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ABSTRACT

Probability flow based models for image and audio synthesis, such as denois-
ing diffusion probabilistic models and Poisson flow generative models, can be
interpreted as modeling the ground truth distribution through a non-compressible
passive fluid partial differential equation, where the initial fluid density equals to
ground truth distribution and the final fluid density equals to the chosen prior dis-
tribution. In this research, we improve the architectural designs of neural networks
and propose WaveFluid model for mel-spectrogram conditioned speech synthesis
task, which learns a velocity field directly through adversarial training instead of
estimating the solution to a chosen linear partial differential equation like diffu-
sion or Poisson equation in previous works. And since mel-spectrogram is a strong
condition and limits the possible audios to a small range, we split our model into
two stages and use reparameterization techniques to reduce memory footprint and
improve training efficiency. Experimental results show that our model is compet-
itive with previous vocoders in sample quality within five inference steps1.

1 INTRODUCTION

Recent advancements in training algorithms and network architectures have facilitated the produc-
tion of high-fidelity audio by deep generative models in the realm of speech synthesis (Kumar et al.,
2019; Kong et al., 2020b; Lam et al., 2022; Huang et al., 2023; Lv et al., 2023; Ye et al., 2023).
The pioneering implementation of a deep generative model involved the autoregressive generation
of waveforms from mel-spectrograms (Oord et al., 2016; Kalchbrenner et al., 2018), which yielded
high-fidelity audio but was hindered by a significantly slow inference speed. To overcome this limi-
tation and achieve real-time high-fidelity speech synthesis, a multitude of non-autoregressive models
have been proposed recently. These models can be broadly categorized into three types: flow-based
models, generative adversarial networks, and diffusion probabilistic models.

Flow-based models generate waveforms from a chosen prior distribution, such as the Gaussian dis-
tribution, utilizing invertible neural networks (Ping et al., 2020; Prenger et al., 2019). These models
require the preservation of invertibility and the evaluation of the determinant for training, which
is accomplished through the employment of intricately designed neural networks. However, this
design constrains the model’s flexibility and restricts the quality of the audio output. In contrast,
Generative Adversarial Networks (GANs) provide greater flexibility than flow-based models and
can efficiently generate waveforms of superior fidelity (Kumar et al., 2019; Kong et al., 2020a; Kim
et al., 2021). The success of these models can be attributed to the large receptive fields of the gener-
ators and the discriminators’ capacity to identify noises of varying scales and periods. Specifically,
Kumar et al. (2019) proposed multi-scale discriminators, while Kong et al. (2020a) introduced a
multi-receptive field (MRF) generator and multi-period discriminators, significantly enhancing the
model’s performance.

Diffusion probabilistic models, which employ a Markov chain to transform a known prior distri-
bution into a complex ground truth distribution, are the most popular choice (Kong et al., 2020b;
Lam et al., 2022; Huang et al., 2023). These models utilize a noise-adding diffusion process without
learnable parameters to obtain the training data for the denoising generator, eliminating the need

1Audio samples and codes are available at a newly registered anonymous repository: https://github.
com/JBJWZZHCDS/WaveFluild
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for additional networks such as discriminators or autodecoders during training. However, the in-
ference process using diffusion models is typically time-consuming. To address this, Kong et al.
(2020b), Lam et al. (2022), and Huang et al. (2023) have proposed several different approximate
fast-sampling algorithms that can generate waveforms efficiently, albeit with a slight reduction in
sample quality.

In this study, we initially conduct a review of diffusion probabilistic models and Poisson flow gener-
ative models, an efficient new visual generative model ((Xu et al., 2022)), under a unified perspective
of a non-compressible passive fluid partial differential equation. This equation has boundary con-
ditions at t = 0 and t = 1, which are equivalent to the ground truth distribution and a known prior
distribution, respectively. These models employ a fixed linear partial differential equation (PDE),
where the velocity field can be expressed as a function of fluid density. This PDE is then solved
using the Green’s function method 2 to derive the corresponding prior distribution and training data
for the reverse denoising process.

Additionally, we improve the architectural designs of neural networks for generators and discrim-
inators and introduce the WaveFluid model for the mel-spectrogram conditioned speech synthesis
task. This model learns a velocity field directly through adversarial training. It is noteworthy that
the mel-spectrogram, being a strong condition, restricts the potential audios to a narrow range. Con-
sequently, we divide our model into two stages. The first stage is a deterministic function that
upsamples mel-spectrograms to provide more detailed information for the second stage. The second
stage, on the other hand, is a probabilistic refiner that uses velocity fields to generate high-fidelity
waveforms based on the output of the first stage. We also employ reparameterization techniques
in the second stage to minimize memory usage and enhance training efficiency. The mean opin-
ion score (MOS) test results indicate that WaveFluid is on par with previous diffusion models and
Generative Adversarial Networks (GANs) in terms of sample quality and efficiency.

2 BACKGROUNDS AND RELATED WORKS

2.1 NON-COMPRESSIBLE FLUID EQUATION

(1) shows the non-compressible fluid equation in physics.

∂n

∂t
(x, t) +∇x(n(x, t)v(x, t))− s(x, t) = 0, (1)

The fluid density function, n(x, t), the velocity field, v(x, t), and the source function, s(x, t), are
vital when studying generative models. The primary concern in this case pertains to equations
where the fluid density function, n(x, t), functions as a probability density function, represented
as p(x, t). This perspective considers the initial boundary condition, p(x, 0) = pdata(x), where
pdata serves as the fundamental truth distribution from which samples can be obtained. Given that
v(x, t) is predetermined, it is possible for two distributions to transition into each other. For ex-
ample, the final distribution at t = 1 may be derived from generating particles based on the data
distribution p(x, 0) = pdata(x). The positions of these particles can subsequently be computed dis-
cretely through the application of a birth-death process (Lu et al., 2019), with s(x, t) dictating the
probability of birth and death.

In contrast, should the chosen equation, which has previously reached a prior distribution at t = 1,
be known, real data at t = 0 can be generated inversely by sampling from the prior distribution.
Nevertheless, to maintain the density function as a probability density and facilitate efficient sam-
pling without the birth-death process, the source, s(x, t), should be deemed as 0. With s(x, t) = 0,
a particle can initially be generated according to the known prior distribution. Subsequently, real
data can be sampled from the trajectory Ordinary Differential Equation (ODE) from t = 1 to t = 0.

dx

dt
= v(x, t) (2)

As (2) shows, the challenge now lies in identifying an appropriate velocity field, denoted as v(x, t).
Previous research has addressed this issue by solving specific linear partial differential equations
(PDEs) with a single function variable, φ(x, t). In this context, p(x, t) and v(x, t) can be considered

2Green’s function method:https://en.wikipedia.org/wiki/Green%27s_function
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as functions of φ(x, t). Utilizing the ground truth distribution and a Green’s function solution to
φ(x, t), along with the boundary condition at t = 0, the analytical forms of p(x, t) and v(x, t)
can be readily derived. Consequently, the velocity field can be trained efficiently. For example, the
Gaussian perturbation kernels in diffusion probabilistic models can be interpreted as the Green’s
function to the diffusion equation. Detailed examples are provided in Appendix B and Appendix C.

2.2 SCORE BASED GENERATIVE MODELS

Models for audio synthesis, such as DiffWave, ProDiff (Huang et al., 2022b), and FastDiff, pri-
marily focus on data scoring. Song et al. (2020) have successfully unified Noise Conditional Score
Networks (Song & Ermon, 2019) and the Denoising Diffusion Probabilistic Model (Ho et al., 2020)
under the umbrella of stochastic differential equations (SDEs). This unification is exemplified in the
forward diffusion SDE, which is as (3).

dx = f(x, t)dt+ g(t)dw (3)

And the corresponding backward SDE is shown in (4).

dx = [f(x, t)− g2(t)∇x log p(x, t)]dt+ g(t)dw (4)

The Kolmogorov forward equation, also known as the Fokker-Planck Equation3 , can be reformu-
lated into a linear fluid partial differential equation (5), and a detailed proof of this transformation is
provided in Appendix A.

∂p

∂t
(x, t) + p(x, t)∇xf(x, t) + f(x, t) · ∇x(p(x, t))−

1

2
g2(t)∇2

xp(x, t) = 0, (5)

v(x, t) = [f(x, t)− 1

2
g2(t)∇x log p(x, t)]. (6)

It’s an non-compressible passive fluid linear partial differential equation where (6) exists, and the
learning process of score based models is actually based on solving the equation by Green’s function
method. We will solve a special case ∂p

∂t (x, t) − ∇
2
xp(x, t) = 0 in Appendix B using Fourier

Transformation to demonstrate this issue.

2.3 POISSON FLOW GENERATIVE MODELS (PFGMS)

Poisson Flow Generative Models (PFGMs) (Xu et al., 2022) are proficient visual generative models
that exhibit comparable efficiency to score-based models. These models generate samples from the
ground truth distribution by utilizing high-dimensional electric fields, which are solutions to the
Poisson partial differential equation. To circumvent the issue of mode collapse, the original data
is augmented with an additional dimension. The prior distribution is then defined as a uniform
distribution on the surface of the superballs. It is noteworthy that this augmented dimension can
be interpreted as time, thereby suggesting that PFGMs are essentially modeling a time-dependent
Poisson equation as (7), where φ(x, t) is the electricity potential function.

∂2φ

∂t2
(x, t) +∇2

xφ(x, t) = 0, (7)

It is noteworthy that this equation cannot be directly interpreted as a fluid equation. To derive an
appropriate equation, the selection (8) could be made.

p(x, t) =
∂φ

∂t
(x, t),v(x, t) =

∇xφ(x, t)
∂φ
∂t (x, t)

, (8)

Thus, the boundary condition at t = 0 becomes (9).

p(x, 0) =
∂φ

∂t
(x, 0) = pdata(x) (9)

Presently, PFGMs are translated into a fluid equation, and training data can be generated subsequent
to the resolution of this linear PDE. Further details regarding the Green’s function solution to this
equation, as well as the training process of PFGMs from the perspective of fluid equations, are
deferred to Appendix C.

3Kolmogorov forward Equation or Fokker-Plank Equation: https://en.wikipedia.org/wiki/
Fokker%E2%80%93Planck_equation
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2.4 MELGAN AND HIFI-GAN VOCODER

As delineated in the introductory section, MelGAN proposes the use of multi-scale discriminators,
while Hifi-GAN introduces the multi-receptive fusion generator and multi-period discriminators.
These have subsequently become the foundational structures for current speech synthesis Genera-
tive Adversarial Networks (GANs). However, these models employ a single deterministic generator
to directly produce waveforms from mel-spectrograms, while utilizing numerous discriminators to
detect subtle noises. This approach, while efficient, inadvertently limits sample diversity and compli-
cates further refinements, particularly when compared to diffusion probabilistic models. To address
this issue, the subsequent section proposes novel model structures.

3 METHODS

3.1 OVERVIEW AND MOTIVATION

As previously discussed, our model can be viewed as a multi-step Generative Adversarial Network
(GAN) that directly learns a velocity field through adversarial training and generates samples by
discretely simulating the trajectory of an ordinary differential equation (ODE). However, this method
is not universally efficient for all generative tasks. As the number of training steps increases, the
stability of the training process decreases, and the memory footprint required for model training
becomes prohibitively large.

Nevertheless, for the specific task of mel-conditioned speech synthesis, the potential audio outputs
are already confined within a limited range. This implies that the primary audio information can be
deterministically extracted from the provided mel-spectrograms, and probabilistic refinement should
only be performed around the ground truth audio. In other words, from the perspective of the non-
compressible fluid equation, a fluid particle, which represents an audio clip, is strongly attracted to
a relatively small area where the real audio resides.

Guided by this fundamental task characteristic, we effectively developed a domain-specific, two-
stage adversarial model for the mel-spectrograms conditioned speech synthesis task. In this model,
the first generator corresponds to the deterministic upsample function, while the second refiner is
accountable for the probabilistic refinement. It is noteworthy that these two networks are integrated
into a single generator and trained concurrently. This implies that our model does not perform
speech enhancement on a pre-trained GAN.

The general structures of WaveFluid are illustrated in Figure 1, and the detailed stuctures of modules
can be found in Appendix D.

3.2 ARCHITECTURE

3.2.1 GENERATOR

The generator is composed of two parts: (1) Attention Upsampler; (2) Velocity field refiner.

Attention Upsampler employs a mel-spectrogram as input, which is subsequently upsampled via
an interpolation and upsample block. This process is detailed in the following paragraph. This
procedure continues until the length of the output sequence aligns with the temporal resolution of
the raw waveforms. Each output from the interpolation and upsampling process is aggregated and
then fed into the subsequent layer. Our experimental results show that the upsampling shortcut is
beneficial for decreasing the artifacts caused by transposed convolution.

The Velocity Field Refiner is predicated on the Unet model, utilizing the same upsample block as
the generator and the same downsample block as the discriminator. The input for this component
is derived from the output of the upsample blocks. Subsequently, the output is the average of the
outputs from both the generator and the refiner.

3.2.2 DWT BLOCK

In previous studies employing convolution-based networks, average pooling has been utilized to
downsample raw audio. However, this approach overlooks the sampling theorem, resulting in the

4
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Figure 1: The structure of WaveFluid.

aliasing of high-frequency contents and rendering them invalid. In contrast,(Kim et al., 2021)
Fre-GAN employs the Discrete Wavelet Transform (DWT) (Cohen et al., 1992) to execute non-
destructive downsampling. We apply Daubechies1 wavelet transformation to our model, and this
method preserves the high-frequency information of the waveform, making it more suitable for
high-resolution audio processing. Detailed structure is visualized in Figure 4.

3.2.3 DISCRIMINATOR

The discriminator is symmetric with the first stage generator, but has quite different super parameters
compared with the first stage generator. In addition, the upsampling shortcuts are changed into DWT
shortcuts, and the upsample blocks are also replaced by downsample blocks, which have different
residual blocks inside compared with the upsample blocks. The detailed module in discriminator
can be seen in Figure 3.

3.2.4 ATTENTION BLOCKS

We have developed a specialized self attention (Vaswani et al., 2017) layer specifically tailored
for periodic patterns inside audio data (detailed structure see Figure 5). Initially, the length of
the input audio sequence is padded to become a multiple of the patching parameter, denoted as p.
Subsequently, the sequence is divided into several groups, each containing a sequence of length
p. Following the application of a 2D convolution layer with 3Ci output channels, the sequence is
partitioned by the channel dimension into three distinct batches. Each batch is then reshaped to form
Q,K, and V , where each patch rather than each sample point is regarded as a word and possesses
an word vector with a dimension of Cip.

Q,K, V = conv2d(transpose(patch(input))) (10)

The conventional attention layer typically necessitates the multiplication of Q and K, as (10) shows.
However, for waveform data, the memory cost associated with this operation is prohibitively high.
(Shen et al., 2021) proposed an innovative method to decouple Q and K, and prioritize the multi-
plication of K and V ,which makes the algorithm’s spatial complexity become O(n), where n is the
length of audio sequence.The procedure is outlined as (11).

Q′
i,j =

exp(Qi,j)∑
j exp(Qi,j)

K ′
i,j =

exp(Ki,j)∑
i exp(Ki,j)

hidden = Q′
(
K ′⊤V

) (11)
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Finally, we restore the hidden state and adjust the sequence to match the original input shape as (12).
out = unpad(unpatch(hidden)) (12)

This design actualizes a self-attention mechanism while maintaining an acceptable balance between
memory usage and computational cost. Finally, we adopt the dropkey method in (Li et al., 2023) to
prevent overfitting.

3.3 TRAINING OBJECTIVE

GAN Loss The training objectives for both the generator and the discriminator are derived from
the LS-GAN(Mao et al., 2017) model, which substitutes the binary cross entropy components of
the original GAN objectives with least square loss functions to ensure non-vanishing gradient flows.
The discriminator is trained to classify authentic samples as 1, while samples synthesized from the
generator are classified as 0. The generator, on the other hand, is trained to deceive the discriminator
by enhancing the quality of the samples to be classified as nearly equivalent to 1. The losses for the
generator (G) and the discriminator (D) within the GAN framework are defined as (13) and (14).
Actually we also adopted WGAN(Arjovsky et al., 2017) training method,but only found similar
performance with LS-GAN.

LAdv(D;G) = E(x,s)[(D(x)− 1)2 + (D(G(s)))2] (13)

LAdv(G;D) = Es[(D(G(s))− 1)2] (14)
Reconstruction Loss In addition to the objectives of GAN, we incorporate mel-spectrogram loss
and Discrete Wavelet Transform (DWT) loss. This integration is aimed at enhancing the training
efficiency of the generator and improving the fidelity of the audio generated.

LRec(G) = E(x,s)

[
λmel

∥∥∥∥ϕ(x)− ϕ(s)

n

∥∥∥∥
1

+ λdwt

∥∥∥∥φ(x)− φ(s)

n

∥∥∥∥
1

]
, (15)

Reconstruction Loss is defined as (15), where ϕ is the function that transform a waveform into the
corresponding mel-spectrogram, φ is the composition of four DWT functions, and n is the element
count of x.

Feature Matching Loss The feature matching loss is a learned similarity metric, quantified by
the disparity in features of the discriminator between a ground truth sample and a generated sample.
The definition of the feature matching loss is as (16).

LFM(G;D) = E(x,s)

[
T∑

i=1

1

Ni

∥∥Di(x)−Di(G(s))
∥∥
1

]
(16)

Final Loss Our final objectives for the GAN are listed in (17).
LG = λadvLAdv + λfmLFM(G;D) + LMel(G)

LD = LAdv(D;G)
(17)

Empirically, we set λadv = 2, λfm = 15, λdwt = 8 and λmel = 50 for the training process.

3.4 TRAINING ALGORITHM

The training procedures for the proposed WaveFluid model are delineated as follows. Drawing
inspiration from the aforementioned task principle, we employ the reparameterization technique to
stabilize the training targets and enhance the training efficiency. Specifically, the model inputs mel-
spectrograms, the outputs from the first stage, and the spatial-temporal coordinates into the second
stage refiner. Instead of training the refiner to predict the velocity field v, it is trained directly to
predict the original data xdata. This approach allows us to obtain

v =
xpredict − x

t
, ∀ t ∈ (0, 1]

through reparamterization process. The technique under discussion is specifically tailored for the
domain of strong condition speech synthesis tasks. It possesses the potential to unify the training
object for any arbitrary position, denoted as x, and time, denoted as t. This characteristic could
substantially enhance the speed of convergence during the training process. The comprehensive
training algorithm is delineated as follows:

6
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Algorithm 1: Training WaveFluid
Input: first stage generator G, refiner R, discriminator D, mel condition c, time step t, time

decay rate range [a, b]
begin

repeat
Sample xdata ∼ qdata(x|c), x ∼ N(0, I)
t← 1
xhint ← G(c)
for i = 1 ... step− 1 do

∆t← t× uniform(a, b)
xpredict ← R(xhint, t,x, c)
v ← (xpredict − x)/t
x← x+ v ×∆t
t← t−∆t

end
x = R(xhint, t,x, c)
g = (x+ xhint) /2
Take gradient descent using common LSGAN with generated data g and real data xdata

until WaveFluid converged
end

As for the discrete inference schedule,due to the relatively strong robustness of our model,we could
directly set all decay rate mentioned above to be a+b

2 , which is the mean of training decay rate. And
the scheduler could also be trained using gradient descent method if we fix the generator and the
discriminator and optimize the time scheduler according to training loss.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASET

In order to ensure a fair and reproducible comparison against other competing methodologies, we
utilize the LJSPeech dataset (Ito & Johnson, 2017) , which comprises 13,100 audio clips of 22,050
Hz from a single female speaker, totaling approximately 24 hours of audio. To assess the model’s
generalization capabilities in multi-speaker scenarios, we employ the LibriSpeech ASR corpus, a
large-scale corpus of read English speech amounting to 1,000 hours. We specifically select clear
audio samples from this corpus and upsample these to 22,050Hz to align with the sampling rate of
the LJSPeech dataset. Additionally, we utilize the Speech Command dataset for the Mean Opinion
Score (MOS) (Ribeiro et al., 2011) test for unseen speakers. This dataset includes audio samples
from human speakers in noisy environments. In accordance with standard practice, we conduct
preprocessing and extract the spectrogram with a Fast Fourier Transform (FFT) size of 1024, a hop
size of 256, and a window size of 1024.

4.1.2 TRAINING AND EVALUATION

The detailed architectures and configurations of the models are listed in Appendix D. As for the
traning process,the model is trained on a single Nvidia RTX 4090 GPU with a initial learning rate
2 × 10−4 and a exponentially decay rate of 0.995. The evaluation of audios’ quality is conducted
through 5-scale Mean Opinion Score (MOS) tests, which are crowd-sourced via Amazon Mechan-
ical Turk. The MOS scores are documented with a 95% confidence interval. For the purpose of
evaluation, each model generates 200 audio samples, half of which are derived from speeches by
unseen speakers. Each sample is evaluated by two distinct workers. In addition to this, we employ
supplementary objective evaluation metrics such as Short-Time Objective Intelligibility (STOI) (Taal
et al., 2010) and Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001) to assess sample
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equality. The real-time factor (RTF) assessment is also calculated, utilizing a single 3070Ti Laptop
GPU.

4.2 COMPARSION WITH OTHER MODELS

We conduct a series of experiments on speech synthesis tasks to evaluate our model. Models we
have compared with are listed below.

• WaveGlow (Prenger et al., 2019), an ancient parallel flow-based model;

• WaveGrad (Chen et al., 2020), DiffWave (Kong et al., 2020b), BBDM (Lam et al., 2022),
and FastDiff (Huang et al., 2022a), four diffusion probabilistic models, all been proved to
be high-fidelity. We use 50 denoising-steps for WaveGrad, 12 denoising-steps for BDDM,
and 6 denoising-steps for DiffWave and FastDiff;

• Hifi-GAN V1 (Kong et al., 2020a), a well-known GAN-based models;

• WaveNet (Oord et al., 2016), a autoregressive model.

We train these models following the setups as in the original papers,and the results in Table 1 show
that our models is comparable with different kinds of previous models.

Table 1: Test results of different models on LJSpeech dataset.

Model MOS (↑) STOI(↑) PESQ(↑) RTF (↓)
Ground Truth 4.53± 0.09 1 4.598 /

WaveNet(MOL) 4.01± 0.06 / / 307.6
WaveGlow 3.90± 0.10 0.950 3.20 0.062
Hifi-GAN 4.15± 0.09 0.947 3.57 0.018

Diffwave (6 steps) 4.18± 0.11 0.944 3.68 0.139
WaveGrad (50 steps) 4.04± 0.05 0.905 3.26 0.572

FastDiff (4 steps) 4.14± 0.10 0.953 3.72 0.044
BDDM (12 steps) 4.24± 0.10 0.955 3.66 0.267

WaveFluid (1 step) 4.19± 0.11 0.958 3.61 0.025
WaveFluid (5 steps) 4.27± 0.09 0.951 3.64 0.058

Due to the adversarial training process, our model could generate relatively high quality audios with
only one inference step, and the corresponding time consumption is significantly lower than usual
diffusion models. What’s more, different from traditional GAN models, our model could do further
refinement which takes acceptable time to improve the sampling quality.

4.3 GENERALIZATION TO UNSEEN SPEAKERS

The generalizability of our proposed model is assessed utilizing two datasets: the LibriSpeech
dataset and the SpeechCommands dataset. The Mean Opinion Score (MOS) is evaluated on the
SpeechCommands dataset, which comprises a substantial amount of data collected in noisy envi-
ronments. The Short-Time Objective Intelligibility (STOI) and Perceptual Evaluation of Speech
Quality (PESQ) are examined on the LibriSpeech dataset, characterized by high-resolution audio
data. The experimental outcomes for the melspectrogram inversion of the samples are delineated in
Table 2. The results indicate that our model exhibits commendable performance in both high-noise
and low-noise environments, exceeding the performance of the baseline models. And notably, it
could consistently generates audio from speakers who were not included in the training set.

4.4 ABLATION STUDY

In order to demonstrate our structural designs are effective, we have conducted several ablation
studies,and both subjective and objective evaluation results are presented in Table 3.

Our observations are concluded as follow:
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Table 2: Test results of models to unseen speakers. It is worth mentioning that MOS was tested on
Speech Command dataset, STOI and PESQ were tested on LibriSpeech ASR corpus.

Model MOS (↑) STOI(↑) PESQ(↑)
Ground Truth 4.29± 0.08 0.999 4.591

WaveNet(MOL) 3.85± 0.12 / /
WaveGlow 3.82± 0.09 0.864 3.09
Hifi-GAN 4.04± 0.09 0.892 3.22

Diffwave (6 steps) 4.01± 0.10 0.890 3.19
WaveGrad (50 steps) 3.65± 0.07 0.848 3.02

FastDiff (4 steps) 4.02± 0.13 0.895 3.24
BDDM (12 steps) 4.08± 0.11 0.901 3.28

WaveFluid (1 step) 4.05± 0.08 0.907 3.23
WaveFluid (5 steps) 4.11± 0.12 0.895 3.20

Table 3: Ablation study results.

Model MOS (↑) STOI(↑) PESQ(↑)
Ground Truth 4.53± 0.09 1 4.610

WaveFluid (1 step) 4.19± 0.11 0.958 3.61
WaveFluid (5 steps) 4.27± 0.09 0.951 3.64

w/o Period Attentions 4.17± 0.08 0.946 3.55
w/o Upsampling Shortcuts 4.19± 0.06 0.948 3.60

w/o DWT Shortcuts 4.18± 0.07 0.945 3.56

1. The inference results of 1 step and 5 steps model show that our model, which contains a
fluid equation based refiner, could improve the sample quality with a acceptable sacrifice
in sampling speed.

2. The period attention blocks in the generator and discriminator is a effective module to
capture long-range periodical patterns and improve sample quality.

3. The upsampling shortcuts in the generator and the DWT shortcuts in the discriminator are
helpful to alleviate the artifacts caused by transposed convolution layers.

5 CONCLUSION

In conclusion, this study has provided a comprehensive review of diffusion probabilistic models and
Poisson flow generative models, presenting them under a unified perspective of a non-compressible
passive fluid partial differential equation. We have introduced the WaveFluid model, a novel ap-
proach to mel-spectrogram conditioned speech synthesis, which leverages enhanced architectural
designs of neural networks for generators and discriminators. The model is divided into two stages: a
deterministic function that upsamples mel-spectrograms and a probabilistic refiner that uses velocity
fields to generate high-fidelity waveforms. The use of reparameterization techniques in the second
stage has proven effective in minimizing memory usage and enhancing training efficiency.Finally,
the results of the MOS test have demonstrated that the WaveFluid model is competitive with previ-
ous diffusion models and Generative Adversarial Networks (GANs) in terms of sample quality and
efficiency.
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A INTERPRETING SCORE BASED MODELS INTO LINEAR PDES

We consider the general Kolmogorov forward equation:

dx = µ(x, t)dt+ σ(x, t)dw, (18)

where µ(x, t) is a vector function from Rn × R to R, σ(x, t) is a matrix function from Rn × R
to Rn×n, and dw is the infinitesimal of n-dimentional standard Wiener process (also called Brown
Motion)(Øksendal, 2003; 2013).

Now x(t) becomes a random variable, we denote its probability density function as p(x, t).Assume
f is an arbitrary function ∈ C(2), and T is a arbitrary fixed positive time, using the tower property
of conditioned expectation, we have:

E[f(x(T ))] = E[E[f(x(T ))|x(t) = x]],∀t ∈ [0, T ], (19)

we denote E[f(x(T ))|x(t) = x] as u(x, t),then we have:

E[f(x(T ))] =
∫

p(x, t)E[f(x(T ))|x(t) = x]dx =

∫
p(x, t)u(x, t)dx,∀t ∈ [0, T ] , (20)

then we denote the integration as a inner product between p(x, t) and u(x, t), and noticing that the
left hand side has nothing to do with variable t, taking derivative at t = T we have:

0 =
dE[f(x(T ))]

dt

∣∣∣∣
t=T

=
d ⟨p(x, t), u(x, t)⟩

dt

∣∣∣∣
t=T

=

〈
∂p(x, t)

∂t

∣∣∣∣
t=T

, u(x, T )

〉
+

〈
p(x, T ),

∂u(x, t)

∂t

∣∣∣∣
t=T

〉
, (21)

now we obtain an equation with ∂p(x,t)
∂t

∣∣
t=T

, where ∂u(x,t)
∂t

∣∣
t=T

could be further computed:

∂u(x, t)

∂t

∣∣∣∣
t=T

= lim
t→0−

u(x, t+ T )− u(x, T )

t

= lim
t→0−

E[f(x(T ))|x(t+ T ) = x]− f(x)

t
, (22)

then according to Itô 4 lemma we do Taylor expansion at t = T for f(x(t)) and gain:

= −

 n∑
i=1

µi(x, t)
∂f(x)

∂xi

∣∣∣∣
t=T

+
1

2

n∑
i=1

n∑
j=1

n∑
k=1

σik(x, t)σjk(x, t)
∂2f(x)

∂xi∂xj

∣∣∣∣
t=T

 , (23)

we regard this formula as a linear operator L act on function f(x), where

L(f)(x) =

n∑
i=1

µi(x, t)
∂f(x)

∂xi

∣∣∣∣
t=T

+
1

2

n∑
i=1

n∑
j=1

n∑
k=1

σik(x, t)σjk(x, t)
∂2f(x)

∂xi∂xj

∣∣∣∣
t=T

(24)

∂u(x, t)

∂t

∣∣∣∣
t=T

= −L(f)(x) (25)

Now we have transformed the SDE into equation:〈
∂p(x, T )

∂t

∣∣∣∣
t=T

, f(x)

〉
+ ⟨p(x, T ),−L(f)(x)⟩ = 0. (26)

Since L is a linear operator, we could find its dual operator L∗ with the integration inner product
between functions using the formula of integration by parts: (⟨L(f), g⟩ = ⟨f,L∗g⟩ is the definition
to dual operator L∗)

L∗(f)(x) = −
n∑

i=1

∂[µi(x, t)f(x)]

∂xi

∣∣∣∣
t=T

+
1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj

∣∣∣∣
t=T

(
n∑

k=1

σik(x, t)σjk(x, t)f(x)

)
,

(27)
4Itô lemma: https://en.wikipedia.org/wiki/It%C3%B4%27s_lemma
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Now the SDE can be further transformed into:〈
∂p(x, t)

∂t

∣∣∣∣
t=T

, f(x)

〉
− ⟨L∗(p)(x, T ), f(x)⟩ = 0. (28)〈

∂p(x, t)

∂t

∣∣∣∣
t=T

− L∗(p)(x, T ), f(x)

〉
= 0. (29)

Since f(x) is an arbitrary function ∈ C(2),we have:

∂p(x, t)

∂t

∣∣∣∣
t=T

− L∗(p)(x, T ) = 0, ∀ T ∈ [0,+∞), (30)

∂p(x, t)

∂t
+

n∑
i=1

∂[µi(x, t)p(x, t)]

∂xi
−1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj

(
n∑

k=1

σik(x, t)σjk(x, t)p(x, t)

)
= 0, (31)

and this is the partial equation that the probability density function should obey. Now we can review
the simple situation:

dx = f(x, t)dt+ g(t)dw (32)
µ(x, t) = f(x, t),σ(x, t) = g(t)I, (33)

the equation can be simplified into:

∂p(x, t)

∂t
+∇x[f(x, t)p(x, t)]−

1

2
g2(t)∇2

xp(x, t) = 0, (34)

∂p(x, t)

∂t
+ p(x, t)∇xf(x, t) + f(x, t) · ∇xp(x, t)−

1

2
g2(t)∇2

xp(x, t) = 0, (35)

which is a linear non-compressible passive fluid partial differential equation.

B SOLVING STANDARD DIFFUSION EQUATION

Diffusion equation, which is also known as heat equation, is a parabolic partial differential equation
that could be found in many PDE textbooks(Evans, 2022; John, 1991).

Firstly we derive the Green’s function solution to the standard diffusion equation and we assume the
source point x′ = 0 for simplicity:

∂p(x, t)

∂t
−∇2

xp(x, t) = δ(x)δ(t) , (36)

the Fourier transformation of p(x, t) is denoted as:

p̃(k, t) = F [p] ≡
∫

p(x, t)e−ik·xdNx, (37)

the corresponding reverse Fourier transformation of p̃(k, t) is denoted as:

p(x, t) = F−1[p̃] =
1

(2π)N

∫
p̃(k, t)eik·xdNk. (38)

Fourier transformation’s nice properties could remove the∇x operator in some PDEs:

F [∇xp] = ikp̃,F [∇2
xp] = −|k|2p̃. (39)

Apply Fourier transformation to the standard diffusion equation,we have:

∂p̃

∂t
+ |k|2p̃ = δ(t) ,

⇐⇒ ∂p̃

∂t
+ |k|2p̃ = 0 (t > 0), p̃(k, 0) = 1 .

⇐⇒ p̃(k, t) = exp(−|k|2t), (40)
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which is a Gaussian distribution in k domain. Now we transform it back to x domain:

p(x, t) = F−1[p̃] =
1

(2π)N

∫
exp(−|k|2t) exp(ik · x)dNk

=

N∏
j=1

[
1

2π

∫ +∞

−∞
exp(ikjxj) exp(−k2j t)dkj

]

=

N∏
j=1

exp(−x2
j

4t )

2π

∫ +∞

−∞
exp

[
−t
(
kj −

ixj

2t

)2
]
dkj


=

N∏
j=1

√π

t
·
exp

(
−x2

j

4t

)
2π


=

1

(4πt)
N
2

exp

(
−|x|

2

4t

)
(41)

which is the Green’s function solution whose source is at x′ = 0, thus for arbitrary source position:

p(x, t;x′) =
1

(4πt)
N
2

exp

(
−|x− x′|2

4t

)
(42)

Now the diffusion equation could be solved by superposition method since the boundary condition
at t = 0 could be regarded as pdata(x)δ(t):

p(x, t) =

∫
p(x, t;x′)pdata(x

′)dNx′

v(x, t) = −∇x log p(x, t) = − 1

p(x, t)

∫
∇xp(x, t;x

′)pdata(x
′)dNx′

=
1

p(x, t)

∫
p(x, t;x′)

x− x′

2t
pdata(x

′)dNx′

=

∫
p(x′|x, t)x− x′

2t
dNx′

= Ex∼p(x′|x,t)

[
x− x′

2t

]
(43)

where

p(x′|x, t) ∝ pdata(x
′)p(x, t;x′)

∝ pdata(x
′) exp

(
−|x− x′|2

4t

)
(44)

when t is large enough, p(x, t) is approximately proportional to exp
(
− |x−x′|2

4t

)
, which could

serve as a prior distribution. Now the inference process has a proper beginning and the velocity field
could be trained efficiently through adding Gaussian noises to the origin clear data like diffusion
probabilistic models. It’s worth mentioning that, this conditioned expectation is also similar to
another efficient training objective for diffusion models called stable target field objective (Xu et al.,
2023), which means that the original data could be regarded as point charges, Green’s function
determine the analytical form of the electricity field, and the velocity field could be viewed as the
join electricity field of the point charges.

The process of inference now commences appropriately, and the velocity field can be effectively
trained by incorporating Gaussian noises into the original, unadulterated data, akin to diffusion
probabilistic models. It is noteworthy that this conditioned expectation bears resemblance to another
efficient training objective for diffusion models, referred to as the stable target field objective (Xu
et al., 2023). This implies that the original data can be conceptualized as point charges, with Green’s
function determining the analytical form of the electric field. Consequently, the velocity field can be
perceived as the combined electric field of the point charges.
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C SOLVING TIME-DEPENDENT POISSON EQUATION

Firstly,we also needs to fine the Green’s function solution:

∂2φ

∂t2
(x, t) +∇2

xφ(x, t) = δ(x)δ(t)

⇐⇒ ∂2φ

∂t2
(x, t) +∇2

xφ(x, t) = 0(t > 0),
∂φ

∂t
(x, 0) = δ(x) (45)

Similar to Appendix B, we apply Fourier transformation to the equation:

∂2φ̃

∂t2
(k, t)− |k|2φ̃(k, t) = 0(t > 0),

∂φ̃

∂t
(x, 0) = δ(x)

⇐⇒ φ̃(k, t) =
u exp(−|k|t) + v exp(|k|t)

|k|
, −u+ v = 1 (46)

Since t → ∞, ˜φ(k, t) → 0,we have u = −1, b = 0, φ̃(k, t) = 1
|k| exp(−|k|t),then apply re-

verse Fourier transformation with some properties of hypergeometric5function and n-dimensional
spherical coordinates mentioned in (Liu et al., 2023):

φ(x, t) =
Γ
(
N−1
2

)
2π

N+1
2

1

(t2 + |x|2)N−1
2

, (47)

which is the n-dimensional electricity potential function of a unit point charge at x′ = 0, and for
arbitraty source position x,we have:

φ(x, t;x′) =
Γ
(
N−1
2

)
2π

N+1
2

1

(t2 + |x− x′|2)N−1
2

, (48)

Actually since Poisson equation is very special, a more simpler method to solve it could be found in
PFGMs’ original paper(Xu et al., 2022). Now we have:

p(x, t) =
∂φ

∂t
(x, t) =

∫
∂φ(x, t;x′)

∂t
pdata(x

′)dx′ (49)

v(x, t) =
∇xφ(x, t)
∂φ
∂t (x, t)

=
1

p(x, t)

∫
∇xφ(x, t;x

′)pdata(x
′)dNx′,

=
1

p(x, t)

∫
∂φ(x, t;x′)

∂t

x− x′

t
pdata(x

′)dx′

= Ex∼p(x′|x,t)

[
x− x′

t

]
(50)

where

p(x′|x, t) ∝ pdata(x
′)
∂φ(x, t;x′)

∂t

∝ pdata(x
′)

(t2 + |x− x′|2)N+1
2

(51)

Then we could use a training process that is very similar to diffusion models in Appendix B to train
this velocity field by changing Gaussian perturbation kernel according to corresponding Green’s
function.

D MODEL STRUCTURE DETAILS

5hypergeometric function:https://en.wikipedia.org/wiki/Hypergeometric_function
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Figure 3: Modules in discriminator block.
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Figure 5: Attention Blocks in Wavefluid.
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Table 4: Model params.

Param Value
useWeightNorm True

AdamW Betas&WeightDecay [ betas=(0.8,0.99), weightDecay=0.01]
channelsGen [256,128,64,64]
attGroupsGen [1,1,1,1]
patchesGen [[2,3],[2,3],[2,3,5],[2,3,5,7]]

attMidChannelsGen [64,32,16,16]
dropRateGen [0.3,0.25,0.2,0.15]
resGroupsGen [1,1,1,1]

resMidChannelsGen [256,128,64,64]
upSampleRates [8,8,4]

upGroups [1,1,1]
downSampleRatesRefiner [8,4,4,2]

channelsRefiner [32,64,128,256,256]
groupsRefiner [4,8,16,32]
channelsDis [64,128,256,512,1024]
attGroupsDis [4,8,16,32,64]
patchesDis [[2,3,5,7,11],[2,3,5,7],[2,3,5,7],[2,3,5],[2,3,5]]

attMidChannelsDis [32,64,128,256,512]
dropRateDis [0.3,0.25,0.2,0.15,0.1]
resGroupsDis [4,8,16,32,64]

resMidChannelsDis [64,128,256,512,1024]
downSampleRates [2,2,4,4]

downGroups [8,16,32,64]
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