeled OOD test frames. As noted elsewhere20,42, average pixel error is 
an incomplete summary of network performance, since error averages 
may be dominated by a majority of ‘easy’ keypoints, obscuring differ-
ences on the minority of ‘difficult’ keypoints. Instead, we quantified the 
pixel error as a function of keypoint ‘difficulty’, operationally defined 
as the variance in the predictions across all model variants and random 
seeds. When this variance is large, at least one network in the ensemble 
must be in error (Fig. 1 and Supplementary Video 1).

As expected, for both label regimes (Fig. 4c), OOD pixel error 
increased as a function of ensemble standard deviation. With scarce 
labels, models struggled to resolve even ‘easy’ keypoints, and SS–
TCN outperformed baseline and DeepLabCut models across all 
levels of difficulty. By training semi-supervised models with a sin-
gle loss at a time, we found the PCA losses underlie most improve-
ments (Extended Data Fig. 3). The TCN architecture contributes 
only marginally to this dataset. With abundant labels, all models 
accurately localized ‘easy’ keypoints, and the trends observed in the 
scarce labels regime become pronounced only for more ‘difficult’ 
keypoints.

Next, we assessed performance on a much larger unlabeled dataset 
of 20 OOD videos. We computed each of our losses for every predicted 
keypoint on every video frame, and we observed similar trends (Fig. 4d): 
the SS–TCN model improved sample efficiency with scarce labels, and 
reduced rare errors with abundant labels (consistent with expecta-
tions, given that the semi-supervised models are explicitly trained to 
minimize these losses).

We found similar patterns for the mirror-fish (Extended Data Fig. 4 
and Supplementary Video 6) and CRIM13 (Extended Data Fig. 5 and 
Supplementary Video 7) datasets.

The EKS enhances accuracy post hoc
The spatiotemporal constraints are enforced during training but not 
at prediction time. We now present a post-processing algorithm which 
uses the spatiotemporal constraints to further refine the final predic-
tions. Successful post-processing requires identifying which predic-
tions need fixing; that is, properly quantifying uncertainty for each 
keypoint on each frame. As emphasized above, low network confidence 
captures some, but not all, errors; conversely, constraint violations 
indicate the presence of errors within a set of keypoints but do not 
identify which specific keypoint is in fact an error.

We have shown that when using an ensemble of networks, the 
ensemble variance—which varies for each keypoint on every frame—
is a useful signal of model uncertainty43,44 (Fig. 4c). We developed a 
post-processing framework that integrates this uncertainty signal 
with our spatiotemporal constraints using a probabilistic ‘state-space’ 
model approach (Fig. 5a,b). This framework contains a prior and a likeli-
hood. The prior consists of a latent state that evolves smoothly in time. 
The likelihood model contains the spatial constraints, and crucially, the 
per-keypoint per-frame likelihood noise estimated by the ensemble 
variance. For example, we enforce multi-view constraints by project-
ing the 3D true position of the body part (the ‘latent state’) through 
two-dimensional (2D) linear projections to obtain the keypoints in each 
camera view. We performed inference in this model using the Kalman 
filter-smoother recursions45 and, therefore, name our approach the 
Ensemble Kalman Smoother (EKS). When a keypoint’s uncertainty 
is high (that is, disagreement among ensemble members), EKS will 
upweight the prediction from the spatiotemporal constraints relative 
to the uncertain observation (ensemble mean or median). When a 
keypoint’s uncertainty is low then EKS will upweight this observation 
relative to the spatiotemporal constraints. Unlike previous approac
hes14,18,20,31,41, EKS requires no manual selection of confidence thresholds 
or (suboptimal) temporal linear interpolation for dropped keypoints. 
Moreover, EKS is agnostic to the type of networks used to generate the 
ensemble predictions.

We benchmarked EKS on DeepLabCut models fit to the mirror- 
mouse dataset. EKS compared favorably to other standard post- 
processors, including median filters and ARIMA models (which are fit 
on the outputs of single networks), and the ensemble mean and median 
(computed using an ensemble of multiple networks; Fig. 5c,d). EKS 
provides substantial improvements in OOD pixel errors with as few as 
m = 2 networks; we found m = 5 networks is a reasonable choice given 
the computation-accuracy tradeoff (Fig. 5e,f), and used this ensemble 
size throughout.

When applied to Lightning Pose semi-supervised TCN models, 
EKS provides additional improvements across multiple datasets, par-
ticularly on ‘difficult’ keypoints where the ensemble variance is higher 
(Extended Data Fig. 6). EKS achieves smooth and accurate tracking 
even when the models make errors due to occlusion and paw confusion 
(Extended Data Fig. 6, Supplementary Videos 8–12 and Supplementary 
Figs. 2–4).

Improved tracking on IBL datasets
Next, we analyzed two large-scale public datasets from the Interna-
tional Brain Laboratory (IBL)29. In each experimental session, a mouse 
was observed by three cameras while performing a visually guided 
decision-making task. The ‘IBL-pupil’ dataset contains zoomed-in vid-
eos of the pupil, where we tracked the top, bottom, left and right edges 
of the pupil. In ‘IBL-paw’, we tracked the left and right paws.

Despite efforts at standardization, the data exhibited considerable 
visual variability between sessions and labs, which presents serious 
challenges to existing pose estimation methods. The IBL’s preliminary 
data release used DeepLabCut, followed by custom post-processing. 
As detailed elsewhere29, the signal-to-noise ratio of the estimated pupil 
diameter is too low for reliable downstream use in a majority of the 
sessions, largely due to occlusions caused by whisking and infrared 
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light reflections. Paw tracking tends to be more accurate, but is con-
taminated by discontinuities, especially when a paw is retracted behind 
the torso.

We evaluated three pose estimators for the IBL-pupil dataset 
(Fig. 6a,b): DeepLabCut with custom post-processing (‘DLC’), Lightning 
Pose’s SS–TCN with the same post-processing (‘LP’; using temporal dif-
ference and Pose PCA losses), and a pupil-specific EKS variant applied 
to an ensemble of m = 5 LP models (‘LP + EKS’). The pupil-specific EKS 
uses a 3D latent state: pupil centroid (width and height coordinates) 

and a diameter. The latent state is then projected linearly onto the 
eight-dimensional tracked pixel coordinates. To directly compare our 
methods to the publicly released IBL DeepLabCut traces, we trained 
on all available data and evaluated on held-out unlabeled videos. We 
defined several pupil-specific metrics to quantify the accuracy of the 
different models and their utility for downstream analyses (Supple-
mentary Table 2).

The first metric compares the ‘vertical’ and ‘horizontal’ diameters, 
that is, top(y) − bottom(y) and right(x) − left(x), respectively (Fig. 6c,d). 
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a, Example traces from the baseline model and the semi-supervised TCN model 
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a held-out video (Supplementary Video 5). One erroneous paw switch is shaded 
in gray. b, A sequence of frames (1,548–1,551) corresponding to the gray shaded 
region in a in which a paw switch occurs. c, We computed the standard deviation 
of each keypoint prediction in each frame in the OOD labeled data across all model 
types and seeds (five random shuffles of training data). We then took the mean 
pixel error over all keypoints with a standard deviation larger than a threshold 

value, for each model type. Smaller standard deviation thresholds include more 
of the data (n = 17,150 keypoints total, indicated by the ‘100%’ vertical line; (253 
frames) × (5 seeds) × (14 keypoints) − missing labels), while larger standard 
deviation thresholds highlight more ‘difficult’ keypoints. Error bands represent 
the s.e.m. over all included keypoints and frames for a given standard deviation 
threshold. d, Individual unsupervised loss terms are plotted as a function of 
ensemble standard deviation for the scarce (top) and abundant (bottom) label 
regimes. Error bands as in c, except we first computed the average loss over all 
keypoints in the frame (200,000 frames total; (40,000 frames) × (5 seeds)).
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b, The EKS leverages the spatiotemporal constraints of the unsupervised losses 
as well as uncertainty measures from the ensemble variance in a probabilistic 
state-space model. Ensemble means of the keypoints are modeled with a latent 
linear dynamical system; temporal smoothness constraints are enforced 
through the linear dynamics (orange arrows) and spatial constraints (Pose PCA 
or multi-view PCA) are enforced through a fixed observation model that maps 
the latent state to the observations (green arrows). Instead of learning the 
observation noise, we use the time-varying ensemble variance (red arrows). EKS 
uses a Bayesian approach to weight the relative contributions from the prior 
and the observations. c, Post-processor comparison on OOD frames from the 

mirror-mouse dataset. We plotted pixel error as a function of ensemble standard 
deviation (as in Fig. 4) for several methods. The median filter and ARIMA models 
act on the outputs of single networks; the ensemble means, ensemble medians 
and EKS variants act on an ensemble of five networks. EKS (temporal) only 
utilizes temporal smoothness, and is applied one keypoint at a time. EKS (MV 
PCA) utilizes multi-view information as well as temporal smoothness, and is 
applied one body part at a time (tracked by one keypoint in each of two views). 
Error bands as in Fig. 4 (n = 17,150 keypoints at 100% line). d, Trace comparisons 
for different methods (75 train frames). Gray lines show the raw traces used as 
input to the method; colored lines show the post-processed trace. e, Pixel error 
comparison for the EKS (temporal) post-processor as a function of ensemble 
members (m). Error bands as in c. f, Trace comparisons for varying numbers of 
ensemble members (75 train frames).
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These diameters should be equal (or at least highly correlated) and, 
therefore, low correlations between these two values signal poor track-
ing. The LP model (Pearson’s r = 0.88 ± 0.01, mean ± s.e.m.) improves 
over DeepLabCut (r = 0.36 ± 0.03). Because the pupil-specific EKS uses 
a single value for both vertical and horizontal diameters, it enforces a 
correlation of 1.0 by construction.

We are interested in how behaviorally relevant events (such as 
reward) impact pupil dynamics. To investigate this, we aligned diam-
eter estimates to the time of reward delivery for each successful trial. 
We defined a second quality metric—trial consistency—by taking the 

variance of the mean pupil diameter trace and dividing by the vari-
ance of the mean-subtracted traces across all trials. This metric is 
zero if there are no reproducible dynamics across trials; it is infinity if 
the pupil dynamics are identical and non-constant across trials (con-
stant outputs result in an undefined metric because both numerator 
and denominator are zero). Although we expect some amount of real 
trial-to-trial variability in pupil dynamics, any noise introduced dur-
ing pose estimation will decrease this metric. The LP and LP + EKS 
estimates show greater trial-to-trial consistency compared to the  
DeepLabCut estimates (Fig. 6e,f; DLC 0.35 ± 0.06; LP 0.62 ± 0.07; LP + EKS  
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Fig. 6 | Lightning Pose models and EKS improve pose estimation on  
IBL-pupil data. a, Sample frame overlaid with a subset of pupil markers 
estimated from DeepLabCut (DLC; left), Lightning Pose using a semi-supervised 
TCN model (LP; center) and a five-member ensemble using semi-supervised TCN 
models (LP + EKS; right). b, Example frames from a subset of 65 IBL sessions. 
c, Empirical distribution of vertical diameter measured from top and bottom 
markers scattered against horizontal pupil diameter measured from left 
and right markers. Column arrangement as in a. d, Vertical versus horizontal 
diameter correlation was computed across n = 65 sessions for each model. 
The LP + EKS model has a correlation of 1.0 by construction. e, Pupil diameter 
was plotted for correct trials aligned to feedback onset; each trial was mean 

subtracted. DeepLabCut and LP diameters were smoothed using IBL’s default 
post-processing, compared to LP + EKS outputs. We compute a trial consistency 
metric (the variance explained by the mean over trials; see text) as indicated in 
the titles. f, The trial consistency metric computed across n = 65 sessions.  
g, Example traces of LP + EKS pupil diameters (blue) and predictions from neural 
activity (orange) for several trials using cross-validated, regularized linear 
regression. h, Neural decoding performance across n = 65 sessions. In d, f and h, 
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whiskers extend to 1.5 times the IQR.
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0.74 ± 0.08). The increased trial-to-trial consistency of LP + EKS does 
not compromise the model’s ability to track the pupil well within indi-
vidual trials (Supplementary Video 13).

Finally, we examine the extent to which we can decode pupil diam-
eter from neural data using a simple ridge regression model. This 
analysis also serves to verify that the LP + EKS approach is not merely 
suppressing pupil diameter fluctuations, but rather better capturing 
pupil dynamics that can be predicted from an independent meas-
urement of neural activity. Across sessions, LP and LP + EKS enhance 
decoding accuracy compared to DeepLabCut (DLC R2 = 0.27 ± 0.02; LP 
0.33 ± 0.02; LP + EKS 0.35 ± 0.02; Fig. 6g,h).

The IBL-paw results appear in Extended Data Fig. 7, Supplementary 
Video 14 and the Supplementary Information.

The Lightning Pose software package and a cloud application
We released an open-source software package—Lightning Pose—and 
a separate cloud application.

We built the Lightning Pose package to be (1) simple to use and 
easy to maintain: we aim to minimize ‘boilerplate’ code (such as 
graphical user interfaces (GUIs) or training loggers) by outsourcing 
to industry-grade packages; (2) video centric: the networks operate 
on video clips, rather than on a single image at a time; (3) modular 
and extensible: our goal is to facilitate prototyping of new losses and 
models; (4) scalable: we support efficient semi-supervised training and 
evaluation; (5) interactive: we offer a variety of tracking performance 
metrics and visualizations during and after training, enabling easy 
model comparison and outlier detection (Extended Data Fig. 8a).

The scientific adoption of deep learning packages like ours 
presents an infrastructure challenge. Laboratories need access to 
GPU-accelerated hardware with a set of preinstalled drivers and pack-
ages; therefore, we developed a cloud application that supports the 
full life cycle of animal pose estimation (Extended Data Fig. 8b) and 
is suitable for users with minimal coding expertise and only requires 
internet access.

Discussion
We presented Lightning Pose, a semi-supervised deep learning system 
for animal pose estimation. Lightning Pose uses a set of spatiotemporal 
constraints on postural dynamics to improve network reliability and 
efficiency. We further refined the pose estimates post hoc, with the 
EKS that uses reliable predictions and spatiotemporal constraints to 
interpolate over unreliable ones.

Our work builds on previous semi-supervised animal pose esti-
mation algorithms that use spatiotemporal losses on unlabeled vid-
eos33,35,35. Semi-supervised learning is not the only technique that 
enables improvements over standard supervised learning protocols. 
First, it has been suggested that supervised pose estimation networks 
can be improved by pretraining them on large, labeled datasets for 
image classification7 or pose estimation46, to an extent that might 
eliminate dataset-specific training47. Other work avoids pretraining 
altogether by using lighter architectures8. These ideas are complemen-
tary to ours: any robust backbone obtained through these procedures 
could be easily integrated into Lightning Pose, and further refined via 
semi-supervised learning.

Human pose estimation, like animal pose estimation, is commonly 
approached using supervised frame-by-frame heat map regression48. 
Human models are trained on much larger labeled datasets containing 
either annotated images49 or 3D motion capture50. Moreover, human 
models track a standardized set of keypoints, and some operate on 
a standard skinned human body model51. In contrast, animal pose 
estimation often contends with relatively few labels and bespoke sets 
of keypoints to track. Although human pose estimation models can 
impressively track crowds of moving humans, doing downstream 
science using the keypoints still presents several challenges48 similar 
to those discussed in the Results. Lightning Pose can be applied to 

single-human pose estimation by fine-tuning a human pose estimation 
backbone to specific experimental setups (such as patients in a clinic), 
while enforcing our spatiotemporal constraints. Future work could also 
apply EKS to the outputs of off-the-shelf human trackers.

Roughly speaking, two camps coexist in multi-view pose esti-
mation52: those who use 3D information during training10,35,53,54 and 
those who train 2D networks and perform 3D reconstruction post 
hoc18,55. Either approach involves camera calibration, whose limita-
tions we discussed above. Lightning Pose can be seen as an inter-
mediate approach: we train with 3D constraints without an explicit 
camera calibration step. Lightning Pose does not provide an exact 3D 
reconstruction of the animal, but rather a scaled, rotated and shifted 
version thereof. Our improved predictions can be used as inputs to 
existing 3D reconstruction pipelines. Concurrent work42 uses a tem-
poral difference loss for semi-supervised training of 3D multi-view 
convolutional networks.

A number of directions remain for future work. One is to improve 
the efficiency of the EKS method. The advantages of ensembling come 
at a cost: we need to train and run inference with multiple networks 
(post-processing the networks’ output with EKS is relatively compu-
tationally cheap). One natural approach would be ‘knowledge distilla-
tion’56: train a single network to emulate the full EKS output.

Finally, while the methods proposed here can currently track 
multiple distinguishable animals (for example, a black mouse and a 
white mouse), they cannot track multiple similar animals16,57, because 
to compute our unsupervised losses we need to know which keypoint 
belongs to which animal. Thus, adapting our approaches to the general 
multi-animal setting remains an important open avenue for future work.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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tributions and competing interests; and statements of data and code 
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Methods
All datasets used for the experiment were collected in compliance with 
the relevant ethical regulations. See the following published papers 
for each dataset: mirror-mouse14, CRIM13 (ref. 27) and IBL datasets29. 
All mirror-fish experiments adhered to the American Physiological 
Society’s Guiding Principles in the Care and Use of Animals and were 
approved by the Institutional Animal Care and Use Committee of 
Columbia University, under protocol number AABN0557.

Datasets
We considered diverse datasets collected via different experimental 
paradigms for mice and fish. For each dataset, we collected a large num-
ber of videos including different animals and experimental sessions, 
and labeled a subset of frames from each video. We then split this data 
into two nonoverlapping subsets (that is, a given animal and/or session 
would appear only in one subset). The first subset is the InD data that 
we use for model training. The second subset is the OOD data that we 
use for model evaluation. This setup mimics the common scenario in 
which a network is thoroughly trained on one cohort of subjects, and 
is then used to predict new subjects. Supplementary Table 1 details the 
number of frames for each subset per dataset, as well as the number of 
unique animals and videos those frames came from.

Mirror-mouse. Head-fixed mice ran on a circular treadmill while avoid-
ing a moving obstacle14. The treadmill had a transparent floor and a 
mirror mounted inside at 45°, allowing a single camera to capture two 
roughly orthogonal views (side view and bottom view via the mirror) 
at 250 Hz. The camera was positioned at a large distance from the 
subject (~1.1 m) to minimize perspective distortion. Frame sizes were 
406 × 396 pixels and reshaped during training to 256 × 256 pixels. 
Seventeen keypoints were labeled across the two views including seven 
keypoints on the mouse’s body per view, plus three keypoints on the 
moving obstacle.

Mirror-fish. Nineteen wild-caught (age unknown) adult male and 
female mormyrid fish (15–22 cm in length) of the species Gnathonemus 
petersii were used in the experiment. Fish were housed in 60-gallon 
tanks in groups of 5–20. Water conductivity was maintained between 
60 µS and 100 µS both in the fish’s home tanks and during experiments.

The fish swam freely in and out of an experimental tank, capturing 
worms from a well. The tank had a side mirror and a top mirror, both 
at 45°, providing three different views seen from a single camera at 
300 Hz (Supplementary Fig. 1). Here too, the camera was placed ~1.7 m 
away from the center of the fish tank to reduce distortions. Frame sizes 
were 384 × 512 pixels and reshaped during training to 256 × 384 pixels.

Seventeen body parts were tracked across all three views for a total 
of 51 keypoints. We preprocessed the labeled dataset as follows. First, 
we identified labeling errors by flagging large values of the multi-view 
PCA loss. We then fixed the wrong labels manually. Next, in the InD data 
only, we used a probabilistic variant of multi-view PCA (PPCA) to infer 
keypoints that were occluded in one of the three views, effectively 
similar to the triangulation-reprojection protocols used for multi-view 
tracking by refs. 10,58. This resulted in a 30% increase in the number of 
keypoints usable for training, with more occluded keypoints included 
in the augmented label set.

CRIM13. The Caltech Resident-Intruder Mouse dataset (CRIM13)27 
consists of two mice interacting in an enclosed arena, captured by 
top and side-view cameras at 30 Hz. We only used the top view. Frame 
sizes were 480 × 640 pixels and reshaped during training to 256 × 256 
pixels. Seven keypoints were labeled on each mouse for a total of 14 
keypoints28.

Unlike the other datasets, the InD/OOD splits do not contain com-
pletely nonoverlapping sets of animals, as we used the train/test split 
provided in the dataset. The four resident mice were present in both 

InD and OOD splits; however, the intruder mouse was different for each 
session. Each keypoint in the CRIM13 dataset was labeled by five differ-
ent annotators. To create the final set of labels for network training, we 
took the median across all labels for each keypoint.

IBL-paw. This dataset29 is from the IBL and consists of head-fixed mice 
performing a decision-making task59,60. Two cameras—‘left’ (60 Hz) and 
‘right’ (150 Hz)—capture roughly orthogonal side views of the mouse’s 
face and upper trunk during each session. The original dataset does 
not contain synchronized labeled frames for both cameras, prevent-
ing the direct use of multi-view PCA losses during training. Instead, we 
treated the frames as coming from a single camera by flipping the right 
camera video. Frames were initially downsampled to 102 × 128 pixels 
for labeling and video storage; frames were reshaped during training 
to 128 × 128 pixels. We tracked two keypoints per view, one for each 
paw. More information on the IBL video processing pipeline can be 
found elsewhere41. For the large-scale analysis in Extended Data Fig. 7, 
we selected 44 additional test sessions that were not represented in 
the InD or OOD sessions listed in Supplementary Table 1; these could 
be considered additional OOD data.

IBL-pupil. The pupil dataset is also from the IBL. Frames from the right 
camera were spatially upsampled and flipped to match the left camera. 
Then, a 100 × 100-pixel region of interest was cropped around the pupil. 
The frames were reshaped in training to 128 × 128 pixels. Four keypoints 
were tracked on the top, bottom, left and right edges of the pupil, form-
ing a diamond shape. For the large-scale analysis in Fig. 6, we selected 
left videos from 65 additional sessions that were not represented in the 
InD or OOD sessions listed in Supplementary Table 1.

Problem formulation
Let K denote the number of keypoints to be tracked, and N the number 
of labeled frames. After manual labeling, we are given a dataset as in 
equation (1):

𝒟𝒟s = {x(i),y(i)}
N
i=1, x(i) ∈ ℝW×H, y(i) =

⎛
⎜
⎜
⎜
⎜
⎝

y1

y2

⋮

yK

⎞
⎟
⎟
⎟
⎟
⎠

∈ ℝ2K, (1)

where x(i) is the i-th image and y(i) its associated label vector, stacking 
the annotated width–height pixel coordinates for each of the K tracked 
keypoints.

It is standard practice to represent each annotated keypoint 
yk, k = 1, …K as a heat map h(i)k ∈ ℝWs×Hs with width Ws and height Hs, thus 

converting y(i) to a set of K heat maps {h(i)k }
K

k=1
. This is done by defining 

a bivariate Gaussian centered at each annotated keypoint with variance 
σ2 (a controllable parameter), and evaluating it at 2D grid points16. If y(i)k  
lacks an annotation (for example, if it is occluded), we do not form a 
heat map for it.

We normalize the heat maps ∑l,mh
(i)
k (l,m) = 1, ∀i, k, which allows us 

to both evenly scale the outputs during training and use losses that 
operate on heat maps as valid probability mass functions. Then, the 
dataset for training supervised networks is just frames and heat maps 

𝒟𝒟 = {x(i), {h(i)k }
K

k=1
}
N

i=1
. To accelerate training, the heat maps are made four 

or eight times smaller than the original frames.

Model architectures
Baseline. Our baseline model performs heat map regression on a 
frame-by-frame basis, akin to DeepLabCut7, SLEAP16, DeepPoseKit9 and 
others. It has roughly the same architecture: a ‘backbone’ network that 
extracts a feature vector per frame, and a ‘head’ that transforms these 
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into K predicted heat maps. In the results reported here, we used a 
ResNet-50 backbone network pretrained on the AnimalPose10K data-
set46 (10,015 annotated frames from 54 different animal species). For 
the mirror-fish dataset, we relied on ImageNet pretraining (except for 
the sample efficiency experiments in Fig. 1). However, our package, 
like others, is largely agnostic to backbone choices. Let B denote batch 
size, C = 3 the RGB color channels, and r an ‘upscaling factor’ by which 
we increase the size of our representations. The head includes a fixed 
PixelShuffle(2) layer that reshapes the features tensor output by the 
backbone from (B, C × r2, H, W) to (B, C, H × r, W × r) and a series of identi-
cal ConvTranspose2D layers that further double it in size (kernel size 
3 × 3, stride 2 × 2, input padding 1 × 1, output padding 1 × 1)61. The num-
ber of ConvTranspose2D layers is determined by the desired shape of 
the output heat maps, and most commonly two such layers are used. 
Each heat map is normalized with a 2D spatial softmax with a tempera-
ture parameter τ = 1. The supervised loss is a divergence between pre-
dicted heat maps and labeled heat maps. Here, we use squared error 

for each batch element b and keypoint k: ℒs = ∑l,m( ̂h
(b)
k (l,m) − h(b)k (l,m))

2
.

Once heat maps have been predicted for each keypoint, we must 
transform these 2D arrays into estimates of the width–height coordi-
nates in the original image space. We first upsample each heat map 
h(i)k ∈ ℝWs×Hs to ̃h

(i)
k ∈ ℝW×H using bicubic interpolation. We then compute 

a subpixel maximum akin to DeepPoseKit9. A 2D spatial softmax renor-
malizes the heat map to sum to 1, and we apply a high temperature 
parameter (τ = 1,000) to suppress non-global maxima. A 2D spatial 
expectation then produces a subpixel estimate of the location of the 
heat map’s maximum value. These two operations—spatial softmax 
followed by spatial expectation—are together known as a soft argmax33. 
Importantly, this soft argmax operation is differentiable (unlike the 
location refinement strategy used in DeepLabCut7), and allows  
the estimated coordinates to be used in downstream losses. To com-
pute the confidence value associated with the pixel coordinates, we 
sum the values of the normalized heat map within a configurable radius 
of the soft argmax.

TCN. Many detection ambiguities and occlusions in a given frame can 
be resolved by considering some video frames before and after it. The 
TCN uses a sequence of 2J + 1 frames to predict the labeled heat maps 
for the middle frame, according to equation (2):

𝒟𝒟s = {{x(i)m }
2J

m=−2J
, {h(i)k }

K

k=1
}
N

i=1
, (2)

where x(i)0  is the labeled frame and, for example, x(i)−1 is the preceding 
(unlabeled) frame in the video.

During training, batches of 2J + 1 frame sequences are passed 
through the backbone to obtain 2J + 1 feature vectors. The TCN has two 
upsampling heads, one ‘static’ and one ‘context-aware,’ each identical 
to the baseline model’s head. The static head takes the features of only 
the central frame and predicts location heat maps for that frame. The 
context-aware head generates predicted location heat maps for each 
of the 2J + 1 frames (note that these are the same shape as the location 
heat maps, but we do not explicitly enforce them to match labeled 
heat maps). Those heat maps are passed as inputs to a bidirectional 
CRNN whose output is the context-aware predicted heat map for the 
middle frame. We then apply our supervised loss to both predicted heat 
maps, forcing the network to learn the standard static mapping from 
an image to heat maps, while independently learning to take advantage 
of temporal context when needed. (Recall Fig. 2e, which provides an 
overview of this architecture).

The network described above outputs two predicted heat maps 
per keypoint, one from each head, and applies the computations 
described above to obtain two sets of keypoint predictions with con-
fidences. For each keypoint, the more confident prediction of the two 
is selected for downstream analysis.

Semi-supervised learning
We perform semi-supervised learning by jointly training on labeled 
dataset 𝒟𝒟s (constructed as described above) and an unlabeled dataset 
𝒟𝒟u, according to equation (3):

𝒟𝒟ss ≡ 𝒟𝒟s ∪ 𝒟𝒟u, (3)

where 𝒟𝒟u is constructed as follows.
Assume we have access to one or more unlabeled videos; we splice 

these into a set of U disjoint T-frame clips (discarding the very last clip 
if it has fewer than T frames), according to equation (4):

Du = {x(1)u ,… ,x(T)u }
U

u=1
, (4)

where, typically, T = 32/64/96/128/256 with with smaller frame sizes 
freeing up memory for longer sequences.

Now, assume we selected a mechanism (baseline model or TCN) 
for predicting keypoint heat maps for a given frame. At each training 
step, in addition to a batch of labeled frames drawn from 𝒟𝒟s, we present 
the network with a short unlabeled video clip randomly drawn from 
𝒟𝒟u. The network outputs a time series of keypoint predictions (one 
pose for each of the T frames in the clip), which is then subjected to one 
or more of our unsupervised losses.

All unsupervised losses are expressed as pixel distance between 
a keypoint prediction and the constraint. Because our constraints are 
merely useful approximate models of reality, we do not require the 
network to perfectly satisfy them. We are particularly interested in 
preventing, and having the network learn from, severe violations of 
these constraints. Therefore, we enforce our losses only when they 
exceed a tolerance threshold ϵ, rendering them ϵ-insensitive, accord-
ing to equation (5):

ℒ(ϵ) = max(0, ℒ − ϵ). (5)

The ϵ threshold could be chosen using prior knowledge, or estimated 
empirically from the labeled data, as we will demonstrate below. ℒ(ϵ) 
is computed separately for each keypoint on each frame, and averaged 
to obtain a scalar loss to be minimized. Multiple losses can be jointly 
minimized via a weighted sum, with weights determined by a parallel 
hyperparameter search, which is supported in Lightning Pose with no 
code changes.

Temporal difference loss. Keypoints should not jump too far between 
consecutive frames. We measure the jump in pixels and ignore jumps 
smaller than ϵ, the maximum jump allowed by user, according to equa-
tion (6):

ℒk,ttemporal(ϵ) = max (0, ||yk(t) − yk(t − 1)||2 − ϵ) , (6)

where ϵ could be determined based on image size, frame rate and rough 
viewing distance from the subject. We compute this loss for a pair  
of successive predictions only when both have confidence greater 
than a configurable threshold (for example, 0.9) to avoid artificially 
enforcing smoothness in stretches where the keypoint is unseen. We 
average the loss across keypoints and unlabeled frames, according to 
equation (7):

ℒtemporal =
1
TK

T
∑
t=1

K
∑
k=1

ℒk,ttemporal(ϵ), (7)

and minimize ℒtemporal during training. Lightning Pose also offers the 
option to apply the temporal difference loss on predicted heat maps 
instead of the keypoints. We have found both methods comparable 
and focus on the latter for clarity.
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Multi-view PCA loss. Background. Let ̄yk ∈ ℝ3 be an unknown 3D key-
point of interest. Assume that we have V cameras and that each 
v = 1, …, V camera sees a single 2D perspective projection of ̄yk denoted 
as yk(v) ∈ ℝ2, in pixel coordinates. (It is standard to express ̄y and y(v) 
in ‘homogeneous coordinates’, that is, appending another element to 
each vector, yet we omit this for simplicity and for a clearer connection 
with our PCA approach.) Thus, we have a 2V-dimensional measurement 
( yk(1)

T ⋯ yk(V)
T ) of our 3D keypoint ̄yk.

The multi-view geometry approach. It is standard to model each view 
as a pinhole camera37: such a camera has intrinsic parameters (focal 
length and distortion) and extrinsic parameters (its 3D location and 
orientation, also known as ‘camera pose’), that together specify where 
a 3D keypoint will land on its imaging plane, that is, the transformation 
from ̄y to y(v). This transformation involves a linear projection (scaling, 
rotation and translation) followed by a nonlinear distortion. While one 
might know a camera’s focal length and distortion, in general, both the 
intrinsic and extrinsic parameters are not exactly known and have to 
be estimated. A standard way to estimate these involves ‘calibrating’ 
the camera; filming objects with ground truth 3D coordinates, and 
measuring their 2D pixel coordinates on the camera’s imaging plane. 
Physical checkerboards are typically used for this purpose. They have 
known patterns that can be presented to the camera and detected using 
traditional computer vision techniques. Now with a sufficient set of 3D 
inputs and 2D outputs, the intrinsic and extrinsic parameters can be 
estimated via (nonlinear) optimization.

Multi-view PCA on the labels (our approach). We take a simpler approach, 
which does not require camera calibration or, in the mirrored datasets 
considered in this paper, explicit information about the location of 
the mirrors. Our first insight is that the multi-view (2V-dimensional) 
labeled keypoints could be used as keypoint correspondences to learn 
the geometric relationship between the views. We approximate the pin-
hole camera as a linear projection (with zero distortion), and estimate 
the parameters of this linear projection by fitting PCA on the labels 
(details below), and keeping the first three PCs, because all we are 
measuring from our different cameras is a single 3D object. Figure 2c 
(bottom right) confirms that our PCA model can explain >99% of the 
variance with the first three PCs in several multi-view experimental 
setups, indicating that our linear approximation is suitable at least 
for the mirror-mouse and mirror-fish datasets, in which the camera is 
relatively far from the subject. We do anticipate cases where our linear 
approximation will not be sufficiently accurate (for example, strongly 
distorted lenses, or highly zoomed in); the more general epipolar 
geometry approach35,62 could be applicable here. Note that our 3D PCA 
coordinates do not exactly match the 3D width–height–depth physi-
cal coordinates of the keypoints in space; instead, these two sets of 3D 
coordinates are related via an affine transformation.

Before training: fitting multi-view PCA on the labels. Our goal is to esti-
mate a projection from 2V dimensions (width–height pixel coordinates 
for V views) to three dimensions, which we could use to relate the dif-
ferent views to each other. Given the indices of matching keypoints 
across views, we form a tall and thin design matrix by vertically stacking 
all the 2V-dimensional multi-view labeled keypoints. We denote this 
matrix as YMV ∈ ℝNK×2V , according to equation (8):

YMV =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

y1
1(1)

T ⋯ y1
1(V)

T

y1
2(1)

T ⋯ y1
2(V)

T

⋮ ⋮ ⋮

yNK (1)
T ⋯ yNK (V)

T

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (8)

where ynk (v) ∈ ℝ2 represents the width–height coordinates on frame n 
for keypoint k in camera v. To reiterate, each row contains the labeled 

coordinates for a single body part seen from V views. The rows of this 
matrix contain examples from all available labeled keypoints, which 
are all used for learning the 3D projection. We exclude rows in which a 
body part is missing from one or more views. The number of examples 
used to estimate PCA is, as desired, always much larger than the label 
dimension (NK > > 2V). We perform PCA on YMV and keep the first three 
PCs, which we denote as P = ( P1 P2 P3 ) ∈ ℝ2V×3  and the data mean 
μμμ ∈ ℝ2V . The three PCs form three orthogonal axes in 2V dimensions, 
and projecting the 2V-dimensional labels on them will provide width–
height–depth-like coordinates. These 3D coordinates are related to 
the ‘real-world’ 3D coordinates (relative to some arbitrary ‘origin’ point) 
by an affine transformation (they need to be rotated, stretched and 
translated), but critically, we do not need these ‘real-world’ coordinates 
to apply the multi-view constraints during network training, as 
described below.

During training: penalizing the unlabeled data for PCA reconstruction 
errors. Let ŷtk = ( ŷtk(1)

T ⋯ ŷtk(V)
T ) ∈ ℝ2V be the network’s prediction for 

the k-th body part on the t-th unlabeled video frame, on all V views (as 
before, this requires specifying the indices of corresponding keypoints 
across views). The prediction’s multi-view PCA reconstruction is given 
by projecting it down to three dimensions and then back up to 2V 
dimensions, according to equation (9):

̄ytk = (ŷtk − μμμ)PP
⊤ + μμμ. (9)

When the prediction ŷtk  is consistent across views, that is, on the 3D 
hyperplane specified by P, we will get ̄ytk = ŷtk, a perfect reconstruction. 
The loss is defined as the average pixel distance between each 2D pre-
dicted keypoint ŷtk(v) and its multi-view PCA reconstruction ̄ytk(v), 
according to equation (10):

ℒk,t,vMV-PCA(ϵ) = max (0, ||||ŷtk(v) − ȳtk(v)||||2 − ϵ) . (10)

The loss encourages the predictions to stay within the fixed 3D hyper-
plane estimated by PCA, and thus be consistent across views. In train-
ing, we minimize its average across views, body parts, and frames, 
according to equation (11):

ℒMV-PCA =
1

TKV ∑
t,k,v

ℒk,t,vMV-PCA(ϵ). (11)

We choose ϵ by computing the PCA reconstruction errors (in pixels) for 
each of the labeled keypoints, and taking the maximum. This represents 
the maximal multi-view inconsistency observed in the labeled data.

We note that the multi-view PCA loss does not require any modifi-
cations to network architectures. Each view is processed independently 
by the network. As mentioned above, all that is required is specification 
of which keypoints from which views correspond to the same body part. 
The mirrored datasets considered in this paper are handled similarly: 
the single frame containing all available views is processed by the 
network, and different keypoints are linked to the same body part via 
an entry in the model configuration file.

Pose PCA loss. There are certain things that bodies cannot do. We 
might track 2K pose coordinates, but it does not mean that they can 
all move independently and freely. Indeed, there is a long history of 
using low-dimensional models to describe animal movement38,40,63. 
Here, we extend the PCA approach to full pose vectors, and constrain 
the 2K-dimensional poses to lie on a low-dimensional hyperplane of 
plausible poses, which we estimate from the labels.

Before training: fitting Pose PCA on the labels. This approach is identical 
to multi-view PCA, with the following exceptions. First, our observa-
tions are full pose vectors and not single keypoints seen from multiple 
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views. The design matrix of labels is, therefore, shorter and wider 
YP-PCA ∈ ℝN×2K ; it has as many rows as labeled frames, and each row 
contains the entire pose vector. Rows (poses) with missing body parts 
are discarded from this matrix. The number of examples available for 
PCA estimation is now simply the number of non-discarded labeled 
frames, Ntrain, which is not allowed to be smaller than the number of 
pose coordinates, that is, Ntrain ≥ 2K. A second exception is that instead 
of keeping three PCs, we keep as many PCs needed to explain 99% of 
the pose variance, denoted as R < < 2K. We collect the kept PCs as col-
umns of a (2K × R) matrix P = ( P1 ⋯ PR ). Each of the PCs represents an 
axis of plausible whole-body movement, akin to previous 
approaches40,64. Figure 2d shows that the number of kept PCs is usually 
less than half of the observation dimensions. We now keep P and μμμ ∈ ℝ2K 
to be used in training. For multi-view setups, it is possible to form an 
even wider (N × 2KV) design matrix, appending all V views, to jointly 
enforce the multi-view PCA loss. We have done so in the mirror-mouse 
and mirror-fish datasets.

During training: penalizing for implausible poses. As in equation (9),  
we project the full predicted poses down to the low-dimensional hyper-
plane, then back up to 2K dimensions, to form their Pose PCA recon-
structions. Then, for each 2D keypoint on each unlabeled video frame, 
we define the loss as the pixel error between the raw prediction ŷtk  and 
its reconstruction ̄ytk, according to equation (12):

ℒk,tP - PCA(ϵ) = max (0, ||||ŷtk − ̄ytk||||2 − ϵ) . (12)

This loss tells us how many pixels are needed to move the predicted 
keypoint onto the hyperplane of plausible poses. During training, we 
minimize the average loss across keypoints and frames, according to 
equation (13):

ℒP−PCA =
1
TK ∑

t,k
ℒk,tP - PCA(ϵ). (13)

Here too, ϵ is chosen by reconstructing the labeled pose vectors, com-
puting the pixel error between each 2D labeled keypoint and its PCA 
reconstruction, and taking the maximum value.

Training
Batch sizes are determined based on image size and GPU memory 
constraints (see Supplementary Table 3 for the batch sizes of the experi-
ments reported in this paper). In general, denote a labeled batch size of 
B frames, a context window of 2J + 1 frames and a short unlabeled clip 
of T frames (typically tens to hundreds) randomly drawn from a much 
longer video. The batch sizes will be B for a supervised model, B + T for 
a semi-supervised model, (2J + 1)B for a TCN model and (2J + 1)B + T for 
a semi-supervised TCN model. In our TCN experiments, we use J = 2. 
To efficiently use unlabeled clips for TCN models, we push the full 
clip through the backbone once, then discard predictions from the 
first and last J frames, which do not have sufficient context. To make 
our experiments controlled and reproducible across GPU types, we 
explicitly chose small, labeled batch sizes, such that each of our model 
variants trains with an equal number of labeled frames per batch (the 
semi-supervised and TCN models see many more unlabeled frames per 
batch, which can become memory-prohibitive).

We use an Adam optimizer65 with an initial learning rate of 0.001, 
halving it at epochs 150, 200 and 250. In the experiments reported 
here, the ResNet-50 backbone was kept frozen for the first 20 epochs. 
We trained our models for a minimum number of 300 training epochs 
and a maximum number of 750 epochs. During training we split the 
InD data into training (80%), validation (10%) and test (10%) sets. We 
performed early stopping by checking the heat map loss on validation 
data every five epochs and exiting training if it does not improve for 
three consecutive checks.

During training, we apply standard image augmentations to labeled 
frames including geometric transforms (for example, rotations and 
crops), color space manipulations (for example, histogram equaliza-
tion) and kernel filters (for example, motion blur), following DeepLab-
Cut7. A different random combination of augmentations is used for each 
frame in a batch. For the TCN architecture, the same augmentation com-
bination is used for a labeled frame and its associated context frames. 
For the semi-supervised models, we apply augmentations to unlabeled 
video frames using DALI. A single random combination of augmenta-
tions is used for all video frames in a batch. Because the PCA losses are 
sensitive to geometric transforms, once the width–height coordinates 
have been inferred using the soft argmax described above, we apply the 
inverse geometric transform before computing unsupervised losses.

While our package includes well-tested default hyperparameters 
for the unsupervised losses described in this paper, users implementing 
a new ‘bespoke’ loss are advised to perform hyperparameter searches 
for this loss’s weight, which of course multiplies the amount computed 
by the number of tested weights. However, hyperparameter searches 
can be run in parallel, and our Hydra scripts enable users to launch and 
log these jobs without additional custom scripts.

Diagnostics and model selection
Constraint violations as diagnostic metrics. After training, we evalu-
ate the network on the labeled frames and on unlabeled videos. We then 
compute our individual loss terms (defined in equations (6), (10) and 
(12)) for each predicted keypoint, on each frame, and on each view for 
a multi-view setup, and use them as diagnostic metrics. For labeled 
frames, we compute the Euclidean pixel error. All metrics are measured 
as pixel distances on the full-sized image.

Model selection based on pixel errors and constraint violations. 
Our loss factory requires users to select among different applicable 
losses, and for each loss, determine its weight (note that we offer robust 
default values in our package). We start by fitting a baseline model to 
the data (typically with three random seeds). Then, for each of the appli-
cable losses, we search over 4−8 possible weights (between values of 3.0 
and 7.0). We then compare the diagnostic metrics specified above on a 
held-out validation set (ignoring errors below a tolerance threshold). 
We pick the weight that exhibits the minimal loss across the majority 
of our diagnostics. Supplementary Table 4 displays the optimal weight 
chosen for each loss in each dataset using non-TCN models. We used 
the same weights for the TCN networks.

Sample efficiency experiments
The sample efficiency experiments in Fig. 1c demonstrate model per-
formance on InD and OOD data as a function of training frames. For a 
given network trained with N frames, we actually need to select 
N* = ceiling (1.25N) frames to account for additional validation frames 
used for early stopping, as well as InD test frames (the train/val/test 
split was 80%/10%/10%, respectively). To mimic a realistic labeling 
scenario, we randomly selected a video from all the InD data. If the 
number of frames in this first video (call this M1) was greater than or 
equal to N∗, then we stopped here. If M1 < N∗, we continued to randomly 
select a video and add all labeled frames from that video to the labeled 
data pool. Once ∑k

i=1Mi >= N∗, we randomly selected 10% of the frames 
in the pool for validation, 10% for testing and, of the remaining 80%, 
we chose exactly N frames for training. Training was performed with 
supervised Lightning Pose models as described above. After training, 
we computed InD pixel error on the 10% of test frames, and OOD pixel 
error on held-out videos that were never considered for the labeled 
data pool. We repeated this procedure ten times for each value of N.

Ablation study showing the effects of individual losses
The goal of this analysis is to quantify the relative contribution of the 
individual unsupervised losses in the mirror-mouse, mirror-fish and 
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CRIM13 datasets. We focus on the scarce label regime (75 train frames), 
where the semi-supervised improvements are most pronounced. 
We train semi-supervised models with temporal, multi-view PCA or 
Pose PCA losses, and compare these to a supervised baseline and a 
semi-supervised model that combines all loss types. For each condition, 
we train three networks with different random seeds controlling the 
data presentation order. To simplify this analysis, we analyze pixel error 
averages. The results indicate that across datasets, most pixel error 
savings were driven by the multi-view and Pose PCA losses (Extended 
Data Fig. 3). A combination of all losses always performs the best.

DeepLabCut Training
For DeepLabCut experiments (version 2.2.3), we use their default 
parameters: an ImageNet-pretrained backbone, training for 50,000 
‘iterations’ (batches) independent of the labeled dataset size, using the 
Adam optimizer65 with a learning rate schedule that starts from 1 × 10−4 
and is reduced to 5 × 10−5 at iteration 7,500 then to 1 × 10−5 at iteration 
12,000. We select the training frames to exactly match those used 
for the Lightning Pose models in all analyses with the mirror-mouse, 
mirror-fish and CRIM13 datasets. For the IBL datasets, we use the same 
number of training frames but do not try to match them exactly. For 
differences between the baseline and DeepLabCut models, see the 
Supplementary Information.

Ensembling
To perform ensembling, we need a collection of models that output a 
diverse set of predictions. This can be achieved through various means. 
For the EKS analyses in Extended Data Fig. 6, we chose to study a single 
split of the data, and achieved diversity by randomly initializing the 
head of each model, as well as the order in which the data were sent to 
the model during training. Despite these seemingly minor differences, 
the ensemble of models produced a variety of outputs (Extended 
Data Fig. 6b,d,f). For the other figures and videos related to ensem-
bling (Figs. 5 and 6, Extended Data Fig. 7, Supplementary Videos 8–14 
and Supplementary Figs. 2–4), we achieved diversity by training each 
model with a different subset of training data (in line with the analyses 
performed in, for example, Fig. 4).

Post-processor comparison
For the post-processor comparisons in Fig. 5, we used the following 
baselines:

Median filter. We used the medfilt function from the SciPy pack-
age66 using the default settings from the DeepLabCut package 
(kernel_size = 5).

ARIMA. We used a seasonal autoregressive integrated moving-average 
with exogenous regressors (SARIMAX) model using the default set-
tings from the DeepLabCut package (pcutoff = 0.001, alpha = 0.01, 
ARdegree = 3, MAdegree = 1).

Ensemble mean/median. We computed the mean/median over the 
ensemble members, independently for the x and y coordinates. We 
did not apply confidence thresholding.

EKS
The EKS begins with the output of the ensemble of pose estimation 
networks, an m × 2KV × T tensor, for m ensemble members (here, m ≈ 5), 
K keypoints, V views and T video frames. EKS performs probabilistic 
inference to denoise the ensemble predictions to obtain more accu-
rate and robust pose estimates. To be more specific, we compute the 
mean and variance for each keypoint across the ensemble to obtain 
the 2KV × T ensemble mean M and variance C matrices.

We first define the general state-space model, then discuss its 
useful special cases in the following sections. We specify a latent state 

variable qt, a linear Gaussian Markov dynamics model for this state 
variable of the form, according to equation (14):

qt = Atqt−1 + et, et ∼ N(0, Et), (14)

and a linear Gaussian observation model describing the relationship 
between the latent state variable qt and the observed data Ot, accord-
ing to equation (15):

Ot = Btqt + nt,nt ∼ N(μ,Qt), (15)

for some appropriate (potentially time-varying) system parameters 
At, Bt, Et, Qt, μ.

Single-keypoint, single-camera case. This is the simplest case to 
consider: imagine that we want to denoise each keypoint individually, 
and we only have observations from a single camera. Here the latent 
state qt is the true 2D position of the keypoint on the camera. Now our 
model is, according to equations (16) and (17):

qt = qt−1 + et, et ∼ N(0, sI ) (16)

Ot = qt + nt,nt ∼ N(0, (1/m)Dt). (17)

Comparing these equations to the general dynamics and observations 
equations above, we see that At = Bt = I here.

In the observation equation, Ot is the 2 × 1 keypoint vector, and  
Dt is a 2 × 2 diagonal matrix specifying the ensemble confidence about 
each observation. We use the t-th column of the ensemble mean M 
to fill in the observation Ot, and the covariance from the t-th frame 
of the ensemble covariance C to fill in the observation variance Dt 
(note that larger values of Dt correspond to lower confidence in the 
corresponding observation Ot). The factor of 1/m in the observation 
variance follows from the fact that Ot is defined as a sample mean over 
m ensemble members.

Finally, s is an adjustable smoothing parameter: larger s leads 
to less smoothing. This smoothness parameter could be selected by 
maximum likelihood (for example, using the standard expectation–
maximization algorithm for the Kalman model) but can be set manually 
for simplicity.

Now, given the specified dynamics and observation model, we can 
run the standard Kalman forward–backward smoother to obtain the pos-
terior mean state Q given the observations O (that is, all the states qt given 
all the observations Ot). The smoother will ‘upweight’ high-confidence 
observations Ot (that is, small Dt), and ‘downweight’ low-confidence 
observations (large Dt), for example, from occlusion frames.

Note that this Kalman approach is the Bayesian optimal estima-
tor under the assumption that the model in equations (16) and (17) is 
accurate. In reality, this model holds only approximately: in general, 
neither the observation noise nor the state dynamics are exactly Gauss-
ian. Therefore, the EKS should be interpreted as an approximation 
to the optimal Bayesian estimator here. Generalizations (to handle 
multimodal observation densities, or switching or stochastic volatility 
dynamics models) are left for future work.

Single-keypoint, multi-camera, synchronized cameras case. Given 
multiple cameras, we can estimate the true 3D position of each key-
point. So, letting the state vector qt be the 3D vector qt = (xt, yt, zt), we 
have the model according to equations (18) and (19):

qt = qt−1 + et, et ∼ N(0, E ) (18)

Ot = Bqt + nt,nt ∼ N(0, (1/m)Dt). (19)

B is 2V × 3 where V is the number of camera views; this maps the 3D state 
vector qt onto the V camera coordinates (assuming linear observations 
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here; this can be generalized but was not necessary for the data analyzed 
here). Ot is 2V × 1 and Dt is block diagonal with 2 × 2 blocks. As above, 
observations Ot with high Dt (low confidence) will be downweighted by 
the resulting EKS: in practice, this means that cameras with an unob-
structed view on a given frame (small Dt) can help to correct frames that 
are occluded in other camera views (resulting in larger ensemble vari-
ance Dt). We remark that in poorly trained models, the opposite can also 
(on rarer occasions) be true: the ensemble in one camera view can make 
‘confident mistakes’ on some frames, in which all ensemble members 
output the same wrong estimate (with corresponding small Dt, that 
is, high ensemble confidence) and induce errors in the other camera 
views after running the EKS. These errors can be detected as devia-
tions between the Kalman smoother output and the original ensemble 
outputs; the training label set can then be augmented to correct these 
confident mistakes, followed by network ensemble retraining.

We initialize our estimates by restricting to confident frames and 
computing PCA to estimate B; then we take temporal differences of the 
resulting PCA projections and compute their covariance to initialize E.

Finally, note that this simple Kalman model does not output the 
true 3D location here, because the model is non-identifiable; instead, 
we learn qt up to a fixed invertible affine transformation.

Pupil EKS. For the IBL-pupil dataset, we track K = 4 keypoints arranged 
in a diamond shape around the perimeter of the pupil. Therefore, at 
each frame we have 2K = 8 observations that are constrained to lie in a 
3D subspace defined by the pupil center (denoted as (xt, yt)) and diam-
eter dt. Given the state variable qt = (dt, xt, yt), we can (linearly) predict 
the location of each of the four diamond corners.

In addition, we have strong prior information about the dynamics 
of the state variable: we know that the diameter dt is a smooth function 
of time t, while the pupil center (xt, yt) can change more abruptly, due to 
saccades and rapid face movements that move the eye as well.

Together, these assumptions lead to the model given by equations 
(20) and (21):

qt = Aqt−1 + et, et ∼ N(0, E), (20)

Ot = Bqt + nt,nt ∼ N ((μd,0,0), (1/m)Dt) . (21)

In the observation equation above, μd denotes the mean diameter,  
Ot is the 8 × 1 keypoint vector, B is a fixed 8 × 3 matrix that trans-
lates the state variable qt into the keypoints and Dt is a diagonal  
matrix whose diagonal entries include the ensemble confidence  
about each observation.

In the dynamics model above, A and E are both diagonal. This 
means that we model the priors for dt, xt, and yt using independent 
autoregressive (AR(1)) processes. (The posteriors for these variables 
will not be independent, due to the non-separable structure of the 
observation model in equation (21)). We want to choose the diagonal 
values diag(A) and diag(E) so that these processes have the desired 
variance and time constant. The variance in a stationary AR(1) model 
with noise variance e and autoregressive parameter a is e/(1 − a2). We 
can crudely estimate the marginal mean and variance of xt, yt, and dt 
from the ensembled mean M, and match the AR(1) marginal mean and 
variance accordingly. This leaves us with just two autoregressive param-
eters to choose: A(1, 1) and A(2, 2) (with A(3, 3) set equal to A(2, 2)). The 
time constant corresponding to A(1, 1) should be meaningfully larger 
than the time constant corresponding to A(2, 2), since as noted above 
the diameter dt varies much more smoothly than the center (xt, yt).

Single-keypoint, multi-camera, asynchronous cameras case. In 
some datasets (for example, the IBL-paw dataset), frames from differ-
ent cameras may be acquired asynchronously, perhaps with different 
frame rates. The Kalman model can be easily adapted to handle this 
case. Define the sampling times and camera ID for the i-th frame as: 

{ti, vi}, where ti denotes the time the frame was acquired, and vi denotes 
the camera that took the i-th frame. Again, the state vector qt is the true 
3D location of the keypoint, qt = (xt, yt, zt). We have the model according 
to equations (22) and (23):

qti = qti−1 + ei, ei ∼ N(0, E(ti − ti−1)) (22)

Oi = Bvi qti + ni,ni ∼ N(0, (1/m)Di), (23)

where now Bvi is 2 × 3; this tells us how the latent 3D coordinates are 
mapped into the vi’th camera. Oi is a 2 × 1 vector, and Di is a 2 × 2 matrix. 
Here the Kalman smoother is run only at frame acquisition times {ti}, 
but if desired we can perform predictions/interpolation at any desired 
time t.

Pose PCA case. Let qt represent the ‘compressed pose,’ the R × 1 vector 
obtained by projecting the true pose into the R-dimensional Pose PCA 
subspace. Here we have the model according to equations (24) and (25):

qt = qt−1 + et, et ∼ N(0, E) (24)

Ot = Bqt + nt,nt ∼ N(0, (1/m)Dt). (25)

B is 2K × R; this maps the R-dimensional state vector qt onto the 2K cam-
era coordinates. Ot is 2K × 1 and Dt is block diagonal with 2 × 2 blocks. 
As in the synchronous multi-camera setting, we initialize our estimates 
by restricting to confident frames and computing PCA to estimate B; 
then, we take temporal differences of the resulting PCA projections 
and compute their covariance to initialize E.

The output of this smoother is useful for diagnostic purposes, but 
we do not recommend using this model to generate the final tracking 
output, because rare (but real) poses may lie outside the Pose PCA 
subspace, while the output of this smoother is restricted to lie within 
this subspace (the span of B) by construction.

CCA
In Supplementary Figs. 2 and 4, we use canonical correlation analysis 
(CCA) to compute the directions of motion that should match in the left 
and right cameras and top and bottom cameras, respectively. (These 
canonical correlations directions are orthogonal to the epipolar lines 
familiar from multiple-view geometry37.) In this subsection, we provide 
details of this computation.

Let Ôt = B ̂qt  be the output of the multi-camera EKS at time step t, 
projected back onto the camera planes. We can further decompose Ôt  
as Ôt = {Ô

v1
t , Ô

v2
t }, where Ô

v1
t  is the 2D prediction for the first camera, and 

Ô
v2
t  is the 2D prediction for the second camera. Now, we compute 

CCA(Ô
v1 , Ô

v2 ) to find the one-dimensional linear projection of the out-
puts for each camera that maximizes their correlation. Since Ôt  is 
generated from a lower-dimensional set of latents qt, the projection of 
Ô
v1 and Ô

v2 onto the first canonical component will be perfectly cor-
related. We can then project the original model predictions for each 
camera onto the first canonical component for each camera. Any 
frames where the two camera views do not have the same projected 
value will most likely be outliers. This can be seen in Supplementary 
Figs. 2 and 4, where outlier frames due to paw switching and paw occlu-
sions cause the model predictions for the two camera views to have 
different CCA projections.

Neural decoding
We performed neural decoding using cross-validated linear regres-
sion with L2 regularization67 (the Ridge module in scikit-learn68). The 
decoding targets—pupil diameter or paw speed—are binned into nono-
verlapping 20-ms bins. For each successful trial, we select an alignment 
event—reward delivery for pupil diameter and wheel movement onset 
for paw speed—and decode the target starting 200 ms before and end-
ing at 1,000 ms after the alignment event. We bin spike counts similarly 
using all recorded neurons in each session. The target value for a given 
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bin (ending at time t) is decoded from spikes in a preceding (causal) 
window spanning R bins (ending at times t, …, t − R + 1). Therefore, if 
decoding from N neurons, there are RN predictors of the target variable 
in a given bin. In practice, we use R = 10.

To improve decoding performance, we smoothed the target 
variables. For pupil diameter, both the DeepLabCut (DLC) and Light-
ning Pose (LP) predictions of pupil diameter were smoothed using a 
Savitzky–Golay filter that linearly interpolates over low-confidence 
time points (confidence < 0.9). The filter window is set to 31 frames 
(500 ms) for the left video (we did not decode pupil diameter from the 
lower-spatial-resolution right video). More details of this method can 
be found elsewhere29. We did not apply additional smoothing to the 
output of the EKS (LP + EKS) model. For paw speed, small errors in the 
paw position will be magnified when taking the derivative. To compen-
sate for this, we lightly smoothed the paw position estimates using a 
Savitzky–Golay filter after linearly interpolating over low-confidence 
time points (confidence < 0.9), and then computed paw speed. The 
right video filter window is set to 13 frames (87 ms) and the left window 
is set to 7 frames (117 ms). This smoothing was applied to the outputs 
of all three models (DLC, LP, LP + EKS).

All decoding results use nested cross-validation. Each of the five 
cross-validation folds is based on a training/validation set comprising 
80% of the trials and a test set of the remaining 20% of trials. Trials are 
selected at random (in an ‘interleaved’ manner). The training/valida-
tion set of a fold is itself split into five sub-folds using an interleaved 
80%/20% partition. A model is trained on the 80% training set using 
various regularization coefficients ({10−5, 10−4, 10−3, 10−2, 10−1, 100, 101},  
denoted as input parameter α by scikit-learn), and evaluated on the 
held-out validation set. This procedure is repeated for all five sub-folds. 
The coefficient that achieves the highest R2 value, averaged across all 
five validation sets, is selected as the ‘best’ coefficient and used to 
train a new model across all trials in the 80% training/validation set. 
The model is then used to produce predictions for each trial in the 20% 
test set. This train/validate/test procedure is repeated five times, each 
time holding out a different 20% of test trials such that, after the five 
repetitions, 100% of trials have a held-out decoding prediction. The 
final reported decoding score is the R2 computed across all held-out 
predictions. Code for performing this decoding analysis can be found 
at https://github.com/int-brain-lab/paper-brain-wide-map/.

Lightning Pose software package
We built Lightning Pose with the following philosophy. To begin with, 
computer vision is a vast field, of which animal pose estimation is 
a small part. The thriving deep learning software ecosystem offers 
well-engineered and well-tested solutions for every stage of the pose 
estimation pipeline. We can, therefore, outsource code to these frame-
works to a large degree, leaving us with a smaller code base to maintain.

We start with Lightning Pose’s core components, which are 
depicted in the innermost purple box in Extended Data Fig. 8a.

First, an algorithmic signature of Lightning Pose is training with 
two data streams, labeled images and unlabeled videos (as depicted 
in Fig. 2a), which have to be loaded and ‘augmented’ in tandem. This 
requirement led us to develop a generic class of so-called ‘data modules’ 
supporting flexible semi-supervised training.

Most computer vision systems are built to ingest images, not vid-
eos; raw videos are rarely used during training. The standard approach 
converts raw videos into formatted (‘augmented’) images using CPUs. 
The CPU approach is inefficient and may cause the network to spend 
most of its time idly waiting for data instead of predicting or train-
ing69 (‘data bottleneck’). Therefore, we built high-performance video 
readers using NVIDIA’s data loading library (DALI; https://github.com/
NVIDIA/DALI/; leftmost box inside innermost purple box in Extended 
Data Fig. 8a). DALI uses the native capabilities of GPUs) to both read 
(‘decode’) and augment videos (resize, crop, scale) to greatly accelerate 
video handling at training and prediction time.

Moreover, Lightning Pose decouples network architectures from 
datasets and training losses (center and right boxes, respectively; 
inside innermost purple box in Extended Data Fig. 8a). As part of our 
own experiments, we realized that users need flexibility to compose 
a set of supervised and unsupervised losses without making any code 
changes. We, therefore, built a ‘loss factory’ that enables developers 
to experiment with existing losses easily and quickly prototype new 
losses. Losses can be applied at any level of representation in the net-
work, ranging from the time series of predicted keypoints, through 
heat maps, to hidden network features. New losses require minimal 
extra code, are automatically logged during training, and can contain 
their own trainable parameters and even trainable sub-networks.

Having established how we handle data, design networks and 
select losses, we still need a procedure for training networks. We offload 
this task to PyTorch Lightning24 (middle box in Extended Data Fig. 8a), 
which is an increasingly popular wrapper around the PyTorch deep 
learning framework61. This enables us to use the latest strategies for 
training models, logging the results and distributing computation 
across multiple GPUs, without having to modify any of our core mod-
ules described above as new training techniques emerge.

In addition, we use Hydra70 to configure, launch and log network 
training jobs (Extended Data Fig. 8a, outermost purple box). This elimi-
nates a substantial amount of ‘boilerplate’ code while increasing the 
reproducibility of training, which often depends on choices of random 
number generator, batch sizes, and so on.

Finally, we developed a suite of interactive training diagnostics and 
model comparison tools, facilitating hyperparameter sensitivity analyses 
(Extended Data Fig. 8a, right gray box). During training, we provide online 
access to TensorBoard (https://www.tensorflow.org/tensorboard/) to 
monitor the individual losses. After training, we use a Streamlit (https://
streamlit.io/) user interface to visualize per-keypoint diagnostics for 
both labeled frames and unlabeled videos. We also use a FiftyOne user 
interface (https://voxel51.com/) for viewing images and videos along 
with multiple models’ predictions, enabling users to filter body parts and 
models, and browse moments of interest in predicted videos.

A cloud-hosted application for pose estimation as a service
More and more laboratories have access to the accelerated comput-
ers needed for running deep learning pipelines. But unfortunately, 
installing, executing and maintaining deep learning pipelines on them 
remains a hurdle even for experienced software developers.

We built a browser application that uses cloud computers and 
allows users with no coding expertise to estimate animal pose using 
any computer with access to internet. Our app (Extended Data Fig. 8b) 
supports the full life cycle of animal pose estimation, from data anno-
tation via LabelStudio (https://labelstud.io/) to model training to 
video prediction and diagnostic visualization (via the open-source 
ecosystem introduced above). When launched by a user, the app 
starts a number of cloud machines equipped with the necessary hard-
ware and software, which will turn off when idle. Our app is built on 
Lightning.ai’s (https://lightning.ai/) infrastructure for cloud-hosted 
deep learning applications, removing technical obstacles related to 
resource provisioning, secure remote access and software depend-
ency management.

To conclude, the cloud-centric approach we take serves to democ-
ratize analysis tools, improving scalability, code maintenance require-
ments and computation time and cost23. Our app enables developers 
who have created new losses or network architectures within the Light-
ning Pose software package to easily make these advances available 
to the broader audience through the cloud-based app. This ability 
substantially accelerates the process of moving model development 
from the prototyping to production stage.

For up-to-date installation instructions and a walk-through of the 
app, we refer the reader to the app’s documentation website (https://
pose-app.readthedocs.io).
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Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All labeled data used in this paper are publicly available.
mirror-mouse https://doi.org/10.6084/m9.figshare.24993315.v1  
(ref. 71)
mirror-fish https://doi.org/10.6084/m9.figshare.24993363.v1 (ref. 72)
CRIM13 https://doi.org/10.6084/m9.figshare.24993384.v1 (ref. 73)
IBL-paw https://ibl-brain-wide-map-public.s3.amazonaws.com/aggre-
gates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.
trainingDataPaw.7e79e865-f2fc-4709-b203-77dbdac6461f.zip
IBL-pupil https://ibl-brain-wide-map-public.s3.amazonaws.com/aggre-
gates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.
trainingDataPupil.27dcdbb6-3646-4a50-886d-03190db68af3.zip
All of the model predictions on labeled frames and unlabeled videos 
are available via Figshare at https://doi.org/10.6084/m9.figshare. 
25412248.v2 (ref. 74). These results, along with the labeled data, can be 
used to reproduce the main figures of the paper.
To access the IBL data analyzed in Fig. 6 and Extended Data Fig. 7, see the 
documentation at https://int-brain-lab.github.io/ONE/FAQ.html#how-
do-i-download-the-datasets-cache-for-a-specific-ibl-paper-release and 
use the tag 2023_Q1_Biderman_Whiteway_et_al. This will provide 
access to spike-sorted neural activity, trial timing variables (stimulus 
onset, feedback delivery and so on), the original IBL DeepLabCut traces 
and the raw videos.

Code availability
The code for Lightning Pose is available at https://github.com/danbider/
lightning-pose/ under the MIT license. The repository also contains a 
Google Colab tutorial notebook that trains a model, forms predictions 
on videos and visualizes the results. From the command-line interface, 
running pip install lightning-pose will install the latest release 
of Lightning Pose via the Python Package Index (PyPI).
The code for the EKS is available at https://github.com/paninski-lab/
eks/ under the MIT license. The repository contains the core EKS code 
as well as scripts demonstrating how to use the code on several example 
datasets.
The code for the cloud-hosted application is available at https://github.
com/Lightning-Universe/Pose-app/ under the Apache-2.0 license. 
This code enables launching our app locally or on cloud resources by 
creating a Lightning.ai account.
Code for reproducing the figures in the main text is available at https://
github.com/themattinthehatt/lightning-pose-2024-nat-methods/ 
under the MIT license. This repository also includes a script for down-
loading all required data from the proper repositories.
The hardware and software used for IBL video collection is described 
elsewhere41. The protocols used in the mirror-mouse and mirror-fish 
datasets (both have the same video acquisition pipeline) are also 
described elsewhere14.
We used the following packages in our data analysis: CUDA toolkit 
(12.1.0), cuDNN (8.5.0.96), deeplabcut (2.3.5 for runtime benchmark-
ing, 2.2.3 for everything else), ffmpeg (3.4.11), fiftyone (0.23.4), h5py 
(3.9.0), hydra-core (1.3.2), ibllib (2.32.3), imgaug (0.4.0), kaleido (0.2.1), 
kornia (0.6.12), lightning (2.1.0), lightning-pose (1.0.0), matplotlib 
(3.7.5), moviepy (1.0.3), numpy (1.24.4), nvidia-dali-cuda120 (1.28.0), 
opencv-python (4.9.0.80), pandas (2.0.3), pillow (9.5.0), plotly (5.15.0), 
scikit-learn (1.3.0), scipy (1.10.1), seaborn (0.12.2), streamlit (1.31.1), 
tensorboard (2.13.0) and torchvision (0.15.2).
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Extended Data Fig. 1 | Unsupervised losses complement model confidence 
for outlier detection on mirror-fish dataset. Example traces, unsupervised 
metrics, and predictions from a DeepLabCut model (trained on 354 frames) 
on held-out videos. Conventions for panels A-D as in Fig. 3. A: Example frame 
sequence. B: Example traces from the same video. C: Total number of keypoints 
flagged as outliers by each metric, and their overlap. D: Area under the receiver 
operating characteristic curve for several body parts. We define a ‘true outlier’ 
to be frames where the horizontal displacement between top and bottom 

predictions or the vertical displacement between top and right predictions 
exceeds 20 pixels. AUROC values are only shown for the three body parts that 
have corresponding keypoints across all three views included in the Pose PCA 
computation (many keypoints are excluded from the Pose PCA subspace due to 
many missing hand labels). AUROC values are computed across frames from 10 
test videos; boxplot variability is over n=5 random subsets of training data. The 
same subset of keypoints is used for panel C. Boxes in panel D use 25th/50th/75th 
percentiles for min/center/max; whiskers extend to 1.5 * IQR.
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Extended Data Fig. 2 | Unsupervised losses complement model confidence 
for outlier detection on CRIM13 dataset. Example traces, unsupervised 
metrics, and predictions from a DeepLabCut model (trained on 800 frames) 
on held-out videos. Conventions for panels A-C as in Fig. 3. A: Example frame 
sequence. B: Example traces from the same video. Because the size of CRIM13 
frames are larger than those of the mirror-mouse and mirror-fish datasets, we use 

a threshold of 50 pixels instead of 20 to define outliers through the unsupervised 
losses. C: Total number of keypoints flagged as outliers by each metric, and their 
overlap. Outliers are collected from predictions across frames from 18 test videos 
and across predictions from five different networks trained on random subsets 
of labeled data.
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Extended Data Fig. 3 | PCA-derived losses drive most improvements in semi-
supervised models. For each model type we train three networks with different 
random seeds controlling the data presentation order. The models train on 75 
labeled frames and unlabeled videos. We plot the mean pixel error and 95% CI 

across keypoints and OOD frames, as a function of ensemble standard deviation, 
as in Fig. 4. At the 100% vertical line, n=17150 keypoints for mirror-mouse, 
n=18180 for mirror-fish, and n=89180 for CRIM13.
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Extended Data Fig. 4 | Unlabeled frames improve pose estimation in mirror-
fish dataset. Conventions as in Fig. 4. A. Example traces from the baseline model 
and the semi-supervised TCN model (trained with 75 labeled frames) for a single 
keypoint on a held-out video (Supplementary Video 6). B. A sequence of frames 

corresponding to the grey shaded region in panel (A). C. Pixel error as a function 
of ensemble standard devation for scarce (top) and abundant (bottom) labeling 
regimes. D. Individual unsupervised loss terms plotted as a function of ensemble 
standard deviation for the scarce (top) and abundant (bottom) label regimes.
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Extended Data Fig. 5 | Unlabeled frames improve pose estimation in CRIM13 
dataset. Conventions as in Fig. 4. A. Example traces from the baseline model and 
the semi-supervised TCN model (trained with 800 labeled frames) for a single 
keypoint on a held-out video (Supplementary Video 7). B. A sequence of frames 

corresponding to the grey shaded region in panel (A). C. Pixel error as a function 
of ensemble standard deviation for scarce (top) and abundant (bottom) labeling 
regimes. D. Individual unsupervised loss terms plotted as a function of ensemble 
standard deviation for the scarce (top) and abundant (bottom) labeling regimes.
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Extended Data Fig. 6 | The Ensemble Kalman Smoother improves pose 
estimation across datasets. We trained an ensemble of five semi-supervised 
TCN models on the same training data. The networks differed in the order of 
data presentation and in the random weight initializations for their ‘head’. This 
figure complements Fig. 5 which uses an ensemble of DeepLabCut models as 
input to EKS. A. Mean OOD pixel error over frames and keypoints as a function of 

ensemble standard deviation (as in Fig. 4). B. Time series of predictions (x and y 
coordinates on top and bottom, respectively) from the five individual semi-
supervised TCN models (75 labeled training frames; blue lines) and EKS-temporal 
(brown lines). Ground truth labels are shown as green dots. C,D. Identical to A,B 
but for the mirror-fish dataset. E,F. Identical to A,B but for the CRIM13 dataset.
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Extended Data Fig. 7 | Lightning Pose models and ensemble smoothing 
improve pose estimation on IBL paw data. A. Sample frames from each camera 
view overlaid with a subset of paw markers estimated from DeepLabCut (left), 
Lightning Pose using a semi-supervised TCN model (center), and a 5-member 
ensemble using semi-supervised TCN models (right). B. Example left view 
frames from a subset of 44 IBL sessions. C. The empirical distribution of the 
right paw position from each view projected onto the 1D subspace of maximal 
correlation in a canonical correlation analysis (CCA). Column arrangement as in 
A. D. Correlation in the CCA subspace is computed across n=44 sessions for each 
model and paw. The LP+EKS model has a correlation of 1.0 by construction.  

E. Median right paw speed plotted across correct trials aligned to first movement 
onset of the wheel; error bars show 95% confidence interval across n=273 trials. 
The same trial consistency metric from Fig. 6 is computed. F. Trial consistency 
computed across n=44 sessions. G. Example traces of Kalman smoothed right 
paw speed (blue) and predictions from neural activity (orange) for several 
trials using cross-validated, regularized linear regression. H. Neural decoding 
performance across n=44 sessions. Panels D, F, and H use a one-sided Wilcoxon 
signed-rank test; boxes use 25th/50th/75th percentiles for min/center/max; 
whiskers extend to 1.5 * IQR. See Supplementary Table 2 for further quantification 
of boxes.
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Extended Data Fig. 8 | Lightning Pose enables easy model development, fast 
training, and is accessible via a cloud application. A. Our software package 
outsources many tasks to existing tools within the deep learning ecosystem, 
resulting in a lighter, modular package that is easy to maintain and extend. 
The innermost purple box indicates the core components: accelerated video 
reading (via NVIDIA DALI), modular network design, and our general-purpose 
loss factory. The middle purple box denotes the training and logging operations 
which we outsource to PyTorch Lightning, and the outermost purple box denotes 
our use of the Hydra job manager. The right box depicts a rich set of interactive 

diagnostic metrics which are served via Streamlit and FiftyOne GUIs. B. A diagram 
of our cloud application. The application’s critical components are dataset 
curation, parallel model training, interactive performance diagnostics, and 
parallel prediction of new videos. C. Screenshots from our cloud application. 
From left to right: LabelStudio GUI for frame labeling, TensorFlow monitoring 
of training performance overlaying two different networks, FiftyOne GUI 
for comparing these two networks’ predictions on a video, and a Streamlit 
application that shows these two networks’ time series of predictions, 
confidences, and spatiotemporal constraint violations.
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