
Nature Methods

nature methods

https://doi.org/10.1038/s41592-024-02319-1Article

Lightning Pose: improved animal pose
estimation via semi-supervised learning,
Bayesian ensembling and cloud-native
open-source tools

Dan Biderman   1,29 , Matthew R. Whiteway   1,29 , Cole Hurwitz1,
Nicholas Greenspan1, Robert S. Lee2, Ankit Vishnubhotla1, Richard Warren1,
Federico Pedraja   1, Dillon Noone1, Michael M. Schartner   3,
Julia M. Huntenburg4, Anup Khanal5, Guido T. Meijer3, Jean-Paul Noel6,
Alejandro Pan-Vazquez7, Karolina Z. Socha8, Anne E. Urai   9, The International
Brain Laboratory*, John P. Cunningham   1, Nathaniel B. Sawtell1 &
Liam Paninski1

Contemporary pose estimation methods enable precise measurements
of behavior via supervised deep learning with hand-labeled video frames.
Although effective in many cases, the supervised approach requires extensive
labeling and often produces outputs that are unreliable for downstream
analyses. Here, we introduce ‘Lightning Pose’, an efficient pose estimation
package with three algorithmic contributions. First, in addition to training on
a few labeled video frames, we use many unlabeled videos and penalize the
network whenever its predictions violate motion continuity, multiple-view
geometry and posture plausibility (semi-supervised learning). Second, we
introduce a network architecture that resolves occlusions by predicting pose
on any given frame using surrounding unlabeled frames. Third, we refine the
pose predictions post hoc by combining ensembling and Kalman smoothing.
Together, these components render pose trajectories more accurate and
scientifically usable. We released a cloud application that allows users to label
data, train networks and process new videos directly from the browser.

Behavior is a window into the processes that underlie animal intelli-
gence, ranging from early sensory processing to complex social inter-
action1. Methods for automatically quantifying behavior from video2–4
have opened the door to high-throughput experiments that compare
animal behavior across pharmacological5 and disease6 conditions.

Pose estimation methods based on fully supervised deep learning
have emerged as a workhorse for behavioral quantification7–11. This
technology reduces high-dimensional videos of behaving animals to

low-dimensional time series of their poses, defined in terms of a small
number of user-selected keypoints per video frame. Three steps are
required to accomplish this feat. Users first create a training dataset
by manually labeling poses on a subset of video frames; typically,
hundreds or thousands of frames are labeled to obtain reliable pose
estimates. A neural network is then trained to predict poses that match
user labels. Finally, the network processes a new video to predict a pose
for each frame separately. Each predicted keypoint is accompanied

Received: 1 May 2023

Accepted: 17 May 2024

Published online: xx xx xxxx

 Check for updates

A full list of affiliations appears at the end of the paper. *A list of authors and their affiliations appears at the end of the paper.
 e-mail: db3236@cumc.columbia.edu; m.whiteway@columbia.edu

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02319-1
http://orcid.org/0000-0003-2054-8439
http://orcid.org/0000-0003-3756-1349
http://orcid.org/0000-0002-7056-1159
http://orcid.org/0000-0002-4854-3034
http://orcid.org/0000-0001-5270-6513
http://orcid.org/0000-0001-9125-3027
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-024-02319-1&domain=pdf
mailto:db3236@cumc.columbia.edu
mailto:m.whiteway@columbia.edu

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

on a treadmill and performing a sensory-guided locomotion task14.
Using a camera and a bottom mirror, the mouse’s side and underside
are observed simultaneously, recorded at 250 frames per second. Sev-
enteen body parts are tracked, including all four paws in both views.
We trained five DeepLabCut networks on 631 labeled frames (for each
network, we used a different random seed to split the labeled frames
into train and test sets).

We analyzed the time series of the estimated left hind paw position
during 1 s of running behavior for each of the five networks (Fig. 1b).
Each time series exhibited the expected periodic pattern (due to the
running gait), but included numerous ‘glitches’, some of which are
undetected by the networks’ confidence. This collection of five net-
works—also known as a ‘deep ensemble’22—outputs variable predictions
on many frames, especially in challenging moments of ambiguity or
occlusion (Supplementary Video 1). We will later use this ensemble
variance as a proxy for keypoint ‘difficulty’.

Supervised networks need more labeled data to generalize
It is standard to train a pose estimator using a representative sample of
subjects, evaluate performance on held-out examples from that sample
(‘in-distribution’ test set, henceforth InD), then deploy the network for
incoming data. The incoming data may include new subjects, seen from
slightly different angles or lighting conditions (‘out-of-distribution’
test set, henceforth OOD). Differences between the InD and OOD test
sets are termed ‘OOD shifts’25,26.

We analyzed five datasets: ‘mirror-mouse’14, a freely swimming
mormyrid fish imaged with a single camera and two mirrors (for three
views in total; ‘mirror-fish,’ Supplementary Fig. 1), a resident-intruder
assay27,28 (‘CRIM13;’ top-down view), paw tracking in a head-fixed
mouse29 (‘IBL-paw;’ side view), and a crop of the pupil area in IBL-paw
(‘IBL-pupil’). We split each labeled dataset into two cohorts of subjects,
InD and OOD (Supplementary Table 1).

We trained supervised networks that use a pretrained ResNet-50
backbone, similar to DeepLabCut, on InD data with an increasing num-
ber of labeled frames. Ten networks were trained per condition, each
on a different random subset of InD data. We evaluated the networks’
performance on held-out InD and OOD labeled examples. We first rep-
licated the observation that InD test-set error plateaus starting from
~200 labeled frames16 (Fig. 1c). From looking at this curve in isolation,
it could be inferred that additional manual annotation is unnecessary.
However, the OOD error curve keeps steeply declining as more labels
are added. This larger label requirement is consistent with recent work
showing that ~50,000 labeled frames are needed to robustly track ape
poses30, and that mouse face tracking networks need to be explicitly
fine-tuned on labeled OOD data to achieve good performance31.

To address these limitations, we developed the Lightning Pose
framework, comprising two components: semi-supervised learning
and a TCN architecture.

Semi-supervised learning via spatiotemporal constraints
Most animal pose estimation algorithms treat body parts as independ-
ent in time and space. Moreover, they do not train on the vast amounts
of available unlabeled videos. These two observations offer an oppor-
tunity for semi-supervised learning21. We thus train a network on both
labeled frames (supervised) and large volumes of unlabeled videos
(unsupervised; Fig. 2a). For unlabeled videos, the network outputs a
time series of pose predictions. These predictions are subjected to a
set of spatiotemporal constraints, and severe violations of these con-
straints incur penalties (with a controllable threshold parameter ϵ).
The unsupervised losses are applied only during training and hence
do not affect video prediction speeds.

Temporal difference loss
The first spatiotemporal constraint we introduce is also one held by
4-month-old infants: objects should move continuously32 and not jump

by a confidence score, and low-confidence predictions are typically
dropped. This process of labeling–training–prediction can be iterated
until performance is satisfactory. The tracked poses are used in down-
stream analyses including quantifying predefined behavioral features
(for example, gait features such as stride length, or social features such
as distance between subjects), estimation of neural encoding and
decoding models, classification of behaviors into discrete ‘syllables’
and closed-loop experiments12–17.

Although the supervised paradigm is effective in many cases, a
number of roadblocks remain. To start, image labeling can be labori-
ous, especially when handling complicated skeletons across multiple
views. Even with large, labeled datasets, trained networks often pro-
duce ‘glitchy’ predictions that require further manipulation before
downstream analyses18,19, and struggle to generalize to subjects and ses-
sions outside their training data. Even networks that achieve low error
rates on labeled test frames can still produce error frames that hinder
downstream scientific tasks. Manually identifying these error frames
is like finding a needle in a haystack20: errors persist for a few frames
at a time, whereas behavioral videos can be hours long. Automatic
approaches—currently limited to filtering low-confidence predictions
and temporal discontinuities—can miss scientifically critical errors.

To improve the robustness and usability of animal pose estima-
tion, we present Lightning Pose, a solution at three levels: modeling,
software and a cloud-based application.

First, we leverage semi-supervised learning, which involves train-
ing networks on both labeled frames and unlabeled videos, and is
known to improve generalization and data efficiency21. On unlabeled
videos, the networks are trained to minimize a number of unsupervised
losses that encode our prior beliefs about moving bodies: poses should
evolve smoothly in time, be physically plausible, and be localized con-
sistently when seen from multiple views. In addition, we leverage unla-
beled frames in a temporal context network (TCN) architecture, which
instead of processing a single frame at a time, processes each frame
with its neighboring (unlabeled) frames. Our resulting models outper-
form their purely supervised counterparts across datasets, providing
more reliable predictions for downstream analyses. We further improve
our networks’ predictions using a general Bayesian post-processing
approach, which we coin the ensemble Kalman smoother (EKS): we
aggregate (‘ensemble’) the predictions of multiple networks—which is
known to improve their accuracy and robustness22,23—and model those
aggregated predictions with a spatially constrained Kalman smoother
that takes their collective uncertainty into account.

We implemented these tools in a deep learning software package
that capitalizes on recent advances in the deep learning ecosystem. We
name our package Lightning Pose, as it is based on the PyTorch Lightning
deep learning library24. Unlike most existing packages, Lightning Pose
is video centric and built for manipulating large videos directly on the
graphics processing unit (GPU), to support our semi-supervised training.

Finally, we developed a no-install cloud application that is accessed
from the browser and enables users to annotate data, train networks
and diagnose performance without requiring programming skills or
specialized hardware.

Results
Supervised pose estimation and its limitations
The leading packages for animal pose estimation—DeepLabCut7, SLEAP8,
DeepPoseKit9 and others—differ in architectures and implementation
but all perform supervised heat map regression on a frame-by-frame
basis (Fig. 1a). A standard model is composed of a ‘backbone’ that
extracts features for each frame (for example, a ResNet-50 network)
and a ‘head’ that uses these features to predict body part location heat
maps. Networks are trained to match their outputs to manual labels.

Even when trained with many labeled frames, pose estimation
network outputs may still be erroneous. We highlight this point using
the ‘mirror-mouse’ dataset, which features a head-fixed mouse running

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

too far between video frames. We define the temporal difference loss
for each body part as the Euclidean distance between consecutive
predictions in pixels. Similar losses have been used to detect outlier
predictions post hoc14,31, whereas our goal is to incorporate these losses
directly into network training33.

The threshold ϵ indicates the maximum allowed jump, forming a
ball of zero-loss values around the previous prediction; it should be set
depending on the frame rate, frame size, the camera’s distance from
the subject, and how quickly or jerkily the subject moves (Fig. 2b).

If our losses are indeed viable proxies for pose prediction errors,
they should be correlated with pixel errors in labeled test frames. We
analyzed the predictions of a supervised model trained with 75 labeled
frames, and found a mild correlation between the temporal differ-
ence loss and pixel errors (log-linear regression: Pearson r = 0.26, 95%

confidence interval (CI) = [0.20, 0.32]; Fig. 2b). The mild correlation
here is expected: errors that persist across multiple frames will exhibit
a low temporal difference loss; in periods of fast motion, the temporal
difference loss will be high even when keypoint predictions are accu-
rate. As a comparison, confidence is a more reliable predictor of pixel
error (Pearson r = − 0.54, 95% CI = [−0.59, −0.49]).

Multi-view PCA loss
The common pipeline for three-dimensional (3D) tracking in neuro-
science includes three steps: (1) calibrating multiple cameras using a
physical calibration board, (2) training a network to estimate a 2D pose
independently in each camera, and (3) triangulating the 2D poses into
a 3D pose using standard computer vision techniques18,34. The com-
mon pipeline has two limitations. First, camera calibration is brittle

Supervised
loss

a Supervised pose estimation architecure b

In-distribution Out-of-distribution

Generalization in supervised modelsc

Unstable predictions in supervised models

0.9 conf.
threshold

80 pixels

80 pixels

Side view

Underside view

Labeled frames Backbone Predicted keypoints Labeled keypoints

C
on

fid
en

ce
 y

 c
oo

rd
 x

 c
oo

rd

Mouse locomotion
(Warren et al., 2021)

Freely swimming mormyrid fish
(Pedraja et al.)

Mouse perceptual decision-making
(IBL 2023)

Pi
xe

l e
rr

or

Training frames

20

15

10

5

50
10

0
20

0
400

600

Training frames

20

15

10

5

50
10

0
20

0
28

0

Time (s)
102.0 102.5 103.0

200

100

150

100

1.0

0

20 pixels

Mouse pupil tracking
(IBL 2023)

Training frames

5

4

3

2

6

400
1,6

00
800

20
0

10
050

20 pixels

Training frames

15

10

5

3,20
0

400
1,6

00
800

20
0

10
050

Improves with more
labeled frames

Plateaus at
≈ 200 frames

Head

Training frames
3,20

0
400

1,6
00

800
20

0
10

050

100 pixels

Resident-intruder assay
(Burgos-Artizzu et al., 2012)

60

40

20

17 keypoints (2 views) 51 keypoints (3 views) 14 keypoints (2 animals) 4 keypoints 2 keypoints

Di�erent
seeds

Fig. 1 | Fully supervised pose estimation often outputs unstable predictions
and requires many labels to generalize to new animals. a, Diagram of a typical
pose estimation model trained with supervised learning, illustrated using the
mirror-mouse dataset. A dataset is created by labeling keypoints on a subset of
video frames. A convolutional neural network, consisting of a ‘backbone’ and
a prediction ‘head’, takes in a batch of frames as inputs, and predicts a set of
keypoints for each frame. It is trained to minimize the distance from the labeled
keypoints. b, Predictions from five supervised DeepLabCut networks (trained
with 631 labeled frames on the mirror-mouse dataset), for the left front paw
position (top view) during 1 s of running behavior (Supplementary Video 1). Top,

x-coordinate; middle, y-coordinate; bottom, confidence, applying a standard
0.9 threshold indicated by the dashed line. Black arrows indicate example time
points where there is disagreement among the network predictions. c, Top row
shows five example datasets. Each blue image is an example taken from the InD
test set, which contains new images of animals that were seen in the training set.
The orange images are test examples from unseen animals altogether, which we
call the OOD test set. Bottom row shows data efficiency curves, measuring test-
set pixel error as a function of the training set size. InD pixel error is shown in blue
and OOD in orange. Line plots show the mean pixel error across all keypoints and
frames ± s.e. over n = 10 random subsets of InD training data.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

Error

Image
plane

t–2

t–1

t+1

t+2

t

Paw1

Supervised
loss

paw1 (x)
paw1 (y)
tail1 (x)

Time

Error

pa
w

1 (
x)

Lo
ss

H
ig

h
Lo

w

Implausible
configuration

Lightning pose architecture

t – 2 t – 1 t + 1 t + 2t

Paw2

Context head

Static head

Predicted t (static)

Backbone
Predicted t
(context)

a

b

Position heatmaps (implicit)

Te
m

po
ra

l d
i­

er
en

ce
lo

ss
 (p

ix
el

s)

OOD pixel error

Lo
ss

H
ig

h
Lo

w

0.99

3 10 30

3

10
30

M
ul

ti-
vi

ew
 P

C
A

lo
ss

 (p
ix

el
s)

OOD pixel error

r = 0.26 [0.20, 0.32]

c

e

dTemporal di­erence loss Multi-view PCA loss Pose PCA loss

Po
se

 P
C

A
lo

ss
 (p

ix
el

s)

Mirror-mouse
Mirror-fish

Number of PCs kept

0.7

0.8

1.0

0.9

Fraction of PCs kept

0 0.5 1.0

Conceptual illustration Loss landscape

Correlation with error Variance explained

Mirror-mouse
(28D)
Mirror-fish
(40D)
CRIM13 (28D)

0.99

TCN architecture

No
ground

truth

Unsupervised
losses

0.4

0.8

1.0

0.6

Lo
ss

H
ig

h
Lo

w

Few labeled
frames

(expensive)

Many videos
(cheap)

Predicted keypoints Labeled keypoints

Existing paradigm
(e.g., DeepLabCut,

DeepPoseKit,
SLEAP)Backbone Head

Time series of
predicted keypoints

Image with
context frames

Bidirdirectional
CRNN

IBL-pupil (8D)

1 2 3 4 5 63 10 30

3

10

30 r = 0.88 [0.87, 0.90]

OOD pixel error
3 10 30

3

10

30
r = 0.91 [0.90, 0.92]

Fig. 2 | Lightning Pose exploits unlabeled data in pose estimation model
training. a, Diagram of the semi-supervised model that contains supervised (top
row) and unsupervised (bottom row) components. b, Temporal difference loss.
Top left: illustration of a jump discontinuity. Top right: loss landscape for frame t
given the prediction at t − 1 (white diamond), for the left front paw (top view). The
dark blue circle corresponds to the maximum allowed jump, below which the loss
is set to zero. Bottom left: correlation between temporal difference loss and pixel
error on labeled test frames. c, Multi-view PCA loss. Top left: illustration of a 3D
keypoint detected on the imaging plane of two cameras. Top right: loss landscape
for the left front paw (top view; white diamond) given its predicted location on
the bottom view. The blue band of low loss values is an ‘epipolar line’ on which the

top-view paw could be located. Bottom left: correlation between multi-view PCA
loss and pixel error. Bottom right: cumulative variance explained for single body
part labels across all views versus the fraction of principal components (PCs) kept
on multi-view datasets. d, Pose PCA loss. Top left: illustration of plausible and
implausible poses. Top right: loss landscape for the left front paw (top view; white
diamond) given all other keypoints, which is minimized around the paw’s actual
position. Bottom left: correlation between Pose PCA loss and pixel error. Bottom
right: cumulative variance explained for pose labels versus fraction of PCs kept.
e, The TCN processes each labeled frame with its adjacent unlabeled frames,
using a bidirectional CRNN. It forms two sets of location heat map predictions,
one using single-frame information and another using temporal context.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

(especially for small experimental setups) and adds experimental
complexity. Second, network training is blind to the dependencies
between the views.

The ‘multi-view PCA’ loss constrains the predictions for unlabeled
videos to be consistent across views35,36, while bypassing the need
for camera calibration. Each multi-view prediction contains width–
height pixel coordinates for a single keypoint across all views. We use
principal component analysis (PCA)—a linear method—to compress
each multi-view prediction into three dimensions, and then expand it
back into the original pixel coordinates (henceforth, ‘PCA reconstruc-
tion’). We define the multi-view PCA loss as the pixel error between the
original versus the PCA-reconstructed prediction, averaged across
keypoints and views. The multi-view PCA loss should approach zero
when the predictions are consistent across views and when nonlinear
camera distortions are negligible (Fig. 2c). Substantial distortions
may be introduced by the lens or a water medium; this simple linear
approach will not be robust in these cases. Practically, however, in both
the mirror-mouse (two views) and mirror-fish (three views) datasets,
distortions were minimized by placing the camera far from the subject
(~1.1 m and ~1.7 m, respectively). In both cases, three PCA dimensions
explained >99.9% of the multi-view ground truth label variance (Fig. 2c).

For a single frame of the mirror-mouse dataset, we computed the
loss landscape for the left front paw on the top view, given its position
in the bottom view. According to multiple-view geometry, a point
identified in one camera constrains the corresponding point in a sec-
ond camera to a specific line, known as the ‘epipolar line’37. Indeed, the
loss landscape exhibits a line of low loss values that intersects with the
paw’s true location (Fig. 2c). The multi-view loss is strongly correlated
with pixel error in a test set of labeled OOD frames (Pearson r = 0.88,
95% CI = [0.87, 0.90]), much more so than the temporal difference loss
or confidence, motivating its use both as a post hoc quality metric and
as a penalty during training.

Pose PCA loss
Not all body configurations are feasible, and of those that are feasible,
many are unlikely. Even diligent yoga practitioners will find their head
next to their foot only on rare occasions (Fig. 2d). The Pose PCA loss
constrains the predicted pose to lie on a low-dimensional subspace
of feasible and likely body configurations. It is defined as the pixel
error between an original pose prediction and its reconstruction after
low-dimensional compression.

This loss is inspired by the success of low-dimensional models in
capturing biological movement38, ranging from worm locomotion39 to
human hand grasping40. We similarly find that across four of our data-
sets, 99% of the pose variance can be explained with far fewer dimen-
sions than the number of pose coordinates (Fig. 2d)—mirror-mouse:
14/28 components; mirror-fish: 8/40; CRIM13: 8/28; IBL-pupil 3/8
(IBL-paw only contains four dimensions). The effective pose dimen-
sionality depends on the complexity of behavior, the keypoints selected
for labeling and the quality of the labeling. Pose dimensionality will be
lower for sets of spatially correlated keypoints, and higher in the pres-
ence of labeling errors that reduce these correlations.

Using an example from the mirror-mouse dataset, we computed
the PCA loss landscape for the left hind paw given the location of all the
other body parts, finding that the loss strongly favors predictions in
the vicinity of the true paw location (Fig. 2d). Across all labeled OOD
frames, Pose PCA loss closely tracks ground truth pixel error (Fig. 2d;
Pearson r = 0.91, 95% CI = [0.90, 0.92]). The Pose PCA loss might errone-
ously penalize valid postures that are not represented in the labeled
dataset. To test the prevalence of this issue, we took DeepLabCut mod-
els trained with abundant labels and computed the Pose PCA loss on
held-out videos. We collected 100 frames with the largest Pose PCA loss
per dataset. Manual labeling revealed that 85/100 (mirror-mouse; Sup-
plementary Video 2), 87/100 (mirror-fish; Supplementary Video 3) and
100/100 (CRIM13; Supplementary Video 4) of the frames include true

errors, indicating that in most cases, large Pose PCA losses correspond
to pose estimation errors, rather than unseen rare poses.

TCN
When labeling frames that contain occlusions or ambiguities, practi-
tioners often scroll the video to help ‘fill in the gaps’. This useful tem-
poral context is not provided to standard architectures that process
one frame at a time.

Therefore, we developed a TCN (Fig. 2e), which uses a 2J + 1 frame
sequence to predict the location heat maps for the middle (that is, J + 1)
frame. As in the standard architecture, the TCN starts by pushing each
image through a backbone that extracts useful features. Then, instead
of predicting the pose directly from each of these individual features,
a bidirectional convolutional recurrent neural network (CRNN) is
applied to the time series of features; the CRNN outputs a prediction
only for the middle frame. The CRNN is lightweight compared to the
backbone, and we only apply the backbone once per frame; there-
fore, the TCN runtime scales linearly with the number of total context
frames. We have found that a context window of five frames (that is,
J = 2) provides an effective balance between speed and accuracy and
have used this value throughout the paper. The outputs of the TCN and
the single-frame model tend to match on fully visible keypoints, and
differ on occluded or ambiguous keypoints.

Spatiotemporal losses enhance outlier detection
Practitioners often detect outliers using a combination of low-
confidence and large temporal difference loss14,18,31,41. Here we show the
multi-view and Pose PCA losses complement this standard approach
by capturing additional unique outliers in video predictions, going
beyond small, labeled test sets (Fig. 2b–d).

We start with an example from the mirror-mouse dataset, focus-
ing on the left hind paw on the bottom view (Fig. 3a,b). We analyzed
the predictions from a DeepLabCut model (trained as in Fig. 1b). One
common mistake involves switching back and forth between similar
looking body parts, in this case the front and hind paws (Fig. 3a). These
‘paw switches’ are not flagged by low confidence. They are also partially
missed by the temporal difference loss, which only flags jumps to and
from a wrong location, but not consecutive predictions at the wrong
location. In contrast, the multi-view PCA loss flags the errors due to
inconsistency with the top-view prediction.

We generalized this example by quantifying the overlaps and
unique contributions of the different outlier detection methods on
20 unlabeled videos. We investigate two data regimes: ‘scarce labels’
(75), which mimics prototyping a new tracking pipeline, and ‘abundant
labels’ (631 for the mirror-mouse dataset), that is, a ‘production’ setting
with a fully trained network.

First, when moving from the scarce to the abundant labels regime,
we found a 66% reduction in the outlier rate—the union of keypoints
flagged by confidence, temporal difference and multi-view PCA
losses—going from 116,000/800,000 to 39,000/800,000 keypoints.
This indicates that the networks become better and more confident.
Multi-view PCA captures a large number of unique outliers, which are
missed by confidence and the temporal difference loss (Fig. 3c). The
Pose PCA includes both views and thus is largely overlapping with
multi-view PCA.

The overlap analysis above does not indicate which outliers are
true versus false positives. To analyze this at a large scale, we restricted
ourselves to a meaningful subset of the ‘true outliers’ that can be
detected automatically, namely predictions that are impossible given
the mirrored geometry. We defined this subset of outliers as frames
for which the horizontal displacement between the top and bottom
view predictions for a paw exceeds 20 pixels14; the networks output
72,000/800,000 such errors with scarce labels, and 16,000/800,000
with abundant labels. These spatial outliers should violate the
PCA losses, but it is unknown whether they are associated with low

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

x-coord

paw1LH_bot

y-coord

Confidence

Temporal
di	erence
loss (pix)

Multi-view
PCA

loss (pix)

b

100

200

300

200

225

0.8

1.0

0

200

200 250 300 350 400

Frame number

0

100

0.9

0.6

0.8

1.0

pa
w

1L
H

AU
RO

C

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

d

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

75 train frames 631 train frames

pa
w

2L
F

AU
RO

C
pa

w
3R

F
AU

RO
C

pa
w

4R
H

AU
RO

C

Conf

Te
mporal

 di	

Pose
 PCA

Multi-
vie

w PCA
Conf

Te
mporal

 di	

Pose
 PCA

Multi-
vie

w PCA

Metric performance as outlier detector

a

True
PredFrame 290 Frame 291 Frame 292 Frame 293 Frame 294

Confidence: 0.99
Temporal di	: 2.18
Multi-view PCA: 1.28

Confidence: 0.98
Temporal di	: 143.77

Confidence: 0.99
Temporal di	: 141.50

Confidence: 1.00
Temporal di	: 140.35

Confidence: 1.00
Temporal di	: 0.60

Corresponding paw

Standard outlier detectors
Proposed outlier detectors

Top/bot horizontal
displacement: 0.41

Top/bot horizontal
displacement: 145.55

Top/bot horizontal
displacement: 3.33

Top/bot horizontal
displacement: 144.71

Top/bot horizontal
displacement: 147.90

Multi-view PCA: 79.12 Multi-view PCA: 2.95 Multi-view PCA: 78.66 Multi-view PCA: 80.23

Metric-defined inlier
Metric-defined outlier

20 pixels

20 pixels

c
75 train frames

Outliers: 116,000/800,000 keypoints
631 train frames

Outliers: 39,000/800,000 keypoints

Multi-view
PCA

18,535 5,0533,855

2,217
3,803 699

1,912

34,497
18,558

8,130

21,338

12,340 5,792

5,437

Confidence Temporal
di	erence

Unsupervised losses complement confidence for outlier detection

Pose PCA
Multi-view PCA

Multi-view
PCA

Confidence
Temporal
di	erence

Pose PCA Multi-view PCA

Outliers selected by
each metric

8,438 1934,26214,081 43,994 913

Fig. 3 | Unsupervised losses complement model confidence for outlier
detection. a, Example frame sequence from the mirror-mouse dataset.
Predictions from a DeepLabCut model (trained on 631 frames) are overlaid
(magenta ×), along with the ground truth (green +). Open white circles denote
the location of the same body part (left hind paw) in the other (top) view; given
the geometry of this setup, a large horizontal displacement between the top
and bottom predictions indicates an error. Each frame is accompanied with
‘standard outlier detectors’, including confidence, temporal difference loss
(shaded in blue) and ‘proposed outlier detectors’, including multi-view PCA loss
(shaded in red; Pose PCA excluded for simplicity), indicates an inlier as defined
by each metric, and indicates an outlier. b, Example traces from the same video.
Blue background denotes times where standard outlier detection methods

flag frames: confidence falls below a threshold (0.9) and/or the temporal
difference loss exceeds a threshold (20 pixels). Red background indicates
times where the multi-view PCA error exceeds a threshold (20 pixels). Purple
background indicates both conditions are met. c, The total number of keypoints
flagged as outliers by each metric, and their overlap. d, AUROC for each paw,
for DeepLabCut models trained with 75 and 631 labeled frames (left and right
columns, respectively). AUROC = 1 indicates the metric perfectly identifies
all nominal outliers in the video data; 0.5 indicates random guessing. AUROC
values are computed across all frames from 20 test videos; box plot variability
is over n = 5 random subsets of training data. Boxes use the 25th, 50th and 75th
percentiles for minimum, center and maximum values, respectively; whiskers
extend to 1.5 times the interquartile range (IQR).

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

confidence and large temporal differences. Instead of setting custom
thresholds on our metrics as in Fig. 3b, we now estimate each metric’s
sensitivity via a ‘receiver operating characteristic’ (ROC) curve, which
plots the true positive rate against the false positive rate across all
possible thresholds. Area under the receiver operating characteristic
curve (AUROC) equals 1 for a perfect outlier detector, 0.5 for random
guessing, and values below 0.5 indicate systematic errors. All metrics
are above chance in detecting ‘true outliers’ (Fig. 3d); for this class of
spatial errors, the PCA losses are more sensitive outlier detectors than
network confidence, and certainly more than the temporal difference
loss (due to the pathologies described above). In summary, the PCA
losses identify additional outliers that would have been otherwise
missed by standard confidence and temporal difference thresholding
(Extended Data Figs. 1 and 2).

Both unsupervised losses and TCN boost tracking
performance
We now evaluate the tracking accuracy of four Lightning Pose model
variants: networks trained with semi-supervised learning (‘SS’, includ-
ing all applicable unsupervised losses), TCN architecture (‘TCN’), a com-
bination of the two (‘SS–TCN’), and neither (‘baseline’). The ‘baseline’
model enables a clean comparison to supervised pose estimation by
eliminating implementation-level artifacts. It differs from DeepLabCut
in implementation (Supplementary Information) although it matches
it in performance across datasets. We compared the networks’ raw
predictions, without any post-processing, to focally assess the implica-
tions of the proposed methods.

First, we examined the mouse’s right hind paw position (top view)
during 2 s of running (Fig. 4a and Supplementary Video 5). We com-
pared the predictions from SS–TCN versus the baseline model, both
trained on 75 labeled frames. The SS–TCN predictions are smoother
and more confident, exhibiting a clearer periodic pattern expected
for running on a stationary wheel. Akin to Fig. 3a, we find confident
‘paw switches’ for the baseline model, but not for SS–TCN (Fig. 4b).

Next, for each model variant we trained five networks with dif-
ferent random subsets of InD data, and calculated pixel errors on 253
labeled OOD test frames. As noted elsewhere20,42, average pixel error is
an incomplete summary of network performance, since error averages
may be dominated by a majority of ‘easy’ keypoints, obscuring differ-
ences on the minority of ‘difficult’ keypoints. Instead, we quantified the
pixel error as a function of keypoint ‘difficulty’, operationally defined
as the variance in the predictions across all model variants and random
seeds. When this variance is large, at least one network in the ensemble
must be in error (Fig. 1 and Supplementary Video 1).

As expected, for both label regimes (Fig. 4c), OOD pixel error
increased as a function of ensemble standard deviation. With scarce
labels, models struggled to resolve even ‘easy’ keypoints, and SS–
TCN outperformed baseline and DeepLabCut models across all
levels of difficulty. By training semi-supervised models with a sin-
gle loss at a time, we found the PCA losses underlie most improve-
ments (Extended Data Fig. 3). The TCN architecture contributes
only marginally to this dataset. With abundant labels, all models
accurately localized ‘easy’ keypoints, and the trends observed in the
scarce labels regime become pronounced only for more ‘difficult’
keypoints.

Next, we assessed performance on a much larger unlabeled dataset
of 20 OOD videos. We computed each of our losses for every predicted
keypoint on every video frame, and we observed similar trends (Fig. 4d):
the SS–TCN model improved sample efficiency with scarce labels, and
reduced rare errors with abundant labels (consistent with expecta-
tions, given that the semi-supervised models are explicitly trained to
minimize these losses).

We found similar patterns for the mirror-fish (Extended Data Fig. 4
and Supplementary Video 6) and CRIM13 (Extended Data Fig. 5 and
Supplementary Video 7) datasets.

The EKS enhances accuracy post hoc
The spatiotemporal constraints are enforced during training but not
at prediction time. We now present a post-processing algorithm which
uses the spatiotemporal constraints to further refine the final predic-
tions. Successful post-processing requires identifying which predic-
tions need fixing; that is, properly quantifying uncertainty for each
keypoint on each frame. As emphasized above, low network confidence
captures some, but not all, errors; conversely, constraint violations
indicate the presence of errors within a set of keypoints but do not
identify which specific keypoint is in fact an error.

We have shown that when using an ensemble of networks, the
ensemble variance—which varies for each keypoint on every frame—
is a useful signal of model uncertainty43,44 (Fig. 4c). We developed a
post-processing framework that integrates this uncertainty signal
with our spatiotemporal constraints using a probabilistic ‘state-space’
model approach (Fig. 5a,b). This framework contains a prior and a likeli-
hood. The prior consists of a latent state that evolves smoothly in time.
The likelihood model contains the spatial constraints, and crucially, the
per-keypoint per-frame likelihood noise estimated by the ensemble
variance. For example, we enforce multi-view constraints by project-
ing the 3D true position of the body part (the ‘latent state’) through
two-dimensional (2D) linear projections to obtain the keypoints in each
camera view. We performed inference in this model using the Kalman
filter-smoother recursions45 and, therefore, name our approach the
Ensemble Kalman Smoother (EKS). When a keypoint’s uncertainty
is high (that is, disagreement among ensemble members), EKS will
upweight the prediction from the spatiotemporal constraints relative
to the uncertain observation (ensemble mean or median). When a
keypoint’s uncertainty is low then EKS will upweight this observation
relative to the spatiotemporal constraints. Unlike previous approac
hes14,18,20,31,41, EKS requires no manual selection of confidence thresholds
or (suboptimal) temporal linear interpolation for dropped keypoints.
Moreover, EKS is agnostic to the type of networks used to generate the
ensemble predictions.

We benchmarked EKS on DeepLabCut models fit to the mirror-
mouse dataset. EKS compared favorably to other standard post-
processors, including median filters and ARIMA models (which are fit
on the outputs of single networks), and the ensemble mean and median
(computed using an ensemble of multiple networks; Fig. 5c,d). EKS
provides substantial improvements in OOD pixel errors with as few as
m = 2 networks; we found m = 5 networks is a reasonable choice given
the computation-accuracy tradeoff (Fig. 5e,f), and used this ensemble
size throughout.

When applied to Lightning Pose semi-supervised TCN models,
EKS provides additional improvements across multiple datasets, par-
ticularly on ‘difficult’ keypoints where the ensemble variance is higher
(Extended Data Fig. 6). EKS achieves smooth and accurate tracking
even when the models make errors due to occlusion and paw confusion
(Extended Data Fig. 6, Supplementary Videos 8–12 and Supplementary
Figs. 2–4).

Improved tracking on IBL datasets
Next, we analyzed two large-scale public datasets from the Interna-
tional Brain Laboratory (IBL)29. In each experimental session, a mouse
was observed by three cameras while performing a visually guided
decision-making task. The ‘IBL-pupil’ dataset contains zoomed-in vid-
eos of the pupil, where we tracked the top, bottom, left and right edges
of the pupil. In ‘IBL-paw’, we tracked the left and right paws.

Despite efforts at standardization, the data exhibited considerable
visual variability between sessions and labs, which presents serious
challenges to existing pose estimation methods. The IBL’s preliminary
data release used DeepLabCut, followed by custom post-processing.
As detailed elsewhere29, the signal-to-noise ratio of the estimated pupil
diameter is too low for reliable downstream use in a majority of the
sessions, largely due to occlusions caused by whisking and infrared

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

light reflections. Paw tracking tends to be more accurate, but is con-
taminated by discontinuities, especially when a paw is retracted behind
the torso.

We evaluated three pose estimators for the IBL-pupil dataset
(Fig. 6a,b): DeepLabCut with custom post-processing (‘DLC’), Lightning
Pose’s SS–TCN with the same post-processing (‘LP’; using temporal dif-
ference and Pose PCA losses), and a pupil-specific EKS variant applied
to an ensemble of m = 5 LP models (‘LP + EKS’). The pupil-specific EKS
uses a 3D latent state: pupil centroid (width and height coordinates)

and a diameter. The latent state is then projected linearly onto the
eight-dimensional tracked pixel coordinates. To directly compare our
methods to the publicly released IBL DeepLabCut traces, we trained
on all available data and evaluated on held-out unlabeled videos. We
defined several pupil-specific metrics to quantify the accuracy of the
different models and their utility for downstream analyses (Supple-
mentary Table 2).

The first metric compares the ‘vertical’ and ‘horizontal’ diameters,
that is, top(y) − bottom(y) and right(x) − left(x), respectively (Fig. 6c,d).

x-
co

or
d

y-
co

or
d

C
on

f

a

b

d

100

200

50

100

0

1

1,500 1,600 1,700 1,800 1,900 2,000

Frame number

0

50

Frame 1,548 Frame 1,549 Frame 1,550 Frame 1,551

M
ul

ti-
vi

ew
PC

A

Baseline
Semi-super TCN

Traces for paw4RH_top

10

20

40

O
O

D
 p

ix
el

 e
rr

or

100% 50% 20%
75 train frames

0 2 4

Ensemble s.d.

10

20

40

100%
50%

5%

DeepLabCut
Baseline
TCN
SS
SS–TCN

631 train frames

O
O

D
 p

ix
el

 e
rr

or

% labels
in error
computation

"Harder" keypoints

Unlabeled data metrics
75 train frames

631 train frames

Multi-view PCA loss (pix)

Multi-view PCA loss (pix)

Temporal di�erence loss (pix)

Temporal di�erence loss (pix)

Pose PCA loss (pix)

0

Ensemble s.d.

Pose PCA loss (pix)

Lo
ss

 v
al

ue
Lo

ss
 v

al
ue

17,150
keypoints

100% 50% 20%

2 4

100%

50%

5%

4

10

6

0

Ensemble s.d.

2

6

10

100% 50% 20%

2 4

100%

50%

5%

4

2

6

10

4

0

Ensemble s.d.

% frames
in loss
computation

200,000 frames
100% 50% 20%

2 4

100%

50%

5%

3

6

4

3

6

4

4

10

6

c

Baseline

Semi-super TCN

Fig. 4 | Unlabeled frames improve pose estimation (raw network predictions).
a, Example traces from the baseline model and the semi-supervised TCN model
(trained with 75 labeled frames) for a single keypoint (right hind paw; top view) on
a held-out video (Supplementary Video 5). One erroneous paw switch is shaded
in gray. b, A sequence of frames (1,548–1,551) corresponding to the gray shaded
region in a in which a paw switch occurs. c, We computed the standard deviation
of each keypoint prediction in each frame in the OOD labeled data across all model
types and seeds (five random shuffles of training data). We then took the mean
pixel error over all keypoints with a standard deviation larger than a threshold

value, for each model type. Smaller standard deviation thresholds include more
of the data (n = 17,150 keypoints total, indicated by the ‘100%’ vertical line; (253
frames) × (5 seeds) × (14 keypoints) − missing labels), while larger standard
deviation thresholds highlight more ‘difficult’ keypoints. Error bands represent
the s.e.m. over all included keypoints and frames for a given standard deviation
threshold. d, Individual unsupervised loss terms are plotted as a function of
ensemble standard deviation for the scarce (top) and abundant (bottom) label
regimes. Error bands as in c, except we first computed the average loss over all
keypoints in the frame (200,000 frames total; (40,000 frames) × (5 seeds)).

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

t = 1 t = 2 t = T
Dynamics model

Temporal
constraints

Observation model
Spatial/multi-view

constraints

Ensemble
means

Latent
state

Test video

Ensemble
variances

Ensemble of pose estimation networks
(any network type)

Network 1

Network 2

Network m

Ensemble means

Ensemble variances

Individual models

a b

Mirror mouse labeled data (253 OOD frames)

EKS

ec

Post-processor comparison

paw1LH_top (x)

paw1LH_top (y)

paw1LH_top (x)

paw1LH_top (y)

10

30

Pi
xe

l e
rr

or

Ensemble median

Raw (DLC)
Median filter
ARIMA
Ensemble mean

EKS (temporal)
EKS (MV PCA)

Mirror mouse labeled data (253 OOD frames)

EKS (temporal) ensemble size analysis

fd

Median filter

paw1LH_top x position

ARIMA

Ensemble mean

Ensemble median

EKS (temporal)

EKS (MV PCA)

250 ms

paw1LH_top x velocity

50 pix/ms

Raw (DLC)
m = 2
m = 3
m = 4
m = 5
m = 6
m = 8

paw1LH_top x position paw1LH_top x velocity

m = 2

m = 3

m = 4

m = 5

m = 6

m = 8

Ensemble s.d.

100 pix

100% 50% 5% 100%

50%

5%

Ensemble s.d.

20

40

% labels
in error
computation

‘Harder’ keypoints

10

30

Pi
xe

l e
rr

or

Ensemble s.d.
0 2 4 0 2 4 0 2 4 0 2 4

Ensemble s.d.

20

40

‘Harder’ keypoints

75 train frames 631 train frames 75 train frames 631 train frames
100% 50% 5% 100%

50%

5%

% labels
in error
computation

Fig. 5 | The EKS post-processor. Results are based on DeepLabCut models
trained with different subsets of InD data and different random initializations of
the head. a, Deep ensembling combines the predictions of multiple networks.
b, The EKS leverages the spatiotemporal constraints of the unsupervised losses
as well as uncertainty measures from the ensemble variance in a probabilistic
state-space model. Ensemble means of the keypoints are modeled with a latent
linear dynamical system; temporal smoothness constraints are enforced
through the linear dynamics (orange arrows) and spatial constraints (Pose PCA
or multi-view PCA) are enforced through a fixed observation model that maps
the latent state to the observations (green arrows). Instead of learning the
observation noise, we use the time-varying ensemble variance (red arrows). EKS
uses a Bayesian approach to weight the relative contributions from the prior
and the observations. c, Post-processor comparison on OOD frames from the

mirror-mouse dataset. We plotted pixel error as a function of ensemble standard
deviation (as in Fig. 4) for several methods. The median filter and ARIMA models
act on the outputs of single networks; the ensemble means, ensemble medians
and EKS variants act on an ensemble of five networks. EKS (temporal) only
utilizes temporal smoothness, and is applied one keypoint at a time. EKS (MV
PCA) utilizes multi-view information as well as temporal smoothness, and is
applied one body part at a time (tracked by one keypoint in each of two views).
Error bands as in Fig. 4 (n = 17,150 keypoints at 100% line). d, Trace comparisons
for different methods (75 train frames). Gray lines show the raw traces used as
input to the method; colored lines show the post-processed trace. e, Pixel error
comparison for the EKS (temporal) post-processor as a function of ensemble
members (m). Error bands as in c. f, Trace comparisons for varying numbers of
ensemble members (75 train frames).

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

These diameters should be equal (or at least highly correlated) and,
therefore, low correlations between these two values signal poor track-
ing. The LP model (Pearson’s r = 0.88 ± 0.01, mean ± s.e.m.) improves
over DeepLabCut (r = 0.36 ± 0.03). Because the pupil-specific EKS uses
a single value for both vertical and horizontal diameters, it enforces a
correlation of 1.0 by construction.

We are interested in how behaviorally relevant events (such as
reward) impact pupil dynamics. To investigate this, we aligned diam-
eter estimates to the time of reward delivery for each successful trial.
We defined a second quality metric—trial consistency—by taking the

variance of the mean pupil diameter trace and dividing by the vari-
ance of the mean-subtracted traces across all trials. This metric is
zero if there are no reproducible dynamics across trials; it is infinity if
the pupil dynamics are identical and non-constant across trials (con-
stant outputs result in an undefined metric because both numerator
and denominator are zero). Although we expect some amount of real
trial-to-trial variability in pupil dynamics, any noise introduced dur-
ing pose estimation will decrease this metric. The LP and LP + EKS
estimates show greater trial-to-trial consistency compared to the
DeepLabCut estimates (Fig. 6e,f; DLC 0.35 ± 0.06; LP 0.62 ± 0.07; LP + EKS

a

c

0 20 30
0

20

30

–4

–2

0

2

4

N
or

m
al

iz
ed

 d
ia

m
 (p

ix
)

Trial consistency = 0.26e Trial consistency = 0.02 Trial consistency = 0.32

Pearson r = 0.15 Pearson r = 0.81 Pearson r = 1.00

–0.5 0 0.5 1.0 1.5

DLC LP LP + EKS

–0.25

0

0.25

0.50

0.75

1.00

Ve
rt

 v
s

ho
riz

 d
ia

m
et

er
 r

d

f

Tr
ia

l c
on

si
st

en
cy

g Neural decoding of pupil diameter
h

0

0.2

0.4

0.6

1 pixel

1 s
LP + EKS

Neural prediction

P = 1.2 × 10–12

DLC LP LP + EKS

DLC LP LP + EKS

Time (s)
–0.5 0 0.5 1.0 1.5

Time (s)
–0.5 0 0.5 1.0 1.5

Time (s)

b
65 sessions

Feedback onset

10

10

0 20 3010 0 20 3010

Reward delivery

DLC LP LP + EKS

Example session

10 pixels

Horizontal diameter Horizontal diameter Horizontal diameter

Ve
rt

ic
al

 d
ia

m
et

er

10–2

100

10–1

Top
Bottom
Left
Right

D
ec

od
in

g
R2

P = 1.2 × 10–12

P = 1.2 × 10–12

P = 1.0 × 10–11

P = 2.3 × 10–7

P = 5.3 × 10–10

P = 5.4 × 10–8

P = 4.9 × 10–5

P = 1.3 × 10–5

Fig. 6 | Lightning Pose models and EKS improve pose estimation on
IBL-pupil data. a, Sample frame overlaid with a subset of pupil markers
estimated from DeepLabCut (DLC; left), Lightning Pose using a semi-supervised
TCN model (LP; center) and a five-member ensemble using semi-supervised TCN
models (LP + EKS; right). b, Example frames from a subset of 65 IBL sessions.
c, Empirical distribution of vertical diameter measured from top and bottom
markers scattered against horizontal pupil diameter measured from left
and right markers. Column arrangement as in a. d, Vertical versus horizontal
diameter correlation was computed across n = 65 sessions for each model.
The LP + EKS model has a correlation of 1.0 by construction. e, Pupil diameter
was plotted for correct trials aligned to feedback onset; each trial was mean

subtracted. DeepLabCut and LP diameters were smoothed using IBL’s default
post-processing, compared to LP + EKS outputs. We compute a trial consistency
metric (the variance explained by the mean over trials; see text) as indicated in
the titles. f, The trial consistency metric computed across n = 65 sessions.
g, Example traces of LP + EKS pupil diameters (blue) and predictions from neural
activity (orange) for several trials using cross-validated, regularized linear
regression. h, Neural decoding performance across n = 65 sessions. In d, f and h,
a one-sided Wilcoxon signed-rank test was used; boxes display the 25th, 50th and
75th percentiles for minimum, center and maximum values, respectivley; and
whiskers extend to 1.5 times the IQR.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

0.74 ± 0.08). The increased trial-to-trial consistency of LP + EKS does
not compromise the model’s ability to track the pupil well within indi-
vidual trials (Supplementary Video 13).

Finally, we examine the extent to which we can decode pupil diam-
eter from neural data using a simple ridge regression model. This
analysis also serves to verify that the LP + EKS approach is not merely
suppressing pupil diameter fluctuations, but rather better capturing
pupil dynamics that can be predicted from an independent meas-
urement of neural activity. Across sessions, LP and LP + EKS enhance
decoding accuracy compared to DeepLabCut (DLC R2 = 0.27 ± 0.02; LP
0.33 ± 0.02; LP + EKS 0.35 ± 0.02; Fig. 6g,h).

The IBL-paw results appear in Extended Data Fig. 7, Supplementary
Video 14 and the Supplementary Information.

The Lightning Pose software package and a cloud application
We released an open-source software package—Lightning Pose—and
a separate cloud application.

We built the Lightning Pose package to be (1) simple to use and
easy to maintain: we aim to minimize ‘boilerplate’ code (such as
graphical user interfaces (GUIs) or training loggers) by outsourcing
to industry-grade packages; (2) video centric: the networks operate
on video clips, rather than on a single image at a time; (3) modular
and extensible: our goal is to facilitate prototyping of new losses and
models; (4) scalable: we support efficient semi-supervised training and
evaluation; (5) interactive: we offer a variety of tracking performance
metrics and visualizations during and after training, enabling easy
model comparison and outlier detection (Extended Data Fig. 8a).

The scientific adoption of deep learning packages like ours
presents an infrastructure challenge. Laboratories need access to
GPU-accelerated hardware with a set of preinstalled drivers and pack-
ages; therefore, we developed a cloud application that supports the
full life cycle of animal pose estimation (Extended Data Fig. 8b) and
is suitable for users with minimal coding expertise and only requires
internet access.

Discussion
We presented Lightning Pose, a semi-supervised deep learning system
for animal pose estimation. Lightning Pose uses a set of spatiotemporal
constraints on postural dynamics to improve network reliability and
efficiency. We further refined the pose estimates post hoc, with the
EKS that uses reliable predictions and spatiotemporal constraints to
interpolate over unreliable ones.

Our work builds on previous semi-supervised animal pose esti-
mation algorithms that use spatiotemporal losses on unlabeled vid-
eos33,35,35. Semi-supervised learning is not the only technique that
enables improvements over standard supervised learning protocols.
First, it has been suggested that supervised pose estimation networks
can be improved by pretraining them on large, labeled datasets for
image classification7 or pose estimation46, to an extent that might
eliminate dataset-specific training47. Other work avoids pretraining
altogether by using lighter architectures8. These ideas are complemen-
tary to ours: any robust backbone obtained through these procedures
could be easily integrated into Lightning Pose, and further refined via
semi-supervised learning.

Human pose estimation, like animal pose estimation, is commonly
approached using supervised frame-by-frame heat map regression48.
Human models are trained on much larger labeled datasets containing
either annotated images49 or 3D motion capture50. Moreover, human
models track a standardized set of keypoints, and some operate on
a standard skinned human body model51. In contrast, animal pose
estimation often contends with relatively few labels and bespoke sets
of keypoints to track. Although human pose estimation models can
impressively track crowds of moving humans, doing downstream
science using the keypoints still presents several challenges48 similar
to those discussed in the Results. Lightning Pose can be applied to

single-human pose estimation by fine-tuning a human pose estimation
backbone to specific experimental setups (such as patients in a clinic),
while enforcing our spatiotemporal constraints. Future work could also
apply EKS to the outputs of off-the-shelf human trackers.

Roughly speaking, two camps coexist in multi-view pose esti-
mation52: those who use 3D information during training10,35,53,54 and
those who train 2D networks and perform 3D reconstruction post
hoc18,55. Either approach involves camera calibration, whose limita-
tions we discussed above. Lightning Pose can be seen as an inter-
mediate approach: we train with 3D constraints without an explicit
camera calibration step. Lightning Pose does not provide an exact 3D
reconstruction of the animal, but rather a scaled, rotated and shifted
version thereof. Our improved predictions can be used as inputs to
existing 3D reconstruction pipelines. Concurrent work42 uses a tem-
poral difference loss for semi-supervised training of 3D multi-view
convolutional networks.

A number of directions remain for future work. One is to improve
the efficiency of the EKS method. The advantages of ensembling come
at a cost: we need to train and run inference with multiple networks
(post-processing the networks’ output with EKS is relatively compu-
tationally cheap). One natural approach would be ‘knowledge distilla-
tion’56: train a single network to emulate the full EKS output.

Finally, while the methods proposed here can currently track
multiple distinguishable animals (for example, a black mouse and a
white mouse), they cannot track multiple similar animals16,57, because
to compute our unsupervised losses we need to know which keypoint
belongs to which animal. Thus, adapting our approaches to the general
multi-animal setting remains an important open avenue for future work.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41592-024-02319-1.

References
1. Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A.

& Poeppel, D. Neuroscience needs behavior: correcting a
reductionist bias. Neuron 93, 480–490 (2017).

2. Branson, K., Robie, A. A., Bender, J., Perona, P. & Dickinson, M. H.
High-throughput ethomics in large groups of Drosophila. Nat.
Methods 6, 451–457 (2009).

3. Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the
stereotyped behaviour of freely moving fruit flies. J. Royal Soc.
Interface 11, 20140672 (2014).

4. Wiltschko, A. B. et al. Mapping sub-second structure in mouse
behavior. Neuron 88, 1121–1135 (2015).

5. Wiltschko, A. B. et al. Revealing the structure of
pharmacobehavioral space through motion sequencing. Nat.
Neurosci. 23, 1433–1443 (2020).

6. Luxem, K. et al. Identifying behavioral structure from deep
variational embeddings of animal motion. Commun. Biol. 5, 1267
(2022).

7. Mathis, A. et al. Deeplabcut: markerless pose estimation of
user-defined body parts with deep learning. Nat. Neurosci. 21,
1281–1289 (2018).

8. Pereira, T. D. et al. Fast animal pose estimation using deep neural
networks. Nat. Methods 16, 117–125 (2019).

9. Graving, J. M. et al. Deepposekit, a software toolkit for fast and
robust animal pose estimation using deep learning. Elife 8,
e47994 (2019).

10. Dunn, T. W. et al. Geometric deep learning enables 3D kinematic
profiling across species and environments. Nat. Methods 18,
564–573 (2021).

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02319-1

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

11. Chen, Z. et al. Alphatracker: a multi-animal tracking and
behavioral analysis tool. Front. Behav. Neurosci. 17, 1111908 (2023).

12. Jones, J. M. et al. A machine-vision approach for automated pain
measurement at millisecond timescales. Elife 9, e57258 (2020).

13. Padilla-Coreano, N. et al. Cortical ensembles orchestrate social
competition through hypothalamic outputs. Nature 603, 667–671
(2022).

14. Warren, R. A. et al. A rapid whisker-based decision underlying
skilled locomotion in mice. Elife 10, e63596 (2021).

15. Hsu, A. I. & Yttri, E. A. B-SOiD, an open-source unsupervised
algorithm for identification and fast prediction of behaviors.
Nat. Commun. 12, 5188 (2021).

16. Pereira, T. D. et al. Sleap: a deep learning system for multi-animal
pose tracking. Nat. Methods 19, 486–495 (2022).

17. Weinreb, C. et al. Keypoint-MoSeq: parsing behavior by linking
point tracking to pose dynamics. Preprint at bioRxiv https://doi.org/
10.1101/2023.03.16.532307 (2023).

18. Karashchuk, P. et al. Anipose: a toolkit for robust markerless 3D
pose estimation. Cell Rep. 36, 109730 (2021).

19. Monsees, A. et al. Estimation of skeletal kinematics in freely
moving rodents. Nat. Methods 19, 1500–1509 (2022).

20. Rodgers, C. C. A detailed behavioral, videographic, and neural
dataset on object recognition in mice. Sci. Data 9, 620 (2022).

21. Chapelle, O., Schölkopf, B. & Zien, A. (eds) Semi-Supervised
Learning (The MIT Press, 2006).

22. Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and
scalable predictive uncertainty estimation using deep ensembles.
in Advances in Neural Information Processing Systems vol. 30 (eds
Guyon, I. et al.) (Curran Associates, 2017).

23. Abe, T. et al. Neuroscience cloud analysis as a service: An
open-source platform for scalable, reproducible data analysis.
Neuron 110, 2771–2789 (2022).

24. Falcon, W. et al. Pytorchlightning/pytorch-lightning: 0.7.6 release.
Zenodo https://doi.org/10.5281/zenodo.3828935 (2020).

25. Recht, B., Roelofs, R., Schmidt, L. & Shankar, V. Do imagenet
classifiers generalize to imagenet? In International Conference on
Machine Learning, 5389–5400 (PMLR, 2019).

26. Tran, D. et al. Plex: Towards reliability using pretrained large
model extensions. Preprint at https://arxiv.org/abs/2207.07411
(2022).

27. Burgos-Artizzu, X. P., Dollár, P., Lin, D., Anderson, D. J. & Perona, P.
Social behavior recognition in continuous video. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition,
1322–1329 (IEEE, 2012).

28. Segalin, C. et al. The mouse action recognition system (mars)
software pipeline for automated analysis of social behaviors in
mice. Elife 10, e63720 (2021).

29. IBL. Data release - Brainwide map - Q4 2022 (2023). Figshare
https://doi.org/10.6084/m9.figshare.21400815.v6 (2022).

30. Desai, N. et al. Openapepose, a database of annotated ape
photographs for pose estimation. Elife 12, RP86873 (2023).

31. Syeda, A. et al. Facemap: a framework for modeling neural
activity based on orofacial tracking. Nat. Neurosci. 27, 187–195
(2024).

32. Spelke, E. S. Principles of object perception. Cogn. Sci. 14, 29–56
(1990).

33. Wu, A. et al. Deep graph pose: a semi-supervised deep graphical
model for improved animal pose tracking. in Advances in Neural
Information Processing Systems (eds Larochelle, H. et al.)
6040–6052 (2020).

34. Nath, T. et al. Using deeplabcut for 3D markerless pose estimation
across species and behaviors. Nat. Protoc. 14, 2152–2176 (2019).

35. Zhang, Y. & Park, H. S. Multiview supervision by registration. In
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 420–428 (2020).

36. He, Y., Yan, R., Fragkiadaki, K. & Yu, S.-I. Epipolar transformers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7779–7788 (2020).

37. Hartley, R. & Zisserman, A. Multiple View Geometry in Computer
Vision (Cambridge University Press, 2003).

38. Bialek, W. On the dimensionality of behavior. Proc. Natl Acad. Sci.
uSA 119, e2021860119 (2022).

39. Stephens, G. J., Johnson-Kerner, B., Bialek, W. & Ryu, W. S. From
modes to movement in the behavior of caenorhabditis elegans.
PloS ONE 5, e13914 (2010).

40. Yan, Y., Goodman, J. M., Moore, D. D., Solla, S. A. & Bensmaia, S. J.
Unexpected complexity of everyday manual behaviors. Nat.
Commun. 11, 3564 (2020).

41. IBL. Video hardware and software for the international
brain laboratory. Figshare https://doi.org/10.6084/
m9.figshare.19694452.v1 (2022).

42. Li, T., Severson, K. S., Wang, F. & Dunn, T. W. Improved
3Dd markerless mouse pose estimation using temporal
semi-supervision. Int. J. Comput. Vis. 131, 1389–1405 (2023).

43. Beluch, W. H., Genewein, T., Nürnberger, A. & Köhler, J. M. The
power of ensembles for active learning in image classification.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 9368–9377 (2018).

44. Abe, T., Buchanan, E. K., Pleiss, G., Zemel, R. & Cunningham, J. P.
Deep ensembles work, but are they necessary? in Advances in
Neural Information Processing Systems 35, 33646–33660
(2022).

45. Bishop, C. M. & Nasrabadi, N. M. Pattern Recognition and Machine
Learning, vol. 4 (Springer, 2006).

46. Yu, H. et al. AP-10K: a benchmark for animal pose estimation in the
wild. Preprint at https://arxiv.org/abs/2108.12617 (2021).

47. Ye, S. et al. SuperAnimal models pretrained for plug-and-play
analysis of animal behavior. Preprint at https://arxiv.org/
abs/2203.07436 (2022).

48. Zheng, C. et al. Deep learning-based human pose estimation: a
survey. ACM Computing Surveys 56, 1–37 (2023).

49. Lin, T. -Y. et al. Microsoft coco: common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6–12, 2014, Proceedings. Vol. 8693,
740–755 (Springer, 2014).

50. Ionescu, C., Papava, D., Olaru, V. & Sminchisescu, C. Human3.
6M: large scale datasets and predictive methods for 3D human
sensing in natural environments. IEEE Trans. Pattern Anal. Mach.
Intell. 36, 1325–1339 (2013).

51. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G. & Black, M. J.
SMPL: a skinned multi-person linear model. In Seminal Graphics
Papers: Pushing the Boundaries. Vol. 2, 851–866 (2023).

52. Marshall, J. D., Li, T., Wu, J. H. & Dunn, T. W. Leaving flatland:
advances in 3D behavioral measurement. Curr. Opin. Neurobiol.
73, 102522 (2022).

53. Günel, S. et al. DeepFly3D, a deep learning-based approach for
3D limb and appendage tracking in tethered, adult Drosophila.
Elife 8, e48571 (2019).

54. Sun, J. J. et al. BKinD-3D: self-supervised 3D keypoint discovery
from multi-view videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
9001–9010 (2023).

55. Bala, P. C. et al. Automated markerless pose estimation in freely
moving macaques with openmonkeystudio. Nat. Commun. 11,
4560 (2020).

56. Hinton, G., Vinyals, O. & Dean, J. Distilling the knowledge in a
neural network. Preprint at https://arxiv.org/abs/1503.02531
(2015).

57. Lauer, J. et al. Multi-animal pose estimation, identification and
tracking with deeplabcut. Nat. Meth. 19, 496–504 (2022).

http://www.nature.com/naturemethods
https://doi.org/10.1101/2023.03.16.532307
https://doi.org/10.1101/2023.03.16.532307
https://doi.org/10.5281/zenodo.3828935
https://arxiv.org/abs/2207.07411
https://doi.org/10.6084/m9.figshare.21400815.v6
https://doi.org/10.6084/m9.figshare.19694452.v1
https://doi.org/10.6084/m9.figshare.19694452.v1
https://arxiv.org/abs/2108.12617
https://arxiv.org/abs/2203.07436
https://arxiv.org/abs/2203.07436
https://arxiv.org/abs/1503.02531

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

Publisher’s note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with

the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2024

1Columbia University, New York, NY, USA. 2Lightning.ai, New York, NY, USA. 3Champalimaud Centre for the Unknown, Lisbon, Portugal. 4Max Planck
Institute for Biological Cybernetics, Tübingen, Germany. 5University of California, Los Angeles, Los Angeles, CA, USA. 6New York University, New York,
NY, USA. 7Princeton University, Princeton, NJ, USA. 8University College London, London, UK. 9Leiden University, Leiden, the Netherlands. 29These authors
contributed equally: Dan Biderman, Matthew R. Whiteway.  e-mail: db3236@cumc.columbia.edu; m.whiteway@columbia.edu

The International Brain Laboratory

Larry Abbot10, Luigi Acerbi11, Valeria Aguillon-Rodriguez12, Mandana Ahmadi13, Jaweria Amjad13, Dora Angelaki14,
Jaime Arlandis3, Zoe C. Ashwood15, Kush Banga16, Hailey Barrell17, Hannah M. Bayer10, Brandon Benson18, Julius Benson14,
Jai Bhagat16, Dan Birman17, Niccolò Bonacchi3, Kcenia Bougrova3, Julien Boussard10, Sebastian A. Bruijns4, E. Kelly Buchanan10,
Robert Campbell19, Matteo Carandini20, Joana A. Catarino3, Fanny Cazettes3, Gaelle A. Chapuis11, Anne K. Churchland21,
Yang Dan22, Felicia Davatolhagh21, Peter Dayan4, Sophie Denève23, Eric E. J. DeWitt3, Ling Liang Dong24, Tatiana Engel15,
Michele Fabbri10, Mayo Faulkner16, Robert Fetcho15, Ila Fiete24, Charles Findling11, Laura Freitas-Silva15, Surya Ganguli18,
Berk Gercek11, Naureen Ghani19, Ivan Gordeliy23, Laura M. Haetzel24, Kenneth D. Harris16, Michael Hausser25, Naoki Hiratani13,
Sonja Hofer19, Fei Hu22, Felix Huber11, Julia M. Huntenburg4, Cole Hurwitz10, Anup Khanal21, Christopher S. Krasniak12,
Sanjukta Krishnagopal13, Michael Krumin16, Debottam Kundu4, Agnès Landemard20, Christopher Langdon15,
Christopher Langfield10, Inês Laranjeira3, Peter Latham13, Petrina Lau25, Hyun Dong Lee10, Ari Liu24, Zachary F. Mainen3,
Amalia Makri-Cottington25, Hernando Martinez-Vergara19, Brenna McMannon15, Isaiah McRoberts14, Guido T. Meijer3,
Maxwell Melin21, Leenoy Meshulam26, Kim Miller17, Nathaniel J. Miska19, Catalin Mitelut10, Zeinab Mohammadi15,
Thomas Mrsic-Flogel19, Masayoshi Murakami27, Jean-Paul Noel14, Kai Nylund17, Farideh Oloomi4, Alejandro Pan-Vazquez15,
Liam Paninski10, Alberto Pezzotta13, Samuel Picard16, Jonathan W. Pillow15, Alexandre Pouget11, Florian Rau3, Cyrille Rossant16,
Noam Roth17, Nicholas A. Roy15, Kamron Saniee10, Rylan Schaeffer24, Michael M. Schartner3, Yanliang Shi15, Carolina Soares19,
Karolina Z. Socha20, Cristian Soitu12, Nicholas A. Steinmetz17, Karel Svoboda28, Marsa Taheri21, Charline Tessereau4, Anne E. Urai12,
Erdem Varol10, Miles J. Wells16, Steven J. West19, Matthew R. Whiteway10, Charles Windolf10, Olivier Winter3, Ilana Witten15,
Lauren E. Wool16, Zekai Xu13, Han Yu10, Anthony M. Zador12 & Yizi Zhang10

10Zuckerman Institute, Columbia University, New York, NY, USA. 11Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland. 12Cold
Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. 13Gatsby Computational Neuroscience Unit, University College London, London, UK. 14Center
for Neural Science, New York University, New York, NY, USA. 15Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA. 16Institute of
Neurology, University College London, London, UK. 17Department of Biological Structure, University of Washington, Seattle, WA, USA. 18Department
of Applied Physics, Stanford University, Stanford, CA, USA. 19Sainsbury-Wellcome Centre, University College London, London, UK. 20Institute of
Opthalmology, University College London, London, UK. 21Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA.
22Department of Molecular and Cell Biology, University of California, Los Angeles, Berkeley, CA, USA. 23Département D’études Cognitives, école Normale
Supérieure, Paris, France. 24Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. 25Wolfson Institute
of Biomedical Research, University College London, London, UK. 26Center for Computational Neuroscience, University of Washington, Seattle, WA, USA.
27Department of Physiology, University of Yamanashi, Kofu, Yamanashi, Japan. 28The Allen Institute for Neural Dynamics, Seattle, Washington, WA, USA.

http://www.nature.com/naturemethods
mailto:db3236@cumc.columbia.edu
mailto:m.whiteway@columbia.edu

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

Methods
All datasets used for the experiment were collected in compliance with
the relevant ethical regulations. See the following published papers
for each dataset: mirror-mouse14, CRIM13 (ref. 27) and IBL datasets29.
All mirror-fish experiments adhered to the American Physiological
Society’s Guiding Principles in the Care and Use of Animals and were
approved by the Institutional Animal Care and Use Committee of
Columbia University, under protocol number AABN0557.

Datasets
We considered diverse datasets collected via different experimental
paradigms for mice and fish. For each dataset, we collected a large num-
ber of videos including different animals and experimental sessions,
and labeled a subset of frames from each video. We then split this data
into two nonoverlapping subsets (that is, a given animal and/or session
would appear only in one subset). The first subset is the InD data that
we use for model training. The second subset is the OOD data that we
use for model evaluation. This setup mimics the common scenario in
which a network is thoroughly trained on one cohort of subjects, and
is then used to predict new subjects. Supplementary Table 1 details the
number of frames for each subset per dataset, as well as the number of
unique animals and videos those frames came from.

Mirror-mouse. Head-fixed mice ran on a circular treadmill while avoid-
ing a moving obstacle14. The treadmill had a transparent floor and a
mirror mounted inside at 45°, allowing a single camera to capture two
roughly orthogonal views (side view and bottom view via the mirror)
at 250 Hz. The camera was positioned at a large distance from the
subject (~1.1 m) to minimize perspective distortion. Frame sizes were
406 × 396 pixels and reshaped during training to 256 × 256 pixels.
Seventeen keypoints were labeled across the two views including seven
keypoints on the mouse’s body per view, plus three keypoints on the
moving obstacle.

Mirror-fish. Nineteen wild-caught (age unknown) adult male and
female mormyrid fish (15–22 cm in length) of the species Gnathonemus
petersii were used in the experiment. Fish were housed in 60-gallon
tanks in groups of 5–20. Water conductivity was maintained between
60 µS and 100 µS both in the fish’s home tanks and during experiments.

The fish swam freely in and out of an experimental tank, capturing
worms from a well. The tank had a side mirror and a top mirror, both
at 45°, providing three different views seen from a single camera at
300 Hz (Supplementary Fig. 1). Here too, the camera was placed ~1.7 m
away from the center of the fish tank to reduce distortions. Frame sizes
were 384 × 512 pixels and reshaped during training to 256 × 384 pixels.

Seventeen body parts were tracked across all three views for a total
of 51 keypoints. We preprocessed the labeled dataset as follows. First,
we identified labeling errors by flagging large values of the multi-view
PCA loss. We then fixed the wrong labels manually. Next, in the InD data
only, we used a probabilistic variant of multi-view PCA (PPCA) to infer
keypoints that were occluded in one of the three views, effectively
similar to the triangulation-reprojection protocols used for multi-view
tracking by refs. 10,58. This resulted in a 30% increase in the number of
keypoints usable for training, with more occluded keypoints included
in the augmented label set.

CRIM13. The Caltech Resident-Intruder Mouse dataset (CRIM13)27
consists of two mice interacting in an enclosed arena, captured by
top and side-view cameras at 30 Hz. We only used the top view. Frame
sizes were 480 × 640 pixels and reshaped during training to 256 × 256
pixels. Seven keypoints were labeled on each mouse for a total of 14
keypoints28.

Unlike the other datasets, the InD/OOD splits do not contain com-
pletely nonoverlapping sets of animals, as we used the train/test split
provided in the dataset. The four resident mice were present in both

InD and OOD splits; however, the intruder mouse was different for each
session. Each keypoint in the CRIM13 dataset was labeled by five differ-
ent annotators. To create the final set of labels for network training, we
took the median across all labels for each keypoint.

IBL-paw. This dataset29 is from the IBL and consists of head-fixed mice
performing a decision-making task59,60. Two cameras—‘left’ (60 Hz) and
‘right’ (150 Hz)—capture roughly orthogonal side views of the mouse’s
face and upper trunk during each session. The original dataset does
not contain synchronized labeled frames for both cameras, prevent-
ing the direct use of multi-view PCA losses during training. Instead, we
treated the frames as coming from a single camera by flipping the right
camera video. Frames were initially downsampled to 102 × 128 pixels
for labeling and video storage; frames were reshaped during training
to 128 × 128 pixels. We tracked two keypoints per view, one for each
paw. More information on the IBL video processing pipeline can be
found elsewhere41. For the large-scale analysis in Extended Data Fig. 7,
we selected 44 additional test sessions that were not represented in
the InD or OOD sessions listed in Supplementary Table 1; these could
be considered additional OOD data.

IBL-pupil. The pupil dataset is also from the IBL. Frames from the right
camera were spatially upsampled and flipped to match the left camera.
Then, a 100 × 100-pixel region of interest was cropped around the pupil.
The frames were reshaped in training to 128 × 128 pixels. Four keypoints
were tracked on the top, bottom, left and right edges of the pupil, form-
ing a diamond shape. For the large-scale analysis in Fig. 6, we selected
left videos from 65 additional sessions that were not represented in the
InD or OOD sessions listed in Supplementary Table 1.

Problem formulation
Let K denote the number of keypoints to be tracked, and N the number
of labeled frames. After manual labeling, we are given a dataset as in
equation (1):

𝒟𝒟s = {x(i),y(i)}
N
i=1, x(i) ∈ ℝW×H, y(i) =

⎛
⎜
⎜
⎜
⎜
⎝

y1

y2

⋮

yK

⎞
⎟
⎟
⎟
⎟
⎠

∈ ℝ2K, (1)

where x(i) is the i-th image and y(i) its associated label vector, stacking
the annotated width–height pixel coordinates for each of the K tracked
keypoints.

It is standard practice to represent each annotated keypoint
yk, k = 1, …K as a heat map h(i)k ∈ ℝWs×Hs with width Ws and height Hs, thus

converting y(i) to a set of K heat maps {h(i)k }
K

k=1
. This is done by defining

a bivariate Gaussian centered at each annotated keypoint with variance
σ2 (a controllable parameter), and evaluating it at 2D grid points16. If y(i)k
lacks an annotation (for example, if it is occluded), we do not form a
heat map for it.

We normalize the heat maps ∑l,mh
(i)
k (l,m) = 1, ∀i, k, which allows us

to both evenly scale the outputs during training and use losses that
operate on heat maps as valid probability mass functions. Then, the
dataset for training supervised networks is just frames and heat maps

𝒟𝒟 = {x(i), {h(i)k }
K

k=1
}
N

i=1
. To accelerate training, the heat maps are made four

or eight times smaller than the original frames.

Model architectures
Baseline. Our baseline model performs heat map regression on a
frame-by-frame basis, akin to DeepLabCut7, SLEAP16, DeepPoseKit9 and
others. It has roughly the same architecture: a ‘backbone’ network that
extracts a feature vector per frame, and a ‘head’ that transforms these

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

into K predicted heat maps. In the results reported here, we used a
ResNet-50 backbone network pretrained on the AnimalPose10K data-
set46 (10,015 annotated frames from 54 different animal species). For
the mirror-fish dataset, we relied on ImageNet pretraining (except for
the sample efficiency experiments in Fig. 1). However, our package,
like others, is largely agnostic to backbone choices. Let B denote batch
size, C = 3 the RGB color channels, and r an ‘upscaling factor’ by which
we increase the size of our representations. The head includes a fixed
PixelShuffle(2) layer that reshapes the features tensor output by the
backbone from (B, C × r2, H, W) to (B, C, H × r, W × r) and a series of identi-
cal ConvTranspose2D layers that further double it in size (kernel size
3 × 3, stride 2 × 2, input padding 1 × 1, output padding 1 × 1)61. The num-
ber of ConvTranspose2D layers is determined by the desired shape of
the output heat maps, and most commonly two such layers are used.
Each heat map is normalized with a 2D spatial softmax with a tempera-
ture parameter τ = 1. The supervised loss is a divergence between pre-
dicted heat maps and labeled heat maps. Here, we use squared error

for each batch element b and keypoint k: ℒs = ∑l,m(̂h
(b)
k (l,m) − h(b)k (l,m))

2
.

Once heat maps have been predicted for each keypoint, we must
transform these 2D arrays into estimates of the width–height coordi-
nates in the original image space. We first upsample each heat map
h(i)k ∈ ℝWs×Hs to ̃h

(i)
k ∈ ℝW×H using bicubic interpolation. We then compute

a subpixel maximum akin to DeepPoseKit9. A 2D spatial softmax renor-
malizes the heat map to sum to 1, and we apply a high temperature
parameter (τ = 1,000) to suppress non-global maxima. A 2D spatial
expectation then produces a subpixel estimate of the location of the
heat map’s maximum value. These two operations—spatial softmax
followed by spatial expectation—are together known as a soft argmax33.
Importantly, this soft argmax operation is differentiable (unlike the
location refinement strategy used in DeepLabCut7), and allows
the estimated coordinates to be used in downstream losses. To com-
pute the confidence value associated with the pixel coordinates, we
sum the values of the normalized heat map within a configurable radius
of the soft argmax.

TCN. Many detection ambiguities and occlusions in a given frame can
be resolved by considering some video frames before and after it. The
TCN uses a sequence of 2J + 1 frames to predict the labeled heat maps
for the middle frame, according to equation (2):

𝒟𝒟s = {{x(i)m }
2J

m=−2J
, {h(i)k }

K

k=1
}
N

i=1
, (2)

where x(i)0 is the labeled frame and, for example, x(i)−1 is the preceding
(unlabeled) frame in the video.

During training, batches of 2J + 1 frame sequences are passed
through the backbone to obtain 2J + 1 feature vectors. The TCN has two
upsampling heads, one ‘static’ and one ‘context-aware,’ each identical
to the baseline model’s head. The static head takes the features of only
the central frame and predicts location heat maps for that frame. The
context-aware head generates predicted location heat maps for each
of the 2J + 1 frames (note that these are the same shape as the location
heat maps, but we do not explicitly enforce them to match labeled
heat maps). Those heat maps are passed as inputs to a bidirectional
CRNN whose output is the context-aware predicted heat map for the
middle frame. We then apply our supervised loss to both predicted heat
maps, forcing the network to learn the standard static mapping from
an image to heat maps, while independently learning to take advantage
of temporal context when needed. (Recall Fig. 2e, which provides an
overview of this architecture).

The network described above outputs two predicted heat maps
per keypoint, one from each head, and applies the computations
described above to obtain two sets of keypoint predictions with con-
fidences. For each keypoint, the more confident prediction of the two
is selected for downstream analysis.

Semi-supervised learning
We perform semi-supervised learning by jointly training on labeled
dataset 𝒟𝒟s (constructed as described above) and an unlabeled dataset
𝒟𝒟u, according to equation (3):

𝒟𝒟ss ≡ 𝒟𝒟s ∪ 𝒟𝒟u, (3)

where 𝒟𝒟u is constructed as follows.
Assume we have access to one or more unlabeled videos; we splice

these into a set of U disjoint T-frame clips (discarding the very last clip
if it has fewer than T frames), according to equation (4):

Du = {x(1)u ,… ,x(T)u }
U

u=1
, (4)

where, typically, T = 32/64/96/128/256 with with smaller frame sizes
freeing up memory for longer sequences.

Now, assume we selected a mechanism (baseline model or TCN)
for predicting keypoint heat maps for a given frame. At each training
step, in addition to a batch of labeled frames drawn from 𝒟𝒟s, we present
the network with a short unlabeled video clip randomly drawn from
𝒟𝒟u. The network outputs a time series of keypoint predictions (one
pose for each of the T frames in the clip), which is then subjected to one
or more of our unsupervised losses.

All unsupervised losses are expressed as pixel distance between
a keypoint prediction and the constraint. Because our constraints are
merely useful approximate models of reality, we do not require the
network to perfectly satisfy them. We are particularly interested in
preventing, and having the network learn from, severe violations of
these constraints. Therefore, we enforce our losses only when they
exceed a tolerance threshold ϵ, rendering them ϵ-insensitive, accord-
ing to equation (5):

ℒ(ϵ) = max(0, ℒ − ϵ). (5)

The ϵ threshold could be chosen using prior knowledge, or estimated
empirically from the labeled data, as we will demonstrate below. ℒ(ϵ)
is computed separately for each keypoint on each frame, and averaged
to obtain a scalar loss to be minimized. Multiple losses can be jointly
minimized via a weighted sum, with weights determined by a parallel
hyperparameter search, which is supported in Lightning Pose with no
code changes.

Temporal difference loss. Keypoints should not jump too far between
consecutive frames. We measure the jump in pixels and ignore jumps
smaller than ϵ, the maximum jump allowed by user, according to equa-
tion (6):

ℒk,ttemporal(ϵ) = max (0, ||yk(t) − yk(t − 1)||2 − ϵ) , (6)

where ϵ could be determined based on image size, frame rate and rough
viewing distance from the subject. We compute this loss for a pair
of successive predictions only when both have confidence greater
than a configurable threshold (for example, 0.9) to avoid artificially
enforcing smoothness in stretches where the keypoint is unseen. We
average the loss across keypoints and unlabeled frames, according to
equation (7):

ℒtemporal =
1
TK

T
∑
t=1

K
∑
k=1

ℒk,ttemporal(ϵ), (7)

and minimize ℒtemporal during training. Lightning Pose also offers the
option to apply the temporal difference loss on predicted heat maps
instead of the keypoints. We have found both methods comparable
and focus on the latter for clarity.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

Multi-view PCA loss. Background. Let ̄yk ∈ ℝ3 be an unknown 3D key-
point of interest. Assume that we have V cameras and that each
v = 1, …, V camera sees a single 2D perspective projection of ̄yk denoted
as yk(v) ∈ ℝ2, in pixel coordinates. (It is standard to express ̄y and y(v)
in ‘homogeneous coordinates’, that is, appending another element to
each vector, yet we omit this for simplicity and for a clearer connection
with our PCA approach.) Thus, we have a 2V-dimensional measurement
(yk(1)

T ⋯ yk(V)
T) of our 3D keypoint ̄yk.

The multi-view geometry approach. It is standard to model each view
as a pinhole camera37: such a camera has intrinsic parameters (focal
length and distortion) and extrinsic parameters (its 3D location and
orientation, also known as ‘camera pose’), that together specify where
a 3D keypoint will land on its imaging plane, that is, the transformation
from ̄y to y(v). This transformation involves a linear projection (scaling,
rotation and translation) followed by a nonlinear distortion. While one
might know a camera’s focal length and distortion, in general, both the
intrinsic and extrinsic parameters are not exactly known and have to
be estimated. A standard way to estimate these involves ‘calibrating’
the camera; filming objects with ground truth 3D coordinates, and
measuring their 2D pixel coordinates on the camera’s imaging plane.
Physical checkerboards are typically used for this purpose. They have
known patterns that can be presented to the camera and detected using
traditional computer vision techniques. Now with a sufficient set of 3D
inputs and 2D outputs, the intrinsic and extrinsic parameters can be
estimated via (nonlinear) optimization.

Multi-view PCA on the labels (our approach). We take a simpler approach,
which does not require camera calibration or, in the mirrored datasets
considered in this paper, explicit information about the location of
the mirrors. Our first insight is that the multi-view (2V-dimensional)
labeled keypoints could be used as keypoint correspondences to learn
the geometric relationship between the views. We approximate the pin-
hole camera as a linear projection (with zero distortion), and estimate
the parameters of this linear projection by fitting PCA on the labels
(details below), and keeping the first three PCs, because all we are
measuring from our different cameras is a single 3D object. Figure 2c
(bottom right) confirms that our PCA model can explain >99% of the
variance with the first three PCs in several multi-view experimental
setups, indicating that our linear approximation is suitable at least
for the mirror-mouse and mirror-fish datasets, in which the camera is
relatively far from the subject. We do anticipate cases where our linear
approximation will not be sufficiently accurate (for example, strongly
distorted lenses, or highly zoomed in); the more general epipolar
geometry approach35,62 could be applicable here. Note that our 3D PCA
coordinates do not exactly match the 3D width–height–depth physi-
cal coordinates of the keypoints in space; instead, these two sets of 3D
coordinates are related via an affine transformation.

Before training: fitting multi-view PCA on the labels. Our goal is to esti-
mate a projection from 2V dimensions (width–height pixel coordinates
for V views) to three dimensions, which we could use to relate the dif-
ferent views to each other. Given the indices of matching keypoints
across views, we form a tall and thin design matrix by vertically stacking
all the 2V-dimensional multi-view labeled keypoints. We denote this
matrix as YMV ∈ ℝNK×2V , according to equation (8):

YMV =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

y1
1(1)

T ⋯ y1
1(V)

T

y1
2(1)

T ⋯ y1
2(V)

T

⋮ ⋮ ⋮

yNK (1)
T ⋯ yNK (V)

T

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (8)

where ynk (v) ∈ ℝ2 represents the width–height coordinates on frame n
for keypoint k in camera v. To reiterate, each row contains the labeled

coordinates for a single body part seen from V views. The rows of this
matrix contain examples from all available labeled keypoints, which
are all used for learning the 3D projection. We exclude rows in which a
body part is missing from one or more views. The number of examples
used to estimate PCA is, as desired, always much larger than the label
dimension (NK > > 2V). We perform PCA on YMV and keep the first three
PCs, which we denote as P = (P1 P2 P3) ∈ ℝ2V×3 and the data mean
μμμ ∈ ℝ2V . The three PCs form three orthogonal axes in 2V dimensions,
and projecting the 2V-dimensional labels on them will provide width–
height–depth-like coordinates. These 3D coordinates are related to
the ‘real-world’ 3D coordinates (relative to some arbitrary ‘origin’ point)
by an affine transformation (they need to be rotated, stretched and
translated), but critically, we do not need these ‘real-world’ coordinates
to apply the multi-view constraints during network training, as
described below.

During training: penalizing the unlabeled data for PCA reconstruction
errors. Let ŷtk = (ŷtk(1)

T ⋯ ŷtk(V)
T) ∈ ℝ2V be the network’s prediction for

the k-th body part on the t-th unlabeled video frame, on all V views (as
before, this requires specifying the indices of corresponding keypoints
across views). The prediction’s multi-view PCA reconstruction is given
by projecting it down to three dimensions and then back up to 2V
dimensions, according to equation (9):

̄ytk = (ŷtk − μμμ)PP
⊤ + μμμ. (9)

When the prediction ŷtk is consistent across views, that is, on the 3D
hyperplane specified by P, we will get ̄ytk = ŷtk, a perfect reconstruction.
The loss is defined as the average pixel distance between each 2D pre-
dicted keypoint ŷtk(v) and its multi-view PCA reconstruction ̄ytk(v),
according to equation (10):

ℒk,t,vMV-PCA(ϵ) = max (0, ||||ŷtk(v) − ȳtk(v)||||2 − ϵ) . (10)

The loss encourages the predictions to stay within the fixed 3D hyper-
plane estimated by PCA, and thus be consistent across views. In train-
ing, we minimize its average across views, body parts, and frames,
according to equation (11):

ℒMV-PCA =
1

TKV ∑
t,k,v

ℒk,t,vMV-PCA(ϵ). (11)

We choose ϵ by computing the PCA reconstruction errors (in pixels) for
each of the labeled keypoints, and taking the maximum. This represents
the maximal multi-view inconsistency observed in the labeled data.

We note that the multi-view PCA loss does not require any modifi-
cations to network architectures. Each view is processed independently
by the network. As mentioned above, all that is required is specification
of which keypoints from which views correspond to the same body part.
The mirrored datasets considered in this paper are handled similarly:
the single frame containing all available views is processed by the
network, and different keypoints are linked to the same body part via
an entry in the model configuration file.

Pose PCA loss. There are certain things that bodies cannot do. We
might track 2K pose coordinates, but it does not mean that they can
all move independently and freely. Indeed, there is a long history of
using low-dimensional models to describe animal movement38,40,63.
Here, we extend the PCA approach to full pose vectors, and constrain
the 2K-dimensional poses to lie on a low-dimensional hyperplane of
plausible poses, which we estimate from the labels.

Before training: fitting Pose PCA on the labels. This approach is identical
to multi-view PCA, with the following exceptions. First, our observa-
tions are full pose vectors and not single keypoints seen from multiple

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

views. The design matrix of labels is, therefore, shorter and wider
YP-PCA ∈ ℝN×2K ; it has as many rows as labeled frames, and each row
contains the entire pose vector. Rows (poses) with missing body parts
are discarded from this matrix. The number of examples available for
PCA estimation is now simply the number of non-discarded labeled
frames, Ntrain, which is not allowed to be smaller than the number of
pose coordinates, that is, Ntrain ≥ 2K. A second exception is that instead
of keeping three PCs, we keep as many PCs needed to explain 99% of
the pose variance, denoted as R < < 2K. We collect the kept PCs as col-
umns of a (2K × R) matrix P = (P1 ⋯ PR). Each of the PCs represents an
axis of plausible whole-body movement, akin to previous
approaches40,64. Figure 2d shows that the number of kept PCs is usually
less than half of the observation dimensions. We now keep P and μμμ ∈ ℝ2K
to be used in training. For multi-view setups, it is possible to form an
even wider (N × 2KV) design matrix, appending all V views, to jointly
enforce the multi-view PCA loss. We have done so in the mirror-mouse
and mirror-fish datasets.

During training: penalizing for implausible poses. As in equation (9),
we project the full predicted poses down to the low-dimensional hyper-
plane, then back up to 2K dimensions, to form their Pose PCA recon-
structions. Then, for each 2D keypoint on each unlabeled video frame,
we define the loss as the pixel error between the raw prediction ŷtk and
its reconstruction ̄ytk, according to equation (12):

ℒk,tP - PCA(ϵ) = max (0, ||||ŷtk − ̄ytk||||2 − ϵ) . (12)

This loss tells us how many pixels are needed to move the predicted
keypoint onto the hyperplane of plausible poses. During training, we
minimize the average loss across keypoints and frames, according to
equation (13):

ℒP−PCA =
1
TK ∑

t,k
ℒk,tP - PCA(ϵ). (13)

Here too, ϵ is chosen by reconstructing the labeled pose vectors, com-
puting the pixel error between each 2D labeled keypoint and its PCA
reconstruction, and taking the maximum value.

Training
Batch sizes are determined based on image size and GPU memory
constraints (see Supplementary Table 3 for the batch sizes of the experi-
ments reported in this paper). In general, denote a labeled batch size of
B frames, a context window of 2J + 1 frames and a short unlabeled clip
of T frames (typically tens to hundreds) randomly drawn from a much
longer video. The batch sizes will be B for a supervised model, B + T for
a semi-supervised model, (2J + 1)B for a TCN model and (2J + 1)B + T for
a semi-supervised TCN model. In our TCN experiments, we use J = 2.
To efficiently use unlabeled clips for TCN models, we push the full
clip through the backbone once, then discard predictions from the
first and last J frames, which do not have sufficient context. To make
our experiments controlled and reproducible across GPU types, we
explicitly chose small, labeled batch sizes, such that each of our model
variants trains with an equal number of labeled frames per batch (the
semi-supervised and TCN models see many more unlabeled frames per
batch, which can become memory-prohibitive).

We use an Adam optimizer65 with an initial learning rate of 0.001,
halving it at epochs 150, 200 and 250. In the experiments reported
here, the ResNet-50 backbone was kept frozen for the first 20 epochs.
We trained our models for a minimum number of 300 training epochs
and a maximum number of 750 epochs. During training we split the
InD data into training (80%), validation (10%) and test (10%) sets. We
performed early stopping by checking the heat map loss on validation
data every five epochs and exiting training if it does not improve for
three consecutive checks.

During training, we apply standard image augmentations to labeled
frames including geometric transforms (for example, rotations and
crops), color space manipulations (for example, histogram equaliza-
tion) and kernel filters (for example, motion blur), following DeepLab-
Cut7. A different random combination of augmentations is used for each
frame in a batch. For the TCN architecture, the same augmentation com-
bination is used for a labeled frame and its associated context frames.
For the semi-supervised models, we apply augmentations to unlabeled
video frames using DALI. A single random combination of augmenta-
tions is used for all video frames in a batch. Because the PCA losses are
sensitive to geometric transforms, once the width–height coordinates
have been inferred using the soft argmax described above, we apply the
inverse geometric transform before computing unsupervised losses.

While our package includes well-tested default hyperparameters
for the unsupervised losses described in this paper, users implementing
a new ‘bespoke’ loss are advised to perform hyperparameter searches
for this loss’s weight, which of course multiplies the amount computed
by the number of tested weights. However, hyperparameter searches
can be run in parallel, and our Hydra scripts enable users to launch and
log these jobs without additional custom scripts.

Diagnostics and model selection
Constraint violations as diagnostic metrics. After training, we evalu-
ate the network on the labeled frames and on unlabeled videos. We then
compute our individual loss terms (defined in equations (6), (10) and
(12)) for each predicted keypoint, on each frame, and on each view for
a multi-view setup, and use them as diagnostic metrics. For labeled
frames, we compute the Euclidean pixel error. All metrics are measured
as pixel distances on the full-sized image.

Model selection based on pixel errors and constraint violations.
Our loss factory requires users to select among different applicable
losses, and for each loss, determine its weight (note that we offer robust
default values in our package). We start by fitting a baseline model to
the data (typically with three random seeds). Then, for each of the appli-
cable losses, we search over 4−8 possible weights (between values of 3.0
and 7.0). We then compare the diagnostic metrics specified above on a
held-out validation set (ignoring errors below a tolerance threshold).
We pick the weight that exhibits the minimal loss across the majority
of our diagnostics. Supplementary Table 4 displays the optimal weight
chosen for each loss in each dataset using non-TCN models. We used
the same weights for the TCN networks.

Sample efficiency experiments
The sample efficiency experiments in Fig. 1c demonstrate model per-
formance on InD and OOD data as a function of training frames. For a
given network trained with N frames, we actually need to select
N* = ceiling (1.25N) frames to account for additional validation frames
used for early stopping, as well as InD test frames (the train/val/test
split was 80%/10%/10%, respectively). To mimic a realistic labeling
scenario, we randomly selected a video from all the InD data. If the
number of frames in this first video (call this M1) was greater than or
equal to N∗, then we stopped here. If M1 < N∗, we continued to randomly
select a video and add all labeled frames from that video to the labeled
data pool. Once ∑k

i=1Mi >= N∗, we randomly selected 10% of the frames
in the pool for validation, 10% for testing and, of the remaining 80%,
we chose exactly N frames for training. Training was performed with
supervised Lightning Pose models as described above. After training,
we computed InD pixel error on the 10% of test frames, and OOD pixel
error on held-out videos that were never considered for the labeled
data pool. We repeated this procedure ten times for each value of N.

Ablation study showing the effects of individual losses
The goal of this analysis is to quantify the relative contribution of the
individual unsupervised losses in the mirror-mouse, mirror-fish and

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

CRIM13 datasets. We focus on the scarce label regime (75 train frames),
where the semi-supervised improvements are most pronounced.
We train semi-supervised models with temporal, multi-view PCA or
Pose PCA losses, and compare these to a supervised baseline and a
semi-supervised model that combines all loss types. For each condition,
we train three networks with different random seeds controlling the
data presentation order. To simplify this analysis, we analyze pixel error
averages. The results indicate that across datasets, most pixel error
savings were driven by the multi-view and Pose PCA losses (Extended
Data Fig. 3). A combination of all losses always performs the best.

DeepLabCut Training
For DeepLabCut experiments (version 2.2.3), we use their default
parameters: an ImageNet-pretrained backbone, training for 50,000
‘iterations’ (batches) independent of the labeled dataset size, using the
Adam optimizer65 with a learning rate schedule that starts from 1 × 10−4
and is reduced to 5 × 10−5 at iteration 7,500 then to 1 × 10−5 at iteration
12,000. We select the training frames to exactly match those used
for the Lightning Pose models in all analyses with the mirror-mouse,
mirror-fish and CRIM13 datasets. For the IBL datasets, we use the same
number of training frames but do not try to match them exactly. For
differences between the baseline and DeepLabCut models, see the
Supplementary Information.

Ensembling
To perform ensembling, we need a collection of models that output a
diverse set of predictions. This can be achieved through various means.
For the EKS analyses in Extended Data Fig. 6, we chose to study a single
split of the data, and achieved diversity by randomly initializing the
head of each model, as well as the order in which the data were sent to
the model during training. Despite these seemingly minor differences,
the ensemble of models produced a variety of outputs (Extended
Data Fig. 6b,d,f). For the other figures and videos related to ensem-
bling (Figs. 5 and 6, Extended Data Fig. 7, Supplementary Videos 8–14
and Supplementary Figs. 2–4), we achieved diversity by training each
model with a different subset of training data (in line with the analyses
performed in, for example, Fig. 4).

Post-processor comparison
For the post-processor comparisons in Fig. 5, we used the following
baselines:

Median filter. We used the medfilt function from the SciPy pack-
age66 using the default settings from the DeepLabCut package
(kernel_size = 5).

ARIMA. We used a seasonal autoregressive integrated moving-average
with exogenous regressors (SARIMAX) model using the default set-
tings from the DeepLabCut package (pcutoff = 0.001, alpha = 0.01,
ARdegree = 3, MAdegree = 1).

Ensemble mean/median. We computed the mean/median over the
ensemble members, independently for the x and y coordinates. We
did not apply confidence thresholding.

EKS
The EKS begins with the output of the ensemble of pose estimation
networks, an m × 2KV × T tensor, for m ensemble members (here, m ≈ 5),
K keypoints, V views and T video frames. EKS performs probabilistic
inference to denoise the ensemble predictions to obtain more accu-
rate and robust pose estimates. To be more specific, we compute the
mean and variance for each keypoint across the ensemble to obtain
the 2KV × T ensemble mean M and variance C matrices.

We first define the general state-space model, then discuss its
useful special cases in the following sections. We specify a latent state

variable qt, a linear Gaussian Markov dynamics model for this state
variable of the form, according to equation (14):

qt = Atqt−1 + et, et ∼ N(0, Et), (14)

and a linear Gaussian observation model describing the relationship
between the latent state variable qt and the observed data Ot, accord-
ing to equation (15):

Ot = Btqt + nt,nt ∼ N(μ,Qt), (15)

for some appropriate (potentially time-varying) system parameters
At, Bt, Et, Qt, μ.

Single-keypoint, single-camera case. This is the simplest case to
consider: imagine that we want to denoise each keypoint individually,
and we only have observations from a single camera. Here the latent
state qt is the true 2D position of the keypoint on the camera. Now our
model is, according to equations (16) and (17):

qt = qt−1 + et, et ∼ N(0, sI) (16)

Ot = qt + nt,nt ∼ N(0, (1/m)Dt). (17)

Comparing these equations to the general dynamics and observations
equations above, we see that At = Bt = I here.

In the observation equation, Ot is the 2 × 1 keypoint vector, and
Dt is a 2 × 2 diagonal matrix specifying the ensemble confidence about
each observation. We use the t-th column of the ensemble mean M
to fill in the observation Ot, and the covariance from the t-th frame
of the ensemble covariance C to fill in the observation variance Dt
(note that larger values of Dt correspond to lower confidence in the
corresponding observation Ot). The factor of 1/m in the observation
variance follows from the fact that Ot is defined as a sample mean over
m ensemble members.

Finally, s is an adjustable smoothing parameter: larger s leads
to less smoothing. This smoothness parameter could be selected by
maximum likelihood (for example, using the standard expectation–
maximization algorithm for the Kalman model) but can be set manually
for simplicity.

Now, given the specified dynamics and observation model, we can
run the standard Kalman forward–backward smoother to obtain the pos-
terior mean state Q given the observations O (that is, all the states qt given
all the observations Ot). The smoother will ‘upweight’ high-confidence
observations Ot (that is, small Dt), and ‘downweight’ low-confidence
observations (large Dt), for example, from occlusion frames.

Note that this Kalman approach is the Bayesian optimal estima-
tor under the assumption that the model in equations (16) and (17) is
accurate. In reality, this model holds only approximately: in general,
neither the observation noise nor the state dynamics are exactly Gauss-
ian. Therefore, the EKS should be interpreted as an approximation
to the optimal Bayesian estimator here. Generalizations (to handle
multimodal observation densities, or switching or stochastic volatility
dynamics models) are left for future work.

Single-keypoint, multi-camera, synchronized cameras case. Given
multiple cameras, we can estimate the true 3D position of each key-
point. So, letting the state vector qt be the 3D vector qt = (xt, yt, zt), we
have the model according to equations (18) and (19):

qt = qt−1 + et, et ∼ N(0, E) (18)

Ot = Bqt + nt,nt ∼ N(0, (1/m)Dt). (19)

B is 2V × 3 where V is the number of camera views; this maps the 3D state
vector qt onto the V camera coordinates (assuming linear observations

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

here; this can be generalized but was not necessary for the data analyzed
here). Ot is 2V × 1 and Dt is block diagonal with 2 × 2 blocks. As above,
observations Ot with high Dt (low confidence) will be downweighted by
the resulting EKS: in practice, this means that cameras with an unob-
structed view on a given frame (small Dt) can help to correct frames that
are occluded in other camera views (resulting in larger ensemble vari-
ance Dt). We remark that in poorly trained models, the opposite can also
(on rarer occasions) be true: the ensemble in one camera view can make
‘confident mistakes’ on some frames, in which all ensemble members
output the same wrong estimate (with corresponding small Dt, that
is, high ensemble confidence) and induce errors in the other camera
views after running the EKS. These errors can be detected as devia-
tions between the Kalman smoother output and the original ensemble
outputs; the training label set can then be augmented to correct these
confident mistakes, followed by network ensemble retraining.

We initialize our estimates by restricting to confident frames and
computing PCA to estimate B; then we take temporal differences of the
resulting PCA projections and compute their covariance to initialize E.

Finally, note that this simple Kalman model does not output the
true 3D location here, because the model is non-identifiable; instead,
we learn qt up to a fixed invertible affine transformation.

Pupil EKS. For the IBL-pupil dataset, we track K = 4 keypoints arranged
in a diamond shape around the perimeter of the pupil. Therefore, at
each frame we have 2K = 8 observations that are constrained to lie in a
3D subspace defined by the pupil center (denoted as (xt, yt)) and diam-
eter dt. Given the state variable qt = (dt, xt, yt), we can (linearly) predict
the location of each of the four diamond corners.

In addition, we have strong prior information about the dynamics
of the state variable: we know that the diameter dt is a smooth function
of time t, while the pupil center (xt, yt) can change more abruptly, due to
saccades and rapid face movements that move the eye as well.

Together, these assumptions lead to the model given by equations
(20) and (21):

qt = Aqt−1 + et, et ∼ N(0, E), (20)

Ot = Bqt + nt,nt ∼ N ((μd,0,0), (1/m)Dt) . (21)

In the observation equation above, μd denotes the mean diameter,
Ot is the 8 × 1 keypoint vector, B is a fixed 8 × 3 matrix that trans-
lates the state variable qt into the keypoints and Dt is a diagonal
matrix whose diagonal entries include the ensemble confidence
about each observation.

In the dynamics model above, A and E are both diagonal. This
means that we model the priors for dt, xt, and yt using independent
autoregressive (AR(1)) processes. (The posteriors for these variables
will not be independent, due to the non-separable structure of the
observation model in equation (21)). We want to choose the diagonal
values diag(A) and diag(E) so that these processes have the desired
variance and time constant. The variance in a stationary AR(1) model
with noise variance e and autoregressive parameter a is e/(1 − a2). We
can crudely estimate the marginal mean and variance of xt, yt, and dt
from the ensembled mean M, and match the AR(1) marginal mean and
variance accordingly. This leaves us with just two autoregressive param-
eters to choose: A(1, 1) and A(2, 2) (with A(3, 3) set equal to A(2, 2)). The
time constant corresponding to A(1, 1) should be meaningfully larger
than the time constant corresponding to A(2, 2), since as noted above
the diameter dt varies much more smoothly than the center (xt, yt).

Single-keypoint, multi-camera, asynchronous cameras case. In
some datasets (for example, the IBL-paw dataset), frames from differ-
ent cameras may be acquired asynchronously, perhaps with different
frame rates. The Kalman model can be easily adapted to handle this
case. Define the sampling times and camera ID for the i-th frame as:

{ti, vi}, where ti denotes the time the frame was acquired, and vi denotes
the camera that took the i-th frame. Again, the state vector qt is the true
3D location of the keypoint, qt = (xt, yt, zt). We have the model according
to equations (22) and (23):

qti = qti−1 + ei, ei ∼ N(0, E(ti − ti−1)) (22)

Oi = Bvi qti + ni,ni ∼ N(0, (1/m)Di), (23)

where now Bvi is 2 × 3; this tells us how the latent 3D coordinates are
mapped into the vi’th camera. Oi is a 2 × 1 vector, and Di is a 2 × 2 matrix.
Here the Kalman smoother is run only at frame acquisition times {ti},
but if desired we can perform predictions/interpolation at any desired
time t.

Pose PCA case. Let qt represent the ‘compressed pose,’ the R × 1 vector
obtained by projecting the true pose into the R-dimensional Pose PCA
subspace. Here we have the model according to equations (24) and (25):

qt = qt−1 + et, et ∼ N(0, E) (24)

Ot = Bqt + nt,nt ∼ N(0, (1/m)Dt). (25)

B is 2K × R; this maps the R-dimensional state vector qt onto the 2K cam-
era coordinates. Ot is 2K × 1 and Dt is block diagonal with 2 × 2 blocks.
As in the synchronous multi-camera setting, we initialize our estimates
by restricting to confident frames and computing PCA to estimate B;
then, we take temporal differences of the resulting PCA projections
and compute their covariance to initialize E.

The output of this smoother is useful for diagnostic purposes, but
we do not recommend using this model to generate the final tracking
output, because rare (but real) poses may lie outside the Pose PCA
subspace, while the output of this smoother is restricted to lie within
this subspace (the span of B) by construction.

CCA
In Supplementary Figs. 2 and 4, we use canonical correlation analysis
(CCA) to compute the directions of motion that should match in the left
and right cameras and top and bottom cameras, respectively. (These
canonical correlations directions are orthogonal to the epipolar lines
familiar from multiple-view geometry37.) In this subsection, we provide
details of this computation.

Let Ôt = B ̂qt be the output of the multi-camera EKS at time step t,
projected back onto the camera planes. We can further decompose Ôt
as Ôt = {Ô

v1
t , Ô

v2
t }, where Ô

v1
t is the 2D prediction for the first camera, and

Ô
v2
t is the 2D prediction for the second camera. Now, we compute

CCA(Ô
v1 , Ô

v2) to find the one-dimensional linear projection of the out-
puts for each camera that maximizes their correlation. Since Ôt is
generated from a lower-dimensional set of latents qt, the projection of
Ô
v1 and Ô

v2 onto the first canonical component will be perfectly cor-
related. We can then project the original model predictions for each
camera onto the first canonical component for each camera. Any
frames where the two camera views do not have the same projected
value will most likely be outliers. This can be seen in Supplementary
Figs. 2 and 4, where outlier frames due to paw switching and paw occlu-
sions cause the model predictions for the two camera views to have
different CCA projections.

Neural decoding
We performed neural decoding using cross-validated linear regres-
sion with L2 regularization67 (the Ridge module in scikit-learn68). The
decoding targets—pupil diameter or paw speed—are binned into nono-
verlapping 20-ms bins. For each successful trial, we select an alignment
event—reward delivery for pupil diameter and wheel movement onset
for paw speed—and decode the target starting 200 ms before and end-
ing at 1,000 ms after the alignment event. We bin spike counts similarly
using all recorded neurons in each session. The target value for a given

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

bin (ending at time t) is decoded from spikes in a preceding (causal)
window spanning R bins (ending at times t, …, t − R + 1). Therefore, if
decoding from N neurons, there are RN predictors of the target variable
in a given bin. In practice, we use R = 10.

To improve decoding performance, we smoothed the target
variables. For pupil diameter, both the DeepLabCut (DLC) and Light-
ning Pose (LP) predictions of pupil diameter were smoothed using a
Savitzky–Golay filter that linearly interpolates over low-confidence
time points (confidence < 0.9). The filter window is set to 31 frames
(500 ms) for the left video (we did not decode pupil diameter from the
lower-spatial-resolution right video). More details of this method can
be found elsewhere29. We did not apply additional smoothing to the
output of the EKS (LP + EKS) model. For paw speed, small errors in the
paw position will be magnified when taking the derivative. To compen-
sate for this, we lightly smoothed the paw position estimates using a
Savitzky–Golay filter after linearly interpolating over low-confidence
time points (confidence < 0.9), and then computed paw speed. The
right video filter window is set to 13 frames (87 ms) and the left window
is set to 7 frames (117 ms). This smoothing was applied to the outputs
of all three models (DLC, LP, LP + EKS).

All decoding results use nested cross-validation. Each of the five
cross-validation folds is based on a training/validation set comprising
80% of the trials and a test set of the remaining 20% of trials. Trials are
selected at random (in an ‘interleaved’ manner). The training/valida-
tion set of a fold is itself split into five sub-folds using an interleaved
80%/20% partition. A model is trained on the 80% training set using
various regularization coefficients ({10−5, 10−4, 10−3, 10−2, 10−1, 100, 101},
denoted as input parameter α by scikit-learn), and evaluated on the
held-out validation set. This procedure is repeated for all five sub-folds.
The coefficient that achieves the highest R2 value, averaged across all
five validation sets, is selected as the ‘best’ coefficient and used to
train a new model across all trials in the 80% training/validation set.
The model is then used to produce predictions for each trial in the 20%
test set. This train/validate/test procedure is repeated five times, each
time holding out a different 20% of test trials such that, after the five
repetitions, 100% of trials have a held-out decoding prediction. The
final reported decoding score is the R2 computed across all held-out
predictions. Code for performing this decoding analysis can be found
at https://github.com/int-brain-lab/paper-brain-wide-map/.

Lightning Pose software package
We built Lightning Pose with the following philosophy. To begin with,
computer vision is a vast field, of which animal pose estimation is
a small part. The thriving deep learning software ecosystem offers
well-engineered and well-tested solutions for every stage of the pose
estimation pipeline. We can, therefore, outsource code to these frame-
works to a large degree, leaving us with a smaller code base to maintain.

We start with Lightning Pose’s core components, which are
depicted in the innermost purple box in Extended Data Fig. 8a.

First, an algorithmic signature of Lightning Pose is training with
two data streams, labeled images and unlabeled videos (as depicted
in Fig. 2a), which have to be loaded and ‘augmented’ in tandem. This
requirement led us to develop a generic class of so-called ‘data modules’
supporting flexible semi-supervised training.

Most computer vision systems are built to ingest images, not vid-
eos; raw videos are rarely used during training. The standard approach
converts raw videos into formatted (‘augmented’) images using CPUs.
The CPU approach is inefficient and may cause the network to spend
most of its time idly waiting for data instead of predicting or train-
ing69 (‘data bottleneck’). Therefore, we built high-performance video
readers using NVIDIA’s data loading library (DALI; https://github.com/
NVIDIA/DALI/; leftmost box inside innermost purple box in Extended
Data Fig. 8a). DALI uses the native capabilities of GPUs) to both read
(‘decode’) and augment videos (resize, crop, scale) to greatly accelerate
video handling at training and prediction time.

Moreover, Lightning Pose decouples network architectures from
datasets and training losses (center and right boxes, respectively;
inside innermost purple box in Extended Data Fig. 8a). As part of our
own experiments, we realized that users need flexibility to compose
a set of supervised and unsupervised losses without making any code
changes. We, therefore, built a ‘loss factory’ that enables developers
to experiment with existing losses easily and quickly prototype new
losses. Losses can be applied at any level of representation in the net-
work, ranging from the time series of predicted keypoints, through
heat maps, to hidden network features. New losses require minimal
extra code, are automatically logged during training, and can contain
their own trainable parameters and even trainable sub-networks.

Having established how we handle data, design networks and
select losses, we still need a procedure for training networks. We offload
this task to PyTorch Lightning24 (middle box in Extended Data Fig. 8a),
which is an increasingly popular wrapper around the PyTorch deep
learning framework61. This enables us to use the latest strategies for
training models, logging the results and distributing computation
across multiple GPUs, without having to modify any of our core mod-
ules described above as new training techniques emerge.

In addition, we use Hydra70 to configure, launch and log network
training jobs (Extended Data Fig. 8a, outermost purple box). This elimi-
nates a substantial amount of ‘boilerplate’ code while increasing the
reproducibility of training, which often depends on choices of random
number generator, batch sizes, and so on.

Finally, we developed a suite of interactive training diagnostics and
model comparison tools, facilitating hyperparameter sensitivity analyses
(Extended Data Fig. 8a, right gray box). During training, we provide online
access to TensorBoard (https://www.tensorflow.org/tensorboard/) to
monitor the individual losses. After training, we use a Streamlit (https://
streamlit.io/) user interface to visualize per-keypoint diagnostics for
both labeled frames and unlabeled videos. We also use a FiftyOne user
interface (https://voxel51.com/) for viewing images and videos along
with multiple models’ predictions, enabling users to filter body parts and
models, and browse moments of interest in predicted videos.

A cloud-hosted application for pose estimation as a service
More and more laboratories have access to the accelerated comput-
ers needed for running deep learning pipelines. But unfortunately,
installing, executing and maintaining deep learning pipelines on them
remains a hurdle even for experienced software developers.

We built a browser application that uses cloud computers and
allows users with no coding expertise to estimate animal pose using
any computer with access to internet. Our app (Extended Data Fig. 8b)
supports the full life cycle of animal pose estimation, from data anno-
tation via LabelStudio (https://labelstud.io/) to model training to
video prediction and diagnostic visualization (via the open-source
ecosystem introduced above). When launched by a user, the app
starts a number of cloud machines equipped with the necessary hard-
ware and software, which will turn off when idle. Our app is built on
Lightning.ai’s (https://lightning.ai/) infrastructure for cloud-hosted
deep learning applications, removing technical obstacles related to
resource provisioning, secure remote access and software depend-
ency management.

To conclude, the cloud-centric approach we take serves to democ-
ratize analysis tools, improving scalability, code maintenance require-
ments and computation time and cost23. Our app enables developers
who have created new losses or network architectures within the Light-
ning Pose software package to easily make these advances available
to the broader audience through the cloud-based app. This ability
substantially accelerates the process of moving model development
from the prototyping to production stage.

For up-to-date installation instructions and a walk-through of the
app, we refer the reader to the app’s documentation website (https://
pose-app.readthedocs.io).

http://www.nature.com/naturemethods
https://github.com/int-brain-lab/paper-brain-wide-map
https://github.com/NVIDIA/DALI
https://github.com/NVIDIA/DALI
https://www.tensorflow.org/tensorboard
https://streamlit.io
https://streamlit.io
https://voxel51.com
https://labelstud.io
https://lightning.ai
https://pose-app.readthedocs.io
https://pose-app.readthedocs.io

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All labeled data used in this paper are publicly available.
mirror-mouse https://doi.org/10.6084/m9.figshare.24993315.v1
(ref. 71)
mirror-fish https://doi.org/10.6084/m9.figshare.24993363.v1 (ref. 72)
CRIM13 https://doi.org/10.6084/m9.figshare.24993384.v1 (ref. 73)
IBL-paw https://ibl-brain-wide-map-public.s3.amazonaws.com/aggre-
gates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.
trainingDataPaw.7e79e865-f2fc-4709-b203-77dbdac6461f.zip
IBL-pupil https://ibl-brain-wide-map-public.s3.amazonaws.com/aggre-
gates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.
trainingDataPupil.27dcdbb6-3646-4a50-886d-03190db68af3.zip
All of the model predictions on labeled frames and unlabeled videos
are available via Figshare at https://doi.org/10.6084/m9.figshare.
25412248.v2 (ref. 74). These results, along with the labeled data, can be
used to reproduce the main figures of the paper.
To access the IBL data analyzed in Fig. 6 and Extended Data Fig. 7, see the
documentation at https://int-brain-lab.github.io/ONE/FAQ.html#how-
do-i-download-the-datasets-cache-for-a-specific-ibl-paper-release and
use the tag 2023_Q1_Biderman_Whiteway_et_al. This will provide
access to spike-sorted neural activity, trial timing variables (stimulus
onset, feedback delivery and so on), the original IBL DeepLabCut traces
and the raw videos.

Code availability
The code for Lightning Pose is available at https://github.com/danbider/
lightning-pose/ under the MIT license. The repository also contains a
Google Colab tutorial notebook that trains a model, forms predictions
on videos and visualizes the results. From the command-line interface,
running pip install lightning-pose will install the latest release
of Lightning Pose via the Python Package Index (PyPI).
The code for the EKS is available at https://github.com/paninski-lab/
eks/ under the MIT license. The repository contains the core EKS code
as well as scripts demonstrating how to use the code on several example
datasets.
The code for the cloud-hosted application is available at https://github.
com/Lightning-Universe/Pose-app/ under the Apache-2.0 license.
This code enables launching our app locally or on cloud resources by
creating a Lightning.ai account.
Code for reproducing the figures in the main text is available at https://
github.com/themattinthehatt/lightning-pose-2024-nat-methods/
under the MIT license. This repository also includes a script for down-
loading all required data from the proper repositories.
The hardware and software used for IBL video collection is described
elsewhere41. The protocols used in the mirror-mouse and mirror-fish
datasets (both have the same video acquisition pipeline) are also
described elsewhere14.
We used the following packages in our data analysis: CUDA toolkit
(12.1.0), cuDNN (8.5.0.96), deeplabcut (2.3.5 for runtime benchmark-
ing, 2.2.3 for everything else), ffmpeg (3.4.11), fiftyone (0.23.4), h5py
(3.9.0), hydra-core (1.3.2), ibllib (2.32.3), imgaug (0.4.0), kaleido (0.2.1),
kornia (0.6.12), lightning (2.1.0), lightning-pose (1.0.0), matplotlib
(3.7.5), moviepy (1.0.3), numpy (1.24.4), nvidia-dali-cuda120 (1.28.0),
opencv-python (4.9.0.80), pandas (2.0.3), pillow (9.5.0), plotly (5.15.0),
scikit-learn (1.3.0), scipy (1.10.1), seaborn (0.12.2), streamlit (1.31.1),
tensorboard (2.13.0) and torchvision (0.15.2).

References
58. Chettih, S. N., Mackevicius, E. L., Hale, S. & Aronov, D. Barcoding

of episodic memories in the hippocampus of a food-caching bird.
Cell 187, 1922–1935 (2024).

59. IBLet al. Standardized and reproducible measurement of
decision-making in mice. Elife 10, e63711 (2021).

60. IBL et al. Reproducibility of in vivo electrophysiological
measurements in mice. Preprint at bioRxiv https://doi.org/
10.1101/2022.05.09.491042 (2022).

61. Paszke, A. et al. Pytorch: An imperative style, high-performance
deep learning library. in Advances in Neural Information
Processing Systems 32, 8024–8035 (2019).

62. Jafarian, Y., Yao, Y. & Park, H. S. MONET: multiview
semi-supervised keypoint via epipolar divergence. Preprint at
https://arxiv.org/abs/1806.00104 (2018).

63. Tresch, M. C. & Jarc, A. The case for and against muscle synergies.
Curr. Opin. Neurobiol. 19, 601–607 (2009).

64. Stephens, G. J., Johnson-Kerner, B., Bialek, W. & Ryu, W. S.
Dimensionality and dynamics in the behavior of C. elegans. PLoS
Comput. Biol. 4, e1000028 (2008).

65. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization.
Preprint at https://arxiv.org/abs/1412.6980 (2014).

66. Virtanen, P. et al. Scipy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272 (2020).

67. IBL et al. A brain-wide map of neural activity during complex
behaviour. Preprint at bioRxiv https://doi.org/10.1101/
2023.07.04.547681 (2023).

68. Pedregosa, F. et al. Scikit-learn: machine learning in Python.
J. Mach. Learn. Res. 12, 2825–2830 (2011).

69. Zolnouri, M., Li, X. & Nia, V. P. Importance of data loading pipeline
in training deep neural networks. Preprint at https://arxiv.org/
abs/2005.02130 (2020).

70. Yadan, O. Hydra - a framework for elegantly configuring complex
applications. Github https://github.com/facebookresearch/hydra
(2019).

71. Whiteway, M, Biderman, D., Warren, R., Zhang, Q. & Sawtell, N. B.
Lightning Pose dataset: mirror-mouse. Figshare https://doi.org/
10.6084/m9.figshare.24993315.v1 (2024).

72. Whiteway, M. et al. Lightning Pose dataset: mirror-fish. Figshare
https://doi.org/10.6084/m9.figshare.24993363.v1 (2024).

73. Whiteway, M. & Biderman, D. Lightning Pose dataset: CRIM13.
Figshare https://doi.org/10.6084/m9.figshare.24993384.v1
(2024).

74. Whiteway, M. & Biderman, D. Lightning Pose results:
Nature Methods 2024. Figshare https://doi.org/10.6084/
m9.figshare.25412248.v2 (2024).

Acknowledgements
We thank P. Dayan and N. Steinmetz for serving on our IBL-paper
board, as well as two anonymous reviewers whose detailed comments
considerably strengthened our paper. We are grateful to N. Biderman
for productive discussions and help with visualization. We thank
M. Carandini and J. Portes for helpful comments; T. Abe, K. Buchanan
and G. Pleiss for helpful discussions on ensembling; and H. Xiang
for conversations on active learning and outlier detection. We thank
W. Falcon, L. Antiga, T. Chaton and A. Wälchi (Lightning AI) for their
technical support and advice on implementing our package and the
cloud application. This work was supported by the following grants:
Gatsby Charitable Foundation GAT3708 (to D.B., M.R.W., C.H., N.R.G.,
A.V., J.P.C. and L.P.), German National Academy of Sciences Leopoldina
(to A.E.U.), Irma T Hirschl Trust (to N.B.S.), Netherlands Organisation
for Scientific Research (VI.Veni.212.184; to A.E.U.), NSF IOS-2115007
(to N.B.S.), National Institutes of Health (NIH) K99NS128075 (to J.P.N.),
NIH NS075023 (to N.B.S.), NIH NS118448 (to N.B.S.), NIH DK131086-02
(to N.B.S.), NIH U19NS123716 (to M.R.W.) and NSF 1707398 (to D.B., M.R.W.,
C.H., N.R.G., A.V., J.P.C. and L.P.), funds provided by the National Science
Foundation and by DoD OUSD (R&E) under Cooperative Agreement
PHY-2229929, The NSF AI Institute for Artificial and Natural Intelligence
(to D.B., M.R.W., C.H., A.V., J.P.C. and L.P.), Simons Foundation (to M.R.W.,

http://www.nature.com/naturemethods
https://doi.org/10.6084/m9.figshare.24993315.v1
https://doi.org/10.6084/m9.figshare.24993363.v1
https://doi.org/10.6084/m9.figshare.24993384.v1
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPaw.7e79e865-f2fc-4709-b203-77dbdac6461f.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPaw.7e79e865-f2fc-4709-b203-77dbdac6461f.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPaw.7e79e865-f2fc-4709-b203-77dbdac6461f.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPupil.27dcdbb6-3646-4a50-886d-03190db68af3.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPupil.27dcdbb6-3646-4a50-886d-03190db68af3.zip
https://ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPupil.27dcdbb6-3646-4a50-886d-03190db68af3.zip
https://doi.org/10.6084/m9.figshare.25412248.v2
https://doi.org/10.6084/m9.figshare.25412248.v2
https://int-brain-lab.github.io/ONE/FAQ.html#how-do-i-download-the-datasets-cache-for-a-specific-ibl-paper-release
https://int-brain-lab.github.io/ONE/FAQ.html#how-do-i-download-the-datasets-cache-for-a-specific-ibl-paper-release
https://github.com/danbider/lightning-pose/
https://github.com/danbider/lightning-pose/
https://github.com/paninski-lab/eks
https://github.com/paninski-lab/eks
https://github.com/Lightning-Universe/Pose-app/
https://github.com/Lightning-Universe/Pose-app/
https://github.com/themattinthehatt/lightning-pose-2024-nat-methods/
https://github.com/themattinthehatt/lightning-pose-2024-nat-methods/
https://doi.org/10.1101/2022.05.09.491042
https://doi.org/10.1101/2022.05.09.491042
https://arxiv.org/abs/1806.00104
https://arxiv.org/abs/1412.6980
https://doi.org/10.1101/2023.07.04.547681
https://doi.org/10.1101/2023.07.04.547681
https://arxiv.org/abs/2005.02130
https://arxiv.org/abs/2005.02130
https://github.com/facebookresearch/hydra
https://doi.org/10.6084/m9.figshare.24993315.v1
https://doi.org/10.6084/m9.figshare.24993315.v1
https://doi.org/10.6084/m9.figshare.24993363.v1
https://doi.org/10.6084/m9.figshare.24993384.v1
https://doi.org/10.6084/m9.figshare.25412248.v2
https://doi.org/10.6084/m9.figshare.25412248.v2

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

M.M.S., J.M.H., A.K., G.T.M., J.P.N., A.P.V. and K.Z.S.) and the Wellcome
Trust 216324 (M.M.S., J.M.H., A.K., G.T.M., J.P.N., A.P.V. and K.Z.S.). The
funders had no role in study design, data collection and analysis,
decision to publish or preparation of the manuscript.

Author contributions
Conceptualization: D.B., M.R.W. and L.P.; software package—core
development: D.B., M.R.W. and N.R.G.; software package—
contribution: C.H. and A.V.; cloud application—development: M.R.W.,
D.B., R.L. and A.V.; first draft—writing: D.B., M.R.W. and L.P.; first draft—
editing: D.B., M.R.W., C.H. and L.P.; data collection: D.B., M.S., J.M.H.,
A.K., G.T.M., J.P.N., A.P.V., K.Z.S., A.E.U., R.W., D.N. and F.P.; Funding—
J.P.C., N.S. and L.P.; semi-supervised learning algorithms: D.B., M.R.W.,
N.R.G. and L.P.; deep ensembling: D.B., M.R.W., C.H. and L.P.; EKS:
C.H. and L.P.; TCN: C.H., D.B., M.R.W. and L.P.; diagnostic tools and
visualization: D.B., M.R.W. and A.V.; neural network experiments and
analysis: D.B. and M.R.W.

Competing interests
R.S.L. assisted in the initial development of the cloud application as
a solution architect at Lightning AI in Spring/Summer 2022. R.S.L.

left the company in August 2022 and continues to hold shares. The
remaining authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41592-024-02319-1.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41592-024-02319-1.

Correspondence and requests for materials should be addressed to
Dan Biderman or Matthew R. Whiteway.

Peer review information Nature Methods thanks the anonymous
reviewers for their contribution to the peer review of this work. Primary
Handling Editor: Nina Vogt, in collaboration with the Nature Methods
team. Peer reviewer reports are available.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02319-1
https://doi.org/10.1038/s41592-024-02319-1
http://www.nature.com/reprints

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

Extended Data Fig. 1 | Unsupervised losses complement model confidence
for outlier detection on mirror-fish dataset. Example traces, unsupervised
metrics, and predictions from a DeepLabCut model (trained on 354 frames)
on held-out videos. Conventions for panels A-D as in Fig. 3. A: Example frame
sequence. B: Example traces from the same video. C: Total number of keypoints
flagged as outliers by each metric, and their overlap. D: Area under the receiver
operating characteristic curve for several body parts. We define a ‘true outlier’
to be frames where the horizontal displacement between top and bottom

predictions or the vertical displacement between top and right predictions
exceeds 20 pixels. AUROC values are only shown for the three body parts that
have corresponding keypoints across all three views included in the Pose PCA
computation (many keypoints are excluded from the Pose PCA subspace due to
many missing hand labels). AUROC values are computed across frames from 10
test videos; boxplot variability is over n=5 random subsets of training data. The
same subset of keypoints is used for panel C. Boxes in panel D use 25th/50th/75th
percentiles for min/center/max; whiskers extend to 1.5 * IQR.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

Extended Data Fig. 2 | Unsupervised losses complement model confidence
for outlier detection on CRIM13 dataset. Example traces, unsupervised
metrics, and predictions from a DeepLabCut model (trained on 800 frames)
on held-out videos. Conventions for panels A-C as in Fig. 3. A: Example frame
sequence. B: Example traces from the same video. Because the size of CRIM13
frames are larger than those of the mirror-mouse and mirror-fish datasets, we use

a threshold of 50 pixels instead of 20 to define outliers through the unsupervised
losses. C: Total number of keypoints flagged as outliers by each metric, and their
overlap. Outliers are collected from predictions across frames from 18 test videos
and across predictions from five different networks trained on random subsets
of labeled data.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

Extended Data Fig. 3 | PCA-derived losses drive most improvements in semi-
supervised models. For each model type we train three networks with different
random seeds controlling the data presentation order. The models train on 75
labeled frames and unlabeled videos. We plot the mean pixel error and 95% CI

across keypoints and OOD frames, as a function of ensemble standard deviation,
as in Fig. 4. At the 100% vertical line, n=17150 keypoints for mirror-mouse,
n=18180 for mirror-fish, and n=89180 for CRIM13.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

Extended Data Fig. 4 | Unlabeled frames improve pose estimation in mirror-
fish dataset. Conventions as in Fig. 4. A. Example traces from the baseline model
and the semi-supervised TCN model (trained with 75 labeled frames) for a single
keypoint on a held-out video (Supplementary Video 6). B. A sequence of frames

corresponding to the grey shaded region in panel (A). C. Pixel error as a function
of ensemble standard devation for scarce (top) and abundant (bottom) labeling
regimes. D. Individual unsupervised loss terms plotted as a function of ensemble
standard deviation for the scarce (top) and abundant (bottom) label regimes.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

Extended Data Fig. 5 | Unlabeled frames improve pose estimation in CRIM13
dataset. Conventions as in Fig. 4. A. Example traces from the baseline model and
the semi-supervised TCN model (trained with 800 labeled frames) for a single
keypoint on a held-out video (Supplementary Video 7). B. A sequence of frames

corresponding to the grey shaded region in panel (A). C. Pixel error as a function
of ensemble standard deviation for scarce (top) and abundant (bottom) labeling
regimes. D. Individual unsupervised loss terms plotted as a function of ensemble
standard deviation for the scarce (top) and abundant (bottom) labeling regimes.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

Extended Data Fig. 6 | The Ensemble Kalman Smoother improves pose
estimation across datasets. We trained an ensemble of five semi-supervised
TCN models on the same training data. The networks differed in the order of
data presentation and in the random weight initializations for their ‘head’. This
figure complements Fig. 5 which uses an ensemble of DeepLabCut models as
input to EKS. A. Mean OOD pixel error over frames and keypoints as a function of

ensemble standard deviation (as in Fig. 4). B. Time series of predictions (x and y
coordinates on top and bottom, respectively) from the five individual semi-
supervised TCN models (75 labeled training frames; blue lines) and EKS-temporal
(brown lines). Ground truth labels are shown as green dots. C,D. Identical to A,B
but for the mirror-fish dataset. E,F. Identical to A,B but for the CRIM13 dataset.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

Extended Data Fig. 7 | Lightning Pose models and ensemble smoothing
improve pose estimation on IBL paw data. A. Sample frames from each camera
view overlaid with a subset of paw markers estimated from DeepLabCut (left),
Lightning Pose using a semi-supervised TCN model (center), and a 5-member
ensemble using semi-supervised TCN models (right). B. Example left view
frames from a subset of 44 IBL sessions. C. The empirical distribution of the
right paw position from each view projected onto the 1D subspace of maximal
correlation in a canonical correlation analysis (CCA). Column arrangement as in
A. D. Correlation in the CCA subspace is computed across n=44 sessions for each
model and paw. The LP+EKS model has a correlation of 1.0 by construction.

E. Median right paw speed plotted across correct trials aligned to first movement
onset of the wheel; error bars show 95% confidence interval across n=273 trials.
The same trial consistency metric from Fig. 6 is computed. F. Trial consistency
computed across n=44 sessions. G. Example traces of Kalman smoothed right
paw speed (blue) and predictions from neural activity (orange) for several
trials using cross-validated, regularized linear regression. H. Neural decoding
performance across n=44 sessions. Panels D, F, and H use a one-sided Wilcoxon
signed-rank test; boxes use 25th/50th/75th percentiles for min/center/max;
whiskers extend to 1.5 * IQR. See Supplementary Table 2 for further quantification
of boxes.

http://www.nature.com/naturemethods

Nature Methods

Article https://doi.org/10.1038/s41592-024-02319-1

Extended Data Fig. 8 | Lightning Pose enables easy model development, fast
training, and is accessible via a cloud application. A. Our software package
outsources many tasks to existing tools within the deep learning ecosystem,
resulting in a lighter, modular package that is easy to maintain and extend.
The innermost purple box indicates the core components: accelerated video
reading (via NVIDIA DALI), modular network design, and our general-purpose
loss factory. The middle purple box denotes the training and logging operations
which we outsource to PyTorch Lightning, and the outermost purple box denotes
our use of the Hydra job manager. The right box depicts a rich set of interactive

diagnostic metrics which are served via Streamlit and FiftyOne GUIs. B. A diagram
of our cloud application. The application’s critical components are dataset
curation, parallel model training, interactive performance diagnostics, and
parallel prediction of new videos. C. Screenshots from our cloud application.
From left to right: LabelStudio GUI for frame labeling, TensorFlow monitoring
of training performance overlaying two different networks, FiftyOne GUI
for comparing these two networks’ predictions on a video, and a Streamlit
application that shows these two networks’ time series of predictions,
confidences, and spatiotemporal constraint violations.

http://www.nature.com/naturemethods

	Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling and cloud-native open-sou ...
	Results

	Supervised pose estimation and its limitations

	Supervised networks need more labeled data to generalize

	Semi-supervised learning via spatiotemporal constraints

	Temporal difference loss

	Multi-view PCA loss

	Pose PCA loss

	TCN

	Spatiotemporal losses enhance outlier detection

	Both unsupervised losses and TCN boost tracking performance

	The EKS enhances accuracy post hoc

	Improved tracking on IBL datasets

	The Lightning Pose software package and a cloud application

	Discussion

	Online content

	Fig. 1 Fully supervised pose estimation often outputs unstable predictions and requires many labels to generalize to new animals.
	Fig. 2 Lightning Pose exploits unlabeled data in pose estimation model training.
	Fig. 3 Unsupervised losses complement model confidence for outlier detection.
	Fig. 4 Unlabeled frames improve pose estimation (raw network predictions).
	Fig. 5 The EKS post-processor.
	Fig. 6 Lightning Pose models and EKS improve pose estimation on IBL-pupil data.
	Extended Data Fig. 1 Unsupervised losses complement model confidence for outlier detection on mirror-fish dataset.
	Extended Data Fig. 2 Unsupervised losses complement model confidence for outlier detection on CRIM13 dataset.
	Extended Data Fig. 3 PCA-derived losses drive most improvements in semi-supervised models.
	Extended Data Fig. 4 Unlabeled frames improve pose estimation in mirror-fish dataset.
	Extended Data Fig. 5 Unlabeled frames improve pose estimation in CRIM13 dataset.
	Extended Data Fig. 6 The Ensemble Kalman Smoother improves pose estimation across datasets.
	Extended Data Fig. 7 Lightning Pose models and ensemble smoothing improve pose estimation on IBL paw data.
	Extended Data Fig. 8 Lightning Pose enables easy model development, fast training, and is accessible via a cloud application.

