
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SKILLFACTORY: SELF-DISTILLATION FOR LEARNING
COGNITIVE BEHAVIORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning models leveraging long chains of thought employ various cognitive
skills such as verification of their answers, backtracking, retrying by an alternate
method, and more. Previous work has shown that when base models exhibit these
skills, a reasoning model trained by reinforcement learning (RL) can learn to lever-
age them. How can we get models to leverage skills that aren’t exhibited by base
models? Our work, SkillFactory, is a method for fine-tuning models to roughly
learn these skills during a supervised fine-tuning (SFT) stage prior to RL. Our
approach does not rely on distillation from a stronger model, but instead uses
samples from the model itself, rearranged to provide training data in the format of
those skills. These “silver” SFT traces may contain errors, but are nevertheless ef-
fective for priming a model to acquire skills during RL. Our evaluation shows that
(1) starting from SkillFactory initialization helps a model post-RL to generalize to
harder variants of the task; (2) cognitive skills are indeed used by the model; (3)
the presence of these skills allows for opportunities like budget forcing (driving a
model to think longer) that other baselines lack.

1 INTRODUCTION

Modern large language models (LLMs) increasingly demonstrate the ability to acquire and apply a
variety of cognitive behaviors we can call “skills.” These include capabilities such as systematically
exploring a solution space, verifying outputs, and retrying with alternative strategies (Marjanović
et al., 2025). Such skills are particularly valuable for reasoning, as they enable models to explore
different paths to a solution rather than relying on a single attempt (Bogdan et al., 2025). Indeed,
many of the major gains in reasoning-focused LLMs over the past year can be traced to better
elicitation of these skills during inference time, demonstrating that skill acquisition itself has become
a primary driver of progress in reasoning (Jaech et al., 2024; Guo et al., 2025; Abdin et al., 2025).

Reinforcement learning (RL) has proven to be a powerful paradigm for unlocking many of these
capabilities (Guo et al., 2025). If a model already demonstrates these skills, or is equipped with them
through distillation or continued pre-training, then RL can further reinforce these behaviors (Gandhi
et al., 2025). However, this often requires access to superior models (Muennighoff et al., 2025; Guha
et al., 2025), significant training (Yeo et al., 2025), custom pretraining data, or a complex mix of all
of these. These methods have limitations on the flexibility and generalization of the instilled skills.

In this work, we propose SkillFactory, a framework to instill these behaviors into models and unlock
large gains from RL without distilling from a larger model. Through prompting and restructuring
of the samples into a structured output, we can construct “silver” traces (which may contain errors)
that demonstrate a model verifying its outputs and retrying based on failures; see Figure 1. A
model trained on this data with supervised fine-tuning (SFT) is not yet calibrated to use these skills
effectively; however, past work suggests that learning the form of skills may be enough Li et al.
(2025) and the model may be primed for effective RL. The RL stage hones the skills instilled into
the model, improving both how they are used and where. Furthermore, the explicit nature of how
our skills are invoked allows for advanced decoding methods at inference time, like budget forcing.

Contributions We demonstrate that (1) models can acquire complex reasoning skills from their
own rearranged outputs without requiring stronger teacher models; (2) SkillFactory initialization
enables generalization to harder task variants and novel domains post-RL, matching or exceeding

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Step 1a: Sample Responses

Base Model

 A: “I should try to do…”

 A: “Let’s think … X=42”

A: “I think X=35”

Step 2: Rearrange to form 	
SFT dataset

I think X = 35

Step 1 is incorrect
because…

Let’s think… X = 42

This works because
it satisfies…

The final answer is 42

Step 3: Two-Stage Training

Stage 1: SFT
Learn structure (through tags)
to display cognitive behaviors

Stage 2: RL (GRPO)

Reasoning Model
Natural Behavior Emerges
• Sample → Reflect	
• Retry if needed → Success

(sample responses N times)

Base Model

Step 1b: Sample Reflections

“Step 1 is incorrect
because …”

Add and glue phrasestags

<think>

<sample> </sample>

<reflect> </reflect>

<sample> </sample>

<reflect> </reflect>

</think>

Wait, I should try this again…

Now, I should give a final answer.

<verdict> </verdict>Incorrect

<verdict> </verdict>Correct

Base Model

35<answer> </answer>

42<answer> </answer>

Retry Reflection

Learn when/how to properly
use these skills

 Q: “Solve Problem X”

 Q: “Solve
Problem X”

Prompt: “Reflect
and give a verdict”A: “I think X=35”

(sample reflections K times)

Figure 1: SkillFactory framework. We obtain responses and reflection traces using a model’s own
sampled reasoning, then rearrange them to demonstrate reasoning skills. A model SFTed on this
data is an effective starting point for RL, yielding better performance and more skill usage post-RL.

the performance of strong baselines; and (3) our approach enables advanced inference techniques
like budget forcing that baseline methods cannot support.

2 BACKGROUND AND MOTIVATION

2.1 COGNITIVE SKILLS IN LLMS

LLMs take in an input x and place a distribution p(y | x). For the tasks we consider, we assume a fi-
nal answer can be extracted via a process a = extract(y) (e.g., if it is embedded in <answer> tags).
Large reasoning models fit in this framework, but are characterized by two differences: (1) they ex-
hibit the use of reasoning skills rather than simple “linear” solving processes; (2) their outputs y are
typically much longer. Past work describes a number of cognitive skills useful for reasoning (Gandhi
et al., 2025). In this work, we focus on the following two:

1. Retrying: A prefix y<i, where i is length in tokens, ends in an answer ã = extract(y<i).
The model decides to restart its inference, generating tokens like “Wait, let me rethink
this...” and generating completion y≥i with little apparent connection to what came before.

2. Reflection: A prefix y<i ends in an answer ã = extract(y<i). The model enters a
separate process of verifying ã, generating tokens yv(ã) focused on evaluating the answer.

Together, these methods guide the model to generate long chain-of-thoughts beyond a single attempt,
leading to more robust reasoning.

Existing usage of skills and the need for SkillFactory A central finding of Gandhi et al. (2025)
is that some base language models already exhibit these skills in some form. Figure 2 shows an
example of this for the Countdown number puzzle, where the task is to combine a set of input
numbers using the four basic arithmetic operations (+,−,×,÷) to reach a target number. A red
highlight shows the model verifying the outcome of the computation as incorrect; highlighted in
blue is an instance where the model restarts and tries to find another solution.

Two fundamental observations underlie our work. First, these skills surface less consistently when
incidentally expressed in natural language. We will see in our results that SkillFactory consis-
tently leads to longer traces exhibiting phenomena like verification and retries to a higher extent than
the base model, particularly on out-of-domain tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

[…]
Let’s try a different combination:

1. First, add 98 and 20:
 Step 1: 98 + 20 = 118
2. Then, add 44 to the result:
 Step 2: 118 + 44 = 162

This is also not equal to 102. Let's try a
simpler approach with a different order:

1. First, subtract 20 from 98:
 Step 1: 98 - 20 = 78
2. Then, add 44 to the result:
 Step 2: 78 + 44 = 122
[…]
Figure 2: Trace from Countdown ex-
hibiting implicit reflection and retrying.

Second, there are advantages to explicitly marking
skills’ usage. Our format, shown in Figure 3, has reflec-
tion explicitly demarcated by a tag. The reflection process
also reruns the computation, potentially mitigating errors
that happened during the initial search. Retrying is simi-
larly marked by a tag. These not only lead to more effec-
tive usage of the skills, but also allow us to apply budget
forcing (Muennighoff et al., 2025) in a principled way.

Finally, although we do not focus on demonstrating it
in this work, SkillFactory allows us to impart reasoning
skills that are unattested in the base model. We therefore
view this work as providing a platform for shaping cog-
nitive behaviors of LLMs across a variety of tasks.

Existing Approaches to Eliciting Reasoning Skills
Current methods for developing reasoning capabilities in
language models can be broadly categorized into three
main approaches. First, RL with sparse rewards can sur-
face reasoning behaviors latent in the base model (Shao et al., 2024; Yu et al., 2025; Liu et al., 2025).
This approach relies heavily on a strong base model, and these skills may fail to emerge naturally
when not sufficiently represented in the pretraining data; our results show that pure RL does not
yield robust skill use in cross-task generalization. Second, distillation from stronger models (Muen-
nighoff et al., 2025; Ye et al., 2025; Guha et al., 2025), provides training data exhibiting advanced
reasoning, though this requires access to superior models and often struggles to generalize beyond
the domains of the distilled data (Gudibande et al., 2024; Kalai et al., 2025). Third, targeted data cu-
ration, through continual pretraining on backtracking examples (Gandhi et al., 2025), hand-crafted
reasoning chains for in-context learning (Pang et al., 2025), or Monte Carlo tree search rollouts (Kim
et al., 2025, ASTRO), has shown promise in instilling specific cognitive skills before or during fine-
tuning. SkillFactory is similar to these methods, but focuses on generating data entirely from the
base model and highlights that structure is key for the generalization of consistent skill use.

Additional Related Work Reasoning models face two failure modes: overthinking (excessive
verbosity) (Sui et al., 2025) and underthinking (prematurely abandoning solution paths) (Wang et al.,
2025). While some argue for fundamental limitations in reasoning models (Shojaee et al., 2025) due
to problem complexity. We argue that skills offer a way to explore solution paths and exit them
effectively when learned correctly. This allows for heuristic reasoning methods to be instilled into
the model, expanding what they can solve.

2.2 TASKS: PLANNING, SEARCH, AND COMPUTATION

The usefulness of cognitive skills varies across tasks. While a skill like verification can in principle
be used anywhere, it is more effective on “NP-complete”-like tasks: those that are easier to check
than to generate answers for. LLMs also vary in how much they naturally exhibit these skills.

We define three types of tasks capturing the range of relevant phenomena for our approach: search-
focused, computation-focused, and other. A full set of tasks can be found in Section 4.2.

Search-focused tasks are those like Countdown (Figure 2). The space of possible responses is
usually large, and an LLM is expected to execute search in its context to find an answer. Verification
and retrying are naturally exhibited by models, although inconsistently, and verification is highly
effective, since the solutions are easier to check than they are to find.

Computation-focused tasks include multiplication and GSM8K (Cobbe et al., 2021). These tasks
are ones where LLMs on the scale we experiment with are prone to making mistakes. However,
verification and retrying are not naturally exhibited.

Finally, other tasks include CommonsenseQA (Talmor et al., 2019). We use CommonsenseQA to
help spot if the model has degraded performance on other tasks from training on other domains.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 SKILLFACTORY

SkillFactory has three pieces, depicted in Figure 1. (1) Data curation: uses inference on a base
model in combination with heuristics tied to each cognitive skill of interest. (2) Supervised fine-
tuning: the model is fine-tuned on these traces. Unlike other distillation approaches, we don’t
expect performance to increase in this step; we are only trying to achieve a better starting point for
RL. (3) Reinforcement learning: We use off-the-shelf RL algorithms such as GRPO (Shao et al.,
2024; Marjanović et al., 2025), combined with sparse rewards based on correctness. We focus on
the data curation stage in this section.

We generate SkillFactory data in three steps: sampling diverse solutions from the base model, gen-
erating reflections that assess those solutions, and combining them into structured traces that exhibit
explicit retry and verification behaviors. Throughout this process, we use y to denote solution at-
tempts and r to denote reflections. Algorithm 1 outlines the complete procedure, and each of the
three aforementioned steps will be detailed in the succeeding paragraphs.

Algorithm 1 SkillFactory Trace Construction. All values of the parameters used in the Trace
Construction algorithm can be found in Table 7 of the Appendix.

Require: Dataset DT = {(qi,ai)}, base modelM, prompts Psolve, Preflect
Ensure: Training set DSFT

1: DSFT ← ∅
2: for each question (qi,ai) ∈ DT do
3: // Generate solution-reflection pairs
4: Sample solutions: Y ← {yj ∼M(qi | p) : p ∈ Psolve, j ∈ {1, 2, . . . , Nsample}
5: Generate reflections: R ← {r ∼M(qi,y | Preflect) : y ∈ Y, verdict(r) = correct(y,ai)}
6: Y+ ← {(y, r) : correct(y,ai) = True} ▷ correct pairs
7: Y− ← {(y, r) : correct(y,ai) ̸= True} ▷ incorrect pairs
8: while |Y+| > 0 do
9: // Determine trace length

10: n+ ← min(Uniform([1, Lmax]), |Y+|)
11: n− ← min(Uniform([0, n+ − 1]), |Y−|)
12: // Sample solution-reflection pairs
13: T+ ← sample n+ items from Y+ without replacement
14: T− ← sample n− items from Y− without replacement
15: // Build trace, ensuring that it ends on a correct solution
16: trace← shuffle(T− ∪ T+[1 : n+ − 1]) ∪ {T+[n+]} ▷ Append last correct
17: // Format into training instance
18: DSFT ← DSFT ∪ {format(qi, trace)}

return DSFT

Solution Generation For each question qi in our task dataset DT = {(qi,ai)}ni=1, we sample
Nsample solution attempts from our base model M. To encourage diversity, we use a set of four
different chain-of-thought prompts Psolve. For each prompt, we sample 16 responses, yielding a
solution set Y of 64 attempts per question. The full set of prompts can be found in Appendix C.2.

Each solution y ∈ Y is automatically verified: we use extract(y) to parse the final answer from the
solution and check if it matches ground truth ai. Since SkillFactory prompts the model to enclose its
final answer in <answer> tags, our extract() function leverages these tags for parsing. We define
correct(y,ai) = 1[extract(y) = ai] to indicate whether a solution is correct. This gives us a
pool of both correct and incorrect solutions, both are needed to teach the model self-correction.

Reflection Generation Next, we promptM to reflect on each solution attempt using a reflection
prompt preflect. A reflection r critiques the reasoning in solution y and predicts its correctness,
correct(y, ai). We use verdict(r) to extract this prediction from the reflection text. Just like with
the answer tags, SkillFactory also prompts the model to use <verdict>...</verdict> tags when
generating reflections, which we then use for parsing the verdicts. A valid reflection is one where
verdict(r) = correct(y,ai). The reflection prompts can be found in Appendix C.3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We sample four reflections per solution but keep only those where verdict(r) = correct(y,ai),
reflections that accurately judge whether the solution succeeded or failed. The result is a set R of
valid reflections paired with their corresponding solutions.

Trace Construction Finally, we assemble solution-reflection pairs into training traces. We parti-
tion our pairs into correct (Y+) and incorrect (Y−). For each trace, we:

• Sample n+ correct pairs and n− incorrect pairs, where n− < n+

• Shuffle all but one correct pair to create a mixed sequence

• Append the remaining correct pair to ensure success at the end

• Format the sequence using format(), which wraps each solution-reflection pair in tags and adds
transition phrases; see Figure 3.

User: [question]
Assistant: <think>
[Attempt 1]
Reflect: "Wrong because..."
Let me try again.
[Attempt 2]
Reflect: "Need to verify..."
...
[Final correct attempt]
[Reflection: "This looks correct..."]
</think>
Answer: [final answer]

Figure 3: SkillFactory training trace with self-
reflection and retry.

This creates traces where the model attempts
a problem, reflects on its work, tries again if
needed and always eventually succeeds. The
format() function applies the template shown in
Figure 3, interleaving solutions with reflections
in <sample> and <reflect> tags respectively.
Pairs of samples and their reflections are concate-
nated together with phrases like “Let me recon-
sider”. By training on these restructured outputs,
we prime the model to employ these skills during
RL. A full list of phrases used to stitch together
the pairs can be found in Appendix C.1.

4 EXPERIMENTAL SETUP

4.1 BASELINES

We evaluate SkillFactory against four baselines, each representing a different paradigm for develop-
ing reasoning models as outlined in Section 2.

RL Only Our first baseline trains directly from the base model Qwen2.5-1.5B-Instruct (Team,
2024) using only reinforcement learning with binary correctness rewards. This represents the sim-
plest approach by relying on RL to discover reasoning behaviors. We use the same GRPO setup as
SkillFactory, but start from the unmodified base model.

BOLT (external data curation) We establish a baseline similar to the flow of BOLT (Pang et al.,
2025) where we (1) Sample 10 in-context learning examples from a strong reasoning model (Claude
Sonnet 4), (2) prompt an LLM (GPT-4o-mini) with ICL to generate reasoning traces for new prob-
lems, creating synthetic SFT data, and (3) train the resulting model using GRPO. We provide addi-
tional details in Appendix E.

Distillation (learning from strong models) We also evaluate conventional distillation (Muen-
nighoff et al., 2025; Ye et al., 2025; Guha et al., 2025), where we train on traces from a more
capable model. We prompt R1 to solve problems from our training set and collect its generated
reasoning traces. We perform SFT only on these traces (no RL stage).

STaR (learning from correct outputs) Finally, we compare with a self-distillation method called
STaR (Zelikman et al., 2022). STaR iteratively samples from the base model, checks if the answer
is correct, and subsequently uses it to train the model if the answer is correct. We perform this for
our base model then train with RL.

These baselines allow us to isolate the contribution of SkillFactory’s self-distillation with structured
rearrangement against: learning from scratch (RL Only), sophisticated external data generation
(BOLT), traditional distillation (R1), and other commonly used self-distillation methods (STaR).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Notably, SkillFactory and STaR are the only approaches that require neither stronger models nor
external data generation, relying entirely on the base model’s own outputs.

4.2 TASK SETUP AND EVALUATION

We train all methods on Countdown with 3 arguments. Countdown requires the model to take a
set of input numbers and apply mathematical operations +,−,×,÷ to reach a target. The inputs
can be used in any order, but each number can be used at most once. For example, a valid solution
for the input numbers {17, 11, 8} with target 105 might be 11× 8 + 17 (Gandhi et al., 2024).

Countdown is a task that can encourage the emergence of skills like retrying and reflection naturally
because it naturally requires search to solve the question. We evaluate on additional tasks to assess
the model’s reasoning and determine if the skills generalize.

Harder variants of training tasks:

• Countdown with 4, 5, and 6 arguments: This is the same setting as the 3-arg training task. These
variants adjust the number of arguments, which can exponentially increase the search space.

Out-of-distribution reasoning tasks:

• Multiplication (Dziri et al., 2023): Multiply two N digit numbers. We evaluate N = 2, 3, 4, 5.
• Letter Countdown (CD): Given a jumbled set of N letters, rearrange them to form a valid word.

We evaluate N = 4, 5.
• Acronym generation: Given a sequence of N words, create an acronym from the first letters of the

words. We evaluate N = 4, 5.
• CommonsenseQA (CSQA) (Talmor et al., 2019): Multiple choice reasoning questions about com-

monsense situations.
• GSM8K (Cobbe et al., 2021): Grade-school math word problems

4.3 TRAINING

We fine-tune Qwen2.5-1.5B-Instruct (Team, 2024) using silver traces generated from 4,000 Count-
down 3arg instances, followed by GRPO reinforcement learning on 1,000 held-out questions for 50
epochs. Full hyperparameters are provided in Appendix A.1.

5 RESULTS

We evaluate SkillFactory across three dimensions: (1) performance on the training task and its harder
variants, (2) generalization to out-of-distribution tasks, and (3) the effectiveness of budget forcing at
inference time. All results are averaged over four runs with the evaluation settings in Appendix A.3.

5.1 IN-DOMAIN PERFORMANCE

Table 1 shows performance on Countdown tasks of varying difficulty. All methods achieve near-
perfect accuracy (98-100%) on the training task (Countdown 3-arg), demonstrating that sparse re-
wards alone suffice for in-distribution problems.

The key differences emerge on harder variants. On Countdown 4-arg, SkillFactory achieves an accu-
racy of 30.7%, which is 12.9% higher than the leading baseline (RL-Only at 17.5%). This advantage
diminishes as task difficulty increases: on 5-arg and 6-arg, SkillFactory remains competitive but con-
verges toward baseline performance as all methods approach their limits. These results demonstrate
that the structured reasoning skills learned through SkillFactory can transfer to moderately harder
instances of the same task family, but with diminishing returns on more challenging variants.

5.2 GENERALIZATION TO HARDER TASKS

Table 2 shows the performance of methods trained on Countdown 3-arg when applied to other tasks.
While most baselines incur performance degradation after specialized training on Countdown, Skill-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance on Countdown tasks for models trained on Countdown 3-arg. SkillFactory
achieves substantial gains on 4-arg, but skill effectiveness drops as task difficulty increases.

Model Countdown

3arg 4arg 5arg 6arg

Qwen2.5-1.5B-Instruct 14.3 ± 2.1 6.0 ± 1.5 2.0 ± 0.8 0.8 ± 0.5
SkillFactory SFT 17.1 ± 1.3 5.2 ± 0.8 2.0 ± 0.5 0.9 ± 0.3
RL Only 99.2 ± 0.5 17.5 ± 2.3 12.7 ± 1.8 11.2 ± 1.6
R1 Distill 58.4 ± 2.1 15.1 ± 1.4 6.3 ± 1.1 6.4 ± 1.0
BOLT 99.3 ± 0.4 16.1 ± 2.2 10.4 ± 1.7 9.3 ± 1.5
STaR 99.0 ± 0.5 11.2 ± 1.9 7.6 ± 1.4 7.3 ± 1.3
SkillFactory 98.8 ± 0.5 30.7 ± 2.2 12.8 ± 1.6 9.0 ± 1.3

Table 2: Performance on OOD tasks for models trained on Countdown 3-arg. Many models overfit
and degrade performance, but SkillFactory achieves positive transfer to other tasks in aggregate.

Model Acronym CSQA GSM8k Letter CD Multiplication Overall

4 5 4 5 2dig 3dig 4dig 5dig

Qwen2.5-1.5B-Instruct 11.2 16.7 55.6 58.8 15.7 7.0 76.8 39.8 5.2 0.7 28.8
SkillFactory SFT 3.9 2.3 47.8 60.0 12.5 4.8 86.4 36.4 5.2 0.6 26.0
RL Only 12.3 8.2 62.8 68.3 18.2 5.9 81.8 14.5 1.7 0.1 27.4
R1 Distill 10.0 9.4 56.8 62.9 10.7 4.0 79.8 38.7 7.1 0.6 28.0
BOLT 14.5 10.1 61.6 70.1 18.3 6.7 83.7 18.8 2.1 0.3 28.6
STaR 11.9 9.2 60.8 68.3 13.6 5.0 81.6 11.3 0.8 0.1 26.3
SkillFactory 11.8 9.7 60.9 67.7 20.2 9.0 94.0 39.3 6.8 0.7 32.0

Factory maintains or improves performance on 9 out of 10 OOD tasks, achieving the highest overall
accuracy (32.0%) across all tasks. The imparted skills improve the ability of the model to transfer
to new domains. This is further explored in Section 6.

On Letter CD, the most closely related task, SkillFactory yields improvement on both Letter CD 4
and 5, whereas no baseline method improves on Letter CD 5. On Multiplication, a more distantly-
related task involving computation, SkillFactory and R1 Distillation maintain their performance,
39.3% and 38.7% respectively, on 3-digit vs. the base model’s 39.8%. All other baselines suffer
performance degradation, including RL Only (dropping to 14.5%). Additionally we see that the
SFT model gains performance on Countdown but begins to degrade performance on OOD tasks
after a single epoch of training.

5.3 BUDGET FORCING

Because SkillFactory teaches explicit retry patterns with structured tags (<sample>, <reflect>), we
can causally intervene at inference time to force additional reasoning, which is an attractive method
of test-time scaling. “Budget forcing”, explored in s1 (Muennighoff et al., 2025) uses manual editing
of traces with linguistic indicators; we instead explore appending a <sample> tag before the final
answer to trigger another reasoning attempt.

We compare our approach to RL-Only and R1 Distill. They lack structure, so we use the phrases
“Let’s try a different approach.” and “Another thought:” respectively, encouraging the model to think
more before giving an <answer> tag. Both phrases occur naturally in these models generations.

Table 3 shows results from applying this intervention to every example in the test set across our tasks.
SkillFactory shows consistent improvements across Countdown variants (+8.0% on 4-arg, +3.6%
on 5-arg, and +4.2% on 6-arg). Multiplication 3-digit sees substantial gains across all methods, with
RL Only achieving +16.7% (though from a lower baseline).

We see two contributing factors to these gains. First, the model repairs degeneration. Particularly
on harder Countdown variants, models often get stuck in unproductive search patterns and never ter-
minate. Budget forcing enables a model to explore alternative paths to reach an answer. Second, the
model exhibits extended verification. On computational tasks like Multiplication, the intervention
prompts models to reconsider their answers, catching errors.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance breakdown on out-of-distribution tasks (tasks as rows, methods as column
groups). “Std” indicates results prior to budget forcing, and “BF” indicates results with the budget-
forcing technique appropriate for that model.

Task RL Only R1 Distill SkillFactory

Std BF ∆ Std BF ∆ Std BF ∆

Countdown 4arg 17.5 17.9 0.4 11.6 19.3 7.6 30.7 38.7 8.0
Countdown 5arg 12.7 14.0 1.3 5.0 8.1 3.1 12.8 16.4 3.6
Countdown 6arg 11.2 13.1 1.9 4.7 8.1 3.4 9.0 13.2 4.2
Acronym 4 12.3 9.5 -2.8 9.4 11.9 2.5 11.8 12.1 0.3
Acronym 5 8.2 6.4 -1.7 8.9 10.1 1.2 9.7 9.0 -0.7
CSQA 62.8 62.8 0.1 50.9 52.1 1.3 60.9 59.8 -1.0
GSM8k 68.3 68.8 0.5 51.3 49.6 -1.7 67.7 66.1 -1.6
Letter CD 4 18.2 17.0 -1.2 10.0 11.5 1.5 20.2 16.5 -3.8
Letter CD 5 5.9 6.8 0.8 3.9 4.1 0.2 9.0 7.8 -1.3
Multiplication 2dig 81.8 90.4 8.5 66.0 63.4 -2.6 94.0 93.2 -0.8
Multiplication 3dig 14.5 31.2 16.7 30.9 30.4 -0.6 39.3 45.2 5.9
Multiplication 4dig 1.7 3.9 2.2 5.8 6.0 0.1 6.8 7.0 0.2
Multiplication 5dig 0.1 0.2 0.0 0.5 0.5 0.0 0.7 0.8 0.0

Overall 24.2 26.3 2.1 19.9 21.2 1.2 28.7 29.7 1.0

SkillFactory benefits from both mechanisms due to its explicit training on retry and verification
patterns. We observe that RL Only primarily gains from the second mechanism but struggles to
effectively restart reasoning, while R1 Distillation shows behavior somewhere in between. Impor-
tantly, while RL Only shows larger relative improvements on some tasks, SkillFactory maintains
superior absolute performance both before and after budget forcing.

6 ABLATIONS AND ANALYSIS

6.1 ANALYSIS OF SKILL USAGE Table 4: Number of explicit answer attempts, explicit re-
flections and the verification F1 for the correct and incorrect
classes for Skill Factory.

#Answers #Reflect F1 (correct / incorrect)

Countdown 3arg 1.57 1.22 0.96 / 0.91
Countdown 4arg 1.21 3.06 0.68 / 0.95
Letter CD 4 2.12 1.65 0.34 / 0.79
Multiplication 3dig 2.15 1.84 0.36 / 0.80

Skill Usage By making reflection
steps explicit, we enable evaluation
of this step for effectiveness.

Table 4 shows the average number
of explicit answer attempts (final an-
swers given in answer tags), average
number of explicit reflections (ex-
plicit reflection and verification done
in reflection tags) and the verification F1 for SkillFactory across both correct and incorrect classes
(how often the verifier in the reflection tags makes the ground-truth correct decision about a pro-
posed answer). Reflection as a skill generalizes to other domains, and scales with task difficulty:
Countdown 4-arg exhibits more reflection than Countdown 3-arg.

Furthermore, reflection is highly effective: the “incorrect” class F1 indicates that the verifier is
highly effective at correctly rejecting wrong answers. The weaknesses of the model itself impair its
function; for instance, on Letter Countdown, we see the model exhibiting uncertainty about what is
and isn’t an English word, suggesting a limitation of our model scale. We report skill use results for
all tasks in Appendix D.1.

Length Figure 4 shows that SkillFactory consistently produces responses that are intermediate in
length for in-domain tasks (countdown 4-arg) as well as out-of-domain tasks (like multiplication and
letter countdown). SkillFactory enables the model to use retry and reflection as skills, preventing it
from immediately answering the question always or getting stuck on the problem. On the other hand,
the RL baseline tends to only give intermediate outputs for the in-domain variant of the task. For the
out-of-domain tasks, the baseline either directly answers the question or just keeps generating. In
Appendix D we have sample traces from the RL baseline model and SkillFactory. We qualitatively
see evidence that SkillFactory has both implicit and explicit skill use for countdown variants. For

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Token length distribution for three tasks for responses given by (a) RL Baseline, (b) R1
distillation, (c) SkillFactory.

Table 5: OOD task results, showing ablations underperform SkillFactory in aggregate.

Model Acronym CSQA GSM8k Letter CD Multiplication Overall

4 5 4 5 2dig 3dig 4dig 5dig

Qwen2.5 1.5B Instruct 11.2 16.7 55.6 58.8 15.7 7.0 76.8 39.8 5.2 0.7 28.8
SkillFactory 11.8 9.7 60.9 67.7 20.2 9.0 94.0 39.3 6.8 0.7 32.0
Instruction Prompt 7.9 6.4 54.9 59.9 12.4 5.2 81.9 28.5 1.1 0.2 25.8
No Sample Order 8.0 5.9 59.3 67.0 10.5 5.2 69.1 14.9 0.6 0.1 24.1
No Reflections 7.4 6.8 57.7 61.5 9.3 4.8 70.2 14.0 0.7 0.2 23.3
No Prompt Diversity 8.4 4.3 62.4 68.5 20.3 7.8 85.8 30.2 2.0 0.3 29.0

out-of-domain tasks, our model still maintains the use of and explicit skills. Compared to this, the
RL baseline model only transfers skill use to in-domain tasks.

6.2 ABLATIONS

We conduct ablations to understand which components of SkillFactory contribute to its effectiveness.
We evaluate four key design choices: (1) Sample order: removing this constructs silver traces
without ensuring correct samples appear at the end or maintaining a positive ratio of correct to
incorrect samples. (2) Reflections: removes all <reflect> tags and their content from silver traces,
concatenating only solution attempts. (3) Prompt diversity: Uses only a single prompt (“Let’s
think step by step”) instead of our diverse set Psolve. Tests whether varied reasoning patterns matter.
Furthermore, we test a variant of the RL-Only method with an instruction prompt to encourage
<sample> and <reflect> tag usage through in-context examples, without any SFT stage.

Results on Countdown tasks. All of these methods underperform SkillFactory out-of-domain.
Table 5 shows that while RL-Only (Instruction Prompt) performs well on Countdown, it suffers
severe degradation on 9 out of 10 OOD tasks, achieving only 25.8% overall accuracy compared to
SkillFactory’s 32.0%. This pattern holds for both No Sample Order (24.1%) and No Reflections
(23.3%), demonstrating that structured SFT traces are essential for cross-domain transfer.

The No Prompt Diversity ablation maintains reasonable performance (29.0% overall) but still un-
derperforms SkillFactory, particularly on computational tasks like Multiplication. This suggests that
exposure to diverse reasoning patterns during SFT improves the model’s ability to adapt skills to new
domains. Additional results suggesting similar findings for Countdown can be found in Appendix B.

These results underscore the importance of key elements of SkillFactory: our use of an explicit SFT
stage, the quality of traces we assemble, and the explicit skill demarcation.

7 CONCLUSION

We introduced SkillFactory, a framework that teaches language models cognitive reasoning skills by
restructuring their own outputs into silver traces exhibiting retry and verification patterns. Without
requiring stronger teachers, SkillFactory improves performance over baselines on harder task vari-
ants as well as across out-of-distribution tasks, and enables inference scaling methods like budget
forcing. This self-distillation approach allows us to instill more diverse reasoning skills in language
models, making different reasoning capabilities more accessible without distillation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility statement To aid in reproducing SkillFactory, we have given in-depth details
about the construction of silver traces in sections 3, including Algorithm 1. Appendices C.2 and
C.3 give all of the prompts used in constructing the datasets for training. Additionally, all code,
models, and datasets will be made publicly available in future versions of this paper.

REFERENCES

Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, et al. Phi-4-reasoning
technical report. arXiv preprint arXiv:2504.21318, 2025.

Paul C Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought Anchors: Which LLM
Reasoning Steps Matter? arXiv preprint arXiv:2506.19143, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training Verifiers to Solve Math Word Problems. arXiv preprint arXiv:2110.14168,
2021.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal,
Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and Fate: Limits of Trans-
formers on Compositionality. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=Fkckkr3ya8.

Kanishk Gandhi, Denise H J Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah Goodman. Stream of Search (SoS): Learning to Search in Language. In First Conference
on Language Modeling, 2024. URL https://openreview.net/forum?id=2cop2jmQVL.

Kanishk Gandhi, Ayush K Chakravarthy, Anikait Singh, Nathan Lile, and Noah Goodman. Cogni-
tive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly Effective STaRs.
In Second Conference on Language Modeling, 2025. URL https://openreview.net/forum?
id=QGJ9ttXLTy.

Arnav Gudibande, Eric Wallace, Charlie Victor Snell, Xinyang Geng, Hao Liu, Pieter Abbeel,
Sergey Levine, and Dawn Song. The false promise of imitating proprietary language mod-
els. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=Kz3yckpCN5.

Etash Kumar Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal,
Marianna Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer,
Liangyu Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff,
Shiye Su, Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji,
Yichuan Deng, Sarah M. Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon
Albalak, Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal,
Saadia Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Mer-
rill, Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
Alexandros G. Dimakis, and Ludwig Schmidt. OpenThoughts: Data Recipes for Reasoning Mod-
els. CoRR, abs/2506.04178, June 2025. URL https://doi.org/10.48550/arXiv.2506.04178.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing Reasoning Capability in
LLMs via Reinforcement Learning. arXiv preprint arXiv:2501.12948, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. OpenAI o1 System Card. arXiv
preprint arXiv:2412.16720, 2024.

Adam Tauman Kalai, Ofir Nachum, Santosh S Vempala, and Edwin Zhang. Why language models
hallucinate. arXiv preprint arXiv:2509.04664, 2025.

10

https://openreview.net/forum?id=Fkckkr3ya8
https://openreview.net/forum?id=2cop2jmQVL
https://openreview.net/forum?id=QGJ9ttXLTy
https://openreview.net/forum?id=QGJ9ttXLTy
https://openreview.net/forum?id=Kz3yckpCN5
https://openreview.net/forum?id=Kz3yckpCN5
https://doi.org/10.48550/arXiv.2506.04178

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Joongwon Kim, Anirudh Goyal, Liang Tan, Hannaneh Hajishirzi, Srinivasan Iyer, and Tianlu Wang.
ASTRO: Teaching Language Models to Reason by Reflecting and Backtracking In-Context. arXiv
preprint arXiv:2507.00417, 2025.

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth Hegde, Kourosh
Hakhamaneshi, Shishir G Patil, Matei Zaharia, et al. LLMs Can Easily Learn to Reason from
Demonstrations Structure, not content, is what matters! arXiv preprint arXiv:2502.07374, 2025.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding R1-Zero-Like Training: A Critical Perspective. In Conference on Language
Modeling (COLM), 2025.

Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad BehnamGhader,
Mehar Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han Lù, et al. DeepSeek-R1
Thoughtology: Let’s think about LLM Reasoning. arXiv preprint arXiv:2504.07128, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Bo Pang, Hanze Dong, Jiacheng Xu, Silvio Savarese, Yingbo Zhou, and Caiming Xiong. BOLT:
Bootstrap Long Chain-of-Thought in Language Models without Distillation. arXiv preprint
arXiv:2502.03860, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. HybridFlow: A Flexible and Efficient RLHF Framework. arXiv
preprint arXiv: 2409.19256, 2024.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning
Models via the Lens of Problem Complexity. arXiv preprint arXiv:2506.06941, 2025.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and Charac-
terizing Reward Gaming. Advances in Neural Information Processing Systems, 35:9460–9471,
2022.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Na Zou, Hanjie Chen, and Xia Hu. Stop Overthinking: A Survey
on Efficient Reasoning for Large Language Models. Transactions on Machine Learning Research,
2025. ISSN 2835-8856. URL https://openreview.net/forum?id=HvoG8SxggZ.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
tion answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421/.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
Juntao Li, Zhuosheng Zhang, et al. Thoughts Are All Over the Place: On the Underthinking of
o1-Like LLMs. arXiv preprint arXiv:2501.18585, 2025.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. LIMO: Less is More
for Reasoning. In Second Conference on Language Modeling, 2025. URL https://openreview.
net/forum?id=T2TZ0RY4Zk.

11

https://arxiv.org/abs/2501.19393
https://openreview.net/forum?id=HvoG8SxggZ
https://aclanthology.org/N19-1421/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://openreview.net/forum?id=T2TZ0RY4Zk
https://openreview.net/forum?id=T2TZ0RY4Zk

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Edward Yeo, Yuxuan Tong, Xinyao Niu, Graham Neubig, and Xiang Yue. Demystifying Long
Chain-of-Thought Reasoning in LLMs. In ICLR 2025 Workshop on Navigating and Address-
ing Data Problems for Foundation Models, 2025. URL https://openreview.net/forum?id=
AgtQlhMQ0V.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. DAPO: An Open-Source LLM Reinforcement Learning
System at Scale. arXiv preprint arXiv:2503.14476, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STaR: Bootstrapping Reasoning With
Reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id= 3ELRdg2sgI.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

12

https://openreview.net/forum?id=AgtQlhMQ0V
https://openreview.net/forum?id=AgtQlhMQ0V
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI
http://arxiv.org/abs/2403.13372

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TRAINING HYPERPARAMETERS

A.1 HYPERPARAMETERS: SUPERVISED FINE-TUNING

We fine-tune each base model on its own silver traces. We train for one epoch to avoid overfitting.
Our goal is not to improve task performance at this stage. Instead, we aim to internalize the cognitive
patterns (sampling, reflecting, retrying) that will be refined during RL. We train with a context
length of 4096 and use a learning rate of 1e-6 with cosine annealing and full fine-tuning. Training
is performed using LlamaFactory (Zheng et al., 2024) with batch size 1.

A.2 HYPERPARAMETERS: REINFORCEMENT LEARNING

We train with RL using GRPO (Shao et al., 2024) on a held-out set of 1,000 questions from the
same task distribution, using only binary correctness rewards (1 for correct final answers, 0 for
incorrect). This sparse reward signal forces the model to discover which reasoning patterns actually
lead to success (Skalse et al., 2022). We train without KL divergence penalties, allowing the model
to deviate substantially from its initial policy (Liu et al., 2025; Yu et al., 2025). Our learning rate
is 1e-6, batch size 256 with minibatches of 32, and we train for 50 epochs. All experiments are
conducted on 4 GH200 GPUs using the VeRL framework (Sheng et al., 2024).

A.3 GENERATION PARAMETERS: DATASET CONSTRUCTION AND EVALUATION

We use the standard generation configuration for Qwen2.5-1.5B-Instruct (Team, 2024). More specif-
ically, we use a temperature of 0.7, repetition penalty of 1.1, top p of 0.8, and top k of 20.

B ADDITIONAL ABLATION RESULTS

Table 6: Ablation performance on Countdown tasks. Countdown 3arg performance is always high
but most ablations underperform SkillFactory on some variant.

Model Countdown

3arg 4arg 5arg 6arg

Qwen2.5 1.5B Instruct 14.3 ± 2.1 6.0 ± 1.5 2.0 ± 0.8 0.8 ± 0.5
SkillFactory 98.8 ± 0.5 30.7 ± 2.2 12.8 ± 1.6 9.0 ± 1.3

Instruction Prompt 97.3 ± 0.7 32.5 ± 2.5 12.7 ± 1.6 6.7 ± 1.1
No Sample Order 99.1 ± 0.5 21.8 ± 2.0 10.6 ± 1.4 7.8 ± 1.2
No Reflections 99.0 ± 0.5 20.8 ± 2.1 10.9 ± 1.5 7.5 ± 1.3
No Prompt Diversity 99.0 ± 0.5 31.9 ± 2.2 11.6 ± 1.6 10.8 ± 1.5
No Reflections 99.0 ± 0.5 20.8 ± 2.1 10.9 ± 1.5 7.5 ± 1.3

Table 6 shows that all methods achieve near-perfect accuracy on the training task (Countdown 3-arg),
indicating that design choices primarily affect generalization rather than in-distribution performance.
On harder variants, two patterns emerge. First, removing reflections or proper sample ordering sig-
nificantly hurts performance (e.g., 20.8% vs. 30.7% on 4-arg for No Reflections). This suggests that
both explicit verification and solution quality are crucial for learning transferable skills. Second, the
RL-Only (Instruction Prompt) baseline achieves competitive performance on Countdown variants
(32.5% on 4-arg), even surpassing SkillFactory slightly.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C DATA CURATION

C.1 GLUE PHRASES

Glue phrases are phrases that are placed between the <sample> <reflect> tags. These serve to
guide the model to generate a new solution. We categorize our glue phrases into three types: phrases
for correct responses, phrases for incorrect responses, and generic glue phrases. The phrases for
correct responses reaffirm that the previous answer was correct, but still prompt the model to give
a new response. For instance, “This previous answer was correct, but I should double check it to
be sure.” Meanwhile, the phrases for incorrect responses verbalize that the previous answer was
incorrect and that the model should generate a new reasoning trace. An example is “My previous
answer was incorrect. I will now try again.” Lastly, generic glue phrases are neutral and do not
depend on whether the previous answer was correct or incorrect. An example is “But wait, let me
think about it again.”

While constructing the SkillFactory SFT dataset, we add a glue phrase after every sample-
reflection sequence. If the sample-reflection sequence yielded a correct answer, we sample from
correct glue phrases ∪ generic glue phrases. If the sample-reflection sequence yielded an
incorrect answer, we sample from incorrect glue phrases ∪ generic glue phrases. The set of
glue phrases were first generated by an LLM from a few hand-written seed prompts, then manually
filtered and edited for clarity and diversity. The complete set of glue phrases is listed below:

• generic glue phrases = [‘‘However, I should double check this answer.",
‘‘But wait, let me think about it again.’’, ‘‘I can resolve this question
to be sure.’’, ‘‘Let me verify my answer.’’, ‘‘I should check my response
again.’’, ‘‘I can double check my response.’’, ‘‘Wait...’’, ‘‘Wait! I
should double check my answer.’’, ‘‘Although, if I want to be absolutely
sure, I should do this again.’’, ‘‘I’ll recheck what I said earlier.’’,
‘‘Time to review my response one more time.’’]

• correct glue phrases = [‘‘This previous answer was correct, but I should
double check it to be sure.’’, ‘‘Let me try this question again to verify
that my response is actually correct.’’, ‘‘My earlier answer seems correct,
but I should double check it to be sure.’’, ‘‘That response looks right, and
I have verified it. It might be worth doing it again just in case.’’ ‘‘That
answer seems fine, but I’d like to double check for to be safe.’’, ‘‘I
believe that was the right answer, but let me make sure.’’, ‘‘My previous
response looks accurate, though I should recheck it.’’, ‘‘The solution
seems right. I will now retry it to be more confident.’’, ‘‘Looking back,
my earlier answer seems right, though I’ll recheck it.’’ ‘‘I’m fairly
confident the last answer was right, but I’ll double-check anyway.’’
‘‘That response looks solid, though I want to be certain.’’, ‘‘I’m leaning
toward my last answer being right, but I’ll test it once more.’’ ‘‘It’s
better to be cautious | I’ll re-verify my previous answer.’’, ‘‘Seems
right to me, but a second look won’t hurt.’’]

• incorrect glue phrases = [‘‘My previous answer was incorrect. I will now
try again.’’, ‘‘On review, my last response falls short, so I’ll attempt
a new one.’’ ‘‘After reconsideration, I can see my earlier answer wasn’t
right, and I’ll try again.’’, ‘‘I learned from my mistake in the last
answer | let me rework it.’’, ‘‘I may have missed the mark earlier. Let
me rethink and attempt again.’’, ‘‘Instead of sticking with my incorrect
answer, I’ll try a new approach.’’, ‘‘Oops, I see the issue now | time
for another try.’’, ‘‘I realize that wasn’t the right answer. Let’s fix
it.’’, ‘‘I see the flaw in my earlier response. I’ll try a new one.’’,
‘‘I made an error before, so I’ll reconsider and answer again.’’, ‘‘Oops,
that wasn’t right. Let me take another shot.’’, ‘‘Looks like I messed
up earlier. I’ll go again.’’, ‘‘Since my earlier answer was incorrect,
I’ll rework the reasoning and attempt again.’’, ‘‘My last attempt wasn’t
correct, but I’ll refine it and try again.’’]

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Values for the parameters used in Algorithm 1

Parameter Value

DT Countdown 3-Arg
Nsample 16
Lmax 5

C.2 PROMPT VARIANTS

We use the following prompt variants

1. Original: “Let’s think step by step.”
2. Plan and execute: “To solve this question, write a high level plan you intend to use starting

with ”First, I’ll try to understand the problem better by writing out a plan and go really deep
into detail about how I should solve this,” then execute that plan (whatever reasoning is re-
quired), then give your resulting {answer type str} as the answer in the "<answer>(your
answer)</answer>" tag.”

• System prompt: “You like to solve problems by understanding the problem, writ-
ing a plan, executing the plan, then giving an answer. Write a plan that when
reasoned over would solve the question then give your answer in <answer>(your
answer)</answer>. You always end with </answer>, you never ever end without
giving an answer.”

3. Alternatively: “Think step by step and find some potential answers using the word
"Alternatively," to distinguish them when you are discussing if they are correct,
then give your resulting {answer type str} as the answer in the "<answer>(your
answer)</answer>" tags.”

• System prompt: “You like to find multiple answers for a question then deliberate
over them saying "Alternatively," between each answer you are deliberating on
and then you give your final answer in "<answer>(your answer)</answer>". You
always end with </answer>, you never ever end without giving an answer.”

4. Rephrase: “Begin your response with "Rewritten Question: " and by rewriting
the question making it contain only what is needed to solve it, then think step by step
and then give your resulting {answer type str} as the answer in the "<answer>(your
answer)</answer>" tags.”

• System prompt: You answer questions by saying "Rewritten Question: " then
rewriting the question to only contain what is needed to solve it and then think step by
step and then you give your final answer in "<answer>(your answer)</answer>".
You always end with </answer>, you never ever end without giving an answer.”

C.3 REFLECTION PROMPTS

We use the following prompts to prompt the model to generate reflections:

Reflection Prompt for Acronym task

Below is a question and a model response.
After reading the question and the model response, please reflect on whether the
model response is correct or incorrect.
Do not attempt to correct the model response or to improve it, just reflect on it.

Problem
{x['question']}

Model Response
{x[response_col][0]}

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Task
Is this previous answer correct or incorrect? Reflect on it and add your final
answer inside <verdict> </verdict> tags.

To give another example, if the list of words was ["iota", "disrespecting",
"essentials", "mashup", "analyse"] and the target is to come up with at least
four letter valid english word, and the answer the model response gives you was
'ema', you could write:
Let us verify this answer: 'ema'. First, let me check if the response uses the
first letters of the given word in order: the first letters of each word in the
given list are: 'i', 'd', 'e', 'm', 'a'. The letters in the given answer are:'e',
'm', 'a'. Yes the responses uses the first letter of the words in order.
Then, let me check if the response is at least four letters long, no it is not.
Then, let me check if the response is an english word, no it is not.
Since the response violates constraints in the prompt, it is incorrect.
<verdict>
Incorrect
</verdict>

To give another example, if the list of words was ["iota", "disrespecting",
"essentials", "mashup", "analyse"] and the target is to come up with at least
four letter valid english word, and the answer the model response gives you was
'idea', you could write:
Let us verify this answer: 'idea'. First, let me check if the response uses the
first letters of the given word in order: the first letters of each word in the
given list are: 'i', 'd', 'e', 'm', 'a'. The letters in the given answer are: 'i',
'd', 'e', 'a'. Yes the responses uses the first letter of the words in order.
Then, let me check if the response is at least four letters long, yes it is.
Then, let me check if the response is an english word, yes it is.
Since the response satisfies all constraints in the prompt, it is correct.
<verdict>
Correct
</verdict>

Remember, only reflect on the model response, do not attempt to correct it or
improve it.
Report your final assessment inside <verdict> </verdict> tags. You may only say a
verdict is "Correct" or "Incorrect". Nothing else is allowed within the <verdict>
tags. Make your reflections brief, but you should always reflect before the
<verdict> tags, you cannot only give a verdict. Start your response with "Let us
verify this answer:". Do not answer the question, determine if the models answer
is correct.

Reflection Prompt for the Letter Countdown task

Below is a question and a model response.
After reading the question and the model response, please reflect on whether the
model response is correct or incorrect.
Do not attempt to correct the model response or to improve it, just reflect on it.

Problem
{x['question']}

Model Response
{x[response_col][0]}

Task
Is this previous answer correct or incorrect? Reflect on it and add your final
answer inside <verdict> </verdict> tags.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

To give another example, if the list of letters was ['f','t','s','r','e','a'] and
the target is to come up with at least four letter valid english word using
letters from the input, and the answer the model response gives you was 'trace',
you could write:
Let us verify this answer: 'trace'. First, let me check if the response uses
letters from the input: 't' is in the input, 'r' is in the input, 'a' is in the
input, 'c' is not in the input, 'e' is in the input. The answer uses a letter not
in the input list.
Then, let me check if the response is at least four letters long, yes it is since
the answer is 5 letters long, which is greater than 4.
Then, let me check if the response is an english word, yes it is.
Since the response violates constraints in the prompt, it is incorrect.
<verdict>
Incorrect
</verdict>

To give another example, if the list of letters was ['f','t','s','r','e','a'] and
the target is to come up with at least four letter valid english word using
letters from the input, and the answer the model response gives you was 'fast',
you could write:
Let us verify this answer: 'fast'. First, let me check if the response uses
letters from the input: 'f' is in the input, 'a' is in the input, 's' is in the
input, 't' is in the input. The answer uses letters from the input list.
Then, let me check if the response is at least four letters long, yes it is since
the answer is 4 letters long.
Then, let me check if the response is an english word, yes it is.
Since the response satisfies all constraints, it is correct.
<verdict>
Correct
</verdict>

Remember, only reflect on the model response, do not attempt to correct it or
improve it.
Report your final assessment inside <verdict> </verdict> tags. You may only say a
verdict is "Correct" or "Incorrect". Nothing else is allowed within the <verdict>
tags. Make your reflections brief, but you should always reflect before the
<verdict> tags, you cannot only give a verdict. Start your response with "Let us
verify this answer:". Do not answer the question, determine if the models answer
is correct.

Reflection Prompt for the GSM8k task

Below is a question and a model response.
After reading the question and the model response, please reflect on whether the
model response is correct or incorrect.
Do not attempt to correct the model response or to improve it, just reflect on it.

Problem
{x['question']}

Model Response
{x[response_col][0]}

Task
Is this previous answer correct or incorrect? Reflect on it and add your final
answer inside <verdict> </verdict> tags.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For example, if the question was "Marc bought 5 model cars that cost $20 each and
5 bottles of paint that cost $10 each. He also bought 5 paintbrushes that cost $2
each. How much did Marc spend in total?" with the models response answering "5 x
20 = 100. 5 x 10 = 50. 5 x 2 = 10. 100 + 50 = 150. The answer is 150." you could
write:
Let us verify this answer: The model breaks the question down into subparts. 5 x
20 is 100. 5 x 10 is 50. 5 x 2 is 10. But then it only adds 100 + 50 and doesn't
add the 10 to the final answer. Therefore this is likely incorrect since we want
the absolute total.
<verdict>
Incorrect
</verdict>

To give another example, if the question was "Crackers contain 15 calories each
and cookies contain 50 calories each. If Jimmy eats 7 cookies, how many crackers
does he need to eat to have consumed a total of 500 calories?" with the models
response answering "7 x 50 = 350. 500 - 350 = 150. 150 / 15 = 10. 10 is the
answer.", you could write:
Let us verify this answer: To answer this question, we need to know how many
calories Jimmy ate, subtract that from 500, then divide it by the average calories
in a cracker. The model does this exactly. First finding 7 x 50 = 350 which is
correct. Then it subtracts this from 500 getting 150, again, correct. Finally, it
takes the remaining 150 calories and divides it by 15 to get 10. This is most
likely correct.
<verdict>
Correct
</verdict>

Remember, only reflect on the model response, do not attempt to correct it or
improve it.
Report your final assessment inside <verdict> </verdict> tags. You may only say a
verdict is "Correct" or "Incorrect". Nothing else is allowed within the <verdict>
tags. Make your reflections brief, but you should always reflect before the
<verdict> tags, you cannot only give a verdict. Start your response with "Let us
verify this answer:". Do not answer the question, determine if the models answer
is correct.

Reflection Prompt for the CSQA task

Below is a question and a model response.
After reading the question and the model response, please reflect on whether the
model response is correct or incorrect.
Do not attempt to correct the model response or to improve it, just reflect on it.

Problem
{x['question']}

Model Response
{x[response_col][0]}

Task
Is this previous answer correct or incorrect? Reflect on it and add your final
answer inside <verdict> </verdict> tags.

For example, if the question was "What establishment uses a revolving door as a
security measure?" with the answer choices being "A: a bank" and "B: Gamestop",
with the models response answering "Games are valuable and Gamestop is a place of
business which needs security, therefore, Gamestop is the answer." you could
write:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Let us verify this answer: Gamestop probably does not have revolving doors nor is
in need of security despite it being a place of business, this is because a bank
seems much more likely to need security, therefore I think the given answer is
incorrect.
<verdict>
Incorrect
</verdict>

To give another example, if the question was "What home entertainment equipment
requires cable?" with the answer choices being "A: a sink", "B: a bed", and "C: a
television" with the models response answering "A television requires cable and is
most likely the right answer here.", you could write:
Let us verify this answer: A sink doesn't really require electricity except for
the garbage disposal, a bed (with the exception of a few special types of beds)
also does not use electricity. A TV however, always needs a cable and electricity
to run. Additionally people also say "do you have cable" referring to a type of
service for the television. Overall, the model ignored explaining away the other
answers, but correctly identified the answer that most likely is correct therefore
I believe the models answer is correct..
<verdict>
Correct
</verdict>

Remember, only reflect on the model response, do not attempt to correct it or
improve it.
Report your final assessment inside <verdict> </verdict> tags. You may only say a
verdict is "Correct" or "Incorrect". Nothing else is allowed within the <verdict>
tags. Make your reflections brief, but you should always reflect before the
<verdict> tags, you cannot only give a verdict. Start your response with "Let us
verify this answer:". Do not answer the question, determine if the models answer
is correct.

Reflection Prompt for the Long Multiplication task

Below is a question and a model response.
After reading the question and the model response, please reflect on whether the
model response is correct or incorrect.
Do not attempt to correct the model response or to improve it, just reflect on it.

Problem
{x['question']}

Model Response
{x[response_col][0]}

Task
Is this previous answer correct or incorrect? Reflect on it and add your final
answer inside <verdict> </verdict> tags.

For example, if the question was "100 x 100" with the models response answering
"100 x 100 = 100 x 10 + 100 x 10 = 1000 + 1000 = 2000" you could write:
Let us verify this answer: The reasoning is trying to breakdown the arithmetic
into two subproblems that are easier to solve. This is good. But the subproblems
are wrong. You cannot add two 100 x 10 together to get 100 x 100. Therefore this
is incorrect.
<verdict>
Incorrect
</verdict>

To give another example, if the question was "200 x 350" with the models response
answering "2 x 35 = 70. 70 x 100 = 7,000. 7,000 x 10 = 70,000. The answer is
70,000.", you could write:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Let us verify this answer: The model broke the multiplication down into steps.
First it multiplies 2 x 35, ignoring the 0s, to make the problem easier. 2 x 35 is
indeed 70. Then it starts to multiply the result, 70, with the magnitudes of each
operand (100 for the first operand and 10 for the second). This results in 70,000
which seems correct.
<verdict>
Correct
</verdict>

Remember, only reflect on the model response, do not attempt to correct it or
improve it.
Report your final assessment inside <verdict> </verdict> tags. You may only say a
verdict is "Correct" or "Incorrect". Nothing else is allowed within the <verdict>
tags. Make your reflections brief, but you should always reflect before the
<verdict> tags, you cannot only give a verdict. Start your response with "Let us
verify this answer:". Do not answer the question, determine if the models answer
is correct.

Reflection Prompt for the Countdown task

Below is a question and a model response.
After reading the question and the model response, please reflect on whether the
model response is correct or incorrect.
Do not attempt to correct the model response or to improve it, just reflect on it.

Problem
{x['question']}

Model Response
{x[response_col][0]}

Task
Is this previous answer correct or incorrect? Reflect on it and add your final
answer inside <verdict> </verdict> tags.

For example, if the list of numbers was [20, 28, 98], the target was 658, and the
answer was 98 + 28 \\times 20 = 658 you could write:
Let us verify this answer: First, 28 \\times 20 = 560, then 98 + 560 = 658. The
answer is correct.
<verdict>
Correct
</verdict>

To give another example, if the list of numbers was [22, 8, 38], the target was
214, and the answer was (22 - 8) \\times 38 = 214, you could write:
Let us verify this answer: First, 22 - 8 = 14, then 14 \\times 38 = 532. This is
not equal to 214, so the answer is incorrect.
<verdict>
Incorrect
</verdict>

Remember, only reflect on the model response, do not attempt to correct it or
improve it.
Report your final assessment inside <verdict> </verdict> tags. You may only say a
verdict is "Correct" or "Incorrect". Nothing else is allowed within the <verdict>
tags. Make your reflections brief, but you should always reflect before the
<verdict> tags, you cannot only give a verdict. Start your response with "Let us
verify this answer:". Do not answer the question, determine if the models answer
is correct.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D MODEL OUTPUTS

In this section, we show examples from the RL baseline and the SkillFactory model.

For in domain variants of tasks like Countdown 4 argument, the RL only model does implicit retry-
ing and verification. However, responses from our SkillFactory model have implicit and explicit
reflections.

RL Only output for a Countdown 4arg Task

To create an equation using the numbers 60, 20, 1, and 11 that equals 880,
we can follow these steps:

1. First, add 60 and 20:
Step 1: 60 + 20 = 80

2. Next, add the result to 1:
Step 2: 80 + 1 = 81

3. Finally, add the result to 11:
Step 3: 81 + 11 = 92

However, 92 is not equal to 880. Let's try a different approach:

1. First, multiply 60 and 11:
Step 1: 60 * 11 = 660

2. Then, add 20 to the result:
Step 2: 660 + 20 = 680

Again, 680 is not equal to 880. Let's try a different combination:

1. First, multiply 20 and 11:
Step 1: 20 * 11 = 220

2. Then, add 60 to the result:
Step 2: 220 + 60 = 280

This is also not equal to 880. Let's try a different set of operations:

1. First, multiply 60 and 1:
Step 1: 60 * 1 = 60

2. Then, add 20 to the result:
Step 2: 60 + 20 = 80

Finally, add the result to 11:
Step 3: 80 + 11 = 91

This is also not equal to 880. Let's try a different approach:

1. First, multiply 20 and 11:
Step 1: 20 * 11 = 220

2. Then, subtract 60 from the result:
Step 2: 220 - 60 = 160

This is also not equal to 880. Let's try a different set of operations:

1. First, multiply 60 and 1:
Step 1: 60 * 1 = 60

2. Then, add 20 to the result:
Step 2: 60 + 20 = 80

Then, multiply the result by 11:
Step 3: 80 * 11 = 880

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

This is equal to 880. So, the equation is:

<answer>
(60 * 1) * 11
</answer>

SkillFactory models output for a Countdown 4arg task

<think>
<sample>
To solve for 880 using the numbers 60, 20, 1, and 11 with each number used
exactly once, we need to find a combination of addition, subtraction,
multiplication, and division that will yield 880. Let's break down the
process:

1. **Identify possible combinations**: We start by considering different
ways to combine these numbers.
2. **Trial and error**: Since there are limited combinations, we will try
various permutations to see if any work.

Let's start with some trial:

- **Combination 1**: Multiply 60 and 11 first, then add 20 and 1.
\[
(60 * 11) + 20 + 1 = 660 + 20 + 1 = 681
\]
This does not equal 880.

- **Combination 2**: Multiply 20 and 11 first, then add 60 and 1.
\[
(20 * 11) + 60 + 1 = 220 + 60 + 1 = 281
\]
This also does not equal 880.

- **Combination 3**: Subtract 1 from 60, then multiply the result by 20,
and finally add 11.
\[
(60 - 1) * 20 + 11 = 59 * 20 + 11 = 1180 + 11 = 1191
\]
This exceeds 880.

- **Combination 4**: Add 60 and 20, then multiply the sum by 11.
\[
(60 + 20) * 11 = 80 * 11 = 880
\]
This works!

Therefore, the correct combination is:
\[
(60 + 20) * 11 = 880
\]

So, the final answer is:
<answer>
(60 + 20) * 11
</answer>

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

</sample>
<reflect>
Let us verify this answer: First, 60 + 20 = 80, then 80 * 11 = 880. The
answer is correct.
</reflect>
</think>
That confirms the final answer is:
<answer>
(60 + 20) * 11
</answer>

RL Only output for a Long Multiplication 3 digit Task

To solve the multiplication equation \(520 \times 133\), we can break it
down into simpler steps:

First, let's multiply 520 by 3:
\[520 \times 3 = 1560\]

Next, let's multiply the result by 100 (since 133 is 100 + 33):
\[1560 \times 100 = 156000\]

Now, let's multiply 520 by 13:
\[520 \times 13 = 6760\]

Finally, add the two results together:
\[156000 + 6760 = 162760\]

So, the solution to the multiplication equation \(520 \times 133\) is
162760.

Therefore, the final answer is:

<answer>
162760
</answer>

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

SkillFactory models output for a Long Multiplication 3 digit task

<think>
<sample>
To solve the multiplication equation \(520 \times 133 \), we will break
it down into simpler steps:

Step 1: Break down 133 into more manageable parts.
\[133 = 100 + 30 + 3 \]

Step 2: Multiply 520 by each part of 133 separately.

Part 1: \(520 \times 100 \)
\[520 \times 100 = 52000 \]

Part 2: \(520 \times 30 \)
\[520 \times 30 = 15600 \]

Part 3: \(520 \times 3 \)
\[520 \times 3 = 1560 \]

Step 3: Add the results from each part together.
\[52000 + 15600 + 1560 \]

Step 4: Perform the addition.
\[52000 + 15600 = 67600 \]
\[67600 + 1560 = 69160 \]

Therefore, the product of \(520 \times 133 \) is **69160**.

The final answer is:
<answer>
69160
</answer>
</sample>
<reflect>
Let us verify this answer:
\[520 \times 133 = 520 \times (100 + 30 + 3) = 520 \times 100 + 520
\times 30 + 520 \times 3 = 52000 + 15600 + 1560 = 69160 \]
The calculation is correct.
</reflect>
</think>

That confirms the final answer is:

<answer>
69160
</answer>

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

RL Only output for GSM8k Task

To solve this problem, we need to follow these steps:

1. Determine the speed of the car in the slow lane.
2. Calculate the time it takes for the car in the slow lane to travel 480
miles.

Step 1: Determine the speed of the car in the slow lane.
The car in the fast lane travels at 60 miles per hour. The car in the slow
lane travels at half that speed:
\[\text{Speed of slow lane car} = \frac{60}{2} = 30 \text{ miles per
hour} \]

Step 2: Calculate the time it takes for the car in the slow lane to travel
480 miles.
We use the formula:
\[\text{Time} = \frac{\text{Distance}}{\text{Speed}} \]
Substitute the known values:
\[\text{Time} = \frac{480 \text{ miles}}{30 \text{ miles per hour}} = 16
\text{ hours} \]

So, the car in the slow lane took 16 hours to cover the same distance of
480 miles.

Therefore, the final answer is:
<answer>
(16)
</answer>

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

SkillFactory models output for a GSM8k

<think>
<sample>
To solve this problem, we need to follow these steps:

1. **Determine the speed of the slower car**:
- The faster car travels at 60 miles per hour.
- The slower car travels at half the speed of the faster car.
\[
\text{Speed of slower car} = \frac{60}{2} = 30 \text{ miles per hour}
\]

2. **Calculate the time taken by the faster car**:
- Distance traveled by the faster car = 480 miles.
- Speed of the faster car = 60 miles per hour.
\[
\text{Time taken by faster car} = \frac{\text{Distance}}{\text{Speed}}
= \frac{480 \text{ miles}}{60 \text{ miles per hour}} = 8 \text{ hours}
\]

3. **Calculate the time taken by the slower car**:
- Distance traveled by the slower car = Same as the faster car (since
both travel the same distance).
- Speed of the slower car = 30 miles per hour.
\[
\text{Time taken by slower car} = \frac{\text{Distance}}{\text{Speed}}
= \frac{480 \text{ miles}}{30 \text{ miles per hour}} = 16 \text{
hours}
\]

Therefore, the time taken by the slower car to cover the same distance is
16 hours.

The final answer is:
<answer>
16
</answer>
</sample>
<reflect>
Let us verify this answer: First, we calculate the speed of the slower
car, which is \(\frac{60}{2} = 30 \) mph. Then, we use the formula \(
\text{time} = \frac{\text{distance}}{\text{speed}} \) to find the time
taken by the slower car: \(\frac{480}{30} = 16 \) hours. This confirms
our answer is correct.
</reflect>
</think>

That verifies the final answer is:

<answer>
16
</answer>

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

RL Only output for a Letter Countdown 4 Task

To solve this problem, we need to find the longest possible English word
that can be formed using only the given letters. Let's analyze the input
letters: ['p', 'a', 's', 's'].

1. First, let's count how many times each letter appears in the input:
- p appears 1 time
- a appears 1 time
- s appears 2 times

2. Since we cannot form more than two 's' letters with just these four
letters, the longest word we can form will have at most three 's' letters
and some other letters.

3. Let's try forming words with different combinations of the letters:
- "sssa": This gives us the word "ssssa".
- "ssas": This gives us the word "ssass".

4. Both "ssssa" and "ssass" are longer than any single letter
combination, but we need to check if they can actually be formed from the
given letters.

5. "ssssa":
- We have 1 's' left.
- We have 1 'a'.
- We don't have enough 'p' or 's'.

6. "ssass":
- We have 1 's', 1 'a', and 2 's'.
- This gives us the word "ssass".

Since "ssass" is a valid English word and it uses all the letters
provided, we can conclude that the longest valid word is "ssass".

Therefore, the answer is: <answer> ssass </answer>

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

SkillFactory models output for a Letter Countdown 4 task

<think>
<sample>
To solve this problem, we need to follow these steps:

1. **Identify Available Letters**: First, we identify all the unique
letters available from the given set.

- Input letters: `['p', 'a', 's', 's']`

2. **Check Valid Words**: Next, we check which combinations of these
letters form valid English words that meet the criteria (at least 4
characters long).

3. **Formulate Word**: We then select the longest valid word from our
checks.

Let's start with identifying the unique letters:
- Unique letters: {'p', 'a', 's'}

Now, let’s try forming words using these letters:
- Possible words starting with 'p':
- "pass"

- Possible words starting with 'a':
- "asps"

- Possible words starting with 's':
- "spas"
- "asp"

Among these, the longest valid word is "pass".

Therefore, the longest valid word formed from the given letters is "pass".
</sample>
<reflect>
Let us verify this answer: The word "pass" uses all the letters 'p', 'a',
's', and 's' exactly once. It meets the condition of being at least 4
characters long and consists only of the provided letters. Therefore, the
answer is correct.
</reflect>
</think>

That confirms the final answer is:

<answer>pass</answer>

In example outputs below we see differences in how the two models generalize the skill use. In the
RL only output, we see the model pre-supposing a candidate answer to be an English word and then
checking for other constraints. There is also no explicit reflection of the final answer or implicit or
explicit retrying. Compared to the RL only output, our proposed method generates to explicit answer
attempts followed by explicit reflections. We also see differences in reasoning strategies where our
proposed model retries with different strategies (enumerating constraints and high level criteria vs
trying step by step).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

RL Only output for Acronym 4 letter word Task

To construct an acronym that meets all the given conditions, let's
analyze the list of words: ['relax', 'evolution', 'aesthetic', 'line'].

1. **Condition 1**: The acronym must be at least 4 characters long.
- The words have lengths: 5, 9, 8, and 4 respectively.
- The shortest word has 4 characters, so we need to include the first 4
words in our acronym.

2. **Condition 2**: The acronym must use the first letter of at least 4
words in the list.

- The first letters of the words are: r, e, a, l.
- We can choose any 4 out of these 4 letters. Let's pick r, e, a, l.

3. **Condition 3**: The acronym should only use letters from a subset of
the words in the list, in order.

- We will use the first 4 words: relax, evolution, aesthetic, line.

4. **Condition 4**: The acronym should produce a valid English word.
- Let's combine the chosen letters: realevate.

Now, let's check if "realevate" is a valid English word:
- It contains all the required letters from the selected words.
- It follows the order of the selected words.
- It forms a meaningful word.

Therefore, the acronym that satisfies all the conditions is: <answer>
realvate </answer>

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

SkillFactory output for a Acronym 4 letter word Task

<think>
<sample>
To solve this problem, we need to follow these steps:
1. **Identify Key Criteria**: - The acronym must be at least 4
characters long. - It should use the first letter of at least 4 words from
the list. - Only letters from specific words should be used. - The
resulting acronym must form a valid English word.
[...truncated due to space...]
Therefore, my final answer is:
<answer> REAL </answer>
</sample>
<reflect>
[..natural language reasoning..]
<verdict>
Incorrect
</verdict>
</reflect>
I should double check my response.
<sample>
To construct an acronym that meets the given criteria, let's break down
the process:
Step-by-Step Solution
Condition 1: At Least 4 Characters
We need an acronym with at least 4 characters.
Condition 2: Uses the first letter of at least 4 words
From the list ["relax", "evolution", "aesthetic", "line"], we'll take the
first letters of each word:
- relax -> r
- evolution -> e
- aesthetic -> a
- line -> l
This gives us the initial set {r, e, a, l}. To ensure we have at least 4
unique letters, we can add another distinct letter from the remaining
words. Let's choose "e" again for consistency but consider other
possibilities later.
Condition 3: Only uses letters from a subset of the words
Since we already used "e" twice, let's try adding another distinct letter
from the available options. We can pick "v" from "evolution".
So now our set becomes {r, e, v, a, l}.
Condition 4: Produces a valid English word
Next, we need to combine these letters into one word that forms a real
English word. One possible combination is "real".
Thus, the final acronym that meets all the criteria is:

<answer>real</answer>
</sample>
<reflect>
Let us verify this answer: The acronym formed using the first letters of
"relax", "evolution", "aesthetic", and "line" is indeed "real". This
satisfies all the given conditions: 1. It has exactly 4 characters. 2. It
uses the first letter of "relax", "evolution", "aesthetic", and "line".
3. All letters come from the specified words. 4. It forms the valid
English word "real".
Therefore, the answer is correct.
</reflect>
</think>

That confirms the final answer is:
<answer>real</answer>

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 8: Number of explicit answer attempts, explicit reflections and the verification F1 for the
correct and incorrect classes for Skill Factory.

#Answers #Reflect F1 (correct / incorrect)

Acronym 4 2.84 2.32 0.180 / 0.840
Acronym 5 2.76 2.36 0.140 / 0.860
CSQA 3.40 1.78 0.210 / 0.640
Countdown 3arg 1.57 1.22 0.960 / 0.910
Countdown 4arg 1.21 3.06 0.680 / 0.950
Countdown 5arg 0.98 3.03 0.660 / 0.980
Countdown 6arg 0.99 2.99 0.700 / 0.980
GSM8k 1.99 1.98 0.490 / 0.760
Letter Countdown 4 2.12 1.65 0.340 / 0.790
Letter Countdown 5 2.07 1.69 0.180 / 0.790
Long Multiplication 2dig 2.21 1.29 0.530 / 0.360
Long Multiplication 3dig 2.15 1.84 0.360 / 0.800
Long Multiplication 4dig 2.46 2.20 0.110 / 0.860
Long Multiplication 5dig 2.39 2.00 0.010 / 0.850

D.1 ANALYSIS OF SKILL USE

We report skill use by SkillFactory across all tasks in Table 8.

E ADDITIONAL DETAILS FOR OUR BOLT-LIKE BASELINE

We randomly sample 10 questions from our training split of Countdown with 3 arguments and
prompt claude-sonnet-4-20250514 to produce high-quality reasoning traces for each question
with the following user prompt.

Prompt for High Quality Reasoning Traces from Claude Sonnet 4

{x['question]'}

Your response must not only solve the problem but also deliberately include the
following elements: a clear problem analysis, an explicit plan, exploration of
alternative solution paths, explicit backtracking when a path fails, reflection
on your choices, verification of both intermediate steps and the final result, and
strict adherence to the required output format. Including these components is just
as important as arriving at the correct answer.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 5: Distribution of token response of all responses given by two models: RL Baseline and
SkillFactory (proposed method).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 6: Distribution of token response of all responses given by two models: R1 Distillation and
SkillFactory (proposed method).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 7: Distribution of token response of all responses given by two models: BOLT and SkillFac-
tory (proposed method).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 8: Distribution of token response of all responses given by two models: STaR and SkillFac-
tory (proposed method).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

F LLM CONTRIBUTIONS

We used LLMs mainly to help with minor tweaking of Latex formats and to jumpstart ideas for
figure one that were ultimately heavily edited and expanded upon. Additionally, minor usage to
reword paragraphs for conciseness that were then edited and rephrased by the authors heavily (if not
rewritten entirely).

36

	Introduction
	Background and Motivation
	Cognitive Skills in LLMs
	Tasks: Planning, Search, and Computation

	SkillFactory
	Experimental Setup
	Baselines
	Task Setup and Evaluation
	Training

	Results
	In-Domain Performance
	Generalization to Harder Tasks
	Budget Forcing

	Ablations and Analysis
	Analysis of Skill Usage
	Ablations

	Conclusion
	Training Hyperparameters
	Hyperparameters: Supervised Fine-tuning
	Hyperparameters: Reinforcement Learning
	Generation Parameters: Dataset Construction and Evaluation

	Additional Ablation Results
	Data curation
	Glue Phrases
	Prompt Variants
	Reflection Prompts

	Model Outputs
	Analysis of Skill Use

	Additional Details for Our BOLT-like Baseline
	LLM Contributions

