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Abstract

Agriculture is essential to a flourishing economy. Although soil is essential for
sustainable food production, its quality can decline as cultivation becomes more in-
tensive and demand increases. The importance of healthy soil cannot be overstated,
as a lack of nutrients can significantly lower crop yield. Smart soil prediction and
digital soil mapping offer accurate data on soil nutrient distribution needed for
precision agriculture. Machine learning techniques are now driving intelligent soil
prediction systems. This article provides a comprehensive analysis of the use of
machine learning in predicting soil qualities. The components and qualities of soil,
the prediction of soil parameters, the existing soil dataset, the soil map, the effect of
soil nutrients on crop growth, are the key subjects under inquiry. Smart agriculture,
as exemplified by this study, can improve food quality and productivity.
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1 Soil Components and Properties

Sustainable agricultural growth and enhanced crop yields are both feasible consequences of land
reclamation and productive resource management. Increased yields can be obtained in intensive
cropping by using adequate nutrition sources and application rates [1]. Soil quality fundamentally
means “the ability of a soil to function”; this ability can be indicated by the estimated soil’s physical,
chemical, and biological qualities, often known as soil quality indicators (SQI) [2]. Several soil
investigations may be envisaged to adequately quantify the soil framework, and science-based indices
on SQI provide valuable data to farm managers for decision making. These indices incorporate
important soil attributes, including supplying suitable amounts of water and nutrients, resisting and
recovering from physical degradation, and supporting plant growth with the right management [3].
Sustainable farmland management requires an in-depth familiarity with the relationships between soil
physical qualities and many agronomic and environmental factors [4]. The availability of nutrients is
influenced by the soil’s chemical and physical properties, such as its parent material and naturally
occurring minerals, organic matter, depth to bedrock, sand, or gravel, permeability, water-holding
capacity, and drainage. The distribution of nutrients is also determined by plant and atmospheric
conditions [5]. The nutrient concentration in the soil solution is influenced by soil water content,
depth, pH, cation-exchange capacity, redox potential, soil organic matter, microbial activity, season,
and fertilizer application [6]. It is typically time-consuming and costly to estimate and evaluate soil
components and qualities. Predictive soil mapping is a common modeling approach used to estimate
the spatial distribution of soil components when actual data from samples are unavailable. Many of
these approaches rely on predictive maps or the estimation of soil-related variables at unmeasured
locations based on field data using mathematical or statistical models of relationships between soil
and other environmental elements [7].

1.1 Research Justification

The ability of ML-based methods to accurately forecast soil characteristics, crop growth, and soil
fertility has attracted a lot of attention in recent years. Texture, organic matter, pH, nutrient content,
soil moisture, and soil structure are just a few of the many soil variables that may be analysed with
the ML approach. ML techniques are superior to traditional statistical methods because of their
capacity to process massive amounts of complex data and reveal hidden patterns. Several studies have
focused on developing ways for applying machine learning to predict soil parameters [8,9,10], crop
growth [11,12,13], and soil fertility [14,15]. Recently, a systematic literature review that highlights
the research gaps in certain applications of deep learning techniques and evaluates the influence of
vegetation indicators and environmental factors on agricultural productivity was published in [16].
The authors examined prior studies from 2012 to 2022 from various databases. The article focuses
on the benefits of employing deep learning in agricultural yield prediction, the best remote sensing
technology depending on data collection requirements, and the numerous factors that influence crop
yield prediction. In general, several studies have demonstrated the efficacy of machine learning
algorithms in predicting soil properties, soil fertility, and crop yields. It is vital to keep in mind,
though, that ML models’ accuracy is extremely sensitive to the quantity and quality of data used in
training, in addition to the algorithms and parameters with which they are implemented. Further
research is needed to investigate how to construct and refine ML models for predicting soil parameters
and evaluate how well they function in different environmental and soil circumstances. Farmers,
policymakers, plant breeders, and other professionals in the agricultural sector can all benefit from
ML recommendations.

1.2 Soil Dataset

To determine the nutrient level, composition, and other properties of a soil sample, scientists conduct a
soil test. Soil testing can involve a variety of techniques and fertilizer recommendations to determine
the soil’s fertility and pinpoint any deficiencies that need to be addressed. Soil analysis provides
information useful to farmers and consumers in deciding when and how much fertilizer and farmyard
manure should be administered during a crop’s growth cycle [17]. Soil datasets entail information on
land suitability for agricultural production, soil maturity, soil texture, meteorological data, moisture
content, soil classes, soil colour, covariate data, soil nutrients, and trace elements.
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Figure 1: Digital soil map depicting the soil’s nutrients for a location in South-West Nigeria.

The utilisation of covariate environmental data facilitates the establishment of associations between
soil properties and various environmental factors. The process of soil formation and its characteristics
are impacted by several factors, including but not limited to climatic conditions, topographical
features, vegetation cover, land utilisation, and the nature of the parent material. The integration of
covariate data can enhance the efficacy of soil prediction models by enabling a more comprehensive
understanding of the intricate interplay between soil and its surrounding ecosystem. The inclusion
of covariate environmental data is imperative in soil prediction due to its ability to augment our
comprehension of soil-environment associations, capture spatial heterogeneity, offer insights into
fundamental mechanisms, enable data amalgamation, and facilitate informed decisions regarding land
management. The integration of covariate data into soil prediction models enhances their precision
and usefulness in diverse domains, such as agriculture, environmental governance, and land use
management [18,19].

1.3 Soil Map

Environmental elements pertaining to geology, landforms, or vegetation are identified through the
use of aerial photographs, Landsat images, and digital elevation models (DEMs) in traditional digital
soil mapping. The method is then checked against real-world data [20]. The final outcome is a
map labeled with soil classifications, which can be confusing to users. Furthermore, there are other
issues caused by mapping’s subjective character [21]. In traditional soil surveys, the soil is mapped
according to the surveyor’s preconceived notions [22]. Classical mapping’s conceptual framework
was established using quantitative and statistical methods. The method of developing and updating
spatial soil information systems via analytical and experimental observational methods paired with
spatial and non-spatial soil inference systems is generally known as digital soil mapping [23]. The
digital soil map depicted in Figure 1 presents an illustration of the soil nutrient distribution in a
specific area located in Ogun State, situated in the south-west region of Nigeria. In prior studies,
a digital soil map was considered a digitized conventional soil map in the form of polygons [24].
However, because the map was not created using statistical inference, it cannot be construed as
a digital soil map, but rather a digitized soil map. SCORPAN is a mnemonic for an empirical
quantitative description of relationships between soil and environmental factors with a view to using
these as soil spatial prediction functions for the purpose of digital soil mapping where each letter
stands for the following: S = soil classes or attributes, f = function, s = soil, other or previously
measured properties of the soil at a point, c = climate, climatic properties of the environment at a
point, o = organisms, including land cover and natural vegetation or fauna or human activity, r =
relief, topography, landscape attributes, p = parent material, lithology, a = age, the time factor, n =
spatial or geographic position.
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The initial development of the SCORPAN framework for use in digital soil mapping was accomplished
by [25]. Spatial soil prediction functions with an auto-correlated error are often used to forecast soil
class or soil attributes from so-called SCORPAN factors [25].

Sc = f(s, c, o, r, p, a, n) + e, orSa = f(s, c, o, r, p, a, n) + e

’e’ stands for spatially correlated residuals, where Sc and Sa are soil classes and soil properties
as a function of soil, climate, organisms, relief, parent material, age, and geographical position
[26]. For the quantitative prediction of soil groups or dynamic soil properties based on empirical
observations, the SCORPAN model is employed.The majority of effort in digital soil mapping is
based on developing a mathematical model that connects field soil data and SCORPAN variables
[27,28]. Afterwards, the model is used with extensive spatial environmental data. To extrapolate,
update, or disaggregate soil maps, digital soil mapping can also employ conventional soil maps as
input [29,30]. The underlying principle is to employ machine learning (ML) techniques to find the
knowledge inherent in completed surveys or to reverse engineer the surveyor’s soil-landscape mental
model [31].

2 Artificial Intelligence (AI) Models for Soil Properties Prediction

AI models have been widely employed in predicting soil attributes. Ref. [32] offered a computerized
soil mapping method for preventing gully erosion by advising landowners on preventative steps.
Using R-Squared, KC, and RMSE as accuracy metrics, a multiple nonlinear regression model was
built with 68% precision. Nonetheless, the low accuracy is understandable given that the soil depth
map is not a fair depiction of the sample in reality, making it difficult to conduct research. The use
of machine learning algorithms for estimating soil depth has been explored further in [33]. Quality
Reference Framework(QRF) models were utilized, and with RMSE as the measure of evaluation,
they were able to reach an accuracy of 30%. It can be inferred from the accuracy percentage that soil
depth in digital soil mapping is still a discoverable topic. An evaluation of soil fertility using DSM
and machine learning techniques was proposed in [34]. Using QRF, great accuracy was attained by
utilizing the evaluation metrics RMSE and MAE. However, the model’s precision was constrained
for some soil characteristics, such as nitrogen (N) and potassium (K). Soil maps for a variety of soil
qualities, for which QRF was able to provide the best accuracy, is another issue that was addressed.
Self-organizing maps (SOMs) were also employed as a machine learning model [35]. Supervised
maps are used to forecast soil moisture using SOM and random forest (RF) models; when tested on
a dataset including both soil moisture and land cover, SOM showed greater model accuracy than
RF when evaluated with respect to R2 and KC. Multi-sensor data and ML algorithms, including
RF, XGBoost, and SVM (supervised vector machine), were also used to make predictions about
soil moisture, with an accuracy of 87.5% [36]. Many deep learning methods, such as deep neural
networks (DNN) and artificial neural networks (ANN), have been used to predict soil attributes in
space. With an AUC of 89.8%, DNN achieved the highest accuracy. Due to the lack of high-quality
artificial intelligence solutions for digital soil mapping, researchers from all over the world are paying
close attention to the field.

3 Findings and Discussion

Majority of published works (67.3%) dealt with issues of soil nutrient characteristics; 17.3% handled
DSM; 11.1% addressed soil erosion; and 5.5% dealt with soil fertility. For soil prediction, RF and
neural networks outperform conventional machine learning methods.

4 Conclusion

The study reviews machine learning methods for predicting soil properties, highlighting gaps in
research and their findings. Challenges include inaccurate data, regional variations, and feature
selection. Collaboration, model monitoring, and adaptation are crucial for refining machine learning
techniques. Implementing these techniques in less developed nations faces challenges such as
language barriers, limited resources, and data availability. Solutions include investing in data
collection, infrastructure, education, and partnerships with foreign organizations to improve soil
management and agricultural productivity.
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