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Figure 1: Given a hand drawing video, we first use a hand detection algorithm to extract the
tracking image (Hand Tracking). We then take this noisy tracking image and generate a clean sketch
(Generated), which faithfully and aesthetically resembles the intended sketch (Ground-truth).

Abstract

Illustration is a fundamental mode of human expression and communication. Cer-
tain types of motion that accompany speech can provide this illustrative mode of
communication. While Augmented and Virtual Reality technologies (AR/VR) have
introduced tools for producing drawings with hand motions (air drawing), they typ-
ically require costly hardware and additional digital markers, thereby limiting their
accessibility and portability. Furthermore, air drawing demands considerable skill
to achieve aesthetic results. To address these challenges, we introduce the concept
of AirSketch, aimed at generating faithful and visually coherent sketches directly
from hand motions, eliminating the need for complicated headsets or markers. We
devise a simple augmentation-based self-supervised training procedure, enabling
a controllable image diffusion model to learn to translate from highly noisy hand
tracking images to clean, aesthetically pleasing sketches, while preserving the
essential visual cues from the original tracking data. We present two air drawing
datasets to study this problem. Our findings demonstrate that beyond producing
photo-realistic images from precise spatial inputs, controllable image diffusion can
effectively produce a refined, clear sketch from a noisy input. Our work serves
as an initial step towards marker-less air drawing and reveals distinct applications
of controllable diffusion models to AirSketch and AR/VR in general. Code and
dataset are available under: https://github.com/hxgr4ce/DoodleFusion.
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1 Introduction

Hand gestures are an essential element in communication[43]. In particular, iconic hand motions (i.e.
air drawing) can depict visual aspects of an object. This form of expression is frequently used to
visually supplement verbal communication and is used in various practical applications, including
conceptual discussions, overcoming language barriers, and aiding in visual design.

Popular AR/VR tools like Google’s Tiltbrush [20] and HoloARt [5] create visuals via hand motions,
but are inconvenient. These applications generally require head-mounted displays and digital hand
markers, which are costly and hinder portability. Furthermore, their weight and temperature make
them unsuitable for continuous use [60, 72, 13], and so are inconvenient for spontaneous usage. Yet,
these devices provide accurate positioning, stabilization, and varied brush controls and are crucial to
producing high-quality drawings.

Can we generate sketches from hand motions without additional sensors or markers? In order
to enhance accessibility and convenience, we aim to generate sketches from hand motions videos
captured using any standard camera embedded in devices like smartphones or smart glasses.

One could clearly deploy hand tracking algorithms [9, 74] to turn these hand motion videos into
sketches. However, creating air drawings with a hand tracking algorithm alone presents several
challenges. These include the user’s drawing ability, physical fatigue, and inaccuracies in hand
tracking. Noise in hand tracking can severely distort a sketch, rendering it almost unrecognizable.

The objective, therefore, is to generate clean sketches that faithfully represent the user’s intent,
from highly noisy and distorted hand motion input. This task requires the model to possess a deep
understanding of shape and object priors, enabling it to discern and correct deformed motion cues
while filtering out undesirable noise. We refer to this task as Generative Motion to Sketch.

There are many approaches to this task, with different architecture and data modalities. The input
modality might include learned video representations, coordinate sequences from a hand tracking
algorithm, or a rasterized image. Depending on the modality, the task may also be reformulated as
video-to-sketch, sequence-to-sequence, image-to-image, or a combination thereof. This diversity
introduces interesting opportunities for rich exploration of all these diverse approaches.

We explore the use of controllable image Diffusion Models (DM) in generating sketches from motion.
Existing work such as ControlNet [76] and T2IAdapter [44] generate photo-realistic images given
spatially-precise conditioning images. We explore a different use case by using controllable DMs
to “reconstruct” clean sketches from severely distorted and noisy input images obtained with a hand
tracking algorithm. We propose a simple, augmentation-based, self-supervised training procedure
and construct two air drawings datasets for evaluation purposes.

Our experiments show that with our augmentation-based training, controllable image DMs are able to
recognize and interpret correct visual cues from noisy tracking images, some of which even appear to
be nearly unrecognizable to the human eye, and generate sketches faithfully and aesthetically, while
being robust to unseen objects. Moreover, we show that through simple augmentations, the model
is capable of sketch-completion and text-instructed stroke styling. Finally, we conduct ablations to
investigate 1) the effects of different augmentations, 2) the contribution of text prompts to sketch
generation and 3) the effect of different levels of input ‘chaos’ on the quality of resulting generations.

In summary, in this paper:

1. We conduct a pilot study of AirSketch, sketch generation from marker-less air drawing, and
provide two air drawing datasets for evaluation.

2. We propose a controllable DM approach that generates faithful and aesthetic sketches from
air-drawn tracking images with a self-supervised, augmentation-based training procedure,
and conduct ablation studies to prove its effectiveness and robustness.

3. We explore a different way of using spatially-conditioned DMs and reveal some of their
interesting properties in the context of sketch generation. We hope our experiments shed
new light on understanding the properties of controllable DMs and facilitate future research.
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2 Related Works

2.1 Sketching in AR/VR

There are many methods for drawing in AR and VR. Applications such as Google’s Tilt Brush
[20], Mozilla’s A-Painter [45], Oculus’ Quill [48], and HoloARt [5] display user strokes as lines or
tubes that can extend in all three dimensions. Many sketching applications such as these require a
combination of VR/AR headsets and controllers to use. Since drawing freehand with six degrees of
freedom makes it difficult to draw steady lines and surfaces, applications like AdaptiBrush [59] and
Drawing on Air [28] use trajectory-based motion of ribbons to render strokes predictably and reliably.
Just-a-Line [21] and ARCore Drawing [26] are smartphone-based AR drawing applications, where
users draw lines by moving a smartphone in the air [21], or drawing on a smartphone screen [26].

2.2 Sketch Applications

Representing Sketches. A sketch can be represented in both vector and pixel space, and with
varying levels of abstraction. A sketch can be represented as a rasterized image [40, 75, 50, 37, 32], a
sequence of coordinates [23, 56, 38], a set of Bezier curves [67, 18], or a combination [8]. These
representation methods are suited for different tasks. For example, the rasterized image representation
is commonly used in Sketch-Based Image Retrieval (SBIR) in order to compare sketches with
images, while the coordinate sequence representation is often used for sketch generation. On the
other hand, a sketch can also depict the same object at varying abstraction levels, thereby imposing
further challenges on downstream tasks, especially sketch-based retrieval in 2D [37, 32, 62] and
3D [69, 41, 14, 31].

Sketch Generation. Most existing sketch generation methods adopt the vector representation [23,
56, 38], and view sketch generation as an auto-regressive problem on coordinate sequences. These
sequences are typically represented by lists of tuple (δx, δy,p), where δx and δy represent the offset
distances of x and y from the previous point, and p is a one-hot vector indicating the state of the pen.
Sketch-RNN [23] uses a Variational Autoencoder (VAE) with a bi-directional RNN as the encoder and
an auto-regressive RNN as the decoder. Sketch-Bert [38] follows the BERT [15] model design and
training regime. Instead of auto-regressive sketch generation, SketchGAN [39] takes in a rasterized
sketch image and uses a cascade GAN to iteratively complete the sketch. Sketch-Pix2Seq [12] adds
a vision encoder on top of Sketch-RNN and thus allow the model to take in an image input and
reconstruct the sketch using coordinate sequences.

Nonetheless, these methods generate sketches in the input sketch modality by taking in a sketch and
reconstructing the exact same sketch, or by predicting endings given incomplete sketches. In contrast,
our work considers the task for generating sketches from hand motions. Specifically, we adopt the
image representation for sketch generation as opposed to using coordinate sequences. This offers
several advantages: it 1) maintains constant computation complexity with regards to sketch length, 2)
is drawing-order invariant, which is especially favorable in our case as we consider extremely noisy
sketches as input, and 3) allows us to utilize large pretrained image generative models.

2.3 Image Diffusion Models

Diffusion Probabilistic Model. First introduced by Sohl-Dickstein et al. [64], diffusion proba-
bilistic models have been widely applied in image generation [24, 65, 29]. To reduce computational
cost, Latent Diffusion Models [57] project input images to lower dimension latent space, where
diffusion steps are performed. Text-to-image diffusion models [47, 55, 54, 61, 51] achieve text
control over image generation by fusing text embeddings obtained by pre-trained language models
such as CLIP [52] and T5 [53] into diffusion UNet [58] via cross attention.

Controllable Image Generation. Beyond text, various recent works have focused on allowing more
fine-grained controls over the diffusion process. This can be done via prompt engineering [73, 36, 78],
manipulating cross-attention [6, 10, 27, 71], or training additional conditioning adapters [44, 76].
ControlNet [76] learns a trainable copy of the frozen UNet encoder and connects it to the original
UNet via zero convolution. T2IAdapter [44] trains a lightweight adapter to predict residuals that are
added to the UNet encoder at multiple scales.
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Figure 2: Examples of air drawing videos. Left: synthetic hand drawing; Right: real hand drawing.

In particular, both ControlNet and T2IAdapter take spatially-precise conditional images such as
canny edge, depth, and skeleton images extracted from the original image. Koley et al. [33] considers
human sketches as a condition and observes that human sketches have shapes that are deformed
compared to canny edge or depth images, resulting in generations that lack photo-realism. Therefore,
they avoid using the spatial-conditioning approach by training a sketch adapter to transform the
sketch into language tokens that replace the text embeddings as the input to the cross attention.

In our work, we show that the spatial-conditioning does not have to be a “hard” constraint, at least not
in the domain of sketch generation. Through proper augmentations, we discover that we can indeed
teach ControlNet to map from a noisy input condition to a clean output.

2.4 Hand tracking and gesture recognition

Hand tracking and gesture recognition are used for several purposes, including communication and
interaction in an AR environment [42] [34] and VR [1], for image-based pose estimation in sign
language recognition [7] [3] [4], and many others [35] [11]. Many of these require depth-sensing
hardware, such as work done by Oikonomidis et. al. using a Kinect sensor [49], or use deep learning
for pose estimation [68] [19], making it difficult to integrate them into lightweight systems.

Hand pose estimation such as MediaPipe Hands [74] and OpenPose [9] take in RGB images or
video and return the coordinates of 21 landmarks for each hand detected, and MediaPipe Hands is
lightweight enough to integrate into even mobile devices.

3 Air-Drawing Dataset

In order to thoroughly evaluate our model, we need datasets with sketch-video pairs. Popular sketch
datasets include Sketchy [63], TUBerlin [17], and Quick, Draw! [22]. There are also hand motion
datasets that associate hand motions with semantic meaning, such as Sign Language MNIST [66],
How2Sign [16], and the American Sign Language Lexicon Video Dataset [46]. However, there are
no datasets that associate sketches with air drawing hand motions, prompting us to create our own
sketch-video pair datasets for evaluation purposes.

Synthetic Air-Drawing Dataset. We use samples from the Quick, Draw! dataset [22] as the
intended ground-truth sketch; each stroke is represented as a sequence of timestamps and coordinates.
A 3D human arm asset is animated in the Unity engine [30] using inverse kinematics and rotation
constraints, see Figure 2 (left). While following stroke coordinates, the index finger is extended,
and when the stroke ends, the hand is in a closed fist. The videos have an aspect ratio of 1920 by
1080 pixels and were recorded at 60 frames per second. We choose 50 common object categories
from Quick, Draw! dataset, each with 100 sketches to form our synthetic dataset with a total of
5000 sketch-video pairs. This synthetic Air-Drawing dataset simulates the scenario where users have
perfect drawing ability, and the errors are solely introduced by the tracking algorithm.

Real Air-Drawing Dataset. A human user attempts to replicate sketches from the Quick, Draw!
dataset by moving their index finger through the air. The videos were recorded with aspect ratio
of 1280 by 720 pixels and at 30 frames per second. We take 10 samples per category used in the
synthetic dataset, resulting in 500 video-sketch pairs.
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Text Prompt: A black and white sketch of a fish

Figure 3: The overall pipeline for training and inference. During training, we randomly apply augmentations to
the original ground-truth sketch to form a distorted view. The distorted view is passed to ControlNet, which is
asked to generate the original, undistorted sketch. During inference, a hand-tracking algorithm is used on a hand
motion video to create the input.

4 Methods

Our method trains a controllable DM to recover the clean sketch from a noisy one, which we discuss
in Sections 4.1 and 4.2. As input at training time, we simulate noisy sketches produced from the
direct application of a hand tracking algorithm, discussed in Section 4.3. Finally, we evaluate our
model using two different datasets: a dataset of 3D animated hand motion videos, and a small dataset
of real hand motion videos. The creation of these two datasets is discussed in Section 3.

4.1 Preliminary: Controllable DMs

Diffusion models involve a forward and inverse diffusion process. Given an input image x0, the
forward process gradually adds noise to x0 to form a noisy input xt at time step t as:

xt =
√
ᾱtx0 + (

√
1− ᾱt)ϵ, ϵ ∼ N (0, I) (1)

where ᾱt :=
∏t

i=1 αi, and αt = 1− βt is determined by a pre-defined noise scheduler [24].

The reverse process trains a denoising UNet ϵθ(·) to predict the noise ϵ added to input z0. In the
context of controllable generation, as in ControlNet [76] and T2IAdapter [44], with a set of conditions
including a text prompt ct and an additional condition cf, the overall loss can be defined as:

L = Ex0,t,ct,cf,ϵ∼N (0,1)

[
∥ϵ− ϵθ(xt, t, ct, cf)∥22

]
, (2)

4.2 Training Controllable DMs for Sketch Recovery

We adopt ControlNet [76] as our primary controlling approach. Our training procedure is illustrated
in Figure 3. Due to the lack of sketch-video pair datasets, we devise a self-supervised, augmentation-
based training procedure. During training, for each sketch image, we randomly sample combinations
of augmentations A(·) and apply to x0 to get the distorted view A(x0). It is then used as the input to
ControlNet’s conditioning adapter. Hence, the loss function 2 can be re-written as:

L = Ex0,t,ct,cf,ϵ∼N (0,1)

[
∥ϵ− ϵθ(xt, t, ct,A(x0))∥22

]
. (3)

Therefore, unlike regular controllable DMs where the conditioning adapter takes in edge-like maps
and predicts spatial-conditioning signals to be injected to the UNet, our adapter learns both the
spatial-conditioning signals and a mapping from the distorted to the clean input: A(x0) � x0.

4.3 Sketch Augmentations

We categorize the prevalent errors from air drawings into three types: 1) user-induced artifacts
such as hand jitters and stroke distortions, 2) hand tracking errors such as inaccurate hand landmark
predictions, unintended strokes, and 3) aesthetic shortcomings related to the user’s drawing proficiency.
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In order to closely replicate these artifacts, we carefully examine typical noise found in real tracking
samples and divide them into 3 categories: local, structural, and false strokes. For each category,
we observe several types of artifacts, and apply augmentations to introduce each artifact to an input
sketch. Visual examples for these augmentations are shown in Figure 4.

Stroke Distortion Spikes Jitters Distort&Relocate Misplacement Stroke Resize Transitional RandomOriginal

Local Augmentation Structural Augmentation False Strokes

Figure 4: Visual examples of different augmentations.

Local artifacts include jitters, stroke-wise distortion, and random spikes. Jitters are common and
become especially obvious when drawing speed is low. Stroke-wise distortion happens when users fail
to properly draw the desired shape primitive (e.g. drawing a rectangle but ending up with unwanted
curvy edges), potentially due to lack of friction and visual landmarks. Random spikes can arise from
an accidental jerk of a user’s hand or an incorrect detection from the tracking algorithm.

Structural artifacts include sketch-level distortion, incorrect stroke size, and misplacement. Sketch-
level distortion refers to an overall distorted aspect ratio; incorrect stroke size and misplacement
occur when the user unintentionally draws a stroke too small/large, and/or at the wrong position.

False strokes refer to unintentionally drawn strokes which commonly occur in three situations:
entering or exiting the canvas, transitioning between strokes, and hesitating during drawing.

Unlike real images where shapes and scales are strictly defined, sketches are more versatile and
thus do not have a clear boundary for correctness. For example, a slight change of scale during
augmentation does not falsify the sketch. Therefore, we carefully tune the augmentation parameters
such that the resulting augmented sketches are, in general, obviously incorrect.

5 Experiments

Datasets and Implementation Details. In training, we use a subset of 100 categories from the
Quick, Draw! dataset [22]. Because a large portion of Quick, Draw! sketches are not well-drawn, we
first calculate the CLIP Image-Text similarity between each sketch and their corresponding category
and select the top 5% from each category, resulting in 60K sketches. Note that the sketches used
for training are mutually exclusive with the sketches used for generating synthetic and real tracking
images used during evaluation. To test for generalizability, we select 10 categories with similar
statistics 2 from the rest and exclude them from training.

We primarily use Stable Diffusion XL [51] (SDXL) in our experiments, and adhere to the original
ControlNet training and inference procedures. During both training and inference phases, we use text
prompts in the format of “a black and white sketch of a <category>” to guide the model generation.
We also finetune SDXL on the Quick, Draw! dataset with Low-Rank Adaptation [25] (LoRA) in
order to “equip” the model with the basic ability to generate sketches in the appropriate style.

Evaluation Metrics. We primarily focus on using faithfulness, or the similarity between the
generated sketch and the ground-truth sketch, as our model performance. Due to the versatility of
sketches, we adopt multiple metrics to ensure comprehensive measurements. On the pixel-level, we
use SSIM [70] to measure detailed local structural similarity, and Chamfer Distance [2] (CD) for
global comparison, as CD is less sensitive to local density mismatch. Taking a perceptual perspective,
we adopt LPIPS [77], CLIP [52] Image-to-Image similarity (I2I), and CLIP Image-to-Text similarity
(I2T) between sketches and their corresponding text prompts to measure “recognizability”.

We benchmark our model on the similarity between the ground-truth sketch and the hand tracking
image. We then train a ControlNet on sketches but without any augmentation as our second baseline.

2Details in Appendix A.2
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Table 1: Results on the similarity between generated and ground-truth sketches from Quick, Draw! dataset.
“Tracking” refers to hand tracking images, and “Gen.” refers to generated images. “w/ Aug.” refers to
whether sketch augmentations have been applied. “CLIP I2I/I2T” refers to CLIP Image-to-Image/Image-to-Text
similarity.

Dataset Backbone w/ Aug. SSIM (↑) CD (↓) LPIPS (↓) CLIP I2I (↑) CLIP I2T (↑)

Seen Categories

Tracking synth. – – 0.59 20.12 0.36 0.80 0.22
Gen. synth. SDXL ✗ 0.59 20.11 0.37 0.79 0.23
Gen. synth. SD1.5 ✓ 0.60 17.98 0.35 0.80 0.26
Gen. synth. SDXL ✓ 0.64 17.39 0.33 0.85 0.28

Tracking real – – 0.55 32.36 0.42 0.76 0.21
Gen. real SDXL ✗ 0.55 31.99 0.41 0.79 0.21
Gen. real SD1.5 ✓ 0.59 27.59 0.38 0.80 0.27
Gen. real SDXL ✓ 0.64 25.46 0.36 0.84 0.29

Unseen Categories

Tracking synth. – – 0.59 20.47 0.36 0.80 0.22
Gen. synth. SDXL ✗ 0.59 20.32 0.35 0.81 0.22
Gen. synth. SD1.5 ✓ 0.60 17.50 0.35 0.80 0.26
Gen. synth. SDXL ✓ 0.64 17.27 0.34 0.85 0.27

Tracking real – – 0.54 33.92 0.42 0.76 0.21
Gen. real SDXL ✗ 0.55 33.53 0.41 0.78 0.21
Gen. real SD1.5 ✓ 0.61 27.67 0.38 0.80 0.27
Gen. real SDXL ✓ 0.63 24.26 0.38 0.85 0.28

Tracking Generated Ground-truth Tracking Generated Ground-truth Tracking Generated Ground-truth

Figure 5: Generations on TUBerlin dataset.

5.1 Results and Analysis

Faithfulness. In Figure 1 we can clearly observe the ControlNet trained with augmentations
successfully identifies the visual cues from the noisy tracking image, removes artifacts, and generates
the clean sketches, while being aesthetic and semantically coherent. Unsurprisingly, ControlNet
trained without augmentations fails to make any improvement from the tracking. In Figure 5 we show
additional results where the model is trained on TUBerlin [17] dataset.

Table 1 shows quantitative results for measuring the faithfulness of generated sketch images to
ground-truth. For both synthetic and real datasets, we observe a noticeable performance gain. For
example, with the real dataset and SDXL, SSIM increases by 10% in SSIM, LPIPS decreases by 6%,
and CD decreases by 21%.

In Table 2 and Figure 6 we show comparison between ours and Sketch-Pix2Seq [12] (P2S). Since
P2S performs best when the model is trained on only one category, we randomly pick 10 categories
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Table 2: Quantitative comparison be-
tween Sketch-Pix2Seq (P2S.) and ours
on a subset of 10 classes.

SSIM (↑) CD (↓) I2I (↑) I2T (↑)

Tracking 0.5 32.36 0.76 0.21
P2S. 0.58 30.19 0.82 0.26
Ours 0.63 25.45 0.83 0.29

Figure 6: A comparison between generations from Sketch-Pix2Seq
(top) and ours (bottom).

Ground-
truth

Input

Generated Generated

Ground-
truth

Input

Tracking Generated Ground-truth Tracking Generated Ground-truth Tracking Generated Ground-truth

Figure 8: Generations on unseen categories from Quick, Draw! dataset.

to train 10 P2S models, and compare with ours using the selected categories. For each P2S model,
following the original work, we first train 60M steps for reconstructing the exact same input sketch,
and subsequently train 40M steps for constructing the clean sketch given the noisy tracking image.
In Table 2 our SSIM and CD are noticeably higher than P2S, suggesting better faithfulness. This
is validated in Figure 6, where we can observe while P2S is able to generate semantically correct
sketches, it fails to follow the input tracking faithfully. Moreover, as P2S requires to train a separate
model on each individual category and has no generalizability, it is hard to adapt to real-world usage.

t = 0Ground-truth

Input

t = 4 t = 8 t = 12 t = 16 t = 20 t = 25 Generation

Figure 7: A comparison of visualization of ControlNet hidden
states throughout denoising process from baseline approach without
augmentation (top) and with augmentations (bottom).

In Figure 7 we show visualizations of
the ControlNet hidden states across
denoising steps for both the base-
line model, trained with the original
ControlNet recipe (top row), and our
model with noise-augmented training
(bottom row). The baseline Control-
Net hidden states closely approximate
the input edge structure early in the de-
noising process but fail to converge to-
ward a clean sketch representation, re-
sulting in largely static visualizations.
In contrast, the hidden states from our noise-augmented training progressively reveal a coherent and
accurate sketch outline throughout the denoising process.

Generalizability. From Figure 8 we can see that our model generalizes well to categories which
are not seen during training, suggesting that the trained ControlNet learns a robust category-agnostic
mapping from the noisy to clean sketch. The generalizability is also verified in Table 1, where the
resulting scores for unseen categories are close to scores obtained on the seen categories.

5.2 Ablations

Role of Augmentations. In Table 3 we provide similarity scores between ground-truth and gener-
ated sketches when different combinations of augmentations are applied in training. We observe that
local augmentations plays an important role in detailed local similarity: with only local augmentation
applied, SSIM increases more than other metrics, with a 10% improvement to the baseline, yet
increases by only 4% and 0% when only false strokes and structural augmentations are applied. Con-
versely, false strokes and structural augmentation have larger effects on the global similarity of the
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Table 3: Model trained on seen categories with different combinations of augmentations. All the experiments
are conducted using Stable Diffusion1.5 and trained for 5K steps.

Local Structural False Strokes SSIM (↑) CD (↓) LPIPS (↓) CLIP I2I (↑) CLIP I2T (↑)

Orig. vs Tracking 0.55 32.36 0.42 0.76 0.21

✓ 0.60 31.49 0.39 0.83 0.27
✓ 0.55 31.14 0.41 0.80 0.24

✓ 0.57 29.04 0.40 0.82 0.24
✓ ✓ 0.60 31.21 0.39 0.83 0.28
✓ ✓ 0.61 29.82 0.37 0.83 0.28

✓ ✓ 0.60 28.97 0.39 0.82 0.23
✓ ✓ ✓ 0.62 27.33 0.37 0.84 0.29

w/ Prompt w/o PromptTracking Ground-truth w/ Prompt w/o PromptTracking Ground-truthw/ Prompt w/o PromptTracking Ground-truth

Figure 10: Examples of incorrect generation on unseen categories due to the absence of text prompt (w/o
Prompt), comparing to correct generations when prompt is present (w/ Prompt).

generated sketch: CD decreases by 9% and 3% when only false strokes and structural augmentations
are applied, respectively.

In Figure 9 we provide visual results when different combinations of sketch augmentations are
applied during training. We observe that local augmentations are indeed crucial to removing jitters
and correcting deformed lines, while false stroke augmentations ensure that the model does not falsely
follow the spatial-conditions introduced by these false strokes. The structural augmentations are less
significant, likely because structural artifacts are not as common as local artifacts and false strokes.

Structural LocalFalse-StrokeTracking All Aug.
Ground-

truth
False-Stroke 

+ Local
Structural
+ Local

False-Stroke
+ Structural

Figure 9: Qualitative results when different combinations of augmenta-
tions are applied during training. Each column represents the generated
sketches when the model is trained with one combination of augmen-
tations, e.g. Column 2 are the generated sketches when only structural
augmentations are applied during training.

Effect of Text Prompts. In-
put tracking image conditions
are extremely noisy and may not
even possess obvious visual cues
about the nature of the intended
sketch. It is then important to
investigate the effect of text guid-
ance on the generated output
and examine if our augmentation-
based training significantly con-
tributes to the generation, or if it
is guided purely by text prompts.

In Table 4 we show the similarity
scores between the ground-truth
and generated sketches with or
without prompt on seen or un-
seen categories. When no aug-
mentation is applied during train-
ing, there is little to no perfor-
mance gain, even with a text prompt. When augmentations are present, in most cases, there is
noticeable improvement across all metrics. Such results verify the necessity of our augmentation-
based training procedure.

We find that the model tends to rely more on text prompts when working with unseen categories.
When prompts are not present, CLIP I2T and CD drop 24.7% and 21.4% respectively on the unseen
categories, versus a decrease of 4.9% and 10.3% on the seen categories. In Figure 10, we show
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Table 4: Quantitative results on real air drawing dataset
with/without prompts. “w/ Aug.” refers to with/without
augmentations. “w/ P.” refers to with/without prompts.
“I2I” refers to CLIP Image-Image similarity between
tracking/generated and ground-truth sketch, and “I2T”
refers to CLIP Image-Text similarity between sketches
and texts associated with their class labels.

w/ Aug. w/ P. SSIM (↑) CD (↓) LPIPS (↓) I2I (↑) I2T (↑)

Seen Categories
Tracking 0.55 32.36 0.42 0.76 0.21
✗ ✓ 0.55 31.99 0.41 0.79 0.21
✗ ✗ 0.56 32.09 0.40 0.78 0.21
✓ ✓ 0.64 25.46 0.36 0.85 0.29
✓ ✗ 0.63 26.70 0.36 0.81 0.26

Unseen Categories
Tracking 0.54 33.92 0.42 0.76 0.21
✗ ✓ 0.55 33.53 0.43 0.78 0.21
✗ ✗ 0.56 33.66 0.40 0.78 0.22
✓ ✓ 0.63 24.26 0.38 0.84 0.28
✓ ✗ 0.61 30.47 0.39 0.80 0.23

Figure 11: The impact of level of chaos of the track-
ing on the faithfulness of the generated sketch, based
on CD. We divide CD between tracking and ground-
truth sketch equally into four bins. Within each bin,
we plot the mean of CD between ground-truth sketch,
tracking, and generated image with/without prompt.
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examples of the model failing to generate the correct sketch when no prompt is present, under unseen
categories. Consider the bottom left example of Figure 10: the ground-truth sketch (Ground-truth)
represents a snail. With the corresponding text prompt, the model successfully generates a sketch of
a snail, following visual cues in the tracking image (Tracking) such as the spiral shape. When no
prompt is given, the model falsely, yet reasonably, generates a fan (w/o Prompt) – a category seen
during training. In fact, in the absence of a text prompt and given an input from an unseen category,
we find that the failure cases tend to be generated sketches of the seen categories.

Effect of level of chaos on conditional input. In Figure 11, we investigate how the amount of
chaos in the input conditioning tracking image, measured by the CD between the ground-truth and
tracking images, affects generation. The improvements are more obvious when the CD between the
ground-truth and tracking images is large. On the other hand, the CD between ground-truth and
generated sketches are almost the same when the tracking image is already close to the ground-truth
sketch, indicating that the generation is being faithful to the ground-truth sketch. We also observe
that when the level of chaos is high for the unseen categories (bottom right), the performance gain
with text guidance is most obvious, suggesting that the model relies more on text guidance for correct
generation. Conversely, the model depends less on the text prompts when the input chaos level is low
or under seen categories. Such results are also in line with Figure 10 and Table 4 as discussed above.

6 Conclusions

In this paper, we tackle the problem of marker-less air drawing by leveraging a spatially-controlled
diffusion model. We devise a simple augmentation-based data-free training procedure to learn a
mapping from noisy to clean sketches. We collect two hand drawing datasets and verify that the
trained model can effectively generate coherent and faithful sketch from an extremely noisy tracking
image, and exhibits decent generalizability.

Limitations and Future Work. We provide a stepping stone for the proposed task by creating a
framework that establishes a correspondence between hand motions and clean, pleasing, and coherent
illustrations, and providing datasets to evaluate these tasks. However, this work does not explore the
possibility of using hand gestures to create complex, full color images that image diffusers are known
for. It also assumes that the desired output sketch is simple and often cartoon-like, as a majority of
the Quick, Draw! sketches are drawn with few lines and simple shapes.

Societal Impact. Generative models for media are generally prone to misuse which can lead to the
spread of inappropriate and harmful content. While this work is based in the sketch domain, there
could still be adverse adoption for generating mocking content and bullying, especially by younger
users.
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A Appendix

A.1 Details for Sketch Augmentations

Implementation. Below we provide implementation details for each augmentation:

• Local Augmentation includes 3 types of sub-augmentations: stroke distortion, random
spikes, and jitters. For stroke distortion, we generate a number of wave functions each with
random frequency, shift, and amplitude. We aggregate them to form a random curve, whose
value is used to distort the ground-truth sketch. Spikes are implemented in two modes sharp
spikes and smooth spikes. Sharp spikes are determined by the width and height which are
randomly sampled from a normal distribution; smooth spikes are implemented with Bezier
curve, and the control points are randomly sampled from a uniform distribution within
predefined range along the gradient of the ground-truth sketch. Jitters are simply small
perturbations sampled from a pre-defined normal distribution and added to random locations
along the ground-truth sketch.

• Structural Augmentation also include 3 types of sub-augmentations: sketch-wise distortion
& relocation, stroke-wise misplacement, and stroke-wise resize. For sketch-wise distortion&
relocation, we randomly shrink and change aspect ratio of the whole sketch and reposition
the sketch in the canvas. For stroke-wise misplacement/resize, we randomly move/resize
each stroke within a pre-defined range.

• False Strokes includes two types: transitional and random false strokes. For transitional
false strokes, we simply draw lines between the transition of each stroke; for random false
strokes, we randomly draw a number of extra lines on the canvas.

In the above augmentations, misplacement and stroke resize under structural augmentation are
mutually-exclusively applied. This is because it is highly probable that the combination of the two
will completely destroy the visual cues of the resulting sketch image. For all other augmentations, we
set a 50% chance for each to be applied to each sketch sample during training.

A.2 Training Details

Held-out categories. Because different object categories have different drawing difficulty, sketch
and tracking samples belonging to different categories exhibit large variance in statistics (CLIP Image-
Text similarity between ground-truth sketch and corresponding text, CLIP Image-Image similarity,
Chamfer Distance, or SSIM between ground-truth and tracking image). To allow for fair comparison
of the performance between seen and held-out categories, we first partition categories into 10 clusters
using K-Means Clustering, and randomly sample one category from each cluster as the held-out
categories. The held-out categories are:

{car, face, cow, snail, diamond, candle, angel, cat, grapes, sun}

Training configurations. All training is conducted on two Nvidia H100 GPUs. For finetuning the
diffusion model with LORA, we set LORA rank to 4, per device batch size to 16, learning rate to
5e−5, gradient accumulation steps to 4, and train for 6K steps on the Quick, Draw! dataset. For our
augmentation-based ControlNet training, we set per device batch size to 8, learning rate to 2e−5,
gradient accumulation steps to 4, and the proportion of empty prompts to 25%.

A.3 Comparison on Egocentric Hand Tracking Algorithm

An example of hand landmarking with MediaPipe, OpenPose, and NRSM is shown in Figure 12.
We can see that only MediaPipe’s hand landmarker comparatively accurate and consistent, while
OpenPose often fails to detect landmarks, and NSRM is less accurate. However, even though
MediaPipe seems to accurately predict hand landmarks, the resulting tracking image, as shown in
Figure 1 and Figure 15, still contains large amount of noise.
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Figure 12: A comparison of hand landmarking done by MediaPipe, OpenPose, and NSRM respec-
tively. MediaPipe in general provides most accurate hand landmarks, while OpenPose often struggling
to detect the hand, and NSRM not able to provide accurate landmarks.

Figure 13: Auto-completion given a partially-drawn sketch in two modes: line segment missing
(Column 1&5) and whole strokes missing (Column 3&7). Bordered images are the generated results.

A.4 Sketch Completion & Text-conditioned styling.

With simple augmentations, we can also perform other sketch-based tasks such as sketch completion
and text-conditioned styling. Unlike prior works [39, 38] on sketch completion that require sophis-
ticated architectures or training procedures, we could achieve sketch completion by simply adding
random erasure to the set of augmentations during training. In Figure 13, we show two types of
sketch completion: completion with small missing line segments (column 1&5), and completion with
whole strokes missing (column 3&7). In addition, as shown in Figure 14, we can also utilize the
text-conditioning capacity of DMs to prompt for different stroke styles, such as different color and
thickness, therefore alleviating the need for fine-grained style control on the user’s part.

A.5 Visual Comparison between Controllable DMs

In Figure 15 we compare the generated sketches between ControlNet and T2IAdapter, when trained
under our augmentation-based procedure. We can observe that both ControlNet and T2IAdapter
generate visually coherent sketches and generally follow the input tracking image. Nonetheless, by

Ground-truthTracking Generated Ground-truthTracking Generated

Figure 14: Generation with text instructions for different line colors and brush thickness. Bordered
images are the generated results. We use the prompt: “A sketch of a <category>, <color> lines,
<thickness> brush.”
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ControlNet Ground-truth ControlNet Ground-truthHand Tracking Hand TrackingT2IAdapter T2IAdapter

Figure 15: More inference results on ControlNet with our augmentation-based training procedure.
We additionally show inference results by using T2IAdapter in our method.

looking into details, ControlNet’s generations are more faithful to the visual cues from the tracking
images. For example, the butterfly (bottom right) generated by ControlNet resembles the shapes
of the wings from tracking image closely, while the generation from T2IAdapter looks much less
similar.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims made in the abstract and introduction are true and accurately reflect
the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See "Limitations and Future Work" in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There were no theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Paper details the model used, the data used in the training process, and the data
used in inference. These are also all publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We release the full code and dataset.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper states that is follows ControlNet’s provided training and inference
methods, and states any time a hyperparameter is different.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive;
also, the improvement on quantitative results are obvious across multiple metrics, and are
backed by qualitative results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The work in this paper outputs sketch-like, oftentimes cartoon-like, images that
might be misued for generating inappropriate memes, especially in the teenager category.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The data and model used in this paper have already been vetted to pose minimal
risk for misuse by their creators.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Existing assets (i.e. Unity game engine and 3D assets used) were properly
cited, see Section 3.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The creation and contents of the two new datasets are well documented in
Section 3.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor resesarch with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor resesarch with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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